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Pl{El¼CE 

The thesis entitled "Theoretical investigations of turbulence and Magneto­

hydrodynamic turbulence in incompressible fluid" is being presented for the 

award of the degree of Doctor of Philosophy in Mathematics. It is the outcome of 

my researches conducted in the Department of Mathematics, Rajshahi University, 

Rajshahi, Bangladesh under the guidance of Dr. M. Shamsul Alam Sarker, 

Professor, Department of mathematics, Rajshahi University, Rajshahi-6205, 

Bangladesh. 

The thesis has been divided into six chnptcrs. The first is a general introductory 

chapter and gives the general idea of turbulence and Magneto-hydrodynamics 

turbulence and its principal concepts. Some results and theories, which arc needed 

in the subsequent chapter, have been included in this chapter. A brief review of the 

past researches related lo this thesis has also been given. 

In the second chapter we have discussed the decay of temperature 11uclualion in 

homogeneous turbulence before the final petiod for the case of multi-point and 

multi-time. Two-point, two-lime and three-point, three-time Fourier-lransfom1ed 

temperature equations is made detenninate by neglecting the fourth-order 

correlation tem1s. Finally, we have obtained the decay law of temperature 

iluctualion energy before the final period. 
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In the third chapter, the decay of MHD turbulence al times before the final 

period for the case of multi-point and multi-time has been studied. In this chapter, 

first we have obtained the two-point, two-time and the three-point, three-time 

correlation equations . Then the correlation equations are converted into spectral 

form by laking their Fourier transforms and then the magnetic energy decay law 

before the final period for the case of multi-point · and multi-time has been 

obtained. 

In the fourth chapter we have studied the magnetic field fluctuation of 

concenlralion of a dilute contaminant undergoing a first order chemkal reaction in 

MHD turbulence al limes before the final period. Here we have obtained multi­

point and single-lime correlation equations after neglecting the quadruple 

correlation lem1s in comparison with lower-order correlation terms applicable al 

limes before U1e final period. These equations arc converted into spectral fom1 by 

laking their Fourier transformed. Finally, the decay law has been obtained. 

The fifth chapter is divided into two parts . In part-A of this chapter, we_ have _ 

studied the decay of dusty fluid turbulence before the final period in a rotating 

system. In this problem we have considered the two- and three-point correlation 

equations and solved these equations after neglecting the quadmplc currcrclation 
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terms applicable al limes before the final period. Finally the energy decay law of 

fluctuating velocity is obtained. 

In pnrt-D, of the fifth chapter, the problem of 1mrt-A is extended for the case of 

MHD turbulence. 

The chapter six is also divided into two parts. In part-A of this chapter we have 

defined distribution functions for simultaneous velocity and concentration of 

dilute contaminant undergoing a first order chemical reaction. Some properties of 

the constmcted distribution functions have been discussed. Equation for the 

evolution of one- and two-point distribution function for velocity and 

concentration fields have been derived. 

In pnrt-D of the chapter we have considered the distribution function for velocity, 

magnetic and concentration fields of reacting (first order) fluid. Here, part-D is 

the extension work of part-A of the chapter in MHD turbulence. 

In the Inst chnJ>ter (chapter VII), we have discussed the effect of strong uniform 

magnetic field on acceleration covariance in M HD turbulence of dusty fluid in a 

rotating system. An expression for acceleration covarimicc is obtained in tctms of 

the defining scalars and it is assumed that the whole system is rotating with a 
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unifonn angular velocity. The regions arc considered where the inhomogeneity 

<lue lo rotation plays no important role. 

The following research papers, which are extracted from this thesis, have been 

accepted for publication or presented in different international mathematical 

conference or communicated in different national and international journals. 

(1) Decay .of MI-ID turbulence before the final period for the case of multi­

point and multi-lime. (Accepted for publication, "Indian Journal of Pure 

and Applied Mathematics"). 

(2) Decay of temperature fluctuations in homogeneous turbulence before the 

final period for the case of multi-point and mull_i-time. (Presented in the 

"lntemalional conference on Geometry, Analysis and Applications" 

Department of Mathematics, Faculty of Science, Uatiaras Hindu University, 

2r1 
- 241h August, 2000 and communicated for publication). 

(3) First order reactant in MHD turhulence before the final period of decay. 

(Presented in the "25th lntenmlional Nathiagalis Summer College on 

Physics and Contemporary needs", 26th Jun - 15th July, Pakistan and 

communicated for publication). 

(4) Decay of dusty fluid turbulence before the final period in a rotating system. 

(Communicated for publication). 
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(5) Decay of dusly fluid Ml-ID turbulence before the final period in a rotating 

system. (Communicated for publication). 

(6) Distribution funclions in the statistical theory for velocity and 

concentration undergoing a first order reaclion. (Communicated for 

publication). 

(7) Effect of very strong magnetic field on acceleration covariance in MHD 

turbulence of dusty fluid in a rotating system. (Communicated for 

publication). 

Department of Mathematics 

Rajshahi University, Rajshahi-6205 
Bangladesh. 

M cl· ~crwa.Y \A\ f ¼_~~ 

(Md. Anowarul Islam) 
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GENEliAL INTRODUCTION 

1.1 DEFINATION AND STATISTICAL NATURE OF TURBULENCE 

Turbulence is the most common, important and complicated kind of Ouid motion. From 
. . 

the beginning of the study of nuid dynamics, the turbulent Oow is an unsolved problem. 

Since the Navier-stokes equation is a non-linear partial differential equation, the 

nonlinear terms make the solution of turbulent flow more and more diffict,ll. Turbulent 

flows are very common in nature, especially in atmosphere, rivers, seas anti oceans, that 

is almost everywhere. 

In turbulent Oow, the steady motion of the Ouicl is only steady in so far as the temporal 

mean values of the velocities and the pressure are concerned whereas actually both the 

velocities and the pressures arc irregularly llucluating. The velocity ::md the pressure 

distributions in turbulc11t !lows as well ns the energy losses are determined mainly by the 

turbulent nuctuations. The essential characteristic of turbulent ·now is that the turbulent 

fluctuations are random in nature. In 1937, Taylor and Von Kannan [106) gave the 

following definition: 

"Turbulence is an irreiular 111otio11 irhich in Kenera/ makes its appearance in fluids, 

gaseous or liquid, 1rhe11 thejlmr 1wst solid s111:ft1ces or even ll'hen neighboring streams of 

the same.fluid.fl rm /Hts/ orer one 0110/ha .. _ 

According to this defi11ition, the flow has lo satisry the condition of irregularity. Indeed, 

this irregularity is a very important feature. Because or irregularity, ii is i:q>0ssible to 

describe the motion in all details ns a function or lime and space co-ordi11ales. l3ul, 

fortunately. turbulent motion is irregular in the sense that it is possible lo describe it by 
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laws of probability. It appears possible to indicate distinct average values of various 

quantities, such as velocity, pressure, temperature etc, and _this is very important. 

Therefore, it is not sufficient just to say that turbulence is an irregular motion. Yet we do 

not have a clear-cut definition or turbulence. This is rather difficult. Hinze [34] suggests 

in his book turbulence: 

"Turbulent .fluid motion is an irregular condition of.flow in which various quantities 

show random variation 111ith time and space coordinates. so that statistically distinct 

average values can be discerned ". 

Turbulence is a continuum phenomenon governed by the Navier-Stokes equation and the 

continuity equation. Its small-scale structure is assumed to be large compared with 

molecular length scale. Thus the continuum approximation seems to be valid as long as 

the minimum eddy size is much larger than the mean free path. The consequence of very 

small-scale structure is the enhancement of transport processes. The most imr>ortant 

properly of the turbulent motion is it greatly increased rates of momentum, mass and 

energy transport by irregular small-scale motions. These rates nre extremely larger than 

the corresponding rates due to molecular diffusion. 

In view of random fluctuating motions of a fluid having statistical properties, it has often 

raised the question how the Navier-Stokes equations can really describe such random 

motions; since a given set of initial conditions determine the motions for all subsequent 

times. This question has not yet been answered completely. However, it has been 

demonstrated t:ioth theoretically and experimentally that the Navier-Stokes equations 

have tremendous simplifying power under suitable conditions. On the other hand, if the 
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Navier-Stokcs equations arc 111 fact. inadequate then there is a definite need for new 

formulation of proper equations. Until such proper equations arc developed, its seems 

reasonable lo accept the Navier-Stnkcs equations for the study of turbulence. 

Another difficulty arises from the strong non-linearity of the Navier-Stokes equations. 

This non-linearity leads to an infinite number of equations for all possible moments of the 

velocity field. This system of equations is very complicated, and any sub-system of this 

system is always non-closed in the sense that it contains more unknowns than the number 

of equations in the given system. ror instance, the dynamical equation for second order 

moments involves third order moments. that for third order moments involves fourth 

order moments and so on. This is so called the closure problerh in the statistical theory of 

turbulence. This is perhaps the most difficult and formidable problem in turbulence 

theory. 

Turbulent now always occurs from instnbilities of laminar motions al very high Reynolds 

numbers. These instabilities arc closely associated with direct interaction of the non­

linear inertia term and the viscous terms in the Navier-Stokcs equation. Instability to 

small perturbation is also another feature of turbulent nows. 

Turbulent motion -is three dimensional and rotational. It is also characterized by the 

random clist!'ibution of vorticity in which there is no unique relation between the 

frequency and the wave number of the Fourier modes. It is essentially diffusive and 

dissipative. The vorticity dynamics plays an important role in the statistical description of 

turbulence. 
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Based upon averaging procedures. considerable theoretical and experimenlal sludics have 

been made of lhe statistical properties or ensembles of turbulenl flows under 

macroscopically identical external conditions. So far. these stt1Jies me based on suitable 

mathemalical simplification. physically plausible assumplions and en model equalions. 

Unforlunately, from mathematical and physical point or view, neither the classical nor the 

modern lheory of turbulence is entirely satisfactory. Indeed turbulence is still one of the 

mosl poorly or partially understood phenomena in all or 11uicl niechanics. 

It is now generally recognized that turbulent n-iolion is the more nalural state of fluid 

motion. Therefore. ils study is extremely important from theoretical as \Veil as practical 

point or view. 

1.2 SHORT EARLY IIISTRY or TllRBULENCE 

The history or turbulence began \Yith the pioneering m,rks or ltcy11olds 185,86] and 

Reyleigh [84 J. It was prandtl I 82J who first advanced a semi-empirical momentum 

transfer theory or turbulence based on the concept or mixing lengll1 (the 111ea!1 distance 

through which a fluid mass in a turbulent flow conserves its mome11tu111). Prandtl's 'theory 

was then successfully applied to the turbulent flow or a liquid in a circular pipe and also 

to the meteorological problem of wind distribution in the layer or air adjacent to the 

ground. I lowevcr. his theory has had a serious vvcakncss in the sense that il requires some 

adhoc assumption on the mixing length. On the other hand, G. I. Taylor l l 04, I 05] first 

recognized the random fluctuation or turbulent nows and formulated a theory of 

turbulence based on the concept or vnrlicity transfer. Although in certain simple cases the 
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vorlicily lransfer lheory predicled as good rcsull as lhe momenlum lrnnsfer, slill the 

former lheory on lhe whole ,vas less successful than the !alter. At the same time, l~e first 

formulated a statistical theory of isotropic turbulence. In fact, advances in the early 

development of the semi-empirical approach to the theory of turbulence were made 

notable by Taylor, Prandtl and Von Karman. In his famous papers Taylor [107,108] made 

further significant contributions lo the understanding of the physical nature· of turbulence 

based upon the Navier-Slokes equations. He formulated another method of investigation 

in which the turbulent elements are assumed to consist of small eddies of different 

macroscopic lengths, and the energy of turbulent motions is supposed lo be distribution 

among these e_ddies. I )is analysis reveals the existence . and usefulness of velocity 

correlation tensor, and the Fourier transform of the correlation between lwo velocities, 

which leads lo the concept of energy spectrum function. The central problem of 

investigation is then lhe energy spectrum function of wave number and time which 

describes the distribulion of kinelic energy over lhe various fourier wave number 

components of turbulence. ll has also become clear that the nonlinear inertia terms of the 

Navier-Stokes equalions play a significant role in lhe statislical description or turbulence. 

The important consequences of the non-linearity arc the exislence of an interaction 

bet ween the lurbulenl elements of di ITercnl length scales, and the skewness of the 

probability distribution of the difference between the velocities al two points of the 

turbulent field. This pioneering work of Taylor has served as a basis of nil subsequent 

developments oflhe theory ofturhukncc. Simultaneously. Von Karman [112,113] alone 

and in collaboration wilh I lowarth 1114 I mndc some li.1rthcr progress on lhe turbulence 
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theory based on the idea of self preservation of the shape of velocity product during 

decay process. The combined works of Taylor. Van Karman and others constitute a 

significant progress towards the early classical theory of .isotropic and homogeneous 

turbulence. However. the model of isotropic and homogeneous turbulence is a special 

case or turbulent now. and is. in general, unsuitable for the description of any real 

turbulent nows because the assumption of isotropy and homogeneity are not fulfilled for 

the real nows. 

In the following. instead of' giving a detailed account or the historical development of the 

subject, \Ve shall con line to mere concepts and method of turbulence together with a few 

theories of turbulence, which have been used in subsequent chapters. 

1.3. THE NA VIER-STOKES AND TIIE CONTINUITY EQUATIONS 

The Navier-Stokes and the continuity equations for an incompressible viscous fluid flow 

are 

011 , I -, , 
- + (u · v') II = - - v'p + 11 y'- II 
a1 P 

v' · II = 0 

(1.3. l) 

( 1.3 .2) 

where 11 = 11 (P,t) represent the velocity field. /J is the pressure. p is the constant 

density and II is the kinematic viscosity. The Reynolds number ( the ratio of inertial and 

viscous terms in ( 1.3.1 ) ) is UUv where /, is the characteristic length scale in which 

the velocity varies in magnitude U. 
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The use of the Navier-Stokes equations for the study of turbulence is perhaps justified 

since the each number of an incompressible turbulence flow is _small. However, there is 

still a controversy for the following mlclitional reasons. First, the mathematical theory of 

the Navier-Stokes equations is incomplete in the sense that there are no general existence 

and uniqueness theorem which ensure the well poseclness of the system ( 1.3.1) - ( 1.3.1 ). 

Second the closure proble111 of the Navier-Stokes equations is inconclusive. In view of 

these inherent difficulties, Lady7.hcnskaya [54] and others suggest to abandon the 

application of the Navier-Stokes equations, especially for the study of turbulence. 

According to Ladyzhenskaya, if" a biharmonic damping term - A V4 11 is included in the 

right hand side of the Navier-Stokes equations ( 1.3.1 ), the existence and the uniqueness 

of solutions can be established for all tl.) 0 . She also formulated new equations for the 

description of the motion of the motion of an incompressible viscous fluid and explained 

the advantages of her new equations relative to the Navier-Stokes equations. 

It is important lo make an obserrntion from ( 1.3.1) - ( 1.3.2). W_e first take the divergence 

of(l.3.1) and use (1.3.2) to obtnin 

2 
2 a u; u.i 

V /JI=-------. 
ax; a,.i 

(1.3.3) 

where PI = pl p is often ref"errcd to as the kinematic pressure. 

It follows from ( 1.3.3) that the pressure field is determined by the velocity distribution, 

and satisfies the Poisson equation. 
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1.4 REYNOLDS RULES OF AVERAGES 

Reynolds [ 85.1 was the first to introduce elementary statistical motion into the 

consideration or turbulent !low. In the theoretical investigations of turbulence, he 

assumed the physical quantities in the !low field as 

p = J) + p'. p = p+ p'. T=T+T' 

Here the quantities with bar denote the mean values and those with primes are 

--
lluctuations. Furthermore. 11; = p' = T' = 0. 

In the study of turbulence we often have lo carry out an averaging procedure not only on 

single quantities but also on products of quantities. 

Consider three arbitrary statistically dependent physical quantities A. B and C, each 

consisting or a mean and a lluctuating part. i.e., 

A= A+ a, 13 = 13 + h. and < · = (-· + c then . A = A+ a ~ A+; = A , whence ; = 0 

In the above relations we used the properties that the average of the sum is equal to the 

sum or the average, and the average of a constant time B is equal to the constant times 

the average of 13 . 

- · -- ·--·-- · ---.. - ·-
Next, A B=(A+a)(/J+h).=A /3+Ab+/3a+ab=A JJ+Ab+Ba+ah 

- -- - - --
=Al3+Ah+Ha+ah=A !3+ah 

Consequently. AIJ=AB=AIJ 

Nole that the average or a product is not equal lo the product ol' the averages. Terms such 

as ab are called correelalions. For the product of three quantities. we have 
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ABC= (A +h)(B+h)(C+c) = A /3 C+ A he+ B ac+C ab+a b c 

1.5 AVERAGING METIIOD AND EQUATION OF TURBULENCE ENERGY 

SPECTRUM 

Method of averaging is indispensable for the statistical formulation of the theory of 

turbulence. There are three different kinds of averaging procedures that are found to be 

useful for the study ol" turbulent flows. These include the time average, space average and 

the ensemble average. The time average is very useful for statistically steady turbulence, 

in which time scales are much larger than the time scale or turbulent fluctuations. The 

space average has a definite advantage for homogeneous turbulence. On the other hand, 

the ensemble average (or the statistical average over a large number of identical system) 

is more general than the time and space averages and very useful for the study of 

inhomogeneous, 11011 stationary turbulent flow. This type of averaging can be applied to 

any flow. Most or the modern theories have used the ensemble averaging procedure for 

describing the slalisticnl properties of turhulence. I lowe\'er. like the time and the space 

averages, the physical interpretation of the ensemble average is not so simple. 

In general any turbulent field is co111plctcly determined by the hierarchy of correlations. 

(1.5 .1) 

where ( ) denotes the ensemble average defined in Leslie's l3ook l55 J. 
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In homogeneous isotropic turbulence the first correlation represents the mean velocity, 

and is simply zero. The pair correlation (u;(r). uj(r')) is often considered to be a 

sufficient description of turbulent flows. The higher order correlations .are assumed to 

give less and less information so that only a finite number of correlations are required to 

determine the statistical properties of turbulence. This is a possible method of reducing 

the infinite hierarchy of equations into a closed set. 

The double correlation tensor RuU,.r;t) for two points separated by the space vector r is 

defined by 

"" A I, A I, 
R;;(r, x , I) = (u;(x - -r,1) If • (x + -r.l)) 

, 2 1 2 
(l.5. 2) 

Similarly, the triple correlation tensor ~ik or higher colTelation tensors can be 

introduced. 

The f-ourier transform of Rij with respect to P defined by 

(1) 

A A - I f ff -i(k.i-)R ~ A 1~ ¢ij(k,x,t) - --
3 

e ;;(1 .x.t) <, 
(2Jr) . 

-(1) 

(l.5.3) 

" represents the energy spectrum function F:(k: t) in the sense that it describes the 

distribution of kinetic energy over the various wave number components of turbulent 

flows. The Fourier transform defined above can he treated as generalized functions or 

distributions in the sense of Lighthill 156]. It follows from the inverse f-ourier transform 

that 
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00 

I ( ?) I ( A A I A f A A - 11~ = - 11;(x) 11;(x)) = -Rii(O.x.t) = E(k.t) dk 
2 2 2 

0 

11 

(1.5.4) 

so that E(k ,t) represents the density or contributions to the kinetic energy in the wave 

number space k. thus the investigation of the energy spectrum function E(k,t) is the 

central problem of the dynamics of turbulence. After some algebraic manipulation of the 

Navier-Stokes equations al two points combined with averaging process and the Fourier 

transform. it can be shown that f(k.t) satisfies the dynamical equation. 

A 

_a£_, (_k,_t) = T(k,t)-21/vE(k.t) 
a1 (l .5.5) 

where the terms or this equation represent contributions of the Navier-Stokes equations, 

and in particular , T(k.t) represents the contributions clue tc1 transfer of energy from 

other wave numbers. 

It follows from the condition of incompressibility that the pressure term in (1.3. l) does 

not contribute any term to equation ( 1.5.5). This implies that the net effect of pressure 

forces is to co11serve the total energy in the wave number .space. On the other hand the 

non-linear inertia terms in (LU) also conserve the energy and the net effect of inertia 

forces is to spread energy over all wave number. In other words, the inertia forces can 

only transfer energy from one range of wave number to another in the energy spectrum 

on the wave number space, and this spectral energy transfer is in fact, an important 

consequence of the Navier-Stokes equations. l lowever, the direction of the energy 
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transfer has not yet been establ ishcd. but the conjecture is that the transfer is from the 

smaller towards the larger wave numbers that is, from large to smaller eddies. 

The last term of ( 1.5.5) represents the dissipation of energy by molecular viscosity. The 

action of viscosity leads to a decrease in the kinetic energy of disturbances with the wave 

number, which is proportional to the intensity of the disturbances multiplied by 2 v k2 . 

It also follows from the conservation of energy by the non-linear inertia terms that 

00 

f T(k)_dk = 0 

0 

so that (1.5.5) yields 

00 

d 1 a f A A -(-(u; u;)) = - E(k,t) elk= - E (/). 
dt 2 81 

0 

Where from (1.5.5) it follows that 

00 

E (I)= 2v f k2 E(k,I) dk 

0 

(1.5. 6) 

(1.5.7) 

( l.5.8) 

This clearly represent the rate of energy dissipation and shows that small scale or high 

wave number components are dissipated more rapidly by viscosity than large scale or low 

wave number cm11ponents. 

The summary of the above discussion is that the pressure and the nonlinear inertial forces 

separately conserve the total energy of turbulence, where as the viscous forces dissipate 

it. 
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1.6 ISOTROPIC AND HOMOGENEOUS TURBULENCE 

The turbulence is called isotropic if its statistical features have no preference for any 

speci fie direction and minimum number of quantities and relations are required to 

describe its structure and behavior. 

Since turbulence is a very complicated problem, in order to bring out the essential 

features of the turbulence problem we have to study the simplest type of turbulence. In 

isotropic turbulence the mean value or any function of velocity components and their 

space derivatives are unaltered by any rotation or rcncction of axes of references. Thus, 

in particular 

lsotrophy introduces a great simplicity into the calculations. The study of isotropic 

turbulence may also be of practical importance, since far from solid boundaries it has 

been observed that 2 
II I ' uj . 11} tend to become equal to one another , e.g. in the 

natural winds at a sufficient height above the ground and in a pipe now near the axis. 

Another simplest type of turbulence is homogeneous turbulence. It is defined ~s the 

turbulence having quantitatively .the same structure in all parts of the now field. In a 

homogeneous turbulent now licld the statistical clrnractcristics me invariant for any 

translation in the space occupied by the fluid . 
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Most of the theoretical works in turbulence and Ml-ID turbulence concern homogeneous 

and isotropic field in an incompressible nuid al rest. Throughout the present work, we 

have also assumed the homogeneity and isotropy of the turbulent now field . 

1.7 MAGNETOHYDRODYNAMICS AND TURBULENCE 

Magnetohyclroclynamics (MI ID) is an important branch of' Fluid Dynamics. Ml-ID is the 

science, which deals with the motion of highly conduction nuids in the presence of a 

magnetic field. The motion of the conducting fluid across the magnetic field generates 

electric currents which change the magnetic field, and the action of the magnetic field on 

these currents gives rise to mechanical force v,1hich modi fies the now of the field . 

There are two basic approaches to the problem. the macroscopic fluid continuum model 

known as Ml-ID, and microscopic statistical model known as plasma dynamics. We shall 

be concerned here only with the Ml m. that is electrically conducting nuids, and study 

the problems about Ml ID turbulent flow. 

The magnetohydrodynamic turbulence is the study of the interaction between a magnetic 

field and the turbulent motions of an electrically conduction fluid. The interaction 

between the velocity and magnetic fields results in a transfer of' energy between the 

kinetic and magnetic spectra ( or modes). 

Modern applications of magnetohydrodynamics 111 the fields of propulsion, nuclear 

fission , and electrical pc)wer generation make the problem or magneto-hydrodynamic 
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turbulence one of considerable interest to engineers since turbtilent phenomena seem to 

be inherent in almost all types of now prol;lems. 

The fundamental equations of magnetohydrodynamics for an incompressible fluid are: 

a,, . . I p , ·~ f.l , • • 2 • • 
- +(11.v')11=--v'p+__.!E._/:.,+-" J x f-f +vv' 11+F 
a, P P P 

v.t, = o 

K BE • • - -- = c:11rl /-I - 4irj 
C 8! . 

f.l 8/-1 A 

_e -= - curl E 
C 81 

. 
v'./-/ = 0 

A A A I/ 
J = er(cE + f.lelf x fl)+ Pe -

C 

(1.7.1) 

(1.7.2) 

(1.7.3) 

(1.7.4) 

(1.7.5) 

( I. 7.6) 

where z,, the velocity vector; f.·. the body force; p, the pressure; p, the density of the 

fluid which is constant; Pe, the excess electric charge; E, the electric field strength; µe, 

the magnetic permeability; .J. the electric current density; Ii , the magnetic field 

strength; v, the coefficient of kinematic viscosity; k, the dielectric constant; c, the 

speed or Light; er, the electrical conductivity; V , the grndient operator, and t is the 

time. 

When conductivity er of the Ouid tends to infinity the electric field strength E, at each 

f.lellX fl I . • 
point must tends to the value - -- -- - , ol 1erw1sc the current J given by equation 

C 
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(I.I 0.6) will become very large even when the slightest mass motions are present. Hence 

when a is large we may assume that, 

E
A II X fl 
J =-pe - ­

c 

a relation which will be increasingly valid as a ➔ oo. 

(1.7.7) 

An important consequence .of relation (1.10.7) is that under the circumstance in which 

this is a good approximation the energy in the electric field is of the order of lz,12 
/ c2 of 

the energy in the magnetic field and can, therefore. be neglected. Consequently in this 

approximation which is known as the approximation of magnetohydrodynamics. We 

have to consider only the interaction between the two fields ii and ff . 

ln the magnetohydrodynamics approximation, Maxwell equation (I. 7. 3) becomes, 

A I A 

J = -curl H 4Jr . 
(.1.7.8) 

In the framework of the approximations (1.7.7) and (1.7.8) the Navier-Stokes equations 

are modi fiecl to take into account the electromagnetic body force (assuming that there is 

no body force fr) and equation ( 1.7.1) becomes 

Bit A A f-le I f'.'r fA{ I n n 2 A -+(11.V)11 =--Cl/1' 1 X -- vJJ+Vv II, 
at 4Jrp P 

(1.7.9) 

Again, in the approximation (1.7.7), Maxwell equation (l.7.4) becomes 

BE A A 

-=curl(uxH). a, . (1.7.10) 

In a higher approximation in which the loss of energy by joule heat ts allowed for 

equation ( I. 7. I 0) is modi lied to I 4]. 
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a1-1 A 2 A 

-- - curl (11 x /-!) = ;tv' 1/ a, 

where ,l = ( 47Tpeo-)- I is the mngnclic difTussivily. 

17 

(1.7.11) 

The magnetic field intensity fl is a solenoidal vector, and in an incompressible fluid the 

velocity 11 is also a solenoidal vector. When we use this property of 11 and fl equations, 

(1.7.9) and (1.7.11) can be written in the form 113_1 as 

(1.7.12) 

and, 
au; a 2 
-+- (I-l·llk -11·1/k) = ,lv' fl. a, axk I I I 

(1.7.13) 

where. here mid in the sequel, summation over the repeated indices is to be understood. 

Equation ( I. 7. 12.) and ( I. 7. 13) form the basis of Batchelor's discussion [ 4]. 

Chandrasekhar [ 13] extended the invariant theory of turbulence to the case of 

magnetohydrodynamics. He introduced the new variable 

(1.7.14) 

,:, (Which has the dimension or a velocity (known as Alfcvcn 's velocity). 

In terms of h, equations, (1.7.12) and (1 .7.13) can be writlen as . 

(1.7.15) 

and, (1.7.16) 



General i11trod11cfio11 18 

JJ 11 -,2 where, P11 = p + 2 h is the total MHD pressure. 

Chandrasekhar [13,14] in his theory. considered the correlation's between u and h at 

two points P and P' in the field of isotropic turbulence in the same manner as in 

ordinary turbulence. II ere, we have the double correlation, u ;u1, h;hj and u ;hj , and 

(h;uk -hkuJ )u;, where the subscripts refer lo the components of the vectors 

i,j ,k = 1,2 ,3. 

Each of these double and triple correlation depends on one scalar function in the case of 

A 

isotropic turbulence because the divergence of both 11 and h is zero. 

One of the results of chandrasekhar's theory [13,14] shows that the kinetic energy is 

dissipated into heat by viscosity and transformed into magnetic energy by stretching the 

lines of magnetic force. He has also shown that the magne.tic energy is gained from the 

stretching of magnetic force and dissipated into heal. The gain in magnetic energy is 

equal to the loss by stretching of the lines of magnetic forces. 

1.8 RATE OF REACTION AND ORDER OF REACTION 

The rate of cliange of concentration as a function of time and may be expressed either in 

the form of disappearance of reactants or the appearance of new products. 
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According to Bansal [ 1] the general reaction equation in which A and B are transformed 

to give P 

aA +b/J ➔ cP 

the reaction rate can be written as 

1 dlA] 

a dt 

1 d[B] 
- - --, 

h di 

I dlP] 
+ ----

(,' di 

and the rate law may be written in the form of equation 

I di.Al II Ill 
- -- -- --- = k[A] [/JJ 

a di 

(1.8.l) 

(1.8.2) 

where I A[. [HJ and IPJ denote the active concentrations 111 moles/litre of species 

A, JJ and P , t represent the time, 11 and 111 are integers,_ k is the proportionality 

constant referred to as the reaction rate constant or speeilic rate constant and a, b, c 

are the stoichiometric coefficients. 

Since the concentrations of A and /J are diminishing. 
1 d[ A], 1 d[ B] are negative 
a di h d1 

number while I d[J>I is positive. Any of these derivatives may be used to express the 
C dt 

rate of the reaction. 

The order of a reaction is the algebraic sum of the exponents of all the concentration 

terms, which appear in the rate law ( 1.8.2). For the reaction given in equation ( 1.8.1) the 

rate law may be expressed as 
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where n. is the order of the reaction with respect to A, and 111 is the order of the reaction 

with respect lo B. The over all order of the reaction is given by the sum (n + m). 

A reaction is said to be of the first order if the rate of the reaction is proportional to the 

concentration of only one of the reacting substances. Let us consider a reaction in which 

A is being transformed lo product P. ( A ➔ I'). If C is the concentration of A, then the 

differential rate law can be written as 

dC ...:.. k [I''] --··-II..., 
dt 

where k1 is the first order rate constant and t the time . This can be rearranged to 

dC 
- --- = k

1
dt 

C 

(1.8.4) 

Integrate both sides of the above equation lo obtain 

- In C = k1t + 0 . where 0 is a constant of integration. 

1.9. DISTRIBlJTION FUNCTIONS IN TURBULENCE 

(1.8.3) 

Probability distribution functions have been described in the various classic text books in 

the past, but the dynamical equations describing the lime evolution of the finite 

dimensional probability distributions in turbulence were first proposed by Lundgren [59] 

and M(rnin l68,69J. Lundgren [5tJI considered a lnrgc ensemble of identical Ouid system 

in turbulent stale. In his consiclerntion each member or the cnseinble is an incompressible 
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nuid in an inlinite space with velocity 11(P.t). satisfying the continuity and Navier-Stokes 

equations. The only di [Terence in the members of ensemble is the initial conditions that 

vary from mcm bcr lo member. I le considered a function G(z?(P1, t), z?(P2 , t),- ... •) 

whose ensemble is given as (G(11(P1 ,t), 11(P2 ,t).- • • • •)) and defined one point distribution 

function .Ii cP1. 1~1 , t) such that f .Ii (P1, 111,t)d,,1 is the probability that the velocity at a 

point P1 at time l is in element d,~, about 111 and is given by 

And two points' distribution function is given by -

In short one and two point distribution functions arc denoted as .r?> and .rJ'•2). Here c5 

is the clirac-delta function, which is defined as 

f ~ ~ {' atthepdint11=1~ 
c5(11 - v)dv = 

0 elsewhere , . 

and ( ) denote the ensemble average. 

1.10. A BRll~F DESCRIPTION OF PAST IU~SEARCIIES RELEVENT TO THE 

THESIS WORK 

The essential characteristic of turbulent flows is that turbulent nuctualions are random in 

nature and therefore. by the application of statistical laws, it has been possible lo give the 

idea of turbulent fluctuations. The turbulent nows, in the absence of external agencies 

always decay. Millionshlchikov [65J. Batchelor and Townsend 1.21, Proudman and Reid 
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[83], Talsumi [102_1, Deissler 121.22], and Cihosh l30,31) had given various analytical 

theories ror the decay process or turbulence so far. 

Batchelor and townsend 1_2] studied the decay or turbulence in the final period. They said 

that the final period or a turbulent motion occurs when the effects of the inertia force in 

the momentum equation are negligible. Dcislcr 1_21 ,22] studied the decay of turbulence at 

times before the final period. Also Loeffer and Deissler [57], discussed the decay of 

temperature Ouctuation in homogeneous turbulence before the final period. In their 

approach they considered the two aml three point correlation equations and solved these 

equations after neglecting the fourth and higher order correlation terms in comparison to 

the lower order correlation terms. Using Deissler's theory Kumar and Patel [52] studied 

the concentration Ouctuation of' dilute Contaminants undergoing a first order chemical 

reaction before the final period of decay for the case or multi-point and single-time. 

Kumar and Patel [531 also extended their problem of [52] for the case of multi-point and 

multi -time. 

Likewise the hydrodynamic turbulence. Ml II) turbulent fluctuations are random in 

nature. The statistical laws can nlso he applied in Ml 11) turbulence. Sarker and Kishore 

191 I studied the decay of Ml-ID turbulence. Kishore and Upathdyay [49], also studied the 

decay ol' Ml ID turbulence in rotating system. In both the cases they obtained the decay 

law for the case or multi-point and single time before the final period. 

By considering the above theories, we have studied the Chapter II, Chapter Ill and 

Chapter IV. 
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In chapter ll, we have studied the decay of temperature fluctuation in homogeneous 

turbulence before the final period for the case of multi-point and multi-time. 

In chapter Ill, we have considered the MIID turbulence and derived the decay law for 

magnetic field fluctuation before the final period for the case of multi-point and multi­

time. 

In chapter IV, we have derived a decay law for the magnetic field fluctuation of 

concentration of a dilute contaminant undergoing a first order chemical reaction in MHD 

turbulence at times before the final period. In this case two and three- point correlation 

equations are made determinate by neglecting the quadruple correlation in comparison 

with lower order correlation applicable at times before the final period. 

In geophysical flows. the system is usually rotating with a constant angular velocity. 

Such large Scale flows are generally turbulent. When the motion is referred to axes, 

which rotate steadily with the bulk of the fluid. the Coriolis aml centrifugal force must be 

supposed to act on the lluid. The coriolis force clue to rotation plays an important role in a 

rotating system of turbulent flow, while the centrifugal force with the potential is 

incorporated into the pressure. 

Funada, Tutiya and Ohji [29J considered the effect of coriolis force on turbulent motion 

in presence of strong magnetic field . Kishore and Dixit [43], Kishore and singh [40], 

Dixit and Upadhyay [24J, Kishore and Golsefied [45J and Kishore and Sarker [48] 

discussed the effect of coriolis force on acceleration and vorticity covariance in ordinary 

and MHD turbulent flow. Shimomura and Yoshizawa 197], Shimomura [98,99] discussed 
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the statistical analysis of turbulent viscosity, turbulent scalar Oux and turbulent shear 

flows respectively in a rotation system by two-Scale Direct- Interaction approach. 

Saflinan [89] derived an equation that described the motion of a fluid containing small 

dust particles which in applicable to laminar flows as well as turbulent flow. Using the 

equations given by Saffman, Michael and Miller [64] discussed the motion of dusty gas 

occupying the Semi-infinite space above a rigid plane boundary. Sinha [1 OOJ, Sarker 

l92_1, and Sarker and Rahman l93]. considered dust particle on their own works. 

In part-A of Chapter V, we have studied the decay of dusty fluid turbulence before the 

final period in a rotating system. using the Deissler's [21] approach. 

In part-B of chapter V. the problem or part-A of the chapter has been extended for the 

case of Ml ID turbulence. 

Various analytical theories in the statistical theory of turbulence have been given in the 

past by llopt [35J, Kraichanan [51], Edward [26] and Herring [33] but the dynamical 

equations describing the time evolution of the finite dimensional probability distribution 

of turbulent quantities were first derived by Lundgren [58]. He derived the .dynamical 

equations for one and two-point probability distribution functions of velocity fluctuation 

and compared with the BBGK Y heirarchy of equation in the kinetic theory of gases. 

Further Lundgren (59] considered a similar problem for non-homogeneous turbulence. 

The basic difficulty is that the above theories faced to closure problem. Lyubimov and 

Ulinch 1,61,62] made some general approaches lo closure problem for multidimensional 
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probability density equations. Two other closure hypotheses for the probability 

distribution equation or single time values were investigated by Fox l27], Lundgren [60] 

and Bray and Moss [ 11 ]. They considered the probability density function of a progress 

variable in an idealized premised turbulent now. Bigler 11 OJ gave the hypothesis that in 

turbulent now, the thermochemical quantities can be related locally to few Scalars. 

Further Janicka et al. IJ8] and Pope l 79] gave a more suitable model for the probability 

density functions of scalars in turbulent reacting nows. 

Recently pope l 81] derived the trnnsport equation fur the joint probability density 

function or velocity and scalars in turbulent nows and obtained the solution by using the 

Moutocarlo method. More recently Kollman and .lanickal 150_1 obtained the transport 

equation for the probability density function of a scalar in turbulent shear flow and 

considered closure model based on the gradient nux model. Kishore [39] derived the 

equntions for the evolution· or one- and two-point distribution functions for MHD 

t11rhulcnl flow. Sarker and Kishore f90J also studied the distribution function in the 

statisticnl theory of' convective Ml ID turbulence. 

The nbove theories gi\'e the basic idens for the chapkr VI in which we have considered 

the distribution li.mctions for simultaneous velocity and concentration of a dilute 

contaminant undergoing a first order reaction in turbulent now. The chapter VI is 

divided into two parts. In part-A and part-B. we have considered ordinary and MHD 

turbulent now respectively. 
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Tailor [ I 00] pointed out that the equation of motion of turbulence relates the pressure 

gradient and acceleration of the nuid particles and the mean square acceleration can _be 

determined from the observation of the diffusion of the marked Ouid particles. The 

behavior of dust particles in a turbulent !low depends on the concentration and size of the 

particles with respect lo scale of turbulent fluid. A good deal of theoretical studies of 

MI-10 turbulent has been made during last fifteen years. Ohji [ 1964] presented a first 

order theory or turbulence of an electrically conducting nuid in the presence of a uniform 

magnetic field which is so strong that the non-linear mechanism as well as the dissipation 

terms are of minor important when comparing with the external coupling terms. Oltji 

[ 1978], discussed the effect of a very strong uniform magnetic field on incompressible 

MI 1D turbulence in presence of a constant angular velocity and Hall effect. Kishore and 

Dixit [I 982J studied the effect of a uniform magnetic field on acceleration covariance in 

Ml ID turbulence. Dix it [ 1989J discussed the effect of uniform magnetic field on 

acceleration covariance in Ml ID dusty fluid tmbulcnce. 

In the chapter VII, we have discussed the effect or a strong magnetic field on 

acceleration covariance in Ml ID turbulence of dusty fluid in a rotating system. 



CHAPTER- II 

DECAY OF TEMPERATURE FLUCTUATIONS IN HOMOGENEOUS 

TURBULENCE BEFORE TUE FINAL PERIOD FOil TUE CASE OF MULTI­

POINT AND MULTI-TIME. 

2.1. INTRODUCTION 

Corrsin [18,19] made an analytical discussion on the problem of turbulent temperature 

fluctuations using the approaches employed in the statistical theory of turbulence. His 

result pertains lo the final period of decay and, for the case of appreciable convective 

effects, lo the 'energy' spectral form in specific wave number ranges. Further work along 

this same line had been done by Oruga [73]. 

Deissler [21] developed a theory for homogeneous turbulence, which was valid for limes 

before the final period. Using Deissler's theory Loeffer mid Deissler [57] studied the 

temperature fluctuation in homogeneous turbulence. In their study, they presented lhe 

theory which is valid duri1ig the period for which the fourth- and higher- order correlation 

terms are negligible compared to the second- and third-order correlation lenns. By 

considering the Dcissler's same theory, Kumar and Patel [52] studied the first order 

reactant in homogeneous turbulence before the final period for the case of multi-point 

and single-time consideration. Kumar and Patel's problem [52] is extended to the case of 
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multi-point and multi-time concentration correlation by the Same authors [53) and the 

numerical results ofl53J carried-out by Patel [78 J. 

In this work the method of [21] is used to study the decay of temperature fluctuations in 

homogeneous turbulence before the final period for the case of multi-point and multi­

time. 

2.2. CORRELATION AND SPECTRAL EQUATIONS 

For an incompressible lluid with constant properties and for negligible frictional heating, 

the energy equation may be written as 

or . ~ of c/f 
- - + 11; - = r - -.. --
01 OX; OX;OX; 

(2.2. 1) 

where f and II; arc instantaneous values of temperature and vclc;city; y = ___ '!:_,thermal 
. /Xp 

diffusivity : k. thermal conductivity ; p. fluid density; c/J. heat capacity at constant 

pressure; X;. space co-ordinate; r. time; and the repeated subscripts arc summed from I 

to 3. 

Breaking these instantaneous v,tlucs into time average and fluctuating components as 

f = (T) + T and u; = (11;) + 11
1

• and using the conditions of homogeneity 

( (7') = o. Qi?2 = O, (11;) = O ) allows equation (2.2.1) to be written 
Bx; 

(2.2.2) 
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I V I I l k' . . . w 1ere Pr = - . pranc t e m1111 )er; 11 • 111emat1c v1scos1ty. 
y 

Equation (2,2.2) is assumed to hold at the arbitrary point P. For the point P' the 

corresponding equation can be written 

(2.2.3) 

Multiplying equation (2.2.2) by T'. equation (2.2.3) by T, and taking ensemble average, 

result in 

8(7'7'') 8(TT'11;) 8(TT'111) 11 a2 (TT') 
--- +---+ I =(- )---- , a, Bx; Bx; p,. Dx;iJx; 

8(TT') 8(TT'u1) 8(7T'111) 11 ) a2 (TT') 
---+---+--- = (- · 

81 8x1 8x1 Pr ax;ar; 

with the continuity equation 

8u;=au1=0. · 
ax; ax; 

Angular bracket (· ... --).which is used to denote an ensemble average. 

Using the transformations 

a a a a a 
= 

Dt' DD.I 

into equations, (2.2.4) and (2.2.5 ), one obtains 

and 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2. 7) 
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o(7T) 0(11 ;?T> • ,, u2 (7T) 
- --- - -- - -·-·-------(-r,-!).r .r + !).r) = ( --- )- - • 

8!).r 0/"; p,. or;or; (2.2.8) 

It is convenient lo ,:vrite this equation in spectral form by use of the following three­

dimensional Fourier transforms 

(fJ 

(TT'(t- , !).r ,t)) = J<rr'(K.6!.t))exp[i(K.P)]dK, 

'Y) 

(11;7'7''(1\!).U)) = J<¢Jr'(K))cxp[i(K.P)]c/K 

-if.) 

and 

C1) 

(2.2 .9) 

(2.2.10) 

(11i77"(r ,L\t.l)) = (11;77"(-P.-t-., ., + t\f)) = f <¢;rr'(-K.- 6l,t + i\l))exp[i(K.r)JdK (2.2.11) 

(Interchange arc made between lite points f' and />') 

where k is known as a wave number vector and the magnitude of k has the dimension 

I /length and can be considered lo he the reciprocal of' an eddy si7.e. 

Substitution of equations. (2 .2.9) - (2 .2. l I) into equations. (2.2 . 7) and (2 .2.8) leads to the 

spectral equation 

(2.2. I 2) 

c/(rr') 11 2( ') 'k (,1, '( i· A t\) - -- +2-- k rr = - r; v';rr - {\,-1.\l.f+ t • 
cit Pr 

(2.2.13) 

In equations. (2.2.12) and (2.2.11). the quantity rr'(K) may he interpreted as a 

temperature fluctuation 'energy· contribution of' thermal eddies or size 1/k. The .time 
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Jerivative or this 'energy' as a runction of the convective transfer to other wave numbers 

and the 'dissipation' due lo the net ion of thermal conductivity. 

2.3. THREE-POINT, TIIRF,F,-TIMF, CORRELATION AND SPECTRAL 

EQUATIONS 

In order to obtain the three-point three-lime correlation and spectral equation, we write 

the Navier-Stokes equation at the point P, energy equations at the points P' and 

I'" separated by the vectors f and f' 

(2.3.1) 

(2.3 .2) 

and 

") . 
8T" ~J7'" a-1"' 
·-··· +11'!c_ - =( /vi ) ·---- ··· . 

I ·" } . - ,, ,, a, ch i I I Dx ;[Jx i 
(2.3.3) 

Multiplying equations. (2.3.1 )-(2.3.3) by TT" u;T" and 11 /'' respectively and then 

Inking ensemble average. we obtained 

(2.3.4) 

a(r11i1·"> a(;,iru_J"> _ 
- - ·-··-- + .. - .. -· . -

a,' a"; p,. 

82 (7'' . 7'") 1' . II.I (2.3.5) 
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and 

Using the transformation 

a a - - = - - a a 
-a-;;=-a,, 

Xi I'; 

( ~ ) 1 • = ( ~ )A A ' - -~ -- - -~-, a, I ,I a, of, of 86.t A!.it I 
a a 

the equations, (2.3.4 )-(2.3 .6) can be written as 

+ ( B a )2 < 7.,T") ,, < a2 
B ., • V -+ - ,, . +-- ---1---)(11 .7 T > 

Br; Br;' .1 p,. 01; 8r; Br;'o1;'. 1 ' 

B(u jT'T") 8(1111"11.i7'") 1, fP (11 /f"T") 
+ _ _ -.:;__ = - -- --'-- - ' 

8/J.t Br; /Jr Dr;Dr; 

0(11_; r'T") B(111T'11.i7'") ,, a2 (11 j T'T") 
- - ·- ·- + - ---- - - = - -·-----. 

8/J.t' ar; JJ r or/Dr/ 

32 

(2.3.6) 

a a 

(2.3.7) 

(2.3.8) 

(2.3.9) 

The six-dimensional Fourier transforms for quantities in the equations, (2.3.7)-(2.3.9) 

may be defined as 

00 00 

(11,;T'T") = f f <!J_;O'0") exp I l(K.i + K'.P')]dKdK', (2.3.10) 
-00 -00 



Chapter II 
33 

00 00 

(11;11.iT'T") = I. f<fi;/1.iO'O")cxpli(K.r + K'.r')JdKdK', 
(2.3.11) 

00 00 

(pT'T") = I J<a0'0") exp[l (K.r + K'.r')]dKdK', 
-00 -00 (2.3.12) 

Interchanging the points P' and r , shows that (up;rT') = <up;T'T"). 

By use or this fact and equations, (2.3.10)-(2.3 .12), the equation~ (2.3.7)-(2.3.9) may be 

transformed as 

o(/J i0'0") V 2 -- ---';;-- + -[ (1 + Pr )k + 2p,.k;k, + (1 + p,. )k'2 K/3 -0'0") 
ul Pr J 

= J_ i(k 
1
- + k1 )(aO'O") , 

p . . (2.3 .13) 

D(/3 ;0'0") v 2 --+ --- k (/3 O'O") , a~r Pr J (2.3.14) 

(2.3.15) 

with the assumption that the q11adrnpk correlation terms are neglected because they 

decay foster than the lower order correlation terms. 

If the derivative with respect to .r_; is taken of the momentum equation (2.3.1) for point 

I' , the equation multiplied through by T'T" and taken the ensemble averages, the 

resulting equation is 
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a
2

(11;1t;T'T") _ J a2(pT'T'') 
·---- - --·- --·- - - ·-

p ox1ax1 
(2.3 .16) 

In terms of the displacement vectors P ,111d P', equation (2.3.16) becomes 

a2 a2 a2 
[ --+2---- +-·- --·- ]<11,-11;7''7'")= 

8r'-8r! Dr'-or- or -or-.11 .fl .JI 

(2.3 .17) 

which in Fourier-space can be written as 

p(k'-k( +2k'-k- +k-k-) 
(aO'0") = - __ ./ I ./ I } I ·(/J ·/3-0'0") lk' k ( + 2k '-k · + k -k ·) 1 1 

• .JI ./,/ J.J 
(2.3.18) 

Equation (2.3.18) can be used lo eliminate (a0'0") from the equation (2.3.13 ). 

2.4. SOLUTION FOR TIMES BEFORE THE FINAL PERIOD. 

To obtain the equation for final period of decay the third-order fluctuation terms are 

neglected compared lo the second-order terms. Analogously, it would be anticipated that 

for limes before but suniciently near to the linal period the fourth-order fluctuation terms 

should be negligible in comparison with the third-order terms. If this assumption is made 

the equation (3 .3. 14) shows that the term (aO'O"), associated with the pressure 

lluctuations should also he neglected. Thus the equation (>3.10) simples to 

(2.4. l) 
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Inner multiplic.:ation of equations. (2.4.1). (2.3.14) and (2.3.15) by kj, and integration 

between 10 a11d t to give 

(k -fl ·O'O") = q. exp(--v -k' 2 ) 
.I .I .I /J,. (2.4.4) 

For above relation to be consistent. we have 

(2.4.5) 

where (k/1()'0") 0 is 1hc vnluc or (k/l(J'{J") nt f == !0 nml ~ is the nnglc between k and 
k'. 

Letting r' = 0 in equation (2.3.10) nm! comparing the result with the equation (2.2.10), 

shows that 

T. 

(k,-cf>.irr'(/~·./\1.t)) == f (k.ifi./J'O"(K.A:'./1.1.0.l))dK' 

Substituting the equation (2.4.5) ;md (2.4.6) into the equation (2.2.12). we obtain 

!}fl_+ 2- v __ k2 !'.' = ,r 
al Pr 

(2.4.6) 

(2.4.7) 
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where I-.,' = 2nk 2 
( rr') . the energy spectrum !'unction and 

OC) 

W = fk.i[ (/J;0'0")(K.K') -- (fJ/J'O")(-K.-K') ]0 (21r/k 2k12 

0 

36 

I J/ 2 12 2 I exp--{(l+pr)(k +k )(f-t0 )+k !),f+2prkk(t-t0 )cosc;d(cosc;)}dk'. 
JJ,- (2.4.8) 

Here dK'(= dK{ dK;dK;) is wrillen in terms of k' and ~ (cf. Deissler[22l). 

In order to find the solution completely and following Loef'Oer and deissler [57], we 

assume that 

(2.4.9) 

where. <\1 is a constant depending on the initial condition. The negative sign is placed in 

front of 80 in order to make l·hc lrnnsfcr of energy from small lo large wave numbers of 

positive values of 80 . 

Substituting equation (2.4.9) into equation (2.4.8) and completing the integration with 

respect to cos~ and k'. one ohtai ns 
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o'of;/Jr52 [ 2 1+2p,. Pr ] 
3 3

. --5 exp -k v----(1-10 +--l:ll) 
4v ' 2(1-lo+D-I) 2(J+pr) 2 Pr(l+p,.) l+p,. 

(2.4. I 0) 
The series of equation (2.4.10) contain only even power of k . It can be shown that 

00 

fwdk = 0 

0 

which indicates that the conditions of continuity and homogeneity are maintains. 

The linear equation (2.4. 7) can be solved to give 

(2.4.11) 

(2.4.12) 

where J(k) = "'!.2_k~ is a constant .of integration and can be obtained as by Corrsin [18]. 
ff 

Substituting the values of Wand ./(k) into the equation (3.4.11 ), and integrating with 

respect to / , we get 

N k 2 [ v 2 N ] o'o f;; Pr 
5 
2 

E=-0-exp -2-J -k (I-lo+ 2) + J/ 7 
1C I r 4v · 2 (I ·I· p,.) 2 



x exp[- vk 2 __ !_~_2.JJ!.~-- (I -to+ ~iJ!t .. ,_\,] [ 3p,.k
4 ~ p,. (7 p,. -6)k

6 

p,.(I+/,,.) 1+2p,. 2 s,, · ½ 
21' (1-1 0 )1 2 3v(l+p,.)(t-to) 2 

2 R I 2 
4(3pr -2p,. +3)k -+ 811 !.Ql'.!.·_-:_2p,. +3)k

9 
F(1l)] 

5 I 5 · I · 
3(l+p,.) · 2 (1-t0 ) 2 .l(l+p,.) 2p,. 2 

6 
Pr (7 Pr - 6)k 

+--'------
3/ 

3, ,c1 + p,. )(I - to ) / 2 

4 3p,.k 

41JJJ,-2-2,,,. +3)k 8 8v}~(3 2 2 +3)k 9 
, · Pr - Pr 

s I I + 5./ F(17) 
. , '2 ½ 

3(1+p,.) 2u-10 +L\1)'"2 3(1+pr) ' p,. 2 
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(2.4.13) ,, 
2 '} 

where F'(17) = e-,1 Jc,x- dx, 

0 
hv(t-t0 ) v(t-t0 +L\t) 

17 = k --- or 17 = k __ ..::.. • 
'r(l+p,.) p,.(l+p,.) 

By selling P = 0 in equation (2.2.9) and use is made of the definition of E, the result is 

<T?-~ <.
1
~
2

2 ~ 1 Edk . 
(2.4 .14) 

0 

Substituting equation (2.4.13) into the cquntion (2.4.14) and integrating with respect to 

k. gives 

1 1\l ' _] 

(7"2) No/1,.· 2(1 · + 2 ) 2 _, . . - · -- - ''.ll.7!!..' . .!./ ._ ------ [ ______ 9 _____ _ 
2 =- J I 6 t )( l 2 ) 512 5 · 1 + 1, 5:' 

2 ✓-- ,'. I ' ( + l'r -f- /Jr 161' 2(f'·f· /' A_(-) 2 811 2,r ,_, 
11 2,,,. 

·I 

9 Sp,.(7 p,. - 6) 
. ---·· - - -- ·---- --· -··· + - - --- ~ --'-------

5 1, 5 3, I+ p,. . 7 
t<l(r+Al'J 2(1'·+ ,. At ·) 2 t6(t+2p,.)r 2(r+ Al) 2 

I I 2J1r · I+ 2(1,. 
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+ 35pr (3p: - 2pr + 3) 

8(1+2p,.)(r+6r)½(r+ Pr 6r)½ + ............ .. 

l+ 2p,. 

(2.4.15) 

where r = t -t0 . 

Equation (2.4.15) is the decay law of temperature energy fluctuation before the final 

period for the case of multi-point and multi-lime. 

If we put Llf = 0 in equation (2.4.15), we obtain the decay law for the multi-point and 

single-time as 

where 

3/2 
A= NoJJ,-

Bv312Ji; 

(2.4.16) 

and 

J;: 6 2 
B= uo"Pr [ .2_+_?__/Jr{7/J,. -6) _ 35 p,.(3p,. -2p,. +3) +······] 

6 ½ 16 16 1+2p,. 8 (1+2p,.)2 
2,, (l + p,.)(l+ 2p,.) 

which is obtained earlier by Locfncr and Dcisslcr (57J. 

The first term of the right side of equation (2.4 .J6) corresponds lo the temperature energy 

for two-point correlation and the second term represents temperature energy for !he three­

point correlation. For large times, the second term in the equation becomes negligible, 

leaving the -3/2 power decay law for the final period previously found by corrsin [18]. 
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2.5. CONCLUl>ING RERARKS 

The results or the present study. obtained by neglecting the quadruple correlations in the 

three-point. three-lime correlation equations, appear to represent the decay law of 

temperature tluctuation for times before the final period . 

Corrsin [ 181 has previously pointed out that for the final period, as well as for self­

preserving and inertial spcctrums at very large Reynolds and Peclet numbers, temperature 

nuctuntions die out more slowly than velocity nuctuntions. This analysis indicates that 

the same is true for times before the linal period for the case of multi-point and multi-

time. 
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DECAY OF MIii> TURBULENCE BEFORE THE FINAL PERIOD FOR .THE 

CASE OF MUL Tl-POINT AND MULTI-TIME. 

-----------------------------------------------------------------

3.l. INTRODUCTION 

In [21.22], Dissler developed a theory for homogeneous turbulence for time before the 

final period. Using Deissler's theory. Loeffer and Deissler l57j studied temperature 

nuctuation in homogeneous turbulence. In their study, they considered the two and three 

point correlation equations and solved these equations alter 1~eglecting the fourth-order 

correlation terms in comparison to the second and third order correlation terms. By 

considering the· Deissler's same theory, Kumar and Patel l52] studied the first order 

reactant in homogeneous turbulence hefore the final period for the case of multi-point 

and single time consideration. The problem I 52] is extended lo the case of multi-point 

and multi-time concentration correlation hy Kumar and Patel 153_1, and numerical result 

of[53] carried-out by Patel f78J. 

Following Dcisslcr·s approach, Snrkcr & Kishore 191 I also s.tudicd the decay of Ml ID 

tmh11lcncc before the final period rur the case or multi-point and single lime. 

In this problem. the decay or Ml-ID turbulence befixe the final period for the case of 

multi-point and multi-lime lws been studied. Finally wc ohtnincd the decay law of 

magnetic energy nuctuation hcfnrc the final period fnr the case or multi-point and multi-

timc. 



< 'ha11tc1· I II 
42 

3.2. FUNDAMF:NTAL EQUATIONS 

The equations of motion for viscous. incompressible Ml IL) turbulent flow are given by 

(3.2. l) 

., 
8h; a (' ~h; 
- -··+-- (h;llk -11;h1c)=A-~ - -
nl oxk cx k Xk 

with 
(3.2.2) 

Du; 8h; 
··-- - - - -

(3.2.3) 

where 11, (:r,t), ith-component of turbulent velocity; h, (x,t), ith-component of magnetic 

field fluctuation ; W(x,t) = E + 1 (h) 2
• total Ml ID pressure; p(x,t) , hydrodynamic 

p 2 

pressure; p. nuid density; v , kinematic viscosity ; ,i = ,, . , magnetic diffusivity; PM , 
l'u 

magnetic prandtle number; xk, space coordinate; the subscripts are taken on the values l , 

2 or 3 and the repeated subscripts in a term indicate a summation. 

Equntions, (1 .2.1) - (J .2.3) are derived by S. Chandrasekhar I 13 J, the basis of Batchelor's 

discussion hy coupling Maxwell's equation for the electromagnetic field and the Navier­

Stokcs equations for the velocity field . The Maxwell equations are modified to include 

the induced electric lkld due to the fluid motion, and the Navicr-Stokcs equations are 

modified to include to the Lorentz force on fluid elements clue lo the magnetic field. 
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3.3. TWO-POINT, TWO-TIMF: CORRF:LATION AND SPF:CTRAL F,QUATIONS. 

Induction equation of a magnetic field at the points p and p' separated by the vector 

r may be written as 

(3 .3.1) 

and 

(3.3.2) 

Multiplying equation (3.3 .1) by 11: and equation (3 .3.2) hy h, and taking ensemble 

average, we get 

(3.3.3) 

and 

(3.3.4) 

A I b k t < ) which is used to denote an ensemble average. ngu ar rac e .. ... .... . 

l lsing the transformations 

a a a a 
= 

a· a 
(3 .3.5) 

equations, (3.3.3) and (3.3.4) can be wrillen as 
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(3.3.6) 

and 

(3.3.7) 

Using the relations (cf. Chandrasekhar l I J]) 

cquations.(J.3.6) and (J . .1.7) becomes 

(3 .3.8) 

nnd 

(3.3.9) 

111 order lo convert equations. (3 .J .8) a11cl (3 . .1 .9) to spectral form. we define the following 

three-dimensional Pourier transforms 

'Y:. 

(h;h~-)(P, 6t , t) = J<w;W_'; )(K. ~,. r) cxpl i (K.P)JdK (3.3.10) 

~ 

(11;f1kh'i)(P.l).f.t) = J<a;lf'klf''i)(K.t\r.f)cxpll(K.P)ldK . (3.3.11) 

· - ·Y 

Interchanging the subscripts i and j and then interchanging the points p and p' gives 
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er., 

= J< a ;1;1 ;1//j )(-K .-:-Ar. r + t\f) expl_i ( K .r) jdK (3.3.12) 
-oo 

where k is known ns n wnve-mrmbcr vector and dK = dK1dK 2dK_,. The magnitude off<. 

has the dimension I /length and can be considered to be the reciprocal of an eddy size. 

Substitution of equations. (3.3 .10) - (}.}.12) into equations, (3.3.8) and (3.3.9) leads to 

the spectral equations 

d(lfl r;t') 2 • • 
--- ·-·-' . .:.1. - + ).k (111

1
111') = ikk l(cx,.r;,, r;t', )( K .!!..f ,f ) - (aklfl,1/11' )(-K .-b.f,I + b.t)]. (3 3 14) d~t r y ., ' · •• 

The tensors equations, (3.3.13) and (3.3.14) becomes a scalar equation by contraction of 

the indices i and .i 

:!..< 1/f{;r:) + 2).k2 (1/1 ;I/<) = 2ik k l.(a ;I/I k 'I';)( K, /),/, f) - (ak 1/1 ;1/1; )( K ,-b.f, I + b.f)J, (3.3 .15) 
lf 

d(ljl ;I/<~ _1_ )J< 2 (r;,;11';) = ik d (a,r;, k 1;1; )( K, t\f, I) - (a k 'l';l/t'); (-K ,-1:.U + !:.I) I- (3.3.16) 
dN 

The terms 011 the right side of equations. (3.J.15) and (3.3.16) are known as the magnetic 

energy transfer term. They account f<x the transfer of energy from one wave number lo 

another or from one eddy size to another. 
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3.4. TIIRF..F:-POINT, TIIRl~F,-TIME CORRELATION EQUATIONS AND 

SOLllTION FOR TIMES BEFORE TIIE FINAL Pl~HIOD. 

In lhc present investigation, under the same assumption as before it is proposed to obtain 

an expression ror the transfer term applicable al time before the final period from the 

three-point correlation or spectral equations. To obtain the three-point three-time 

correlation equations. we take the momentum equation of Ml ID turbulence at the point 

/J uml induction equations or 11wg11ctic !ield lluctuation at p' and p" separated by the 

vector i uml i' as 

(3 .4.1) 

. (3.4.2) 

(3.4.3) 

Multiplying equations. ().4.1 )- (1.4.1) hy 1,;1,;. 11if1; and 11if1; respectively and taking 

ensemble average. we obtain 

(3.4.4) 

(3.4.5) 

(3.4.6) 
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If we use the transformations 

a a a a 

into equations, (3.4.4) - (3.4.6), we have 

(3.4. 7) 

(3.4.8) 

(3.4.9) 

Using the six dimensional fourier transforms or the type 

"' ,,, 
(u ,'1;J1)(P J', t..t, t..t' .t) = J J (r/>1 (J; /J,')( k, K', t..t, 11t' .t) exrl i ( k.P + K'.P') ]dKdK' , (3 .4.1 O) 

rn rr• 

(u
1
u~h;h';)(P,P',t..t,6t'.t) = J J (r/>1r/>{fJ;pj)(K,iC,6t,t..t',t) 

-ro _ .. ,.. 

x exp[i(K.P + K'.P')JdKdK' , (3.4.11) 
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'fl Cl) 

(Wh;h)(PJ',6t.6.t',t) = J J <rfi:/J)(K,K,6t,6t' ,t)exp!i(K.P+ k'.r')JdKdK' (3.4.12) 

into equations,(3.4.7) - (3.4.9) and after neglecting the quadruple correlation terms (as 

they decay faster than the lower-order correlation terms), one obt~ins 

d <,I, /3'/3") fc ~ , . 2 2 dt V't ; 1 ( .K,6t.6t ,t)+1t[.(l+PA1)(k +k' )+2/~Hkk'] 

X (¢1 /J:/J~')( K, K, /}.(, /}.( 1 
,/) = 0, 

(3.4.13) 

(3.4.14) 

(3.4.15) 

The term (y/J;/J~'.) associated with the pressure correlation term arc also neglected because 

it is related to the quadruple correlation·s (equation (3.16) of Sarker & Kishore [91] ). 

The tensor equations, (3 .4.13 )-(3.4. 15) can be converted to scalar equations by 

contraction of the indices i and j and inner multiplication by k1 

!!_ kt (¢1 /31 f]1)( K. K ', l}.t. 6t',t) + ,lt(I + PM )(k 2 + k' 2
) + 2/'M kk'J 

dt . 
X <¢, /31/J;')( K' K.', /)..(. N'.t) = 0' (3.4. l 3a) 

(3 .4. I 4a) 

(J.4.1 Sa) 

Integrating equations, (3.4. 13a) - (3.4. I 5a) hetwccn fo to t • we obtain 
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ror these rclrilions to he ennsistent. we have 

(3.4.16) 

where the subscript O refers to the value or (¢/J;/J;; rit t = t0_ /J.t = /J.t' = O and <; is the 

n11glchl'lm:-cn Kand K'. 

By letting P' = 0. /'-,.t' = 0 in the equation (3.4.10) and comparing with equation (3 .3.11) 

and (3 . .1.12), we obtain the relations 

C1.) 

(ai,/lk'/l;)(K.A..t.t) = f (<h/31/J1)(K .K '.tJ.t.0.l)dK'. (3.4.17) 

'Y.' 

(aklfl;lft;)(-K. -:--6.f.t + t-.1) = f (¢1/J,/J;')(-K,K',-/J.t,O,t)dK'. 
(3.4.18) 

Substituting equations. (1.4.16) - (3.4 .18) into equation (3.3.15), one obtains 

= [,, 2 i k I I <¢I fJ: fJ ;') ( i: . i<. , ) - <¢,I /J: I J;; ( - i<. . - i:. , ) I() X 

or. 
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(3.4.20) 

where dK' = dK;c1K;c!K3 is written in terms of k' and i; as -21rk' 2d(cosi;)dk' (cf. 

Deissler [22] ) and the quantity l(¢,/J;/J;')(K, K')-(¢,f3;f3;')(-K,-K')]0 depends on the 

initial condition or the turbulence. 

In order to make further calculation it is necessary lo assume a relation, which gives 

ik1[(¢,f3;f];')(K. K')-(¢,/3;/3;")(- K.-K.')10 as a function of k and k'. The relation 

assumed here is 

(3.4.21) 

where 8
0 

is a constant determined hy the initial conditions. • · 

Substituting equation (3.4.21) into equation (3.4.20). and multiplying both sides by 

k 2 and writing (1/f;I/'/) in terms of the magnetic energy spectrum function as 

fM = 2trk 2 (1/1;1/';), we get 

dE 
d:1 + 2J...k

2 
E.lf = MT 

(3.4.22) 

where Mr is the magnetic energy transfer term and is given by 
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+ k 2
1\t + 2l'u (f -10 )kk' cosc;Jd(cosc;)}Jdk'. (3.4.23) 

Integrating equation (3.4.23) with respect to cosc; and k', we have 

(3.4.24) 

The series of equation (3.4.24) contains only even power of k and the equation 

represents the transfer function arising owing to consideration of magnetic field at three­

point and three-times. 

If we integrate equation (3.4.24) for /\.t = 0 over all wave numbers. we find that 

rt) 

f 11,t r.dk = 0. 

0 

(3.4.25) 

which indicating that the expression ror M 1 satisfying the conditions of continuity and 

homogeneity. Ph.ysically it was to be expected as Mr is a measure of the energy transfer 

and the total energy tnmslerred to all wave numbers must he zero. 
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For obtaining the magnetic energy spectrum function EM ,· equation (3.4.22) can be 

written in the integral form as 

(3.4.26) 

where J(k) = Nok
2 

is a constant of integration and can be obtained as by Corrsin [18]. 
n 

Substituting the value of Mr as given by equation (3.4.24) into equation (3.4.26), gives 

the equation 

(71',.,, - 6)k 6 4(31\, 
2 

- 21\., + 3) 
+ 3/ +----· I + 

3.-t(I + PM )(t - lo + t).f) i 2 3(1 + Pu ) 2 (t - lo + l).f) 2 

llJ 2 r,/ f T dx where, F(cv) = e-. e· , 
0 

or k [.-t(f - 10 + t).t) . 

f l + I'u 

(3.4.27) 
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The expression for the magnetic energy decay is obtained from equation (3 .3. I 0) by 

(3.4.28) 

Substituting equatiori. (3.4.27) into equation (3.4.28) and after integration, one can obtains 

(hJ1;) 
--= 

2 

2 5/ 
8PM (3PM - 2PM + 3)(1 + 2PM) 12 ~ 1.3.5. - - - - - (211 + 9) 

+ 23/ II/ L, '(2 1)22"(1 p )" 3.2 : 2 (I+ PM) . 2 11=0 17. 11 + + M 

r(2n+l)/2 (T+ 6 T)(211+l)/2 

x { (T+ 6 T/2n+I I)/ 2 + (T +·~-7:1-2)(211+11)/2}] 
(3.4.29) 

where T = t - IO • 

Or, 
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9 9 
x[------------+ ------------½ . 6 T 5 5/ fl T SI 

I 6(T - llT 12) 2 (T + ) 2 16(T + !lT I 2)1 2 (T - . )12 
111 111 I+ 2T\, 111 

m 2(1 +PM) 

SPA! (7 Pu - 6) +----------------)/ I:!. T 1 1 
16(1 + 2PM )(T,,, -1:!.T / 2)"2 (T,,, + )'" 2 

· 2(1 + 2PAI) 

SPA/ (7 PAI - 6) + ______ ___::.; _ _:;_.:_3.,--'-- --1>.-1-· 7/ + - - - - - - - - --1 
16(1 +2l\1 )(T

111 
+l:!..7'/2)'"2(7:,, - ) 2 

2(1 + 2l'Af) 

(3.4.30) 

where 1;,, = 7' + 11T /2 . 

This is the decay law of magnetic energy Ouctuation before the final period for the case 

of multi-point and multi-time. 

If we put b,.T = 0, we can easily find-out that 

(h
2

) = N 0 r-½ +- m50 rs{~+~ PAl(7PAI - 6) + ---} 

2 si"i & 4,l(,(l+P,\1)(1+2/\,)si 16 16 1+2PM 

(3.4.31) 

where 

TC 9 5 f',11 (7 J>M - 6) 
S=-------·{-+- - - ·- ·- ·- --+---

5: 16 16 1+2/'Af 
(I+ l'M )(I+ 2/',H) 2 

which is same as obtained earlier by Kishore and Sarker l91]. 
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3.5. CONCLUDING REMARKS. 

This study shows that the terms associated with the higher-order correlation's die out 

faster than those associated with the lower order ones. Therefore, from this assumption 

we conclude that the higher-order correlation terms may be neglected in comparison with 

lower-order correlation terms. By neglecting the quadruple correlation terms in the three­

point, three-time correlation equation the result (3.4.30) applicable to the MHD 

turbulence before the final period of decay. If higher order correlation equations are 

considered in the analysis. it appears that more terms of higher power of time would be 

added to the equation (3.4.30). 

/\nother result is that the decay of magnetic field fluctuations are more slowly than the 

velocity fluctuations. 



CHAPTER-IV 

FIRST ORDER REACTANT IN Ml·ID TURBULENCE BEFORE THE FINAL 

PERIOD OF DECAY 

-------------------------------------------------------------------------------

4. 1. INTRODUCTION 

Loe ff er and Diss I er [57 J used the theory, developed by Deissler [21,22] to study the 

temperature fluctuations in homogeneous turbulence before the final period. In their 

approach it is considered the two- and three-point correlation equations and solutions 

were obtained of these equations after neglecting the fourth and higher order correlation 

terms. Using Deissler' s theory, Kumar and Patel l52] studied the first order reactant in 

homogeneous turbulence before the final period for the case of multi-point and single­

time consideration. Kumar and Patel [53] extended their problem [52] for the case of 

multi-point and multi-time concentration correlation. Patel l 78] also studied in detail the 

same problem to carryout the numerical results. In [91 ], Sarker and Kishore studied the 

decay of Ml IO turbulence at time before the final period using Chandrnsckhcr's relation 

[ 13]. 

In our present work, the same approach of Deissler I 21 I is applied to the study of 

magnetic field fluctuation of concentration of a dilute contaminant undergoing a first 

order chemical reaction in MI-ID turbulence before the final period. Here, we have 

considered the two-and three-point correlation equations and solved these equations after 
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neglecting the fourth-order correlation terms. Finally, we have obtained the decay law for 

magnetic energy fluctuation of concentration of dilute contaminant undergoing a first 

order chemical reaction in the form 

('1 2
) = [ X(t-t~f½ + Y(t-t0 ) -

5 ]exp[-R(l-10 )] 

where (h 2
) denotes the total 'energy' (mean square of the magnetic field fluctuations of 

concentration), tis the time, and X , Y and I O are constants determined by the initial 

conditions. 

4.2. FUNDAMENTAL EQUATIONS 

The equations of motion for viscous, incompressible Ml II) turbulent llow are given by 

Chandrasekhar [ 13] as 

(4.2.1) 

(4.2.2) 

with 

~II;_ = a.!_1;_ = O 
ox; OX; 

(4.2.3) 

where ui(£,t), ith-component of turbulent velocity at a point P{-t,t); h, (x,t), ith­

component of magnetic field fluctuation of concentration at a point P(x,t); 

W(x, t) =; +i ('1)2 , total MIID pressure;p(x,t), hydrodynamic pressure; p, fluid 

density; J =~,magnetic diffusivity; 11 , kinemntic viscosity ; I'u, magnetic prandtle 
P,,, 
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number; xk, space coordinate; the subscripts can take on the ".alues 1, 2 or 3 and the 

repealed subscripts in a term indicates a summation. 

4.3.TWO-POINT CORRELATION AND SPECTRAL EQUATIONS 

If the turbulence and the concentration magnetic field are homogeneous, chemical 

reaction and the local mass transfer have no effect on the velocity field, the reaction rate 

and the magnetic diffusivity are constant. then the induction equation of a magnetic field 

fluctuation of concentration of a dilute contaminant undergoing a first order chemical 

reaction at the points P and P' separated by the vector i could be written as 

(4.3.1) 

and 

(4.3.2) 

where R is the constant reaction rate. 

Multiplying equation (4.3.1) by 1,; and equation (4.3.2) by h,. adding and taking 

ensemble average, we get the two-point correlation equation for the fluctuating 

concentration as 

(4.3.3) 
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where the bracket ( ........ .. ) is used to denote an ensemble average. 

Using the transformations 

a a a 
--=--=-

and the Chandrasekhar relations l 131 

equation (4.3.3) becomes 

(4.3.4) 

It is desirable to write equation (4.3.4) in spectral form in order to reduce it to an ordinary 

differential equation and bec~usc of the physical significance of spectral quantities. for 

this purpose it is usual to introduce three-dimensional Fourier-transforms 

oc 

(h;h;(f)) = f(,/l;lflJ(K))exp[f(K.i)]dK, (4.3.5) 

-oc 

·oc 

(11;!1kh;(r)) = f<a;lflklflj(K))cxp[f (K.P)]dK, (4.3.6) 

-oc 

00 

(11'1J1;f1;(r)) = (11kh;l1_1(-r)) = J<a;lf';V"./-k))cxplf(K.P)JdK (4.3.7) 

into equation (4.3.4), gives 
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The tensor equation (4.3.8) becomes a scalar equation by contraction of the indices iand 

j 

The term on the right hand side of equation (4.3.9) is called energy transfer term while 

the 2nd term on the left- hand side is the dissipation term. 

Solution for the final period of decay the third-order correlation terms can be neglected in 

comparison to the second-order correlation terms. With this trur'1cation approximation, the 

solution of equation (4.3.9) may be written as 

2 
£ 111 = J(k)exp[-2tl(k 2 + ½_)(I- t0 )] = N:k exp[- 2J(k 2 + ½_)(t-to)] (4.3.10) 

where E,,, = 2trk. 2 (Vl;VJ;) is the magnetic energy spectrum and .J(k) = Nok
2 

1s the 
1[ 

constant of integration and can be obtain as by corrsin 118]. 

By integration equation ( 4.3. I 0) with respect to k, we obtain the magnetic energy decay 

law for the final_ period 

3/ 
(hH) N 11/ 2 - 31 
_, _, = _ o_ (t-to) 2 exrl- 2R(f -t0)]. 

2 8& 

(4.3.11) 

4.4. THREE-POINT CORRELATION AND SPECTRAL EQUATIONS. 

The same procedure can be u~ed to find the three-point correlation equation i,e by taking 

the momentum equation of MHIJ turbulence at the point p and induction equations of 
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magnetic field fluctuation, governing the concentration of a dilute contaminant 

undergoing a first order chemical reaction at p' and p" separated by the vector rand 

A/ r as 

(4.4.1) 

(4.4.2) 

al II a,,, a II 821,, 
11. 11. II 1· 11. 

11 / 11 1 RI " - + Ilk - - 1k - = ll,-~- - I· . 
a II a ,, a II a "a ,, J I xk Xk . Xk Xk 

(4.4.3) 

Multiplying equations, (4.4.1) - (4.4.3) hy 11;111 ,u1hj and u1h; respectively, adding and 

taking ensemble average, one obtains 

(4.4.4) 

Using the transformations 

a a a a 
-- = ·--- , 
a I 8r,. Xk ~ 

into equation (4.4.4), we get 
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(4.4.5) 

Using the six dimensional Fourier transforms of the type 

ro ro 

(u1h;(r)h}r')) = J J (¢,JJ;(k)(J}K'))exp[i(K.r + k'.P')]dKdf<.i, (4.4.6) 
-co -0') 

00 00 

(u1uk (r)hj(f)h1(r')) = f f (<h¢',. (K)fi1U<)/J1(K'))exptl(K.f + k'.r')]dKdK'' (4.4.7) 

-00-00 

00 00 

(111u,(P)h1(r)hj(P')) = f f (<h¢1(K)/J'k(K)fJ;•(K'))exp[l(K.P + k'.r')]dKdK'' (4.4.8) 

-00-00 

00 00 

(111ukh1(P)h1(f')) = J J (¢1¢kfJ;t~)/J](K'))cxpli(K.P + k'P)ldKdK' , (4.4.9) 

-00-00 

00 00 

(h1hkhi(f)h1(f')) = f f (/J1/Jk/J1(K)/J_; (K'))exp[i(K..P + k'P)]dKdK', (4.4.10) 
-00 - 00 

00 00 

(Wh1(f)h1(f')) = f f (yf)1((()f)1(K'))expli(K.P + k'P)ldKdK', 
( 4.4. \ I) 

-00-00 
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with the facts that 

we can write equation (4.4.5) in the form 

(4.4.12) 

In order to relate the terms on the right side of equation ( 4.4.12) derived from the 

quadruple correlation terms and from the pressure force terms in equation (4.4.5), we lake 

the derivative with respect to x1 of the momentum equation ( 4.4.1) al p and combine 

with the continuity equation to give 

(4.4.13) 

Multiplying equation (4.4.13) by 11;1~, laking lime averages and writing the equation in 

terms of the independent variables P and P' 

- --+- -+2- - - (WHh".) 
[ 

82 a
2 

a ] 
a1;a1; a1;a1; a1;a1; ' 1 

(4.4.14) 

Which in Fourier-space can be written as 
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-<rfJ:P;> = (k1kk + k1kk + k1kk + k1kk X<¢,¢kfJI/J1)'-(/J1/Jk/Jlfl;>). 
k2 + k'2 + 2k1k1 

64 

(4.4.15) 

Thus, the equations, (4.4.14) and (4.4.15) are the spectral equation corresponding to the 

three-point correlation equations. Equation ( 4.4.15) can be used to eliminate (yp;p1) 

from the equation ( 4.4.12). 

4.5. SOLUTION FOR TIMES BEFORE THE FINAL PERIOD 

It is known that the equation for final period of decay is obtained by considering the two­

point correlation equation after neglecting the third order correlation terms. To study the 

decay for times before the final period, the three-point correlation equations are 

considered and the quadruple correlation terms are neglected. But, to get a better picture 

of the MHD homogeneous turbulence decay from its initial period to its final period, 

three-point correlation equations are to be considered. I !ere, we neglect the quadruple 

correlation terms since they decay faster than the lower-order correlation terms. 

Putting the value of (r/J;/3") from equation ( 4.4.15) into equation ( 4.4.12) and neglecting 
J ' ' 

all the quadruple correlation terms, we have 

(4.5.1) 

The tensor equation (4.5.1) can be converted to a scalar equation by contraction of the 

indices i and j, and inner multiplication hy k1 
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Integrating the equation (4.5.2) between 1
0 

and t, and gives 

I 11 

where (¢1/3; /31 ) 0 is the value or (¢fi;/3;') at t = t0 .and 0 is the angle between Kand 

K'. Now, by letting r' = 0 in the equation (4.4.6) and compai-ing with equation (4.3.6) 

and ( 4.3. 7). we obtain the relation 

00 

(a;lflklfl;(K)) = f<¢1/JJ(K)/J;'(K'))c/K' (4.5.4) 

- 00 

and 
00 

(akVl;lf/1(-K)) = f<¢,/31(-K)/3;'(-K'))dK'. (4.5.5) 

-00 

Substituting equations, (4.5.3), (4.5.4), and (4.5.5) in equation (4.3.9), one obtains 

'1) 

~(1,'l;\fli(K)) + 2-tlk 2 + R J(\/1;\f/i(K)) = J2ik1[<¢1/JI(K)/1f'(K')) - (¢1/1f( - K)/JF(- K' 
(// /4 

(4.5 .7) 

Now. dK' can he expressed in terms of k' and 0 as - 2,rk' 2d(cos0)dk' (cf. Dcisslcr [221) 

With the above relation, equation (5 .7) to give 

O".J 

!!._ (\fl ;V't< K.)) + 2-t[k 2 + -~ J<v1 ;vi;( i )) = 2 f2mk, [<¢, /Jl < K)/Ji( k ')) - <¢, /Jf<- K )/Ji(- K ')) l, 
dt 2 

() 
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In order to make further calculation it is necessary to assume a relation which gives 

Following Loeffler and Deissler f57J. we assume that 

(4.5.9) 

where 80 is a constant depending on the initial conditions. The negative sign is placed in 

front of 80 in order to make the transfer of energy from small to large wave numbers for 

positive value of c50 . 

Combining equations, (4.5.8) and (4.5.9), and completing the integration with respect to 

cos 0 , one obtains 

(4.5.10) 

Multiplying both sides of equation (4.5.10) hy k2
, we gel 

dE111 2 i[ k2 R ]E = "~ - -- - + IL + Ill V 

dt l 
(4.5.11) 

where, £
111 

= 21rk 2 (1/l;lfliCK)) is the magnetic energy spectrum function and G is the 

magnetic energy transfer term and is given hy 
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-exp{-A(t-t0 )[(1+I'M)(k 2 +k' 2 )+2Pukk'+2:]} }ik' . 
(4.5.12) 

Integrating Eq. (4.5.12) with respect to k', we have 

(4.5.13) 

The series of equation (4.5. 13) · contains only even power of k and the equation 

represents the transfer function arising owing to consideration of magnetic field at three­

point at a time. 

It is interesting to note that if we integrate equation (5 .13) over all wave numbers, we find 

that 

<X) 

fodk = 0 

0 

(4.5.14) 

which indicating that the expression for G satislics the condition of continuity and 

homogeneity. 

The linear equation ( 4.5.11) can be solved to give 
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(4.5.15) · 

2 . 

I '(k) 
N0k . . . . . 

w 1ere , = -- 1s a constant of 111tegrat1on and can be obtamed as by Corrsm [ 18] 
7r 

Substituting the value of Gas given by equation (4.5.13) into equation (4.5.15), and 

integrating with respect to / , we get 

N k
2 

2 R ] E111 = _J> ___ exp[ - 2,,l(k + - )(/ - Io) 
7[ A. 

+ 

, ,. 
(7 PM - 6)k

6 

3 
/ _ 4(3/>M 

2 
- 21',,1 + ?, + 8,,l 2 (JP,,/ - 2;;1/ + 3) k 9 N(w) ] 

3,,l(I + PM )(I-to ) 12 3(1 + /',\/ /U-to) 2 3(1 + Pu ) 12 

(4.5.16) 
(t) 

-r1i f r 2 
where, N(cv) = e e· dx , 

0 

we get the expression for magnetic energy decay with the nuctuating concentration as 

00 

(h;/1;) - fr. lkA 
- 1',111( 

2 (4.5.17) 
0 
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The substitution of equation (4.5.16) and subsequent integration with respect to k leads 

to the result 

(hH) 
-

1 
-
1 =exp[-2R(t-t0 )J 

2 . 

+ 8P1v1(3PM
2 

~2PM +3)I l.3.5.·•·····(211+9) } ] 

3.26 
(I+ 2PM )3 11!(211 + 1)2 211 (I+ Pu )'1 

or, 

(4.5.18) 

where 

Q= 1r [ _2_+_?__1'Af(7/'M-6)_351',1t(31',\l
2

-2P,11+J)+· · ·· · · ]· 
5/ 16 16 1+2!' 8 (I 21' )2 

(I+ PM )(I+ 2PM )12 M + At 

Thus, the decay law for magnetic energy fluctuation governing the concentration of a 

dilute contaminant undergoing a first order chemical reaction before the final period may 

be written as 

2 ( _3/ 'i] (h )=exp[-2R(t-t0 ) X(t-to) ' 2 +Y(t-to)-· . (4.5.19) 
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The first term of right side of equation (4.5.19) corresponds to the energy of magnetic 

field fluctuation of concentration for the two-point correlation and the second term 

represents that energy for the three-point correlation. 

4.6. CONCLUDING RERARKS 

This study shows that the magnetic field fluctuation of concentration decays slowly than 

the velocity fluctuation and if the chemical reaction of the first order is selected in the 

concentration, then the effect is that the magnetic field fluctuation of concentration is 

much more rapid and the faster rate is governed by exp[-2R(f-t0 )]: 

In equation ( 4.5.19), the term associated with the three-point correlation die out faster 

than the two-point correlation. For large times, the last term of equation ( 4.5.19) becomes 

negligible and the decay law for the final period becomes 

2 ] _3 / 
(h )=Xexp[-2R(l-lo) (I-lo) ·2 

In absence of chemical reaction, i.e., if we put R = 0, the result shows compl~tely 

accords with the result obtained eai:lier by sarker and kishor 191 j. 



CI-IAPTER-V 

PART-A 

DECAY OF DUSTY FLUID TURBULENCE BEFORE THE FINAL PERIOD. IN A 

ROTATING SYSTEM. 

5.1. INTRODUCTION 

In geophysical flows, the system is usually rotating with a constant angular velocity. 

Such large-scale flows are generally turbulent. When the motion is rererred to axes, 

which rotate steadily with the bulk of the Ouid, the coriolis force and centrifugal force 

must be supposed to act on the nuicl . The coriolis force due to rotation plays an important 

role in a rotating system of turbulent flow, while the ccntri rugal force with the potential is 

incorporated to the pressure. Kishore and Dixit (43], Kishore and Singh [41], Dixit and 

Upadhyay 125] and Kishore and Golselied [45] discussed the effect of coriolis force on 

acceleration covariance in ordinary and Ml JD turhulcnl nows. Shimomura and 

Yoshizawa 1971, Shimomura 198,99J discussed the statistical analysis of turbulent 

viscosity, turbulent scalar flux and turbulent shear flows respectively in a rotating system 

by two-scale Direct-interaction approach. 

Saffman l89J derived an equation that described the motion or a fluid containing small 

dust particles, which is applicable to laminar llow as well as turbulent flow. Using the 

equations given by Saffman, Micheal and Miller 1641 discussed the motion of dusty gas 
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occupying the semi-infinite ahove a rigid plane boundary. Sinha [lOOJ and Sarker [92) 

considered dust particles on their own works. 

13atchclor and Townsend [2] studied the decay of turbulence in the final period. The 

decay of turbulence in the final period occurs when the effects of the inertia forces are 

negligible. Diesslcr [21,22] developed a theory for the decay of homogeneous turbulence 

al Limes before the final period. Loeffer and Diessler l51J discussed the decay of 

temperature fluctuation in homogeneous turbulence . In their approach they considered 

the lwo- and three-point correlation equations and solved these equations after neglecting 

the fourth and higher order correlation terms. Using l)cisscr's theory Kumar and Patel 

[52,53 j ~tudied the first order reactant in homogeneous turbulence before the final period, 

Sarkcr and Kishorc [91 J slt1<..lied the decay of MHD tmhulence al the time before the final 

period. 

Kishore and Upalhc.lyay l 49] studied lhc decay of MIii) turbulence in rotating system. In 

the nexl,_Sarker and Islam [961 stuc.licc.1 the decay of MI-ID turbulence before the final 

period for the case of multi-point and multi-time. 

Uy considering the above theories we have studied the c.lcc11y of dusty fluid turbulence 

before the final period in a rotating system. In this prohlcm we have considered the two­

and three-point correlation equations and solved these equations after neglecting the 

quadruple correlation terms. Finally the energy decay law of fluctuating velocity of dusty 

l1ui<l turbulence in a rotating system is obtained. 
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5.2 BASIC EQUATIONS 

The equation of motion and continuity for turbulent Oow of dusty incompressible Ouid in 

a rotating system are given by 

(5.2.l) 

(5.2.2) 

and 

(5.2.3) 

Here ui, turbulent velocity components; vi . dust particle velocity components; p, fluid 

density; 11, kinematic viscosity; Q. 111 , constant angular velocity components; Emki, 

alternating tensor; P,11 , modified pressure (sum of hydrodynamics pressure divided by 

fluid density and potential of a centrifugal force); ms= 1nR.~ P.P mass of a single 

spherical dust particle of radius R.1. ; p_1. , constant density of the material in dust particles; 

kN 
k, stock's drug resistance; f = · -- . dimensions or frequency: N, constant number 

. p 

density of dust particle: 

5.3. CORRELATION AND SPF:CTRAL EQUATIONS 

The equation of motion of dusty fluid turbulence in rotating system for the point I' and 

I'' separated by the vector P 
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811; 8(u;uk) 81~11 a2u. 
at+ -a,~-;-= - Bx;-+ \I axk a,~k -2 Emki nm11i + f(u; - V;) (5.3.1) 

and 

(5.3.2) 

Multiplying equation (5.3 .1) by 111 and equation (5 .3.2) by u; and taking the ensemble 

average, we have · 

(5.3.3) 

By use of the transformation 

a a a 

equation (5.3.3) can be written as 

(5.3.4) 

Now we write equation (5.3.4) in spectral form in order to reduce it to an ordinary 

differential equation because of the physical significance or the spectral quantities. For 

this, we use three-dimensional Fourier transforms defined as follows: 

0') 

(u;u'.;(r)) = J<lfl;lf/;( K)) exp(iK.r)dK. (5 .3.5) . 

-co 
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00 

(11;11kuj(P)) = J<V';'flklflJ(K )) exp(iK.l')dK. 

-00 

00 

U~11111(f)) = f<Alff_'i(K)) exp(iK.P)dK, 

-00 

00 

and (v;11~i) = f<µ;'l'J(K)) exp(iK.f)dK 

-oo 

where K is known as a wave number vector and dK = dK1dK2dK3 . 

From equation (5.3.6). ,ve have 

00 00 
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(5.3.6) 

(5.3.7) 

(5.3.8) 

(u;11k111(-f)) = I (l/1;1/lk'l'J(K)) exp(-iK.f)dK = f 1/l;lflklf'J(-K)exp(iK.r)dK . 

-00 -00 

Interchanging the subscripts i and j and then interchanging the point I' and P', gives 

00 

(11;ll
1

j1tk(P)) = (11;uk111(-r)) = f<v1;'1'k'fl1(-K)) exp(iK.r)dK . . (5.3.6a) 

-00 

00 

(uJ',;,(f)) = (I',111/j(-P)) = f<--lvi;(-K)) exp(iK.r)dK (5.3.7a) 

OC) 

(11;,.,•(f)) = (v;11',·(-I')) = f<11;lf''i(-K)) cxp(iK.f)dK 
.I . 

(5.3.8a) 

-OC) 

Substituting equations. (5.3.5), (5.3.6). (5 .J .6a). (5.3.7). (5 .3.7a). (5.3.8) and (5.3.8a) into 

equation (5.3.4) and making it in scalar form by contraction of the indices i and j. 

we: get 
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= ikk [lf/;1/1 k lfli (K)- lfl;lfl klfli (-K')] · (5.3.10) 

The pressure terms drop out of equation (5.3.10) because of the continuity relation 

Oll· OV· 
-'=-'=0. 
OX; OX; 

In order to obtain the three-point equation, we consider the equation of motion of dusty 

fluid turbulence in rotating system at the points p. p' and p" as 

(5.3.11) 

01/ o(u'-u;) BP' 8211'; I . , I 

_l+ J =--+v---2E1·011-+/(11 • -V·) 
1 a I a 'a 1 111 II j . j j ot ox1 x1 x, x, (5.3.12) 

and 

(5.3.13) 

Multiplying equation (5.3.11) by 11k11'k, equation (5.3.12) by 11;u'k and equation (5.3.13) 

by u;u;, adding and taking ensemble average and using the transformations 

a a 
--- =--·, 
ax, 811 

a a a 
1 

• 
and -- = - - · - - , one o )lams as 

ax, Oli a,; 

a a a , ,, a (J>" . , >) + = -(--(l'u'-u" )- -(1'11'•11Z) + ---(/' u;uk +-;:-:;- 11;111 
a J k o ·' J or· 01 k I'; I j I 
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(5.3.14) 

In order lo convert equation (5.3.14) to spectral form, we can define following six 

dimensional Fourier transforms: 

00 00 

(11;u1(P)11'ic (P') = f f <!3;/3.J (K)fli; (i.:') exp[i(K.P + K'.P')ldKdK' , (5.3.15) 
-00-00 

00 00 

(11;111111U'->11Z (P') = f f<f3;/31/J_1(K)/3i; (K') expji(K.r + K'.P')JdK~IK' ' (5.3. I 6) 
-00-00 

00 00 

(Pu1 (P)u'fc (P') = f J< af}j(K)/3½ (K') exp[i(K.r + K'.P')]dKdK' (5.3.17) 
-oo -oo 

and 

oo en 

(v;u1(P)11lc (P') = f f<r;/3_1(K)/1i; (K') expli(K. .P + K'.P')JdKdK'. (5.3.18) 

-00-00 

By using the method used in obtaining equation (5J.6a), the following relations hold 

00 (Y.) 

= f fu,_;/Jt/J:C-K - K'l/li; cf.:') expli(K.P + K'.r')ldKdK' 
(5.3 . I 6a) 

- ro-ro 

oo oo (5.:1 .16h) 
= f f<!h/Jt/Ji(---k' _ f.:')/1;-d:') cxpli( f.:.P + K'.P')]dKdi.:' , 
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where the points p and 1J' are · t I 
' 111 ere H111gcd to obtain cqtntion (5 3 I G ) r. . , .. . a . 1•or equation 

(5.3.166), pis replaced by p' p' is replaced by ,, 1 ,, . 
' • /J , am P 1s replaced by p . 

Similarly, 

'l) 'Y.J 

= f J< aj]/ (- K - K')j]'fc (K') exp[i(K.P + K'.P')]dKdK' (5.3. l 7a) 
-00 -00 

'Y.) 00 

= f J<a,B;'(-K - K ')/JZ (]<') exp[i(K.P + K'.P')]dKdK' (5.3.176) 

-00-00 

00 00 

= f J<r;/J_J (K)/3¼ (K') exp[i(K.P + K'.P')JdKdK' 
(5.3. l 8a) 

- 00 -00 

00 00 

= f J<rk/3;(- K - K')/J1(K) cxpfi(,(P + K'.P')]dKdK' 
(5.3.18b) 

- 00 - 00 

Substituting the preceding relation into cquntion (5.3.14). we get 

- ~ [- i(ki + k1 )(a/J'; fJ'ic) + ik J (a(Jf (-K - i.:'J/JZ (K )) + ikic (a/JI(- K - K')Pj (K)) 



Cho11ter F, l'al'I A 
79 

The tensor equation (5.3.19) can he converted to a scalar form by contraction of the 

indexes i andj and inner multiplication by kk; 

- _!__ kk [-i(k; + k;)(afli /JZ> + ik 1· (a/JJ (-K - K')/J'lc ( K )) + ikk (afJ; (-K - K')/J~(K))] p . . I 

.- 2k k le 1111; n 111 + e 11/i n 11 + e qtk ! 2<1 I (/J; /Jj /JZ > + .fk * 13(/J; /3_~-< K) JJZ c K')) 

(5.3.20) 

To obtain a relation between the terms on the right hand side of equation (5.3.20) derived 

from the quadruple correlation terms. pressure terms, rotational terms and the dust 

particle terms in equation (5.3.14 ). tnke the divergence of the equation of motion and 

combine with the continuity cquntion to give 

I 82 P 
------ =-

2 a (11;111) (5.3.21) 

Multiplying the equation (5.3.21) by u;uz, taking ensemble average and writing the 

resulting equation in terms of the independent variables ,. and r', gives 
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(5.3.22) 

The Fourier transform of equation (5.3 .22) is 

_ J_ (a/3;/3'/c) = (k;k1 + kik1 + k;ki + k1ki)(/3;/3t/Ji/J'J.> 
P k 2 + kk + k'2 (5.3.23) 

Equation (5.3.23) can be used to eliminate the quantities (af3i/JZ>, (a/3,(-K -K')/JZ,), 

etc. from equation (5.3.20). 

5.4. SOLUTION FOR TIMES BEFORE TIIE FINAL PERIOD 

In order to obtain the equation for final period of decay the third order correlation terms 

are neglected compared to the second order correlation terms. Analogously, it would be 

possible to obtain a solution for times before the final period of decay by neglecting the 

fourth order correlation terms. If this nssumption is made, nil the fourth order correlation 

terms in the right side of equation (5.3.23) should be neglected. Thus from equation 

(5.3.20) and equation (5.3.23), we obtain 

(5.4.1) 

where 

3(/J; /JI/JZ > - <r ;/JI (K)/JZ ck')) - <r ;/3; <-f:. - k ')/3Z <K ')) - <r k /3i(- k - K')/3j (K) 

= S/J;/3;/JZ (say) 

and S is an arbitrary constant. 
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Integrating equation (5.4. I) between the 1,·1111·ts 1 • 1 · o c111c / • we gel 

(5.4.2) 

where (/J -ft/J") · ti I r , " . 
, , k 0 1s levaueo (/l;/lifJ,;)11tt = toancl01sthcnnglchctwecnknndk'. 

Letting r' = 0 in equation (5.3.15) and comparing the result with equation (5.3.6) shows 

that 

00 

W;f//kV1 i (K) = f P;,Bf p;; (K)dK'. (5.4.3) 
-00 

Substitution of equation (5.4.2) and (5.4 .3) in equation (5 .3.1 O) result in 

cl ( ') 2 dt V';'I'; + (211k + 2 Emki n,,, + 2 E 11ki n,, - Rf)(V1;V11) 

oo I 

= f2mkk[/J;/J1/JZ -/!;/11(-k:)fl'k(- K'ilok' 2
1 Jcxpl--{21•(k 2 +kk'cosO+k') 

0 - I . 

(5.4.4) 

where dK' = dKf dK2dK3 written in terms of k' and Oas - 2,rk' 2d(cos0)dk'. 

111 order lo lind the solution completely and following Deisslcr 1221. we assume that 

(5.4.5) 

where /Jo is a constant determined by the initial co11ditions. The negati ve sign is placed 

in front or Po in order to make the transfer or energy from small to large wave numbers 

or positive vnlue of /Jo . 
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Substituting equation (5.4.5) in equation (5.4.4), writing (W;I/';) in terms of the energy 

spectrum function as 

and carrying out the integration with respect to cos0 , result in 

:~ + (2vk
2 

+ 2 Emki QI/I + 2 E11ki n,, - Rf)E = IV 

where Wis the energy transfer term and is given by 

CX) 

(5.4.6) 

(5.4.7) 

w = /Jo J<k
5 
k'

7 
- k 

7 
k'

5 
){ exp[-{2v(k 2 

- kk' + k'2 ) + 2(En,/j nm+ E17/j nm+ 
2v(t-to) 

0 .· 

(5.4.8) 

Integrating equation (5.4.8) with respect to k', we get 

k6 . kg klO kl2 
x[105---::-

9 
+45 

7 
-19---5 - 3 3] (5.4.9) 

(t-to)2 (t-to)2 (t-10)2 (f-to)2 

The series of equation (5.4.9) contains only even power of k. it is interesting to note that 

C1J 

Jwdk =0. 

0 

(5.4.10) 
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For obtaining the energy spectrum function E, equation (5.4.7) can be written in integral 

form as 

+ 2 E11ki n/7 - Rf}(t - IO )]Wdt + C(k) cxp[-(2vk2 + 2 Emki Q/11 + 2 E11ki Q/1 - Rf)(t - to)] 

(5.4.11) 

4 
I C(k) __ Jok . f. . 

w 1ere ts a constant o · 111tegrat1on and can be obtain following deissler 
3tr 

[22]. The constant JO is known, as Loitziansky's invariant when the turbulence is 

isotropic. 

Substituting the values of W from equation (5.4.9) in equation (5.4.11) and integrating 

with respect to t, we get 

Jo k 
4 

·. 2 r. 2 r. - Rf'} (t - t )] -E = ---exp[-(2vk + 2 E 111ki '!.'- 111 + Enki '!.'-11 . O . . 
3tr 

15✓2 k 6 

X l - -·7- 7 

v2 (t -to)2 

00 

where F(cv) = exp(-a/) J exp(x
2

)dx, 

0 

I 

k[
v(t-to)] 2 · 

(i) = 2 . 

(5.4.12) 

d is obtained from equation (5.3.5) by setting 
The expression for the energy ecay 

r = o, 
' 2 ') .i=i, dK=-21rk2d(cosO)dkand E=21rk (1/1;1/I;. 
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Thus, 

+ 0.2296/JoV-S exp[-2{ (Emfi D,m + Enti 0.11 + Eqfk D,q )- ,~f}(t - to )](t - to )~7 

(5.4.13) 

Thus, the energy decay law of velocity fluctuations of dusty fluid turbulence in a rotating 

system may be written as 

-5 

(u
2

) = A exp[-(2 Emki D. 111 + 2 Enki n 11 - Rf)(f - Io )](I -lo) 2 · + 

5.4. CONCLUDING REMARKS 

(5.4.14) 

In equation (5.4.14) we obtained the decay law of dusty nuid turbulence in a rotating 

system before the final period considering three-point correlation equation afier 

neglecting quadruple correlation terms. If the system is non-rotating and the nuid is clean 

(U's = 0, f = 0 ), the equation (5 .4.14) becomes 

-5 

(,t2) = A (t-10 ) 2 + n (1-10 )-
7 

which is obtained earlier by Deissler (22]. 

This study shows that the effect of' rotation in presence of dust particles in the flow field, 

the turbulent energy decays more rapidly than the energy for non-rotating clean fluid. 
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For large times, the effect of the higher order inertia terms is v_ery negligible and gives 

the -5/2 power decay law for the final period. 

If the higher order correlations were considered in the analysis, it appears that more terms 

in higher power of (I-to) would be added to equation (5.4.14). 



CHAPTER-V 

PART- B 

DECAY OF DUSTY FLUID MHD TURBULENCE BEFORE THE FINAL 

PERIOD IN ROTATING SYSTEM. 

-- -------------------------------------------------------------------------------

5.1. INTRODUCTION 

Magnetohydrodynamics (MHD) is an important branch of Fluid dynamics. MJ-1O is the 

science, which deals with tl~e motion of highly conducting fluids in the presence of a 

magnetic field. The motion of the conducting fluid across the magnetic field generates 

electric currents which change the magnetic field, and the action of the magnetic field on 

these currents gives rise to mechanical force which modifies the flow of the field. 

Funada. Tutiya and Ohji [29] considered the effect of coriolis force on turbulent motion 

in the presence of strong magnetic field with the assumption that the coriolis force term is 

balanced by fhe geostropic wind approximation 

The problem considered here is an extension of the part-A of this chapter. In part-A, we 

have considered the ordinary turbulence but in this part, we have considered the Ml ID 

turbulence. 
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Following all the references, which are given in part-/\ of this chapter and runada, Tutiya 

nnd Ohji [29], we hnve obtained the decny law of magnetic energy fluctuation of dusty 

fluid turbulence in rotating system. 

5.2. BASIC EQUATIONS 

The equations of motion for viscous. incompressible MI ID dusty fluid turbulent flow in a 

rotating system are given by 

with 

au I av I 8/,1 -=-=-=0 ax, ax, ax, 

(5.2. I) 

(5.2.2) 

(5.2.3) 

(5.2.4) 

where 11;(£,t), ith-component of turbulent velocity about the mean at a point P(x,t); 

h;(-t,f), ith-co111po11c11t of nrngnetic field fluctuation about the mean at a point P(x,t); 

/7 I 2 I I a 12 • I • 1• • I d W (x.t) = - + -(h ) + - n x S- • total Ml II) pressure 111c us,vc o potent ta an 
p 2 2 

centrifugal force; p(x,t), hydrodynamic pressure: n,,,. constant angular velocity 

components : Emki . alternating tensor: f'. nuid density: 11. = _ _v_ - • magnetic diffusivity; 
/'At 
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11 , kinenrntic viscosity ; Pu, magnetic prandtle number; ms = ~nR_; Ps, mass of single 

spherical dust ~Jarticle or radius Rs; Ps, constant density or the material in dust particles; 

kN d' . f r. f = -p, 1mens1011 o 1reque11cy; N. constant number density of dust particle; xk, 

space coordinate; the subscripts can lake on the values I, 2 or 3 and the repeated 

subscripts in a term indicates a summation. 

5.3. T\iVO-POINT CORRELATION AND SPECTRAL F,QUATIONS 

The induction equation of a magnetic field al the point P is . 

(5.3 .1) 

and the point P' is 

(5.3.2) 

Multiplying equation (5.3.1) by 11; am! equation (5.3.2) by h;, adding and taking 

ensemble average. we gel the two-point correlation equation for the fluctuating magnetic 

field as 

(5.3.3) 

Angular bracket ( .......... ) which is used to denote an ensemble average. 
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Using the transformation 

a a a 
-=--=-

and the Chandrasekhar relations [ I JI 

equation (5 .3.3) becomes 

(5.3.4) 

Now we write equation (5 .3.4) in spectral form in order to reduce it to an ordinary 

differential equation by use of the following three-dimensional Fourier-transforms 

oc. 

_(h;h1<f)> = J<lfl;V<;(K))expli(K.r)ldK. (5.3.5) 

-cc 

oc: 

(u;hkhj(r)) = J<a;V'kV':;(K))exp[i(K.r)JdK, (5.3.6) 

-oc. 

(1J 

(11'1J1;h_'; (r)) = (Ilk hJ,:;(-r)) = f< a;vi;vr'; (·-K')) cxpl i ( A' .r) ldK 
(5.3 .7) 

- 00 

(equation (5 .3.7) is obtained by interchanging the subscripts i and .i and then the points 

p and p' ) and hence 

(5.3.8) 
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The tensor equation (5.3.8) becomes a scalar form by contraction of the indices iand j 

(~.3.9) 

The term on the right hand side· of equation (5.3.9) is called energy transfer term while 

the 2nd term on the left- hand side is the dissipation term. 

5.4. THREE-POINT CORRELATION AND SPECTRAL EQUATIONS 

Similar procedure can be used to find the three-point correlation equation. For this 

purpose we take the momentum equation of MllD dusty fluid turbulence in a rotating 

system at the point P and induction equations of magnetic field fluctuation at the points 

P' and P" separated by the vector ;: and ,"-' as 

(5.4. l) 

(5.4.2) 

(5.4.3) 

Multiplying equations, (5.4.1) - (5.4.3) by 1,;111 ,uif,1 and 11if1; respectively, adding and 

taking ensemble average, one obtains 
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(5.4.4) 

Using the transformations 

a a 
- =-

into equations (5.4.4), one obtains 

(5.4.5) 

Using the six dimensional Fourier transforms of the type 

00 00 

(u1h1(;:)h_1(P')) = f f (<h/Ji(K)/J.1(K'))expli(K.r:+k'P)ldKdK', (5.4.6) 

-00-00 

00 00 

(u,u'f<(P)h;(P)hjU')) = f f (<h¢k(K)f];(K)/Jj(K'))exp[i(K.r + k'P)JdKdK', (5.4.7) 
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00 00 

(111u;(r)hkCP)h"j(P')) = f f (¢1¢;(K )/Jk (K)/J;•(K'))exp[i(K.r + k'.P')JdKdK', (5.4.8) 
-00-00 

00 00 

(u1ukh1Cf)h1(P')) = f f (<h<hfJ;tK)/J')(fC))exp[i(K.P + k'.P')]dKdK', 
-c:c-oo 

(5.4.9) 

00 00 · 

(h1hkh1(P)hj(P')) = f f (/31/Jk/Ji(K)/J')(K'))exp[i(K.r + k'.r')]dK.dK'' 

- 00 - 00 
(5.4.10) 

00 00 

(Wh1(r)h1(f')) = f f (y/J;(K)/J}(K'))expli(K..P + k'.P')]d~dK', 
(5.4.11) 

- 00 - 00 

and 

00 00 

(v1h1(P)h"JCP')) = f f (ptf3;(K)f]_1 (K'))exp[i(K.f + k'.f')]dKdK' 
(5.4.12) 

-00 - 00 

with the facts that 

we can write equation (5.4.5) in the form 

(5.4.13) 
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In order to relate the terms on the right side of equation (5.4.12) derived from the 

quadruple correlation terms and from the pressure force terms in equation (5.4.5), we take 

the derivative with respect to x1 _of the momentum equation (5.4. l) at p and combine 

with the continuity equation to give 

(5.4.13) 

Multiplying equation ( 4.4.13) by 1,;1~, laking time averages and writing the equation in 

terms of the independent variables ;: and P' 

(5.4.14) 

Which in Fourier-space can be written as 

(5.4.15) 

Thus, the equations (5.4.14) and (5.4.15) are the spectral equation corresponding to the 

three-point correlation equations. Equation (5.4.15) can he used to eliminate (r/J;/J;) 

from the equation (5.4. 13). 

5.5. SOLUTION FOR TIMES DEFORE THE FINAL PERIOD. 

It is known that the equation for final period decay is obtained by considering the two­

point correlation equations after 11cglccti11g the third order correlation terms. To study the 
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decay for times before the linal period, the three-point correlation equations are 

considered and the quadruple correlation terms are neglected because the quadruple 

correlation terms decays faster than the lower-order correlation terms. 

From equation (5.4.15) and (5.4.13) after neglecting all the quadruple correlation terms, 

we have 

(5.5.1) 

The tensor equation (5.5 .1) can be converted to a scalar equation by contraction of the 

indices i and j, and inner multiplication by k1 

(5.5.2) 

where (J.lt p;f];') = R(<h p;f];') and I - R = S, here R and Sare arbitrary constant. 

Integrating the equation (5.5.2) between IO and I, and gives 

(5.5.3) 
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I II 

where (</J,/3; /3; )ois the value of (¢/J;/3;') at t =10 ,and O is the angle between Kand 

K'. Now, by letting r' = 0 in the equation (5.4.6) and compariilg with equations, (5.3.6) 

and (5.3. 7), we obtain the relation 

00 

(a;V'kV11(K)) = f<¢1/Jf(K)/J;'(K'))dK' 
-00 

and 

00 

(akV1;V'1(-K)) = f<¢tfJf(-K)fll(-K'))clK'. 

-00 

Substituting equations, (5.5.3)-(5.5.5) in equation (5.3.9), we ohla111 

en 

!_ (Vt ;'l'i ( K)) + 2Ak 2 (v, ;'l'i ( K)) = f2;k 1 [<¢1 f]f ( K )/J[( k. ')) - (¢1 f)f (-K)/31(-K')) ]0 dt 

Xexl)[ 1 { I I' )(k 2 k' 2 2/' kk' 0 2E 111kl D. 111 JS}( 11K". - IL ( + M + ) + M cos + -·-- T-· - A I - Io J 

(5.5.4) 

(5.5.5) 

(5.5.7) 

Now, dK' can be expressed in terms of k' and 0 as -21rk'\l(cosO)dk'.(cf. IJeissler [221) 

With the above relation. equation (5.5.7) to give 

(f) 

_(I (1/';'l'iCK)) 1-2Ak 2(w;v,,(K.)) = 2 f2mk1[<¢tfJ[<K>fJ[(K')) -- <¢1/JJ(.:.i<.>fJ,<- K'))lik'2 
(}( 

() 

2 ,2 , Emk/ n,,, fS , l I l . x Jexr{--l(t - 10{ (I + Pu ><.k + k )<- 2!~1kk cos0 + 2 • •- ,l-- - .· ,i}}d( cos 0) dk .. 

(5.5.8) 
In order to make further calculati<.m it is necessary to assume a relation, which gives 
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Following Loeffler and Deissler [57], we assume that 

(5.5.9) 

where 80 is a constant depending on the initial conditions. The negative sign is placed in 

front of 50 in order lo make the transfer of energy from small to large wave numbers for 

positive value of 50 . 

Combining equations (5.5.8) and (5 .5.9), and completing the integration with respect to 

cosO , one obtains 

{ 
2 ,2 kk' 2 Emk/ nm JS] } l/k' -exp -,l(t-to)[(I+I'M)(k +k )+2PM + ~-- -- J , 

A. A. (5 .5.10) 

Multiplying both sides of equation (5.5.10) by k 2
, we have the magnetic energy 

spectrum function E111 = 2nk 2 <w ;Vt;) and then we obtain 

(5.5.11) 

where, G is the magnetic energy transfer term and is given by 

<Y.) I { . . n 
G = - 80 f(k 3 k' 5 - k 5 k'3 exp - J(t - t0 )[(I+ 1\1 )(k 2 + k' 2 ) - 2/>"' kk' + 2 Emk! 

111 

v(t - 10 ) A 
0 
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- ;s1 } { , ., 2 e n JS 
1 

. - exp - /l.(I - 10 )[(1 + l'u )(k- + k' ) + 2T'H kk' + 2 111kt 111 __ '] } 1,,k' 
/1, ' ,,i ,t f'' · (5.5.12) 

Integrating equation (5.5 .12) with respect to k', we have 

(5.5.13) 

The series of equation (5.5.13) contains only even power of k and the equation 

represents the transfer function arising owing to consideration of magnetic field at three­

point at a time. 

It is interesting to note that if we integrate equation (5 .5.13) over all wave numbers, we 

find that 

00 

Judk = 0 

0 

(5.5.14) 

which indicating that the expression for G satisfies the condition of continuity and 

homogeneity. 

The linear equation (5.5.11) can be solved to give 



Chapter V, !'art ll 
98 

(5.5.15) 

. 2 

'(k) Nok . f. . . . 
where , = -- 1s a constant o 1ntcgrat1011 and can be obtained as by Corrsm [17] 

Jr 

Substituting the value of Gas given by equation (5.5.13) into equation (5.5.15), and 

integrating with respect to I, we gel 

N0k
2 

[ 2 ] Jol',11 /; £111 =--exp -2,Vc (I-to) + ) / 
71 

,r 4,-l '2 (I+ l',11 ) · 2 

[ ] [ - k 2 '( I + 2 PM )(t - to) ] [ 3k 4 xexp - {2Emkl n,,, -.fS}(t-fo) exp 11. - ----½--2 
I+/',\/ 2 

2PM (t - to) A 

(7/'M -6)k6 
+-------3-/ 

3J(I + PM )(t -to) ' 2 

(V 

4(31'u 2 
- 2/>M +3) 

I , 
3( I + Pu ) 2 (t - to y ·2 

where, N(cv) = e-rv e-" dx , 2 I 2 A{l-to> 
ro = k 

I + PM 
0 

(5.3.5), we gel the expression for magnetic energy decay law as 

(5.5 .17) 
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On substitution of equation (5.5.16) and subsequent integration with respect to k leads to 

the result 

(hih1) --= 
2 

+ 8PM (3PA/ - 2PM + 3)_" 1.3.5 ... · · · .. (2n + 9) } ] 

3.26(1 + 2PM )3 ~ 11!(211 + 1)2211 (1 + I'M t 

or, 

_3/ 
No(t-to) 1 2 -5 

= 3/ +exp[- {2Emk/ n/11 -fS}]c5oQ(l-to) 
8,-1/2~ (4.5.18) 

where 

Thus, the decay law for magnetic energy nuctuation of dusty nuid Ml ID turbulence in a 

rotating system before the final period may be written as 

3 

(li2)=X(t-t0 )- 2 +exp[-{2e 111k/ n,,, -.f.\'}] >'(t-t0 )-
5

. (4.5.19) 
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5.6. CONCLUDING RERARKS 

The first term in the right side of equation (5.5.19) corresponds to the magnetic energy 

for two-point correlation and the second term represent magnetic energy for the three­

point correlation. The term associated with the three-point correlation die out faster than 

the two-point correlation term. For large times, the last term in the equation becomes 

negligible, leaving the -3/2 power decay law for the final period. 

This study shows that for a given magnetic field fluctuation of dusty fluid turbulence in a 

rotating system, the energy decays more slowly than the energy of velocity fluctuation of 

dusty fluid turbulence in a rotating system which are obtained in part A of this chapter. 

If we consider non-rotating clean fluid, equation (5.5 .19) will be reduced to Sarker and 

Kishore [91 ]. If the effect of dust particle is not taken in to account, the result will be 

completely same with the result obtained by Kishore andUpathdyay l49). 



CHAPTER-VI 

PART-A 

DISTRIBUTION FUNCTION IN THE STATISTICAL THEORY OF 

TURBULENCE FOR VELOCITY AND CONCENTRATION UNDERGOING A 

FIRST ORDER REACTION. 

6.1. INTRODUCTION 

The starting points for modern studies of kinetic theory are the Bogoliubov-Born-Green­

Kirkwood-Yvon (BBGKY) equations. These are a coupled infinite hierarchy of equations 

for multi-particle distribution functions, which are obtained by integrating the Liouville 

equation over some of the variables. Two major and distinct areas of investigation in non­

equilibrium statistical mechanics are the kinetic theory of gases and the statistical theory 

of fluid turbulence. Various analytical theories in the statistical theory of turbulence have 

been discussed in the past by Hopf [J5j, Kraichanan [51 J, Edward [26J and Herring· [33]. 

Lundgren [58] derived hierarchy of coupled equations for multi-point turbulent velocity 

distributions in the statistical theory of turbulence that resemble with l313GKY hierarchy 

of equations in the kinetic theory of gases. Pope [ 81] considered the probability density 

function for the instantaneous composition of reacting mixture of gases. Kishore and 

Singh l40,42J derived transport equation for the bivariate joint distribution function of 

I 
· · d ntration in convective turbulent 

ve oc1ty, temperature and velocity, temperature an conce • 

flow respectively. 
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In the following, we have defined the distribution functions for the simultaneous velocity 

and concentrations of dilute contaminant undergoing a first order chemical reaction and 

derived the equations for evolution of distribution functions . These equations are similar 

to the BBGKY equation in structure. 

6.2. FUNDAMF:NTAL EQUATIONS 

The equation of motion for viscous, incompressible turbulent flow [58] and field equation 

of concentration undergoing a first order chemical reaction [52] are given by 

a { I 81t(X
1

,/) 

- u X I 
au+ II 811 = -~-1- fax' ( , ) ax' } dt' + \I ~~ll 

a1 ax ax 47l" Ix - x'I ax ax 

ac ac a a 
-+u-=D--C-RC at ax ox ox 

with 

811 . 
-=0 
ax 

(6.2.1) 

(6.2.2) 

(6.2.3) 

where u is the fluctuating velocity component, v is the kinematic viscosity, C is the 

fluctuation of concentration, D is the diffusive cocflicient of contaminant, R is the 

constant reaction rate. 11 and x are the vectors in the whole process of this part. 

6.3. DISTRIBUTION FUNCTIONS AND SOME OF THEIR PROPERTIES 

. . . • f I ily and concentration in terms of 
We define now the joint distnbut1on I unction o ve oc ' 

• . . · · 1·(1)(/1) ,1,(1)) is dclino:\such that 
D1rac-Dclta functions. The one pomt d1stnbution. . ,.,, 
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J/1\v<I) ,¢<'))c1v<1>c1¢<') is the probability that the fluid velocity and concentration at a 

lime t are in the element dv(I) about v(I) and dq/1) about ¢<') and is given by 

(6.3. l) 

Similarly, the two-point distribution function is given by 

And so on, an infinite number of multi-point distribution functions Jt·2•3), / 4<
1
,
2
,
3
,
4

) etc. 

can be defined. 

The following properties uf the constructed distribution functions can be deduced from 

the above definitions. 

6.3.1. REDUCTION PROPERTY 

Integration with respect to pair of variables al one point lowers the order of distribution 

by one 

f ff:3(1,2,3)dv(3)d¢(3) = fil,2) 

. , r ti varhbles reduces the number of 
and so on. Also integration with respect to any one o 1e ' ' . 

Delta-functions in the distribution by one 
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and 

6.3.2. SEPARATION PROPERTY 

Ir two points are far apart from each other than the pair of variables at these points should 

be statistically independent of each other i.e .. 

lim f(l,2) .:... {(I) /2) 

1
(2) _ (1)1 · 2 -.1 · I X X ➔oo 

and similarly 

I
. 

1
.(1,2,3) / -(1,2) 1.(3) I 

1111 ( 2) . 3 =. 2 . 1 • am so on. 
x -x(I) ➔oo 
x (3) -x(2) 

6.3.J. COINCIDENCE PROPl~RTY 

When two points coincide in a llow field . the components at these points should be 

(2) . (I) ¢(2) ~(I) B t . . .(1,2) _ . , = v and = .,, . u 
obviously the same, that 1s fi must be zeto unless ' 

/i1
•
2

> must also have the property 
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and, hence, it follows that 

and similarly, 

6.4. CONTONUITY EQUATIONS EXPRESSED IN TERMS OF DISTRIBUTION 

FUNCTION 

An infinite number of continuity equations can be derived which will be satisfied for the 

initial values of distribution functions. These can be derived directly from div u = 0 . 

Taking the ensemble average of this equation gives 

Similarly, multiplying the continuity equation by <>(1/2) -v<1))c5(C(2
) -¢Cl)) and taking 

ensemble average, one obtains 
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(6.4.2) 

The N-th order continuity equation is given in similar way 

_a_ ffv<a)j•(l,2, ...... N) I ,(a) 1..1.(a) - 0 
( ) N c ' c 'f - • ox a 

(6.4.3) 

The continuity equations are symmetric in their arguments, i.~., 

= _a_ ffv<f3) ((1,2, ...... N) I (/J)d,1,(/3) 
ax(/J) . N . CV . V' • 

(6.4.4) 

Since the divergence property is an important property and it is easily verified by the use 

of the property of distribution function as 

(6.4.5) 

and all the properties of the distribution function obtained in sec. (3) can also be easily 

verified. 

6.5. EQUATION FOR EVOLUTION OF BIVARIATE DISTRIBUTION 

FUNCTION 

The equation for bivariate distribution function is obtained from the definition of the 

constructed distribution function and equations, (6.2. l ), (6.2.2) and (6.2.3). If we 

differentiate equatioll' (6.2. l) partially with respect to time, we get 
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. au (I) ac;(I) 
Now substituting the values of -- and -- from equation (6.2. l) and (6.2.2) in a, a, 

equation (6.-$1 ), we get 

(6.5.2) 

· r I th 2nd term Various terms in equation (6.5.2) can be reduced one al a ttme. ,or examp e, e 

on the left hand stde of the equation is simplified as 
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(6.5.3) 

Similarly 3rd term can be simplified ns 

Now adding equation (6.4.3) and (G.4.4). we get 

(6.5.5) 

The 4th term in equation (6.-5.2) can he simplified in such a way 

f a a <2> <2> 
I (2) .(2) u u a . 

(<)( c(I) _ ¢(1) )[- __ ~- { - -- __ 8x ____ i)x _ d/2)} _____ ,5(,,(1) _ v(I) )I) 
ox(I) 4,r . lx(I) - x(2)1 8,,(1) 

x8(C(l) _¢<1>),5(11(2) __ ,.c:n),5(('<2) _¢2)))d/2\/v(2)c1¢,<2>] 

- ---~-- __ I_ fff· _Q __ ---· · .. ! .. . (,,(2) . D __ )2 .rP·2)d·/2)d,•(2)d¢(2) j, (6.5.6) 
- fJv ( I ) [ 4 Jr ax ( I ) IX ( I ) - .\' ( 2) I ax ( 2 ) 

The viscous term can be simplified as 
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(6.5.7) 

The diffusive term can be simplified similarly, i.e., 

(6.5.8) 

And the reaction term can be simplified as 

(6.5.9) 

Now summing up the whole process. the equation for the one point distribution function 

ft°) is obtained as 
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(9.5.10) 

Similarly, an equation for two points bivariate distribution function .ti'·2
) can be derived 

by differentiating equation (6.3.2), and by use of equations, (6.2.1) and (6.2.2) and 

simplifying in the same manner written as 

X (v(J) __i__)2 t •(l,2,J) dx:(J)dv(J) ,,,,,(J) + 1· a a 
(3) , 3 • c V' 1111 (3) (I) V------

8x X ➔x OX(J) ax(J) 

(6.5. t I) 

This process can be continued lo obtain equations for 1·<1,
2

.J) 1·<
1
•
2

•
3

.4) and so on. · 3 ' · 4 

Logically it is possible to have an equation for every f"N (N is an integral value), but the 

system or equation so obtain are not closed. It seems that certain approximation will be 

required for the closure of the system of equations thus obtained. 
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6.6. DISCUSSION AND CONCLUTION 

Firstly, we can show an analogy the equations derived above with the equation BBGKY 

hierarchy in the kinetic theory of gases. The first equation of l313GKY hierarchy is given 

as [ l 09] 

(6.6.1) 

where lf/1,2 = lfl(jvf) - v~)I) is intermolecular potential energy. If we drop the viscous, 

diffusive and constant reaction rate terms from our one point hierarchy, it strongly 

resembles with the above BBGKY hierarchy. 



CHAPTER-VI 

PART-B 

DISTRIBUTION FUNCTIONS IN THE STATISTICAL THEORY OF MHD 

TURBULENCE FOR VELOCITY AND CONCENTRATION UNDERGOING 

A FIRST ORDER REACTION 

6.1 INTRODUCTION 

Kishore [39] studied the distribution functions ·in the statistical theory of MHD 

turbulence. He has made an attempt for defining a hierarchy of distribution functions 

for the simultaneous velocity and magnetic fields . lJixit and . Upadhyay l25J studied 

the same problem of Kishore [39] in the presence of coriolis force. In the next, Sarker 

and Kishore [83] studied the distribution functions in the statistical theory of 

convective MHD turbulence. Beside these, there are also other theories already 

discussed in part-A of this chapter. 

In the following, an attempt is made for defining the distribution functions for the 

simultaneous velocity, magnetic and concentration liclds in MHD turbulence and 

· 1· 1· 'b t· 1· ,1·1011s These equations are derives the equations for evolut1011 o t 1stn u 1011 unc · 

similar to the BBGKY equations in structure. 
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6.2. FUNDAMENTAL EQUATIONS 

The equation of motion for viscous. incompressible Ml-ID turbulent flow (13] and 

field equation of concentration undergoing a first order chemical reaction [52J are 

given by 

(6.2. I) 

(6.2.2) 

ac ac 2 
-+up-=DV C-RC . 
Bt Bxp (6.2.3) 

and 

(6.2.4) 

where 11a, a - component of turhulcnt velocity; ha. a - component of magnetic . 

field; C, concentration field; W = Pt + p1,, stands for the generalized pressure; p1 , 

hydrodynamic pressure divided by nuid density p; /Jh = 1/2('12
), Ml-ID pressure; 

v, kinematic viscosity; ,1 ,magnetic diffusivty =(4.npa)- 1
; a. electrical 

conductivity; p. magnetic permeability: D, diffusive coef'licient of contaminant; R 

constant reaction rate. 

The total pressure W which occurs in equation (6.2.1) m:1y he eliminated with the 

help of the equation obtained by taking the divergence of' equation ((i .2, l) -viz .. 
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(6.2.5) 

In a conducting infinite fluid only the particular solution of the resulting equation 

(6.2.5) is relevant, and so we have 

(6.2.6) 

and hence, equation ( 6.2. l) becomes 

(6.2.7) 

6.3. FORMULATION OF TIii~ PROBLEM 

Here we consider a large ensemble of identical incompressible reacting fluid in 

turbulent state. We also consider the turbulence and the co11<.:entration fields are 

homogeneous, the chemical reaction and the local mass transfer have no effect on the 

velocity field and the reaction rate and the diffusivity arc constant. The fluid velocity 

z,, Alfven velocity h, and concentration liel<l C arc randomly distributed functions 

or position and time and safo;f y the equations or motion and continuity given by 

equations, (6.2.1)-(6.2.4). The only difference between members of the ensemble are 

the initial conditions that vary li·o111 memhcr to member nncl our aim is to find a way 

by which we can determine the ensemble average at the initial time. In this regard, our 

present aim is to construct the dist1 ibution fum:tions, study its properties and derive 

the equation for the evolution of these distribution functions. 
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6.4. DISTRIBUTION FUNCTIONS AND THEIR PROPERTIES 

A 

We may consider the Ouid velocity 11, Alfven velocity h and concentration 

fluctuation C at each point of the flow field in Ml ID turbulent flow. Corresponding 

to each point of the flow field, we have three measurable characters: v, g and ¢ and 

denote the pairs of these three variables at the points x(I) ,x<2) , .... ,x<11> as 

is possible that the same pairs may occur more than once, therefore we simplify the 

problem by making use of the assumption that the distribution is discrete (in the sense 

that no pairs occur more then once). Symbolically we can express the distribution as 

The distribution functions of the fluid velocity, the Al fven velocity and concentration 

field can be defined in terms of Dirac delta-functions. 

The one point distribution function 1)1\,,<I) ,g(I) ,¢( 1)) is defined in such a way that 

· · 1 1 d (I) about v<I), velocity and concentration field at a t11ne I are 111 I 1c c cmcnt v 

dg(I) about g(I), d¢(I) about ¢(I), respectively; and is given as 

(6.4.l) 

and two point distribution function is given hy 

(6.4.2) 
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Similarly, we can an infinite number of multi point distribution functions F/1
•
2

•
3
), 

F4 (l,2J,4)' etc. 

The distribution functions so constructed have the following properties: 

6.4.1. REDUCTION PROPF:RTY 

Integrating with respect to pairs of variables at one point lowers the order of 

distribution function by one, for example, 

Also integration with respect lo any one or the variables reduces the number of delta-

functions in the distribution function by one as 

and 

f p,(l,2\iv(2) =(D(ll(l) _v(l)),5(/r(ll -R~l)),)(('(1) _¢<1))) 

. . 1 now field the pairs of variables at 
If two points are far apart from cnch other Ill tic ' 

these points are statistically independent of each other - i.e., . 
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liml (2) (l)j. F2 (1,2) = fj (I) F (2) 
x ->x ➔oo I 

and similarly, 

x ➔x I I . etc. Jim/ (3) (I) 

1 

r,3· (1,2,3) = F (1 ,2) F (3) 

(3) (2) ➔ O'J 
X ➔x 

6.4.3. COINCIDENCE PROPERTY 

When two points coincide in a now field, the components at these points should be 

obviously the same, that is F2 (l,
2

) must be zero unless v<2) = v(I) , g(2) = g(I), and 

,h(2) _ ,h(I) b , (1,2) 
'f' - 'I' , ut F2 must also hm·c the properly 

and, he11ce, it follows that 

Similarly, 

6.5. CONTINUITY EQUATIONS EXPRESSED IN TERMS OF THE 

DISTRIBUTION FUNCTION 

An infinite number of continuity equations can be derived for the convective Ml ID 

turbulence, which will be satisfied lc1r the initial values or distribution functions and 

are obtained directly hy div ii= o. laking ensemble average or equation (6.2.4), we 

have 
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(6.5 .1) 

and, similarly, 

(6.5.2) 

which are the first-order continuity equation in which only one point distribution 

function is involved. In a similar way, second-order continuity equations can be 

derived and are formed to be 

(6.5.3) 

and 

(6.5.4) 

The Nth order continuity equations arc 

(6.5.5) 

(6.5.6) 

·1·1 · • ti · · rgumcnts ·--i c 
1e continuity equations arc symmclnc Ill 1c11 n · · ·• . 
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(6.5.7). 

Since the divergence property is an important properly and it is easily verified by the 

use of the property of distribution as 

(6.5.8) 

and all the properties of the distribution function obtained in section (6.4) can also be 

easily verified. 

6.6 EQUATION FOR EVOLUTION OF DISTRIBUTION FUNCTION 

The equations for distribution f'unction are obtained from the definition of the 

constructed distribution functions and use of the equations, (6.2.2), (6.2.3) and (6.2.7). 

If we differentiate equation (6.4.1) partially with respect to time, we get 

or 
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(6.6.1) 

lfwe use equations, (6.2.2), (6.2.3) and (6.2.7) in equation (6.6.1), we have 

or 

· (I)/ (I) 
oha 1/3 a (I) (I) 

+ ( ~(/ (I) (I)) 5(('(1) _~(I)) - -- - -- - - c5(11 - v )) 
- u 1 - R < V' (I) a (I) 

• ax/J "a 



Chapter VI, fart {] 
· 121 

(6.6.2) 

Various terms in equation (6.6.2) cn11 he simplified as that they may be expressed in 

terms or one point and two point distribution ru11ctions. For exm11pk. the lirsl term 011 

the right -hand side of the equation is simplilicd as 

(since 011~) / OI'~) = I ) 
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(6.6.3) 

Similarly, the 5th and 8th terms on the right-hand side or equation (6.6.2) can reduce as 

(6.6.4) 

and 

If we add equations, (6.6.3), (6.6.4) and (6.6.5), we gel 

(6.6.6) 

. 1 1- 1· , (6 6 2) can be simplilied 
Similarly, the 2nd and 6111 terms on the nght-ham O eqtm tot ' · · 

as 
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(6.6.7) 

and 

(6.6.8) 

We can reduce the 4111 term 

==-v a 1· . a2 fff ,(~l1,-!Ul 1,,m /u<~l,,1C!l . 
- -- 1111 (2) (I) ------ I (l' 1 ( < .... Y' 
c1i,( I) x - ->x ;:i .(2b (2) .. 

a n/1 uX/1 
(6.6.9) 

Similarly, 7'h nnd 91h terms of equation (6A2) reduce to 
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- a . a2 
--J---(-I) hm (2) ()) -·------III ~(2)/-'(l.2) /1·!2) 1 12),1,(2) 

Bg X ->X a .(2)a .(2) • rl 2 C cg V' 
a ., /J ·'p (6.6.10) 

- a . a2 fff - -D-(I) l11n (2) (I) --- ¢(2) v<1.2)1fr(2)d1/2l,1,(2) 
O,P X ->x f} .(2)f} (2) rl 2 , V' · 

a x/J x/J . (6.6.11) 

Now, the 3rd term of the equation (6.6.2) reduces to 

(6'.6.12) 

And, the last term of the equation (6.6.2) reduces to 

(6.6.13) 

Now, summing up the whole process. the equation for the one point distribution 

function F/')(v,g,¢) is obtained as 



-----,,-----:-:----,------___ -~ 

Chapter VI, Part B 
125 

a . a
2 ff J + 11--lun (2) (I) ----- - "a(2) F2(1,2)d1'(2)c/a(2)d,1,(2) 

av(I) X -x a (2)a (2) 0 'I' 
a x/3 x/3 

(6.6.14) 

Similarly, an equation for two-point distribution l'unction fi 1
•
2

) can be derived by 

differentiating equation (6.4.2) and use of equations, (6.2.2), (6.2.3) and (6.2.7 and 

simplifying iii the same manner written as 
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Jff (3) Cl.2.3) (3) (3) rn D . o . 
x "a F3 dv dg d¢ · + A(· --j - 11111 (J) _(IJ + --- - -- 11111 (3) (I)) 

ca( ) X -).\ f}c,(2) X ➔X 
,..,o: '"'a 

2 
x a fff (3)F<1.2.J>d,<3> <3> <J> a . a . (3) (3) ga 3 -1 _ dg cl¢ + y(--

1 
11111 (3) (I)+ --11111 (3) (I)) 

OX/J OX /J 0¢1) X ->.~ 0¢12) X ➔x 

(6.6.15) 

Containing this way we can derive the equations of JS(l,2,3) , FJ1•2J,4) etc. 

Logically, it is possible to have an equation for every F,, (n is an integer) but the 

system of equations so obtained arc not closed. It seems that certain approximations 

will be required for the closure of the system of equations thus obtained. 

6.7. DISCUSSION AND CONCLllSION 

The first equation of BBGKY hierarchy in the kinetic theory of gases given by Ta-

YouWu[l02)as 

(6.7.1) 

where 'l'l,
2 

= f//(jv~> - v~1)j) is intermolecular potential energy. If we drop the 

. . . , t 1-1-1-1 .·,,·c ·utd constant reaction terms from our viscous, magnet 1c and conta111111.m t 1 t s · ' · 

one-point hierarchy equation (6.6.14 ). ,vc have 
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=O (6.7.2) 

which strongly resembles with equation (6.7.1) in BIH iK Y hierarchy. The existence 

of the term 

8g (I) {)i, (I) 
_ . a . + ___ a __ 
ch, (I) Dg (I) 

a a 

can be explained on the basis that two characteristics or the flow licld arc related to 

each other and describe the interaction between two modcs(velocity and magnetic) at 

a single point. · 
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EFFECT OF VERY STRON(; MAGNF,TIC FIF,LD ON ACCF,LF,RATION 

COVARIANCE IN MHD TlJRBlJLF,NCE OF DUSTY FLUID IN A ROTATING 

SYSTEM. 

7.1 INTRODUCTION 

Taylor [ 104] pointed out that the equation of motion of turbulence relates the pressure 

gradient and acceleration ofthc fluid particles and that the mean-square acceleration can 

be determined from the observa_tion of the diffusion or the marked fluid particles. The 

behavior of dust particles in a turbulent 11ow depends on the concentration and size of the 

particles with respect to scale of turbulent fluid . /\ good deal of theoretical studies of 

MHD turbulent has been made during last lirtecn years. Some authors (e.g. Ohji, [71]) 

have considered Ml ID turbulence in the absence of an external magnetic field in order to 

gain a basic undcrslrinding or n half" ndjusting process or the mechanical and magnetic 

mode of turbulence. The essential effect in presence or an imposed magnetic field is that 

the mechanical and magnetic mode or turbulence interacts not only with each other 

through the self-adjusting process but also with external magnetic field. If the external 

n1 t. fi 11 · · t tile cf'"cct or the later internet ion will predominance that of agnc 1c 1e c 1s very s rong, · ,, • . 

the self-adjusting process. Ohji [71] presented a lirst order theory of turbulence of an 

I . ·c1 ·111 tl1c 1)1·,·s.·c11'·c or a uniform magnetic field which is so 
e ectneally conducting nm " " 
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strong that the non-linear mechanism as well as the dissipation terms are of minor 

important when comparing with the external coupling terms. Ohji l72J, discussed the 

effect of a very strong uniform magnetic field on incompressible Ml-ID turbulence in 

presence of a constant angular velocity and I lall effect. Kishore and Dix it j44J studied the 

effect of a uniform magnetic field on acceleration covariance in Ml ID turbulence. Dixit 

1_23 J discussed the effect or uniform magnetic licld on acceleration covariance in MHD 

dusty fluid turbulence. <... 

In this paper, we have discussed the effect of a strong magnetic field on acceleration 

covariance in MllD turbulence of dusty fluid in a rotating system. Due to rotation, 

coriolis force is produced which plays an important role in a rotating system of turbulent 

flow, while the centrifugal force with the potential is incorporated into the pressure. 

7.2. FUNDAMENTAL EQUATIONS 

If {; denotes the velocity, fJ the magnetic induction, f> the pressure, p the density, v the 

kinetic viscosity, a- the conductivity and p the permeability. the Ml II) equation are 

written in M. K. S. units as M. Ohji 1711 

a{; " ,_ - I " " 
- -+ (U · grad)U - -- (IJ · p,rad)/J = a, . pr 

1 " I "2 2 " __ grad(I' + -13 ) + ,,v U 
p 2r 

(7.2.1) 

for the momentum, and 

aiJ " ,. " " 1 v2 h - + (U · grnd)B-(B · grad)U = - ·- -
Bt na 

(7.2.2) 

r . l ti , 111lcmcntary equations ,or the induction respectively, together wit 1 tc su1 
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" " V · U = 0 and V · B = 0 

where p, v, a and fl are assumed constants. 

Further, for convenient we introduce the Alfven velocity 

" " B 
H =--· 

Jµp 

and the magnetic viscosity 

/4 = _1_ 
pa 

For a turbulent flow we can put (; = U + 11, If= H + h, fa= P + p 

130 

(7.2.3). 

(7.2.4) 

(7 .2.5) 

where U, Hand P are the mean values and u, h and p · represents the fluctuating 

components. Then, taking the statistical average ( expressed by an overbar) of equations, 

(7 .2.1 )-(7 .2.3 ), we have 

au. a - -
-

1 + - (U-Uk - H . Hk + ll ·Uk - h-hk ) = a, axk . , , , , 

= _ _!_~(P+ p (l-l 2ii2)+vV2U; 
p Bx; 2 

and 

BU;_ 8H; _ O -----
OX· Bx• I I 

for the mean .fields, and subtracting these from equations (7.2.1 )-(7.2.3), we get 

Bu- 8 811; 8h; _ 
-' +-(u;uk-h/1k)-Vk - -llk- -
8t 8xk 8xk 8xk 

(7.2.6) 

(7.2.7) 

(7.2.8) 
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· (7.2.9) 

(7.2, 10) 

and 

Bu; = Bh; = O 
Bx; Bx; (7.2.11) 

for the fluctuating fields. Specially, if both U and fj arc steady, uniform and the turbulence is 

spatially homogenous, the. average equations, (7 .2.6) and (7 .2. 7) are satisfied identically and it 

· is seen that in the equations (7.2.9) and (7.2.10) the terms in the curly brackets vanish. 

Equations, (7.2.9)-(7.2.10) becomes 

(7.2.12) 

(7.2.13) 

where W = PI p + H k h k . 

Now, the equations of MHD dusty turbulence with effect of very strong magnetic field in 

a rotating frame are 
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-2 Emik Qmu; + f(u; - V;) 
(7.2.14) 

(7.2.15) 

and 

(7.2.16) 

where W =PI p + llkhk + ~/6x .r/. If is the external applied magnetic field, 6., the 

angular velocity vector of a uniform rotation; ui 's and vi's represents the turbulent 

4 3 component of velocity and magnetic field respectively. ms = 
3

1rRs Ps is the mass of a 

single spherical <lust particle of radius Rs; .f = KN_. has dimension of frequency; K is 
p 

the stock resistance coefficient; N is the number density of the dust particles; v;(x,t) is 

the fluctuating velocity of the dust particles. The third term of the right hand side of the 

equation (7.2.14) represent the coriolies force which plays an important role in a rotating 

system. 

7.3. MATHEMATICAL MODEL OF THE PROBLl~M 

Let A;(x;,t)denotes the ith component of the accelerntion or 11uid particles, which is 

. , 
111stantaneously at point P'(x; ,I), then 
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1 Dz/ au', a,/. · aw' 2 • 
A·(x· t) = - 1 = - 1 +Uk-'= --+v'v, II·+ , ,, D' 

8
, , , x , 

I l 8xk 8x; 

(7.3.1) 

Similarly, if A1 (x; ,t) denote the jth component of the acceleration of another fluid 

particle which is instantaneously at point p" (x:~ ,I) , we can write 

(7.3.2) 

Therefore, 

11 II 

I II av'•W" a11;w" aw'11 i 8W'v j 
2 '/CT 2 r'\ + / '( I . _ ___ . : ... + -- -) 

- Vv x" Emik H-m 11i11 i - .;- - - - --.. a ' Bx· 
. 8X j 8Xj X; I 

11 

a '1" a1, .,/. BW'uj 
u; 1 j II , J + 2 e . n 

- 2 e .k n H, - - - 2 e ,y·t n II k - , -- ,yk II a · 
nu Ill ax, axk X; 
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(7.3.3) 

Taking the average of the equation (7.3.3) and using the condition of spatial homogeneity 

and by virtue of the solenoidal relation's (7.2.11 ), JV',/~, W"11 ;: , etc. do not exist. Since 

the dust parl;icles are taken as non-conducting, therefore, h;v;, h;v; = 0 and assuming 

that the instantaneous velocities at one point remain unaffected by the dust particles of 

I II ti I 

the other points i.e. u;vj, u jvi = o·, we have 

· 2 - 82 -- Au '.1,". a I It I II / J 
- 2v-- E '/ Q IHI · + 2ef---ll;II j - 2 Emik !2,,, ff t ·--;;:- + 

01'k, 01'k, l1] II I J 81/)11 . 'l 

·. a -- a -,-,, a -,-,, 
+2e ., Q Hk-h,'.i11

11

· +f(H1-11;f1;-Hk-;-h;11;)-
1y n ark 81J . (111< 

------ I II 

~ 1 
II Q n 1/ •I/' + 

- 2 E 'k n h-u . - 2f e,"·, n,,u,·'1,· + 4 Emik e,,;, 111 11 1 1 
1111 Ill I j . · 

(7.3.4) 
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", a a a 2 2 2 
where x • - x • = ,-. and - = - = - - V 1 = V • = V . 

I I I a 11 •• X X ,.,. ax, ax, 
I I 

The Fourier transform of various correlation tensors appearing in (7.3.4) are expressed as 

spectral tensors: 

I " ,. ik·P • - I . 
U;Uj = ¢u(k,t)e dk ' 

(7.3.5) 

- f . ' II ,.. 'k,. ,.. 
V ·V · = M .. (k t)e1 ·rdk 

I j I) ' 

It is noted that </Ju, 1/f ij and M ij are true tensors but r ij and y ij are skew tensors, and 

from homogeneity, 

,. ,. 

¢u(k) = <Pji(k), 
A A 

1/fu(k) = 1/1 ji(-k), u .. cfc) = M .. (-k) 
I) JI ' 

and from solenoidality, k;¢u(k) = k;l/tij(k) = k;M ij(k) = k;r;J<k) = k;Yij(k) = 0 

(7.3.7) 

Again, 

- a2w-w = _L fR(k,t)/fc.; dk = - -a_. f;k i R(k,1)/1<.P dk 
ar.ar . ar.ar . a, i 

I J I } 

(7.3.8) 

and 
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(7.3.9) 

where J.l denotes the cosine of the angle k and Ii i.e. kpll = kk fl k . 

(7.3.10) 

a2 f . J . " ik r • . 3 ik P " 
= -v--H kkk Yij(k ,t)e · dk = 1 vk pl! Y;/ · dk a,,a,, . 

(7.3.11) 

(7.3.12) 

-2if _L f,/J;-(k,t)eik.F-dfc = -2~k2 f¢i}eik .rdk. a,,a,, r.1 

(7.3.13) 

With the help or equations, (7.3.8)- (7.3.13), equation (7.3.4) hccomes 
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2vk2[( n r-, f ;1< P , 2 J , fc • , - Emik 111+ e,1)! :.t. 111 ) ¢i}(k,t)e · dk-2ifk r/Jij(k,t)e .r dk 

+ jkµH[ ff u(k,t)- ru(k,t)}/k.r dk]- 2f[(Emik nm+ E,yf n,,) 

f , ik.r , f ,. J ~ , 
x t/Jij(k,l)e dk]+4 e,,,;k_E,yf n,,,n/1 ¢ij(k,t)e1 

,/ dk 

(7.3.14) 

Let us assume that 

A;AJ = · f Aij(k,t }ik.r dk, then the spectral equations in this context become 

- Emik nmr(i) + jkpl-/(f ij - Yij )- 2/(E,,,;k 0111+ e,,j/ n,,)¢u 

(7.3.15) 

This equation displays the effect of magnetic licl<l on acceleration covariance in MHD 

dusty turbulence in a rotating system. 
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For the axi-symmetric case we can put 

(7.3.16) 

where S is the unit vector in the direction of fl, and 

" 2 k;kj 
D .. (k) = (k D·· - -) u u k2 (7.3.17) 

(7.3.18) 

While the defining scalars <j/2) - - - -M (2) are the functions of k, kµ and time. 

It follows from the homogeneity condition that 

for true tensors, and 

(7.3.20) 

for skew tensors. 

Under these conditions, equation (7.3.15) becomes 

A(I) = v2k\6<1) +k2R(k.t)+k21/H21/f(I) +ivk3p/!(/
1
)-r(I)) 

. (I) 
- 2vk2-A(l)(E .k Q - E ., n )-21,fk.2¢(1) + 2ikp/l(E11jl n,,r 

'r I/II Ill 11) II · · _ 
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(7.3.21) 

and 

-2vk2~(2)( n n ) 2,,1k2 (2) . 2) r Emik :,{,Ill- Enj! ~~/1 - ~,, ¢ + 2,kpH(E,,p nnr 

- Emik r(2)) + jkµI-/(1(2) -y(2))-2 r~(2)(E "k Q + E ·1 Q ) 
. . J 'f' Ill/ Ill 11] 11 

(7.3.22) 

7.4. CONCLUSION 

Here we discussed the effect of very strong magnetic field on acceleration covariance in 

MHD turbulence of dusty fluid in a rotating system. 

Defining scalars of acceleration covariance have been obtained in terms of the defining 

scalars of various spectrum functions in the simplest form. 

If we put .f = 0, in equations, (7.3.21) and (7.3.22), we get the effect of magnetic field 

on acceleration covariance in MHD turbulence in a rotating syster:n for clean flow. 

Again, if the Ouid is clean and the system is non- rotating (i .e: for .f = 0, n = 0 ), we 

have 

(7.4.1) 

and 

(7.4.2) 
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which is obtained earlier by Kishore & Dixit l44J. 

In order to estimate the order of magnitude of various terms in (7.3.21) and (7.3.22), we 

introduce a = (u 2 + 1/ 13) 112 as the level of turbulence and the characteristic length / to 

derive a relation of the form, 

viscous dissipation terms va 2 / 12 
11 

external coupling terms ~ /-/a2/ = I-II= RH 

where RH is the Reynolds number. If the imposed magnetic field is sufficiently strong, 

-
1
- is very small in comparison with 1, and, hence equations (7.3.21 & 7.3.22) becomes 

R1-1 

(I) _ k2 2 2 (I) 2 'k (I) •(I) A - JI 1-1 If' 1- k R(k,1) + 2, pH(E,1f1 n11r - E,,,;k n,,,r ) 

(7.4.3) 

and 

(7.4.4) 

which show the predominance of the external magnetic field over other forces on 

acceleration covariance in MI ID turbulence of dusty fluid in a rotating system. 
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