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PREFACE
The thesis entitled “Theoretical investigations of turbulence and Magneto-
hydrodynamic turbulence in incompressible ﬂuid"’ is being presented for the
award of thc degrcc of Doctor of Philosophy in Mathematics. It is the outcome of
my researches conducted in the Department of Malhcma_lics, Rajshahi University,
Rajshahi, Bangladesh under the guidance of Dr. M. Shamsul Alam Sarker,

Professor, Department of mathematics, Rajshahi Universily, Rajshahi-6205,

Bangladesh.

The thesis has been divided into six chapters. The first is 2 general introductory
chapter and gives the general idea of turbulence and Magneto-hydrodynamics
turbulence and its principal concepts. Some results and theories, which are needed
in the subsequent chapter, have been included in this chapter. A brief review of the

past researches related to this thesis has also been given.

In the second chapter we have discussed the decay of lemperature {luctuation in
homogeneous turbulence before the final period for lhg case of multi-point and
mulli-time. Two-point, two-time and three-point, three-lime Fourier-transformed
lemperature cquations is made delerminate by neglecting the fourth-order
correlation lerms. Finally, we have oblained the decay law of lemperalure

[uctuation energy before the final period.
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In the third chapter, the decay of MHD turbulence al times before the final
period for the case of multi-point and multi-time has been studied. In this chapter,
first we have obtainted the two-point, itwo-lime and the three-point, three-time
correlation equations. ‘Then the correlation cquationé are converled inlo spectral
form by taking their Fourier transforms and then the magnelic energy decay law
before the final period for the case of multi-point and multi-time has been

obtained. |

In the four.th chapter we have studicd the magnllelic field fluctuvation of
concentration of a dilute contaminant undergoing a i I'St order chemical reaction in
MHD turbulence at times before the final period. Here we have obtained multi-
point and Singlc-limc correlalion equations after neglecting the quadruple
correlation lerms in comparison with lower-order correlation terms applicable al
times before the final period. These equations are coﬁvcrled into spectral form by

taking their Fouricr transformed. Finally, the decay faw has been obtained.

The fifth chapter is divided inlo two parts. In part-A ol this chapter, we have
studicd the decay ol dusty fluid turbulence belore the final period in a rotating
system. In this problem we have considered the two- and threc-point correlation

equations and solved these equations alter neglecting (the quadruple correrelation
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terms applicable at times belore the final period. Finally the energy decay law of

fluctuating velocity is obtained.

In part-B, of the fifth chapter, the problem of part-A is extended for the case of

MHD turbulence.

The chapter six is also divided into two parts. In part-A of this chapter we have
delined distribution functions for simullancous velocily and concentration of
dilute contaminan! undergoing a first order chemical reaction. Some properties of
the constructed distribution [unctions have been dilsc':usscd. Equation for the
evolution 01‘- onc- and two-point  distribution function for velocity and

concentration ficlds have been derived.

In part-B of the chapter we have considered the distribution function for velocity,
magnelic and concentration ficlds of rcacting (first order) fluid. Here, part-B is

the extension work of part-A of the chapter in MHD turbulence.

In the last chapter (chapter VII), we have discussed the elfect of strong uniform
magnelic field on acceleration covariance in MHD turbulence of dusty fluid in a
rolating system. An expression for acceleration covariance is obtained in terms of

the defining scalars and il is assumed that the whole system is rolating with a



uniform angular velocity. The regions are considered where the inhomogeneity

due to rotation plays no important role.

The following rescarch papers, which are extracted [rom this thesis, have been
accepled for publication or presented in diflerent international mathematical
conlerence or communicated in dilferent national and intemationat joumnals.

(1) Decay of MHD turbulence belore the final period for the case of multi-
point and multi-time. (Acccplcd for publication, “Indian Journal of Pure
and Applied Malhcmalics”).

(2) Decay of temperature fTuctuations in homog;,cncdus turbulence before the
final period for the case of multi-point and mulli-time. (Presented in the
“Intemmational conference on Geomelry, Analysis and Applications”
Depariment of Mathemalics, Facultly of Science, Banaras Hindu University,
21" — 24" August, 2000 and communicated for publication).

(3) First order reactant in MHD turbulence belore the [inal period of decay.
(Presented in the “25™ Intemational Nalhiaéalis Summer College on
Physics and Contemporary nceds”, 26" Jun — 15® July, Pakistan and
communicated for publication).

(4) Dccay of dusty fluid turbulence before the final period in a rotaling system.

(Communicated [or publication).
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(5) Decay of dusty {luid MHD turbulence before lile final period in a rolaling
system. (Communicaled for publication).

(6) Distribution functions in the slatistical theory for velocily and
concentration undergoing a first order rcacli‘on. (Communicated for
publication).

(7) Elfect of very strong magnetic field on acceleration covariance in MHD
turbulence of dusty fluid in a rotating system. (Communicated f(or

publicaiion).

M¢ Anogway wd Tedom

Department of Mathematics (Md. Anowarul Islam)
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Bangladesh.



vii

SL.NO. '. PAGE NO.
CHIAPTER — 1

GENERAL INTRODUCTION

1.1 Declinition and statistical nature of turbulence 1
1.2, Short early history of turbulence 4
1.3. "The Navier-Stokes and conlinuily cquation 6
14. Reynolds rules of average 8
L5, Avcraging method and cquation of turbulence cencrgy
spectrum

1.6. Isotropic and homogencous turbulence 13
1.7. Magncto-hydrodynamics and turbulence ‘ 14
1.8. Ralte of rcaction and order of reaction ' 18
1.9. Distribution functions in turbulence ) 20
1.10. A briel description of past research relevant to the thesis 21

work

CHAPTER - 11

DECAY OF TEMPERATURE FLUCTUATIONS IN HOMOGENEOUS
TURBULENCE BEFORE TIIE FINAL PERIOD FOR THE CASE OF MULTI-
POINT AND MULTI-TIME

2.1 Introduction ' 27
22. Correlation and spectral equations _ 28
23. Three-point, three-time correlation and equations 31
24. Solutions for times belore the final period 34

25. Concluding remarks 40



CUAPTER - 111

viii

DECAY OF MHD TURBULENCE BEFORE TIIE FINAL PERIOD FOR THE

3.1

32
33.

34.

35.

CASE OF MULTI-POINT AND MULTI-TIME

Introduction

Fundamental equations

Two-point, two-lime correlation and spectral equations
Three-point, three-time correlation equations and solution

for times belore the final period

Concluding remarks

CUAPTER -1V

41
42

43

46

55

FIRST ORDER REACTANT IN MHD TURBULENCE BEFORE THE FINAL

4.1

4.2.
43.
44.
45.
4.6.

DECAY OF DUSTY FLUID T

5.1

5.2.
5.3.
54.
5.5.

PERIOD OF DECAY
Introduction
Fundamental equations
Two-point correlation and spectral equations
Three-point correlation and spectral equations
Solution for times belore the final period

Concluding remarks

CHAPTER -V
PART — A

ROTATING SYSTEM
Introduction |
Basic equations
Correlation and spectral cquations
Solution lor times before the final period

Concluding remarks

56
57
58
60
64
70

71
73
73
80

84

URBULENCE BEFORE TIIE FINAL PERIOD IN A



Cll ER -
PART ~ B

DECAY OF DUSTY FLUID MHD TURBULENCE BEFORE THE FINAL
PERIOD IN A ROTATING SYSTEM

51 Introduction 86
5.2. . DBasic equations | . 87
5.3. Two-point corrclation and spectral equations 38
54. Three-point correlation and spectral equations | 90
55. Solution for times belore the final period - 93
56. Concluding remarks © 100
ClL ‘ER-¥
PART - A

DISTRIBUTION FUNCTIONS IN THE STATISTICAL THEORY FOR
VELOCITY AND CONCENTRATION UNDERGOING A FIRST ORDER

| REACTION |
6.1 Introduction : 101
6.2. | Fundamental equations 102
6.3. Distribution functions and some of their propetrtics 102
6.3.1 . Reduction properly , 103
632 Separation properly ' ‘ 104
633 Coincidence properly : 104
64. Continuily equations expressed in terms ol the distribution 105

function '

6.5. Equation for evolution of distribution function 106

6.6. Discussion and conclusion 111



CHAPTER - V1
PART - B

DISTRIBUTION FUNCTIONS IN THE STATISTICAL THEORY OF MHD
TURBULENCE FOR VELOCITY AND CONCENTRATION UNDERGOING A

FIRST ORDER REACTION
6.1, Introduction ' - 112
6.2. Fundamental equations . ©113
6.3. - Formulation of the problem 114
64. Distribution functions and their properties 115
64.1 Reduction property 116
6.4.2 Separation proi)eriy _ 116
064.3 Coincidence property L 117
6.5. Continuity equations expresscd in terms of the distribution 117
' Tunction
6.6. Equation for evolution of distribution function 119
6.6. Discussion and conclusion 126
CHAPTER - VI

EFFECT OF VERY STRONG MAGNATIC FIELD ON ACCELERATION
COVARIANCE IN MHD TURBULENCE OF DUSTY FLUID IN A ROTATING

SYSTEM
7.1. - Introduction 128
72. Fundamental equations 129
7.3. Mathematlical model of the problem 132
74, Distribution functions and their propertics 139

BIBLIOGRAPHY | 141



GENERAL INTRODUCTION

1.1 DEFINATION AND STATISTICAL NATURE OF TURBULENCE

Turbulence is the most common, important and complicated kind of fluid motion. From
the beginning of the study of fluid dynamics, the turbulent flow is an unsolved problem.
Since the Navier-stokes equation is a non-linear partial _differenlial cquation, the
nonlinear terms make the solution of turbulent flow more and more difficult. Turbulent
flows are very common in nature, especially in atmosphere, rivers, seas and oceans, that
is almost everywhere.

In turbulent Mow, the steady motion of the fuid is only steady in so far as the temporal
mean values of the velocitics and the pressure are conceined whercas actually both the
velocities and the pressures are irregularly fluctuating. The velocity and the pressurc
distributions in turbulent flows as wecll as the cnergy losses are determined mainly by the
turbulent {luctuations. The essential characteristic of turbulent (low is that the turbulent
(luctuations are random in nature. In 1937, Taylor and Von Karman [106] gave the
following definition:

“Turbulence is an irregular motion which in general makes its appearance in fluids,
gaseous or liguid, when Ihe.‘/l(m' past solid surfuces or even when neighboring streams of
the same fluid flow past over one another ™. |

According to this definition, the flow has to satisfy the condition of irregularity. Indeed,
this irregularity is a very important [eaturc. Because of irregularity, it is impossible to
describe the motion in all details as a [unction ol time and space co-ordinates. But,

fortunately. turbulent motion is irregular in the sense that it is possible to describe it by
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laws of probability. It appears possible to indicate distinct average values of various
quantities, such as velocily, pressure, temperature etc, and this is very important.
Therefore, it is not sufficient just to say that turbulence is an irregular motion. Yet we do
not have a clear-cut definition of turbulence. This is rather difficult. IHinze [34] suggests
in his book turbulence:

“Turbulent fluid motion is an irregular comﬁti;m of flow in which various ‘quanrilies
show random variation with time and space coordinates, s.'o that statistically distinct
average values can be discerned”.

Turbulence is a continuum phenomenon governed by the Navier-Stokes equation and the
continuity equation. Its small-scale structure is assumed to be large compared with
molecular length scale. Thus the continuum approximation seems to be valid as long as
the minimum eddy size is much larger than the mean free path. The consequence of very
small-scale structure is the enhancement of transport processes. The most important
properly of the turbulent motion is it greatly incrcased rates of momentum, mass and
energy transport by irregular small-scale motions. These rates are extremely larger than
the corresponding rates due to molecular diffusion.

In view of random fluctuating motions of a fluid having statistical propertics, it has often
raised the question how the Navier-Stokes equations can really describe such random
motions, since a given set of initial conditions determine the motions for all subsequént
times. This question has not yet been answered completely. However, it has been
demonstrated both theorctically and experimentally that ;lhe Navier-Stokes equations

have tremendous simplifying power under suitable conditions. On the other hand, if the
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Navier-Stokes equations are in fact. inadequate then there is a definite need for new
formulation of proper equalion.s. Until such proper equalionls are developed, its seems
reasonable to accept the Navier-Stokes cquations for the study of turbulence.

Another difficulty arises from the strong non-linearity of the Navier-Stokes equations.
This non-linearity leads to an infinite number of equations for all possible momenls. of the
velocity field. This system of cquations is very complicated, and any sub-system _ofthis
system is always non-closed in the sense that it contains more unknowns than the number
ol equations in the given system. For instance, the dynamical equation for second order
moments involves third order moments, that for third order moments involves fourth
order moments and so on. This is so calied the closure problem in the statistical theory of
turbulence. This is perhaps the most difficult and formidable problem in turbulence
theory. |

Turbulent flow always occurs from instabilities of laminar motions at very high Reynolds
numbers. These instabilities are closely associatcd with direct interaction of the non-
linear inertia term and the viscous terms in the Navier-Stokes equation. Instability to
small perturbation is also another feature of turbulent flows.

Turbulent motion -is three dimensional and rotational. It is also characterized by the
random distribution of vorticity in which there is no untque relation between the
frequency and the wave number of the Fourier modes. It is essentially diffusive and
dissipative. The vorticity dynamics plays an important rolc in the statistical description of

turbulence.
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Based upon averaging procedures. considerable theoretical and experimental studies have
been made of the statistical propertics of ensembies of wrbulent flows under
macroscopically identical external conditions. So far. these studics are based on suitable
mathematical simplification, physically plausible assumptions and en model equations.
Unflortunately, from mathematical and physical point of view, neither the classical nor the
modern theory of turbulence is entircly satisfactory. Indeed turbulence is still one of the
most poorly or partially understood phenomena in all of l‘luid niechanics.

It is now generally recognized that turbulent motion is the more natural state of fluid
motion. Therefore, its study is extremely important from theoretical as well as practical

point of view.

1.2 SHORT EARLY HISTRY OF TURBULENCE

The history of turbulence began with the pioncering works of Reynolds [85,86] and
Reyleigh [84]. It was prandt [82] who [irst advanced a semi-empirical momentum
transfer theory of turbulence based on the concept of mixing length (the mean distance
through which a fluid mass in a turbulent flow conserves its momentum). Prandtl’s theory
was then successfully applied to the turbulent How of a liquid in a circular pipe and also
to the metcorological problem of wind distribution in the ]a}‘cr of air adjacent to the
ground. Ilowevecr, his thcory has had a serious weakness in the sense that it requires some
adhoc assumption on the mixing length. On the other hand, G‘. 1. Taylor |104,105] ltrst
recognized the random fluctuation of turbulent flows and formulated a theory of

turbulence based on the concept of vorticity transfer, Although in certain simple cases the
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vorticity transfer theory predicted ﬁs good result as the momentum transfer, still the
former theory on the whole was less successful than the latter. At the same time, he first
formulated a statistical theory of isotropic turbulence. In [act, advances in the early
development of the semi-empirical approach to the lheory.of turbulence were made
notable by Taylor, Prandtl and Von Karman. In his famous papers Taylor [107,108] made
further significant contributions to the understanding of the physical nature of turbulence
based upon the Navier-Stokes equations. He formulated another method of investigation
in which the turbulent elements are assumed to consist of small eddies of different
macroscopic lengths, and the energy of turbulent motions is supposed to be distribution
among these eddies. llis analysis reveals the exislcncc.m—ld usclulness of velocity
correlation tensor, and the TFourier transform of the correlation between two velocities,
which lcads to the concept ol encrgy spectrum function. “The central problem ol
investigation is then the energy spectrum function of wave number and time which
describes the distribution of kinetic cnergy over the various IFourier wave number
components ol turbulence. 1t has also become clear that the nonlincar inertia terms of the
Navier-Stokes equations play a significant role in the statistical description of turbulence.
The important consequences of the non-linearity are the existence of an interaction
between the turbulent elements of different length scales, and the skewness ol the
probability distribution of the difference between the velocities at (wo points of the
turbulent field. This pioneering work of Taylor has scrved as a basis of all subsequent
developments of the theory of trbulence. Simultancously, Von Karman [112,113] alone

and in collaboration with Ttowarth |114] made some further progress on the turbulence
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theory based on the idea of sclf preservation of the ;Ila]Je of velocity product during
decay process. The combined works of Taylor. Van Karman and others constitute a
significant progress towards the early classical theory of isotropic and homogeneous
turbulence. However. the model of isotropic and homogeneous turbulence is a special
case of turbulent flow. and is. in gencral, unsuitable for the description of any real
turbulent flows becausc the assumption of isotropy and homogeneity are not fulfilled for
the real {lTows.

In the following. instcad of giving a detailed account of the historical development of the
subject, we shall confine to mere concepts and method of turbulence together with a few

theories of turbulence, which have been used in subsequent chapters.

[.3. THE NAVIER-STOKES AND THE CONTINUITY EQUATIONS

The Navier-Stokes and the ¢ontinuity equations for an incompressible viscous {luid flow

are
g{-+(u-V)ﬁ=—le+VV2ﬁ (1.3.1)
ot 0
V.5=0 . (1.3.2)

A A

where 4 = i1 (#,¢ )represent the velocity field. pis the pressure, p is the constant
density and v is the kinematic viscosity. The Reynolds number ( the ratio of inertial and
viscous terms in ( 1.3.1))is UL/v where I is the characteristic length scale in which

the velocity varies in magnitude {/ .
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The use of the Navier-Stokes equations for the study of turbulence is perhaps justified
since the each number of an incompressible turbulence flow is small. However, there is
still a controversy for the following additional reasons. First, the mathematical theory of
the Navier-Stokes equations is incomplete in the sense that there are no general existence
and uniqueness theorem which ensure the well posedness of the system (1.3.1) — (1.3.1).
Second the closure problem of the Navier-Stokes equations is inconclusive. In view of
these inherent difficulties, Ladyzhenskaya [54] and others Suggest to abandon the

application of the Navier-Stokes equations. especially for the study of turbulence.

According to Ladyzhenskaya, if a biharmonic damping term — 4 v* it is included in the

right hand side of the Navier-Stokes equations (1.3.1), the ex.islence and the uniqueness
of solutions can be cstablished for all 4 ) 0. She also formulated new equations for the
description of the motion of the motion of an incompressible viscous fluid and explained
the advantages of her new cquations relative to the Navier-Stokes equations.

It is important to make an observation from (1.3.1) - (1.3.2). We first take the divergence

of (1.3.1) and use (1.3.2) Lo obtain

62 u; U; .
Vzm o T (1.3.3)
ax,- 6\,

where py = p/ p is often referrcd to as the kinematic pressure.

It follows from (1.3.3) that the pressurc field is determined by the velocity distribution,

and satisfies the Poisson equation.
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1.4 REYNOLDS RULES OF AVERAGES
Reynolds [85] was the first to introduce clementary statistical molion into the
consideration of turbulent flow. In the theoretical investigations of turbulence, he

assumed the physical quantitics in the flow ficld as

u,~=1—1,:+u,—, p=j_)+p'. p=;+p'. =TT

Here the quantities with bar denote the mean values and those with primes are
fluctuations. Furthermore. 1_/—,' = = 7"=0,

In the study of turbulence we often have (o carry out an averaging procedur.e not only on
single quantities but also on products of quantitics.

Consider three arbitrary statistically dependent physical quantities A, B and C, each

consisting of a mean and a fluctuating part, i.e.,

A= A+a, B=1_3+h. and ('=E'+c' then . Z=2+a£;+5=

A, whence a =0

In the above relations we used the properties that the average of the sum is equal to the
sum ol the average, and the averape ol a constant time B is equal to the constant times

the average of B.

Next, AB= (/i + a)(l_3+h).= ABtAb+Bavab=AB+Ab+Ba+ab
—AB+Ab+Ba+ab=AB+ab

Consequently, AB=AB=A1

Note that the average ol a product is not cqual to the product of the averages. Terms such

as «a b are called correclations. For the product of three quantities. we have
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ABC=(A+bYB+W)WC+)=ABC+Abc+Bac+Cab+abec

1.5 AVERAGING METHOD AND EQUATION OF TURBULENCE ENERGY

SPECTRUM

Method of averaging is indispensable for the statistical formulation of the theory of
turbulence. There are three different kinds of averaging procedures that are found to be
usclul for the study of turbulent flows. These include the time average, space average and
the ensemble average. The timc average is very useful for statistically sieady turbulence,
in which time scales are much larger than the time scale of turbulent fluctuations. The
space average has a delinite advantage for homogeneous turbulence. On the other haﬁd,
the ensemble average (or the statistical average over a large number of identical system)
is more general than the time and spacc averages and very useful {for the study of
inhomogeneous, non stationary turbulent flow. This type of averaging can be applied to
any flow. Most of the modern theorics have used the cnsemble averaging procedure for
describing the statistical propertics of turbulence. Haowever, like the time and the space
averages, the physical interpretation of the ensemble average is not so simple.

In general any turbulent field is completely determined by the hierarchy of correlations.
Quilran)y. Gy (r' ) Gty np(ra) 1w, (1"1)) ' (1.5.1)

where ( Y denotes the ensemble average defined in Leslie’s Book |55].
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In homogeneous isotropic turbulence the first correlation represents the mean velocity,

and is simply zero. The pair correlation (u;(r). ui(r')) is often considered to be a

sufficient description of turbulent flows. The higher order correlations are assumed to
give less and less information so that only a finite number of correlations are required to
determine the statistical properties of turbulence. This is a possible method of reducing

the infinite hierarchy of equations into a closed set.

The double correlation tensor Ry-(f-,,%;r) for two points separated by the space vector r is
defined by
Ri(F. 5.0 = (uy (7 lft)u (%+lfr)> (1.5.2)
(P X,y = (X —=F, (X+=Fd)) _ 2.
v o2 T2

Similarly, the triple correlation tensor Ty or higher correlation tensors can be

introduced.

The Fourier transform of Ry with respect to 7 defined by

bk 2.1) = (2’ ; [ [ Jeomy 0.0 (15.3)
T . .
—n

represents the energy spectrum function E(!«::I) in the sensc that it describes the
distribution of kinetic energy over the various wave number components of turbulent
flows. The Fourier transform defined above can be treated as generalized functions or
distributions in the sense of Lighthill |56]. It follows from the inverse Fourier transform

that
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—(u )—-—(z!(t) u(\))—-R,,(O &0 =I E(h.1) dk | (15.4)
0

so that E(IE,!) represents the density of contributions to the kinetic energy in the wave

number space k, thus the investigation of the energy spectrum function E(/:c,l) is the
central problem of the dynamics of turbulence. After some algebraic manipulation of the
Navier-Stokes equations at two points combined with averaging process and the Fourier

transform, it can be shown that f(k.7) satisfies the dynamical equation.

OE (k1)

- =T(k,0) = 2k2VE(k 1) | (1.5.5)
, _

where the terms of this equation represent contributions of the Navier-Stokes equations,

and in particular , T(/Q.t) represents the contributions due to transfer of energy from
other wave numbers.

It follows from the condition of incompressibility that the pressure term in (1.3.1) does
- not contribute any term to cquation (1.5.5). This implies that the net ellcct of pressure
forces is to conserve the total cnergy in the wave number space. On the other hand the
non-linear inertia terms in (1.3.1) also conserve the energy and the net effect of inertia
forces is to spread cnergy over all wave number. In other words, the inertia forces can
only transfer energy from on'e range of wave number to another in the energy spectrum
on the wave number space, and this spectral energy transfer is in fact, an important

consequence of the Navier-Slokes cquations. llowever, the direction of the energy
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transfer has not yet been established, but the conjecture is that the transfer is from the
smaller towards the larger wave numbers that is, from large to smaller eddies.
The last term of (1.5.5) represents the dissipation of energy by molecular viscosity. The

action of viscosity leads to a decrease in the kinetic energy of disturbances with the wave

number, which is proportional to the intensity of the disturbances multiplied by 2 vi?,

It also follows from the conservation of energy by the non-linear inertia terms that

J‘T(k) dk = 0 | (1.5.6)
: |

so that (1.5.5) yields
| o
{j—r(%(ui u;)) = a% J.E(l;,r) dk = - € " . (1.5.7)
-0
Where from (1.5.5) it follows that

[+]
e(t)=2v J‘sz(IE,t) dk . \ (1.5.8)
0

This clearly represent the rate of encrgy dissipation and shows that small scale or high
wave number components are dissipated more rapidly by viscosily than large scale or low
wave number components.

The summary of the above discussion is that the pressure and the nonlinear inertial forces
separately conserve the lola_l energy of turbulence, where as the viscous forces dissipate

it.
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1.6 ISOTROPIC AND HOMOGENEQUS TURBULENCE

The turbulence is called isotropic if its statistical features have no preference for any
specific direction and minimum number of quantities and relations are required toh
describe its structure and behavior.

Since turbulence is a very complicated problem, in order to bring out the essential
features of the turbulence problem we have to study the simplest type of turbulence. In
isotropic turbulence the mean value of any function of velocilty components and their
space derivalives. are unaltered by any rotation or reflection of ;1xes of references. Thus,

in particular

= 'u?‘-il = u% and  wpuy =uquy =u3uy .

=12

i

Isotrophy introduces a great simplicity into the calculations. The study of isotropic

turbulence may also be of praclical importance, since far from solid boundaries it has

been observed that 14]2, 1{22. uf tend to bccome equal to one another , e.g. in the

natural winds at a sufficient height above the ground and in a pipe flow near the axis.

Another simplest type of turbulencc is homogencous turbulence. It is defined as the
turbulence having quantitatively the same structure in all parts of the flow field. In a
homogeneous turbulent flow ficld the statistical characteristics are invariant for any

translation in the space occupied by the {luid.
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Most of the theoretical works in turbulence and MID turbulence concern homogeneous
and isolropic field in an incompressible fluid at rest. Throughout the present work, we

have also assumed the homogencity and isotropy of the turbulent flow field.

1.7 MAGNETOHYDRODYNAMICS AND TURBULENCE

Magnetohydrodynamics (MID) is an important branch of Fluid Dynamics. MHD is the
science, which deals with t-he motion of highly conduction fluids in the presence of a
magnelic ficld. The motion of the conducting fluid across the l11égllclic field generates
electric currents which change the magnetic ficld. and the action of the magnetic field on

these currents gives rise to mechanical force which modifics the flow of the field.

There are two basic approaches to the problem, the macroscopic fluid continuum model
known as MHD, and microscopic statistical model known as plasma dynamics. We shall
be concerned here only with lhclMllI). that is electrically conducting fluids, and study
the problems about MID turbulent flow.

The magnetohydrodynamic turbulence is the study of the interaction between a magnetic
field and the turbulent motions of an electrically conduction fluid. The interaction
between the velocity and magnetic fields results in a transfer of energy between the
kinetic and magnetic spectra (or modcs).

Modern -applications of magnctohydrodynamics in the fields of propulsion, nuclear

fission. and electrical power generation make the problem of magneto-hydrodynamic
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turbulence one of considerable interest to engineers since turbulent phenomena seem to
be inherent in almost all types of flow problems.

The fundamental equations of magnetohydrodynamics for an incompressible fluid are:

a’\ n A N 2 3 A A ad
M VY ==L Vp s Le By Fe G iy o w24 B (1.7.1)
or p P p
Vii=0 | (1.7.2)
K ok A
——=curl H —-47 1.7.3
T 2 (1.7.3)
oH .
LI — (1.7.4)
c o
V.H=0 (1.7.5)
J=c(ck+ 0 x 1) + Lo v (1.7.6)
C

where # , the velocity vector; I, the body force; p . the pressure; p, the density of the
fluid which is constant; p,, the excess electric charge; £, the electric field strength; u,,

the magnetic permeability; J . the elcctric current density; H, the magnetic field
strength; v, the coefficient of kinematic viscosity: &, the dielectric constant; ¢, the
speed ol -Light; o, the electrical conductivity; V, the gradient operator, and ¢ is the

time.
When conductivity o of the fluid tends to infinity the electric ficld strength E, at each

i Lo I i . .
point must tends to the value el -—-, otherwisc the current J given by equation
c
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(1.10.6) will become very large even when the slightest mass motions are present. Hence

when ¢ is large we may assume that,

(1.7.7)

a relation which will be increasingly valid as o — .

An important consequence.of relation (1.10.7) is that under the circumstance in which
this is a good approximation the energy in the electric field is of the order of |fl|2 /c? of

the energy in the magnetic field and can, therefore, be neglected. Consequently in this

approximation which is known as the approximation of magnetohydrodynamics. We

have to consider only the interaction between the two fields # and H.

In the magnetohydrodynamics approximation, Maxwell equation (1. 7. 3) becomes,

J=—curlH . ‘ (1.7.8)

LN
4
In the framework of the approxiinalions (1.7.7) and (1.7.8) the Navier-Stokes equations

are modified to take into account the electromagnetic body force (assuming that there is
no body force 1:") and equation (1.7.1) becomes

@1 + (V)i = te curl Hx I - —l—Vp +wWii (1.7.9)
ot 4rp P

Again, in the approximation (1.7.7), Maxwell equation (1.7.4) becomes

=

oF
{

=curl (hx H) | ' (1.7.10)

Q

In a higher approximation in which the loss of energy by joule heat is allowed for

equation (1.7.10) is modified to [4].
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%{ —curl (fix H) = AV2 1T (1.7.11)

where A =( 47r,uecr)"I is the magnetic difTussivity.

The magnetic field intensity /1 is a solcnoidal vector, and in an incompressible fluid the

velocity 7 is also a solenoidal vector. When we use this property of 77 and FH equations,

(1.7.9) and (1.7.11) can be writien in the form [13] as

~12
ou;  Ou; H
i Ttk He 9 Hily =——1-‘ —a-—([7+,u(, l——l——)+1'/V2uf (1.7.12)
or Oxp  4mp dxy L Oxy 81 '
;
and , ! +i-(1-l,-uk —u,'llk)=/1V2H,A : (1.7.13)
o 6xk

where. here and in the sequel, summation over the repeated indices is to be understood.
Equation (1.7.12.) and (1. 7. 13) form the basis of Batchelor’s discussion [4].
Chandrasckhar [13] extended the invariant theory of turbulence to the case of

magnetohydrodynamics. He introduced the new variable

He

drp

h= H (1.7.14)

B (Mhich has the dimension of a velocity (known as Alleven’s velocity).

In terms of /1, equations, (1.7.12) and (1.7.13) can be writlen as

Oui; 0 AP )
-aT’+ 5;(”""" —hi)=- n—é’ +1V 7 (1.7.15)
/. .
and , %:’— + 5?“(/’:'”!( —uihy) = \'Vzhi (1.7.16)
“k
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a2
where, P, = L %lh) is the total MIID pressure.
p

Chandrasekhar [13,14] in his theory. considered the correlation’s between # and A at

two points /7 and /'in the field of isotropic turbulence in the same manner as in

ordinary turbulence. Here, we have the double correlation, w;u’;

'y, Rk and wh;, and

[ I

triple  correlation, i i, h,-h_,-u}:, wit il hihjhi, (b —uihp)hg. and

(Mg = hju')u;, where the subscripts refer to the components of the vectors

i,j,k=1273.
Each of these double and triple corrclation depends on one scalar function in the case of

isotropic turbulence because the divergence of both 7 and h is zero.

One of the results of chandrasekhar's theory {13,14] shows that the kinetic energy is
dissipaléd into heat by viscosity and transformed into magnetic energy by stretching the
lines of magne@ic force. He has also shown that the magne_licl energy is gained from the
stretching of magnetic force and dissipated into heat. The gain in magnetic energy is

equal to the loss by stretching of the lines of magnetic forces.

1.8 RATE OF REACTION AND ORDER OF REACTION

The rate of change of concentration as a function ol time and may be expressed either in

the form of disappearance of reactants or the appearance ol new products.
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According to Bansal [1] the general reaction equation in which A and B are transformed
to give P

aA+bB > ¢l . _ (1.8.1)
the reaction rate can be wrilten as

Ldld]_lde] 1))

a di’ hodr’ ¢ dif

and the rate law may be written in the form of cquation

1 ‘_”/A_] = k[ A" B)” (1.8.2)

a df
where [A]. [B] and [P} denote the active concentrations in moles/litre of species
A, B and P, t represent the time, n and nrare integers, kis the proportionality
constant referred to as the reaction rate constant or specific rate constant and a, b, ¢

are the stoichiometric coefficients.

la’[A] _‘ld[B]
a di b di

Since the concentrations of Aand B arc diminishing, - are negative

L Ldlry . - - :
number while - [{] is positive. Any of these derivatives may be used to express the
¢ df

ratc of the reaction.

The order of a reaction is the algcbraic sum of the exponents of all the concentration
terms, which appear in the rate law (1.8.2). For the reaction given in equation (1 .8.1) the
rate law may be expressed as

- l d[/” =} |11 n
L k)

a
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where n.is the order of the reaction with respect to 4, and m is the order of the reaction

with respect to 3. The over all order of the reaction is given by the sum (n+m),

A reaction is saici to be of the first order if the rate of the reaction is proportional to the
concentration of.only one of the reacting substances. Let us consider a reaction in which
A is being transformed to produet P, (A4 — P).If C is the concentration of A , then the
differential rate law can be written as

~—i(~ =k|C] (1.8.3)
dr .

where k| is the [irst order rate constant and ¢ the time . This can be rearranged to

- ”’E = /\’l(ﬁ
C

(1.8.4)
Integrate both sides of the above cquation to obtain

=InC=kir+8 , where @ is a constant of integration.

1.9. DISTRIBUTION FUNCTIONS IN TURBULENCE

Probability distribution functions have been described in the vﬁrious classic text books in
the past, but the dynamical cquations describing the time evolution of the finite
dimensional probability distributions in turbulence were first proposed by Lundgren [59]
and Monin |68,69]. Lundgren [59] considered a large ensemble of identical fluid system

in turbulent state. In his consideration cach member of the enseinble is an incompressible
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fluid in an infinite space with velocity #(7.7) . satisfying the continuity and Navier-Stokes
equations. The only difference in the members of ensemble is the initial conditions that
vary from member to member. e considered a function G@i(Fy, 1), 0(Fy 1)y e--")

whosc ensemble is given as (G(A(7.1), fi(7y 1), +++-)) and defined one point distribution
function f;(#.%.f) such that J._fi(/“'l,ﬁ;,l)dﬁ, is the probability that the velocity at a

point fj al lime tis in element ¥} about ¥ and is given by
GBI EXCIUGRIEEN))
And two points’ distribution function is given by -

_fz (l’:l . 1’31 ,11:2 y 1’;2 ,() = ((S‘(l’}(l’:l J)— \A'l )(S‘(ﬁ(l’:z,() — ﬁz )) .
_ P _ ) (1,2)
In short one and two point distribution functions are denoted as Sy and fy7%. Here §

is the dirac-delta function, which is defined as

PR I at the point 77 = ¥
J.ﬁ(ll - V)dv =
0 elsewhere

and ( Y denote the ensemble average.

1.10. A BRIEF DESCRIPTION OF PAST RESEARCHES RELEVENT TO THE
THESIS WORK |

The essential characteristic of turbulent flows is that turbulent fluctuations are random in
nature and therefore. by the application of statistical laws, it haé been possible to give the
idea of turbulent fluctuations. 'The turbulent flows, in the absence of cxternal agencies

always decay. Millionshtchikov [65]. Batchelor and Townsend [2], Proudman and Reid
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[83], Tatsumi [102], Deissler [21.22], and Ghosh [30,31] had given various analytical
theorics for the decay process of turbulence so far.

Batchcelor and townsend 2] studied the decay of turbulence in the final period. They said
that the {inal period of a turbulent motion occurs when the effects of the inertia force in
the momentum equation are negligible. Deisler [21.22] studied the decay of turbulence at
times before the final period. Also Loeffer and Deissler [57], discussed the decay of
temperature fluctuation in homogencous turbulence belore the {inal period. In their
approach they considered the two and three point corrclation equations and solved these
equations after neglecting the fourth and higher order correlation terms in comparison to
the lower order correlation terms. Using Deissler’s theory Kumar and Patel [52] studied
the concentration fluctuation of dilute Contaminants undergoing a first order chemical
reaction before the final period of decay for the case of multi-point and singlel-time.
Kumar and Patel [53} also extended (heir problem of [52] for the case of multi-point and

multi-time.

Likewise the hydrodynamic turbulence. MIID turbulent fhu-:luations are random in
naturc. The statistical laws can also be applied in M1 turbulence. Sarker and Kishore
[91] studicd the decay of MHD turbulence. Kishore and Upathdyay [49], also studied the
decay of MHD wrbulence in rotating system. In both the cases they obtained the decay
law for the case of multi-point and single time before the ﬁnall period.

By considering the ahove theorics, we have studied the Chapter H, Chapter 111 and

Chapter 1V,



General introdiection 23

In chapter 11, we have studied the decay of temperature fluctuation in homogeneous
turbulence before the {inal period for the case of multi-point and multi-time.

In chapter 111, we have considered the MIID turbulence and derived the decay law for
magnetic field fluctuation before the final period for the case of multi-point and multi-
time.

In chapter 1V, we have derived a decay law for the magnetic field fluctuation of
concentration of a dilute contaminant undergoing a first order chenﬁical reaction in MHD
turbulence at times before the linal period. In this case two and three- point correlation
cquations are made determinate by neglecting the quadruple correlation in comparison

with lower order correlation applicable at times before the {inal period.

In geophysical flows. the system is usually rotating with a constant angular velocity.
Such large Scale flows are generally turbulent. When the motion is referred to axes,
which rotate steadily with the bul!; of the Muid, the Coriolis and _cenlrifugal force must be
supposed to act on the fluid. The coriolis force due to rotation plays an important role in a
rotating system of turbulent flow, while the centrifugal force with the potential is
incorporated into llhe pressure.

Funada, Tutiya and Ohji [29] considered the effect of coriolis force on turbulent motion
in presence of strong magnetic field. Kishore and Dixit [43], Kishore and singh [40],
Dixit and Upadhyay [24], Kishore and Golsefied [45] and‘ Kishore and Sarker [48]
discussed the effécl of coriolis force on aceeleration and vorticity covariance in ordinary

and MHD turbulent flow. Shimomura and Yoshizawa [97], Shimomura [98,99] discussed
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the statistical analysis of turbulent viscosity, turbulent scalar flux and turbulent shear

Mows respectively in a rotation system by two-Scale Direct- Interaction approach.

Safliman [89] derived an equation that described the motion of a fluid containing small
dust particles which in applicable to laminar flows as well as turbulent flow. U:;,ilng the
equations given by Saffman, Mi(I:hael and Miller [64] discussed the motion of dusty gas
occupying the Semi-inflinite space above a rigid plane boundary. Sinha [100], Sarker
[92], and Sarker and Rahman |93]. considered dust particle on their own works.

In part-A of Chapter V, we have studied the decay of dusty fluid turbulence before the
final period in a rotating system. using the Deissler’s [21] approach.

In part-B of chapter V. the problem of part-A of the chapter has been extended for the
case of MITD turbulence.

Various allalylic;al iheories in the statistical theory of turbulence have been given in the
past by Hopt [35], Kraichanan [51], Edward [26] and Herring [33] but the dynamical
equations descrlibing the time evolution of the finite dimensional probability distribution
of turbulent quantities were first derived by Lundgren [58]. He derived the.dynamical
equations for one and two-point probability distribution functions of velocity fluctuation
and compared with the BBGKY heirarchy of equation in the kinetic theory of gases.

Further Lundgren [59] considered a similar problem for non-homogeneous turbulence.

The basic difficulty is that the above theories faced to closure problem. Lyubimov and

Ulinch |61,62] made some gencral approaches (o closure problem for multidimensional
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probability density equations. Two other closure hypo-tl.leses for the probability
distribution equation of single time values were investigated by Fox |27], Lundgren [60]
and Bray and Moss [11]. They considered the probability deﬁsily function of a progress
variable in an idealized premised turbulent flow. Bigler [ 10} gave the hypothesis that in
turbulent flow, the thermochemical quantitics can be related locally to few Scalars.
Further Janicka et al. [38] and Pope |79] gave a more suilable model for the probability

density functions of scalars in turbulent reacting flows.

Recently pope [81] derived the transport equation for the joint probability density
function of velocity and scalars in turbulent {lows and obtained the solution by using the
Moutocarlo method. More recently Kollman and Janickal |50] obtained the transport
cquation for the probability density function of a scalar in turbulent shear flow and
considered closure model based on the gradient lux model. Kishore [39] derived the
cquations for the evolution of one- and two-point distribution functions for MHD
furbutent flow. Sarker and Kishore [90] also studicd the distribution function in the
statistical theory of convective MIHD turbulence.

The above theories give the basic ideas for the chapter VI in which we have considered
ithe distribution functions for simultancous vclocity and é()llCCﬂll‘ﬂtiOh of a dilute
contaminant undergoing a first order reaction in turbulent flow. The chapter VI is
divided into two partts. In part-A and part-B, we have considered ordinary and MHD

turbulent flow respectively.
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Tailor [100] pointed out that the equation of motion of turbulence relates the pressure
gradient and acceleration of the fluid particles and the mean square acceleration can be
determined from the observation of the diffusion of the marked fluid particles. The
behavior of dust particles in a turbulent flow depends on the co’ncentra-lion and size of the
particles with réspccl to scale of turbulent Nuid. A good deal of theoretical studies of
MHD turbulent has been made during last filteen years. Ohji [1964] presented a first
order theory of turbulence of an clectrically conducting fluid in the presence of a uniform
magnetic {ield which is so strong that the non-linear mechanism as well as the dissipation
terms are of minor important when comparing with the exl?:rnal coupling terms. Ohji
[1978]. discussed the effect of a very strong uniform magnetic ficld on incompressible
MIID turbulence in presence of a constant angular velocity and .Hall effect. Kishore and
Dixit [1982] studied the effect of a uniform magnetic field on acceleration covariance in
MIID turbulence. Dixit [1989) discussed the cffect of uniform magnetic field on
acceleration covariance in MHD dusty {Tuid turbulence.

In the chapter VII, we have discussed the effect of a strong magnetic field on

acceleration covariance in M1ID turbulence of dusty fluid in a rotating system.
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DECAY OF TEMPERATURE FLUCTUATIONS IN HOMOGENEOUS
TURBULENCE BEFORE TIIE FINAL PERIOD FOR THE CASE OF MULTI-

POINT AND MULTI-TIME,

2.1. INTRODUCTION

Corrsin [18,19] made an analytical discussion on the problem of turbulent lemperature.
fluctuations using the approaches employcd in the statistical theory of turbulence. His
result pertains to the final period of decay and, for the case of appreciable convective
effects, to the energy’ spectral form in specific wave number ranges. Further work along
this same line had been done by Oruga {73].

Deissler [21) developed a theory for homogencous turbulence, which was valid for times
before the final period. Using Deissler’s theory Loeffer and Deissler [57] studied the
temperalure ffucluation in homogeneous turbulence. In their study, they presented the
theory which is valid during the period for which the fourth- and higher- order correlation
terms are negligible comparcd 1o the second- and third-order correlation terms. By
considering the Deissler’s same thcory, Kumar and Patel [52] studied the first order
reaclant in homogencous turbulence belore the final period for the case of multi-point

and single-time consideration. Kumar and Patel’s problem [52] is extended to the case of
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multi-point and multi-time concentration correlation by the same authors [53] and the

numerical results of [53} carried-out by Patel | 78].
In this work the method of [21] is used to study the decay of temperature fluctuations in

homogeneous turbulence belore the final period for the case of multi-point and multi-

time.

2.2. CORRELATION AND SPECTRAL EQUATIONS
or an incompressible [Tuid with constant properties and for negligible [rictional heating,

the energy equation may be written as

T _ T T
o ;72 - . - 2.2.1)

‘ ~ o k
where 7 and #; are instantaneous values of temperature and velocity; y = ——, thermal
: o,

dil"fusivily : k-, thermal conductivity ; p. fluid density, ¢, . heat capacity at constant
pressure; X, . space co-ordinate; /. time; and the repeated subscripts are summed from |
to 3.

Breaking these instantancous values into time average and fluctuating components as

T=(Y+T and i, =Cu)+u,, and usingl the c_ond_ilions of homogeneity

( (1Y =0. 957)_ =0, {(u;)=0 ) allows cquation (2.2.1) to be written
(7.\',-

.. . oAy
W Iy (2.22)
e ox;  p, Ny
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v . C
where p, = —, prandtle number; v, kinematic viscosity.

Equation (2,2.2) is assumed to hold at- the arbitrary point P. For the point P'the

corresponding equation can be writien

T’ ar v 9T

—t U — = (— . 2.3
ot " ox; (17,.)ax;-6‘x,'- (2.2.3)

Multiplying equation (2.2.2) by 7", equation (2.2.3) by T, and taking ensemble average,

result in

ouTY , ATy, KIT) _ v 9%(TT)

- . 224
ot Ox i ax; Pr ox ,-8.\’,- ( )
af Rl al AN okt P 2 et
XTT" N HKTT'u) . o1 T’u,) _ (J__) 0 (’77,) 2.2.5)
ot ox; Ox; Py Oxiox;
with the continuitly equation
W 2. 2.2.6
Ox;  Ox; ‘ (2.2.6)
Angular bracket -{------) , which is used to denote an ensemble average.
Using the transformations
G o 0 0 0 0 o 9
== ()= (DA Pl
ox; ox;  oOx; o1 ot OAt / At
into cquations, (2.2.4) and (2.2.5), onc obtains
Lis Al AL 2 v
wpep . 13 0 7 7 . a 7 7
oty _uTTY o g an+ X T oy =22y 224010 2.2.7)
ot or; ary py Orior;

and
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XTTY N TTy v 0HTTY ‘
Ay (0 Sy Sy VA PSR S G
oAl f)r,- ) (]7',.) 6/',-6}',— (228)

It is convenient to write this equation in spectral form by use of the following three-

dimensional Fourier trans{orms

(TT'(F, AL.1)) = _[(ﬁ(/%./_\z.r)>exp[f(/2.ﬁ)]d/%, (2.2.9)
(e TT(F ALY = .[((ﬁ,-rr'(I{'))cxplf(]{'.i’)]dle (2.2.10)
-0
and

=2}
TT (R ALY =TT (=F=Ar T+ A1) = J'<¢,-rr'(~f2.—m,r + Anyexpli (RA)dK (2.2.11)
(Interchange are made between the points £ and ')

where K is known as a wave number vector and the magnitude of K has the dimension
[/length and ean be considered to be the reciprocal of an eddy size.

Substitution of equations. (2.2.9}) - (2.2.11) into equations, (2.2.7) and (2.2.8) leads to the

spectral equation

d{rr" o2, . " )
i +2 P, k2o = ik [ (e (K ALD) = (et (=K = Al 1+ Ar) ]_: (2.2.12)
ey v ik "(—K.—ALL+ A '
; d’_ + 27)_ k (rz' ) = —] l'<¢f (44 (—“ AR . (2213)
-

In equations. (2.2.12) and (2.2.13). the quantity rr'(k) may be interpreted as a

temperature fluctuation ‘energy’ contribution of* thermal eddies of size 1/k. The time
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derivative of this ‘energy” as a function of the convective transfer to other wave numbers

and the ‘dissipation’ duc to the action of thermal conductivity.

2.3. THREE-POINT, THREE-T1TME CORRELATION AND SPECTRAL
EQUATIONS

In order to obtain the three-point three-time correlation and spectral equation, we write
the Navier-Stokes equation at the point P, energy equations at the points P’and

P" separated by the vectors 7 and 7'

o ; 1 A%

Sl SN AV 2.3.1)
o oy ! pax; ooy

or' o1 s @

e ——e = ( 7 ) — (232)

o laxy /P axiex
and

ar' a1 PN EA .
—— - _!. I”""' - = V ) e e 2.3-3
o g Vn. axlox] (232

Multiplying cquations. (2.3.1)-(2.3.3) by 77" ;1" and u.',-T’ respectively and then

taking ensemble average, we obtained

rprleyrld alis A1) pepest 2 , Alieal.
a(u.,‘/ 7-}_ . Ku ;1 ;) . '_5’5117_{.2 iy d (”171__)_ ‘ (2.3.4)
o ox; po O Ax;Ox;
et D A L R n
(’3(7'71_(./.1 ) . a(u,-/_vn‘,-/ ) _ v 6, (7_1!\;7 ) (2.3.5)

ar' ox; P, ooy
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and
T, Ty T jr")' v KT T
AN A A (2.3.6)
ot ox; Py Ox[dxf ‘
Using the transformation
i__( _('9_ 0 _a___g d 0
ox; oy & o oy ol o
(2 (&), 2 0 0 8 2 0
or or AT e anT A aarT et BAr

the equations, (2.3.4)-(2.3.6) can be wrilten as
- 8Gu;T Uy Ty 6(11"T u; T)

_L&pTT | KpT'T?,

Xu ;T'T”
_iL_m)_(_a_ )(u 1T )+ )
ot or; f’i orf .p O or;
v 82 (2.3.7)
w2+ 2 T’T"+»—~——-- 7T .
"(ar,- o )? @ ;T'T" a, o oA ,)(” )
&u j7"7"')+a<u;-7"u_,-'l'_”z v 0% (T ™ : (2.3.8)
DAL or; pe Oond '
(2.3.9)

& 1T a<uTu T , 02 u;TT "y

aAz or!

[he six-dimensional Fourier transforms for guantities in the cquations, (2.3.7)-(2.3.9)

may be defined as

o a
(u;TT") = .[ _‘-<ﬂ,i0'0")exlvlf(l<.'.f' + K'F)]dKdK, (2.3.10)

—o0 —a0
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v 0] co
g T = j' I(ﬁiﬂjov")cxmf( P4 R dRAR!

o 2.3.11)
(pT'T")y = I J.((ZO'G") expli (K7 + I%'f")]dl%dle", :
S 2.3.12)

Interchanging the points P’ and P’ shows that (upT'T"y = (u]z,fT’T").
By use of this fact and equations, (2.3.10)-(2.3.12), the equalioné (2.3.7)-(2.3.9) may be

fransformed as

B ;00"
RO g + ‘l/"[ (1 + )k2 + Zf)r'kikr" + (1 D )'[c,2 kﬂ.jgygﬂ)

ot N
:i itk + K Xa0'0") s (23.13)
O(ﬂgg_wh_};_/r_kzw.jam) , | (2.3.14)
MJr—"—k’z(ﬂja’e”) - (2.3.15)

OAl’ 2,

with the assumption that the quadruple correlation terms are neglected because they

decay faster than the lower order correlation terms.

Il the derivative with rcspect to .y ;is taken of thc momentum equation (2.3.1) for point

P, the equation multiplied through by 77" and taken the ensemble averages, the

resulting equation is



Chapter 11
34

6 (u 1 T’T") 1 32(/}7"'["’)

a\’ ar_ - ; w—a_;;—ar:éj T . . (2.3. 16)

In terms of the displaccment vectors 7 and 7', equation (2.3.16) becomes

82 82
+2_..__,..__ e 7 -
[ oryor{  Orjon ﬂi k”’“ T
i 8% a2 52
orjory “5,“5," o) kprT" (2.3.17)
which in Fourier-space can be written as
plkkf + 267k, + k ;)
(aG'GH = —— / J j . , _01'0"
) (/r}k} +2k_’ikl- +kj/</.) (/]_,ﬁ, ) ) (2.3.18)

IZquation (2.3.18) can be used to eliminate (a(?'()") from the equation (2.3.13).

2.4. SOLUTION FOR TIMES BEFORE TIIE FINAL PERIOD.

To obtain the 'equalion for final period of decay the third-order fluctuation terms are
neglected compared to the sccond-order terms. Analogously, it would be anticipated that
for times before but sulficiently near to the final period the fourth-order fluctuation terms
should be negligible in comparison with the third-order tcrms. If this assumption is made

the equation (3.3.14) shows that the term (a@'0"), associated with the pressure
[Muctuations should also be ncglected. Thus the equation (3.3.10) simples to

d{f,0'8" ,
_%ﬁ O a2 2p i+ (14 p, e ksoen =0, 2.4.1)
¢ Py
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Inner multiplication of equations. (2.4.1), (2.3.14) and (2.3.15) by k;, and integration

between 1, and 1 to give

tryn . i 2 P 2.
(k200" = 7 expl- p;~[(l+/),.)k + 2,k cosé +(1+ p k211 —14)), (2.42)

(k;B,00" =g, exp(—--!/-- k> A1)
‘ 2,

7, (2.4.3)

and

(h;B00") = qjesp(=-" k')

p, (2.4.4)

['or above relation to be consistent. we have

k3007 = (k ;B 60"y expl~ ;— 2L+ )= 10)+ A1+ 2, kK cosE(r — 1)

1

FE 20+ p X —t0) 4 AL
I{ P I = 1)+ AL (2.4.5)

where (k,31'0"), is the value of (k0" at 1=1, and & is the angle between & and
k'.

Letting 7' =0 in equation {2.3.10) and comparing the result with the cquation (2.2.10),

shows that

(kjb e (K ALD) = j(k_,-ﬂv,ﬂ'ﬁ”(/?.l("./,\r.()./))flﬁ" , (2.4.6)

”

Substituting the equation (2.4.5) and (2.4.6) into the equation (2.2.12), we obtain

or Vo e '
—I 2 k=0T
. . 2.4.7)
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where £ = 27k? (rr') . the cnergy spectrum function and
28]
W= J'fk_,.[ (BOOWK.KY~(f,00%-K~K") )y2m)2 k2’2
0
Vv 2 12 2 !
expl——4(+ p, A" + k"YW ~19) +k“A +2p kk'(1 —1g) cos éd (cos ) }dk ' .
n, (2.4.8)

Here dK'(= dK|dK}dK}) is writien in terms of k' and & (cf. Deissler[22]).
In order to find the solution complctely and following lLoelfler and deissler [57], we

assumec Lhat

A, Lt 1 - - 1 ) ' '
ik 1B 00" (KR = (610" =K =K ") = —a—(—’ii-wzk tok?)
T

(2.4.9)
where. 5, is a constant depending on the initial condition. The negative sign is placed in

front of &, in order to make the transfer of cnergy from small to large wave numbers of

positive values of §,.
Substituting cquation (2.4.9) into cquation (2.4.8) and completing the integration with

respect to cosé and k', onc obtains

- 5.

) -2, 1+ p,

W S0Py 2 expl k2 R 2 g
3 3 3 pe(1+p) 1+ 2p,

dir 2(0=1y) 21+ p) 2

4 , 2 3
spkt L { si__ 3 |y .F{m.ﬁr_____"/’f_lkfi}

(L4 p, )2 2"J (1+ p,.)3 I+ Pr
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) \/-7;]) 52 1+2
-— UL s -'S—CXp[—kzv——-——pL—(I—l 4 Pr Ar)]

3 0
4v 2@ =19+ A 2(1+ p,) 2 pril+pr) I+ pr

4
y I5p k- N 51),.2 3 k® " pr3 L Pr |y8
4t —ly + A1+ py v+ p)E V| U—tg+A) L+ p'.)3 1+ p, .

(2.4.10)
The series of equation (2.4.10) contain only even power of k. It can be shown that

[ea]
jmm =0 » (2.4.11)
0

which indicates that the conditions of continuity and homogeneity are maintains.

The linear equation (2.4.7) can be solved to give

i { Y
E=exp| ~2-2-k2( -1 +g-) ]IWexp[ 2;‘;'--/(2(:_10 +%) |7
,

Pr

% AV,
+ ./(Ic)exp[ —2-——k2(l ~1y + ; J ] (2.4.12)
~ 2, 2

I

2 .
where J(k) = M’—k— is a constant of integration and can be obtained as by Corrsin [18].
n .

Substituting the values of W and J(k) into the equation (3.4.11), and integrating with

respect (o 7, we get

k2 | al Sodun, 2
g=No exp[—2—y—k2(l—lo+-'5 )]+ 0N 2
. 4"’4;2(]"‘ Pr) 2

I



Chaprer 11 33

) i ) 4 6
X exp{— pkz _ul._(_:ip!f__j (1 —tg + l_l,,'_':_)‘p_’ ,\,:l [ 3p.k : " pr(1p, —6)k :
P, P, +1ip, ZA
' ! P 20kt —14)"2 3v(l+p,,)(f—to)/2

f
_ 4(31),-2—21),. +3)k8 +Eﬁlw3(3,u,.2 -2p, +3)k9

5 , F) |
31+ pyp ) 2(1—1g) 2 M(+p,) 2p, 2

5f '
2} 4
+—‘(-—0—\/—‘” c‘q)[ vk 2 I{l_Z_p,_. ) 1=ty + Ipé - /_\I][ 3/ 57
(L4 p, +2p,
4v 2(' + ) "2 Pttt b Py Wi —1g + A1) 2

. 174
/;,.(7;),.-—6).’(6 _ 4(31), —2p +3)lc8 8v’2(3p, 2p,.+3)k9

3 7 Fn)
3+ p Xt =19)7 2 31+ p,.) 2(! —lg +A1) 2 3+ p) '2[),./2

U —_—
2 2 o — Al —
where F(p)=e " je" dx, 1;=!(Jjl U=to) or 7=k fl_.(’__’o_i_ﬁi) .
e+ ) pe(l+p)

0

(2.4.13)

By setting # =0 in equation (2.2.9) and use is made of the definition of £, the result is

(IT"y J‘L " | (2.4.14)

Substituting equation (2.4.13) into the equation (2.4.14) and integrating with respect to

k.. gives

9 & S5p.(Tp, —06)

_l - [ - e e e e [ W —

5 3 Yoo oA pe

oA 200 T A2 aee2p )T 2@ T A 2
L-2p, : 1+2p,
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. 5P (Tp; = 6) o 350, Gp} -2p, +3)
3 7
16(1+ 2p, )T + Ar)/Z(r + ——"LAF)/Z 8(L+2p, )r%(r + -I—LPL—AF)%
L+ 2p, +2p,
2
\ 350 Brf = 2p, +3) b, (24.15)

g
81+ 2p, )T + AF)%(F + -_&__Ar)/z
1+2p,

where I'=1-{¢.
Equation (2.4.15) is the decay law of temperature energy fluctuation before the final
period for the case of multi-point and multi-time.

If we put A= 0 in equation (2.4.15), we obtain the decay law for the multi-point and
single-time as

3

) :

T -= _

<7)=[ At —1g) 2 +B(t-19)° ] (2.4.16)
where

3/2
4o Nop 2
8v3/2\/27r ‘
. S, (2, 520020 35p.0p 2,43

5 { . 2
wS(1s p)is2p )72 1616 1428 aaap,)

which is obtained earlicr by Loc{fler and Deissler [57].

The first term of the right side of equation (2.4.16) corresponds to the temperature energy
for two-point correlation and the sccond term represents temperature energy for the three-
point correlation. For large times, the second term in the equation becomes negligible,

lcaving the —3/2 power decay law for the final period previously found by corrsin [18].
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2.5. CONCLUDING RERARKS

The resuits of the present study. obtained by neglecting the quadruple correlations in the

thrce-point, three-time correlation equations, appear to represent the decay law of

temperature fluctuation for times before the final period.

Corrsin [18] has previously pointed out that for the final periocl, as well as for self-
preserving and inertial spectrums at very large Reynolds and Peclet numbers, temperature
fluctuations die out more slowly than velocity fluctuations. This analysis indicates that

the same is true for times before the final period for the case of multi-point and multi-

tine.
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DECAY OF MHD TURBULENCE BEFORE THE FINAL PERIOD FOR THE
CASE OF MULTI-POINT AND MULTI-TIME.

________________________________________________________________

3.1. INTRODUCTION

In [21.22], Dissler developed a theory for homogeneous turbulence for time before the
final period. Using Deissler’s theory. Loelfer and l.)eisslef [57} studied temperature
fluctuation in homogeneous turbulence. In their study. they considered the two and three
point correlation equations and solved these cquations afier heglecting the fourth-order
correlation terms in comparison to the second and third order correlation terms. By
considering the Deissler’s same theory, Kumar and Patel {52] studied the first order
reactant in homogencous turbulence before the final period for the case of multi-point
and single time consideration. The problem [52] is extended lo the case of multi-point
and multi-time concentration correlation by Kumar and Patel [53], and numerical result
of [53] cm‘ri&i-oul by Patel [78].

Following Decissler’s approach, garkcr & Kishore [91] also studied the decay of MHD

turbulence before the final period for the case of multi-point and single time.

In this problem. the decay of MHD turbulence before the final period for the case of
multi-point and multi-time has been studied. Finally we obtained the decay law of
magnetic encrgy fluctuation before the final period for the case of multi-point and multi-

time.
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3.2. FUNDAMENTAL EQUATIONS

The equations of motion for viscaus. incompressible MHD turbulent flow are given by

o a o 22w,

s =ity =Dl Y= - < ey 7T

o1 axy o i ax; v r)vk a\’k ’ (321)
oh; 9 o2,

—'a—"" + é"“— (hf”,( - I{i!"k ) =A ';}V S

/ AYA (AAY
' (3.2.2)
with
Ou; _ Ol
ax;  Ox; - (3.2.3)

whereu, (x.f), ith-component of turbulent velocity; #,(x,¢), ith-component of magnetic

fteld fluctuation: Wiey=24 l (h)z. total MIID pressure; p(x.f), hydrodynamic
p 2
pressure; o, fluid density; v. kinematic viscosity ; ,_ v., magnelic diffusivity; Py,
M :
magnetic prandtle number; x,, space coordinate; the subscripts are taken on the values 1,

2 or 3 and the repeated subscripts in a term indicate a summation,

Equations. (3.2.1) - (3.2.3) are derived by S. Chandrasckhar |13], the basis of Batchelor’s
discussion by coupling Maxwell's equation for the clectromagnetic field and the Navier-
Stokes equations for the velocity field. The Maxwell cquations are modified to include
the induced electric ficld duce to the fluid motion, and the Navier-Stokes cquations are

modified to include to the Lorentz force on fluid elements due to the magnetic field.
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3.3. TWO-POINT, TWO-TIME CORRELATION AND SPECTRAL EQUATIONS.
Induction equation of a maguetic field at the points p and p' separated by the vector

F may be writlen as

b h. ou. 2.
Oy, iy iy O7hy (3.3.1)
ot ox k ox k Ox k Ox k
and
on'; oh'; ou'; o2
-—j-—-l-u}(‘——l-—h}( ,j=ﬁ. 1. . (3.3.2)

Oxy oy g Ox)
Multiplying equation (3.3.1) by A’ and equation (3.3.2) by I, and taking ensemblc

average, we get

2
6(11,-17}-) o 0 <hihj>
Wy bk = S = A ——— (3.3.3)
ot * Ox g Wughiby) =it 2 Ox Oxy
and
, ; ’
Khih;y 3 o (hilt'y) . 4
U Y vt S = = A —— (3.3.4)
a Oxy Wyl =ty il ) Oy X
Angular bracket (.......... Y which is used to denote an ensemble average.
Using the translormations
0 0 0 0 0 0 0 o 0
S o Lo F Ve =0 m 5 Pl _
ox, o vy arg G = ™ " o Y (3.3.5)

equations, (3.3.3) and (3.3.4) can be written as

' ' . ) , A
_a<_h’_llf_>_ ¥ .(2_[’(”;( hh'y— (u}h,.h}( M AL = — G Ik ) - u I )0 JALL)
o o, ory
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- % (I
T (:36)
and
oy 0% (hih'y)
S —— [y = G RO Ay = A
Yy oy e i1y @il A = A o, (3.3.7)
Using the relations (cf. Chandrasckhar [13])
Quphillyy = =g hih'yy Gy =~ h ')
equations.(3.3.6) and (3.3.7) becomes
amh'sy 82 (hill's)
e A2 T K Iy = Gy Y| = 24— 338
Py ary K¢ ki _/) v ’_f)l al‘kai'k ( )
and
Ay o 82 (')
e [ By = Gy 1Y ) = A= L (3.3.9
AA/ 81'[( l( ki ’J) (’; % 7_/ >] al'kal'[‘. . )

In order to convert equations, (3.3.8) and (3.3.9) to spectial form, we define the following

three-dimensional Fourier transforms

(/iﬂl})(l‘:,AI,[) = '[(t//,-t//.',-)(le.Al.!)cxplf(k.f')_ldk (3.3.10)

NN GINE I(a,-t/fkw_’,-xf?J\r.f)cxmf (RF)K . (3.3.11)

Interchanging the subscripts i and j and then interchanging the points pand p’ gives
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QUi il YD) = Qo ' Y (=7 =Bt + Ar)

oD

= j(a,a//ir//fl-)(—ﬁ'.fAl.I + Al) expl,f(l%.f')ldl{' (3.3.12)

where K is known as a wave-number vector and K = dK,dK,dK 4. The magnitude of X

has the dimension 1/length and can be considered to be the reciprocal of an eddy size.
Substitution of equations. (3.3.10) - (3.3.12) into cquations, (3.3.8) and (3.3.9) leads to

the speclral equations

Ay, w;) 2 : . N (N R
o -+ 24k (l//'.z//j)=2n’cl[(cx,t//A.w’)(K.Ar.r)—(aky/,y(j)(—K,—At,t+A!)],(3‘3.13)
{

”,<V/f /,'> [} . ] ” ' %
—(m{/’—’ -+ Akz(://,.wj) = lkk[(rz,yl,\://_,)(K.Al,l) —(akr//,y/j)&l(.—m,l +AN)]. (3.3.14)
The tensors cquations. (3.3.13) and (3.3.14) becomes a scalar equation by contraction of

the indices iand j

.‘f_<_'/’;_‘/’;> F 2!y = 2k, ey MR LD = (o i XK =811+ A0, (33.15)
df

SWVD Ak !y = ik e R A = ey (R AL+ ADLL - (3.3,16)

d\t

The terms on the right side of equations. (3.3.15) and (3.3.16) are known as the magnetic
cnergy transfer term. They account for the transfer of energy from onc wave number to

another or from one cddy size to another.
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34. 'l'llREE-.POIN'l', 'I‘llREEJI’I.I\'IE CORRELATION EQUATIONS AND
SOLUTION FOR TIMES BEFORE THE FINAL PERIOD.

In the present investigation, under the same assumption as before it is proposed to obtain
an expression for the transfer term applicable at time before the final period from the
three-point correlation or spectral equations. To obtain .the three-point three-time
correlation equations, we take the momentum equation of MID turbulence at the point

pand induction equations of magnetic ficld ftuctuation at p'and p"separated by the

veetor Aand 7 as

5
3 Ot oh an- 0~ u
Wy 2y =S (34.1)
o ov k AN k ox / o L Oy k
1 ot
Wi s T Qi _ O (3.42)
o a\‘}( (’)\k E)\kﬂ\k .

n 2 rH
~1,0 Ny .
(/.t.’T.I . ()h_ iy oy A - (3.4.3)
o k oxy oy Oxy Oy

Multiplying equations. (2.4.1)- (3.4.3) by INh7. w,h and o fy respectively and taking

ensemble average, we obtain

" 2 1y
oty hilt'; 6(”/ iy 0 (bl
i) + --—‘?-»[<u,(u,/;;h';> UL _‘ RPN (3.4.4)
Of vy ' Xy oy Oxy
" hi h") -
o ity | 0 _<’i’ i (3.4.5)
__*5;’..‘ ! é;;[(zf,ukh,h,) Coegre il h = oy, _
and
0? Quihiih’y)
ﬂ(ulh,h,) 0 , s f__ )
o 5_\-2_; [Coeprey I I i Quprt'; 1 Y= Al v (3.4.6)
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If we use the transformations

8 __ 8 8. 8 _2 28 _ 8.8 3

P eI Lo p

oxy or 5";(-’ Ma_;; o Oxp  Or O (5::)/\"/\'

into equations, (3.4.4) - (3.4.6), we have

O i) o

0 , ‘
e G —,)[(uklr,h Y =yl )]+ 2 [(u,ukh ho)
ory ory

of or,

r r LA a n .
= (i ihy hj)]_+ Qi) = Cup gy = - a- +-—a_,)(f'V/1;h;)
oy 6/, ory

ot h'h"y 8%,k
r Ly Sy + A Ghilyy | 8"l

or, On or, 01, O Or,
Hu h'-h" O uyliih’y)
(;Al! ) [(u,ukh,hj) (nuihi )] =4[ %ﬁ——
a(uih,’-h;-) o 3 Curh h")
RO LA MRS e Y] = A e —
OAL’ org arpehity) = Gt hikic o} = AL oy 61'/1: '

Using the six dimensional Fourier transforms of the type

8

5 t—
3 w—3

RN GRR N B APYK, K' AL AL nyexpli(KF +

(i B P AL AL

il
3'———-3

] (8 P8} MK, K', AL AL

~

x expl[i (k f%'.f”)]d]%dk' ,

47
e _9
OAl  OAl’
3.4.7)
(3.4.8)
(3.4.9)

K'i)dKdK',  (3.4.10)

(3.4.11)
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(WhiRM(F 7 ALAL 1) = J J' (Yﬂ;/}ﬁ(i(- k. ALAL Dyexpli(Ki + k'.f")_ldf(dk’ G4.12)

into equations,(3.4.7) - (3.4.9) and after neglecting the quadruple correlation terms (as
they decay faster than the lower-order correlation terms), one o_blziins

(1 ' on - ’ -

};(yﬁ,/j’iﬂj)([{.K,Al.Al LY+ A+ Py YR + k'Y + 2P, kk']

(e BiBINK, R b1.A 1y =0,

(3.4.13)
d T AVE 2 ' 2 NN g D T '

dng BB RBLALD 4 3G )RR 61,071 =0, 34.14)
d N LAVE 2 2 r 12 - TAVE 2 2 '

g BB KAL)+ AR BT NK KAL) = 0. (34.15)

The term (yf3; 3 ) associated with the pressure correlation term are also neglected because

it is related to the quadruple correlation’s (equation (3.16) of Sarker & Kishore [91] ).
The tensor equations, (3.4.13)-(3.4.15) can be converted to scalar equations by

contraction of the indices 7and jand inncr multiplication by 4,

;{‘ik,w,ﬁ;ﬁ;)(k. R ALAL ) + AL+ Pog Y2 + k') + 20y kk')

’ .
X(¢/ﬂ;ﬂ;’>(K.K',L\I.AI’J)=0, ‘ (3.4.13a)

-- ,‘; K BLBDR R AL 1)+ A B AR KAL) =0, (3.4.14a)

diNf .

—?(f_ k(g LR K AL+ AR (G BLBDK KAL) = 0. (3.4.150)

dAr’ ' |

Integrating cquations, (3.4.13a) - (3.4.15a) between folo 1. Wwe obtain

2 ] L —
Ky i1 = 1 expt=Al(1+ Py K + k') + 2Py Rk cosOUT =13
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ki P00 = & expl=2k* Ar).
ki A0 = apexpl =2k Ar')
For these relations to be consistent. we have
k(i BIBTY = k(i Bi B0 exp =210+ Py YK + K2 = 1)
HEPAL KA 4 2P,k cosE( 1)) (3.4.16)

where the subseript 0 refers to the value of (A5, at 1=1, Ar=Ar"=0and £is the

angle between Kand K.
By letting 7' =0, Ar’ =0 in the equation (3.4.10) and comparing with equation (3.3.11)

and (3.3.12), we obtain the relations

(oK. ALl = '[<¢//J’}/ff">(/€'-f{"-/—\’~0-’)<"%'- | (3.4.17)
-
appipid-Roedreon = [ Gpipi-RR 01004k G419

Substituting equations. (3.4.16) - (3.4.1 8) into equation (3.3.15), one obtains

(;- I MK AL + 200y MK AL =
clt

= [ 2ik U B NR R~ B R =Ko %

h) ' ' 3419
% CXP'*&{(I +- PM )(/\2 + kyz)(’ —ly)t LaNAUNS 21),\[ (1 —I())kk cosﬁﬂ'(cﬂ.‘;f)}]dk ’ ( )

Qr.
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d ' A oA »n
ar DU R 2 R 800 = 2 [k (6,515 = Bl

x exp[—A{(1+ Py Wk + k') (1 ~1,) + kA1 + 2Py, (1 — 1o )kk' cos &d (cos &)} |dk’
. (3.4.20)

where df<'=dK,’dK§dK_§ is written in terms of k'and ¢ as —2mk'*d(cos&)dk’ (cf.

Deissler [22] ) and the quantity [(qb,ﬂ,’/},.")(k, k’)—(qﬁ,ﬂ;ﬂ,f')(—k,—k')]o depends on the
initial condition of the turbulence.

In order to make further calculation it is nccessary to assume a relation, which gives
ik, [, B BUK. K'Y= (¢, B.AN—K~K")), as a function of kand k'. The relation

assumed here is

@) 2ik [, B 50K K) =y BIBDR. KNy = =6, 1Kk — k7] (3.4.21)
where §,, is a constant dctermined by the initial conditions.

Substituting equation (3.4.21) into cquation (3.4.20). and multiplying both sides by

k*and writing ({//,.y/il) in terms of the magnetic cnergy spectrum function as
‘ 2 '
Is\, =27k "y ;) we get

By ok’ E, =M; | (3.4.22)

dt

where A, is the magnetic energy (ransfer term and is given by

I_l' exp{-Al + Iy )(k2 + k'z)(r ~1g)

M, =26, | (2 kR ]
: |
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+ kzl\f - 21)M (] -1 )kk,COS g.ld(cos g)}ldk' (3423)

Integrating equation (3.4.23) with respect to cosé and k', we have

S' \/u-_
; )
My =— P explek S TR TR NLL L TRV
4 2(f—tn) ’-(1+PM) E + 0y [+27,
15k* P P 6
Sty s g2y K
4[", (t=1,)2 22 1+ D, 1+ P, 2P, A-1y)
-I-{( PM 3 PM_ _}kB__ o 5()1“\/77-' )
PPy P s s an e )
[+2P P 154" P
xexp|- —k? A(- | Moy —1, + '”; AN]| gt DU -( »."-’—_-)
+ P, 140, 42° P, (r—r(,u\r) 1+ Py
P k® r P
Sy 2y +{(—A)? - ) (3.4.24)

1+ 7, 2 1’,,/1(1—/0 + Af) 1+ P, 1+ 7y, -
The series of equation (3.4.24) contains only even power of k and the equation
represents the transfer lunction arising owing to consideration of magnetic field at three-
point and three-times.

If we intcgrate cquation (3.4.24) for Ar =0 over all wave numbers. we find that
“D i .
j Moy alk =0 (3.4.25)

which indicating that the expression for Af; satisfying the conditions of continuity and
homogeneity. Ph'ysically it was to be expected as Af; is a measurc of the energy transfer

and the total energy transferred to all wave numbers must be zero.



Chapter 111 52

For oblaining the magnetic energy spectrum function Z,,, equation (3.4.22) can be

written in the integral form as

Ey =exp[-2k* (1 + 1, + A/ 2)) [M expl2Ak®(t =ty + At/ 2))dt

+ J(kyexp| -2k (1 ~ty + At/2)] : (3.4.26)
2

Nok* | . . . .
where J(k) = —%"— is a constant ol integration and can be obtained as by Corrsin [18].

b
Substituting the value of M as given by cquation (3.4.24) into equation (3.4.26), gives

the equation

K 5o Py VT
EM=N° exp[-2Ak* (1 =ty + A1/ 2)] + 3‘ PV -
4221+ P,) 2
1+2P I+ Py 3t
x exp|—k A( pM )t - TIEI%LA’)H o+
M A 2[;” (’_!0)/212
J ! y 2
(7P, —6)k° __ 4(3IPM2 ~2p, +3') L 81238, _2;“ +3) 19 )
AN+ P —19)7 2 3+ Py)2 1 —1y) 2 3(1+ P, )72
1+2P P 3k*
5()\/__ M exp[—/lkz( )M )(’ __!n + /\f) Af)” 2 fy
,1/2(|+p ) I+ 7y L+ Py 24 PA,,(I—!0+AI)'2
(77, — 6)k° , 400" -2y +3)
3/ 1
3A(0+ Py Nt —tg + 8172 3+ l",\f)z(f =1y +Al)?
81230, ~2P, +3) .o
W BION 22D o (3.4.27)

(I+I’,‘,)’2

Lo At — 14y (AUt + Al
where, F(w)=¢" Je’ dx , fl’:le':FM_ or & 1+pP,
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The expression for the magnelic energy decay is obtained from equation (3.3.10) by
setting =0,/ =1, dk = 2z dfcos & jdk and E,, = 2nk2(t//,u/;) as

(mhiy %
5= OIEMdk. (3.4.28)

Substituting equation (3.4.27) into equation (3.4.28) and after integration, one can obtains

Chhy _ Ny N 7y

3 3/ 5/
2 84 2\27(T +AT12)2 41(‘(1"'[),\1)(1"'21,:%{)52

9
TS Y S 5/ : P 57
16T72(T+ =M ATY2 \6T +ATY2(T+ M AT)?
1+2P,, 1+ P,
N 3Py (7P - 6) N 5Py (7Py —6)
3 o 1+P 75 P %
16(1+ 2Py )T/ 2(T + MOATY 2 16(0+ 2P YT +ATYT+ "M AT)/2
I+ ZPA,, 1+ ZPA,/
4 9 | P 97
8(1+2PM)T/'2(T+ I+ Py AT)"2 8(1+2PM)(T+AT)/2(T+ M AT)2
2 *
L By B3Py ~2Py +3)(1+2P,)"? &1.35.————- (2n+9)

3.22'3’5(1 + Py )”é w0 20+ 127" (14 Py, )"

~(211+1) /2 T+ AT (Zn+l)/2 :
x{— G EFADT (3.4.29)
(T+ A]l)(2”+I I)/2 (7| + A7'/2)(2"+! I)/Z

where T =1-1,.

Or,
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(hh)) _ Ny N nd,
3 — 3 5/
2 82T, A+ P+ 2P,,)
. 79 AT 5, ng AT 5%
16(T, - AT /2)72(T, + Y2 N6(T, + ATI2)N(T, - 2 A
1+20, 2(1+ Pyy)
+ SPAI(7PA‘I —6)
l6(1+2P, YT —AT 122, + Ty
Af m m 2(|+2PM)
+ Fmm e ]
3 ' 7/
16(1+2P, XT,, +AT12) (T, - Al )2 (3430)

21 +20,,)
where T, =T+ AT /2.
This is the decay law of magnetic energy fluctuation before the final period for the case

of multi-point and multi-time.

If we put Z&T = 0, we can easily find-out that

h? N 23 ) <. 9 5 P,(1P, —6)
e T rirere AL L ey
8422 4251+ P, Y1 +2P,) 2 M
Ny .- S ..s .
= 0 72T
where
S 7 9 S0y -0,

5706 16 12ry
1+ Py 1 +2Py) 2

which is same as obtained earlier by Kishore and Sarker [91].
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3.5. CONCLUDING REMARKS.

This study shows that the terms associated with the higher-order correlation’s die out
faster than those associated with the lower order ones. Therefore, from this assumption
we conclude that the higher-order correlation terms may be neglected in comparison with
lower-order correlation terms. By ncglecting the quadruple correlation terms in the three-
point, three-time correlation equation the result (3.4.30) applicable to the MHD
turbulence before the final period of decay. If higher order correlation equations are
considered in the analysis, it a-ppears that more terms of higher power of time would be
added to the equation (3.4.30).

Another result is that the decay of magnetic field fluctuations are more slowly than the

velocity [luctuations.



CHAPTER -1V

FIRST ORDER REACTANT IN MHD TURBULENCE BEFORE THE FINAL

PERIOD OF DECAY

4.1. INTRODUCTION

Loeffer and Dissler [57] used the theory, developed by Deissler [21,22] to study the
temperature fluctuations in homogeneous turbulence before the final period. In their
approach it is considered the two- and three-point correlation equations and solutions
were obtained of these equations e;ﬂer neglecting the fourth and higher order correlation
terms. Using Deissler’s theory, Kumar and Patel [52] studied tl.xe first order reactant in
homogeneous turbulence before the final period for the case of multi-point and single-
time consideration. Kumar and Patel [53] extended their problem [52] for the case of
multi-point and multi-time concentration corrclation. Patel [78] also studied in detail the
same problem to carryout the numerical results. In [91], Sarker and Kishore studied the
decay of MIID turbulence at time before the final period using Chandrasckher’s relation
[13].

In our present work, the same approach of Deissler [21] is applied to the study of
magnetic field ﬂulctuation of concentration of a dilute contaminant undergoing a first
order chemical reaction in MHD turbulence before the final period. Here, we have

considered the two-and three-point correlation cquations and solved these equations afler
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neglecting the fourth-order correlation terms. Finally, we have obtained the decay law for

magnetic energy fluctuation of concentration of dilute contaminant undergoing a first

order chemical reaction in the form
B
(h) = [X(r 1) 1 —rn)‘s}exp[- R ~15))
where (h?)denotes the total ‘energy’ (mean square of the magnetic field {luctuations of
concentration), fis the time, and X,} and f,are constants determined by the initial

conditions.

4.2. FUNDAMENTAL EQUATIONS
The equations of motion for viscous, incompressible MIHD turbulent flow are given by

Chandrasekhar [13] as

Oou;, 0 oW 8%u,

Uy, -hy) =2+

pv + o, (uuy — i) ox, Va“ka\‘n (4.2.1)

D e i) = A= 00 422)

at axk ik ik aYkaTk ( el
with

oy Ol

S |

a.r,- 8,\‘,- (423)

where u,(%,0), ith-component of turbulent velocity at a point P(%,7); A (x.1), ith-

component of magnetic field fluctuation of concentration at a point  P(%,1);

W(x,0) = £+l (h)? , total MHD pressure; p(x,1). hydrodynamic pressure; p, fluid
p 2

density; A= v , magnetic diffusivity; v, kinematic viscosity ; P,,, magnetic prandtle

m
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number; x,, space coordinate; the subscripts can take on the values 1, 2 or 3 and the

repeated subscripts in a term indicates a summation.

4.3.TWO-POINT CORRELATION AND SPECTRAL EQUAT[()NS

If the turbulence and the concentration magnetic field are homogeneous, chemical
reaction and the local mass transfer have no effect on the velocity field, the reaction rate
and the magnetic diffusivity are constant. then the induction equation of a magnetic field
fluctuation of concentration of a dilute contaminant undergoing a first order chemical

reaction at the points P and P'separated by the vector 7 could be written as

: h. . a2h
Ny Oi g O g Oy - 4.3.1)
ot Ox k Ox k Ox A ox k
and
671 v ul i,j——/k auj _ 1 6’-/71" _ Rh',- | (4.3.2)
6/ atk axk a\‘kat‘k .

where R is the constant reaction ratc.
Multiplying equation (4.3.1) by /) and equation (4.3.2) by. 7. adding and taking
ensemble average, we get the two-point correlation equation for the fluctuating

concentration as

olhl
(;;7 )+;—l(“kh:h/) (; ”k” 3+ [(ukh,hj) (H i h,()]
i MY

62(11 ) az(h,h )

1- 2R (4.3.3)
a\‘ka\”k axkavk
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where the bracket (.......... ) s used to denote an ensemble average.

Using the transformations

and the Chandrasekhar relations [13]
Gughihp) = =G lty) @ hyy == b 0y
equation (4.3.3) becomes

Xyl
Oy Ory,

o'y
ot

+2 6—6“ [ i) = Gl hp)) = 24 = 2RIy (4.3.4)
I AN

It is desirable to write equation (4.3.4) in spectral form in order to reduce it to an ordinary
diffcrential equation and because of the physieal significance of spectral quantities. For

this purpose it is usual to introduce three-dimensional Fourier-transforms

hit = [ (Ryexpli(R Ak, (43.5)
(uihich'y (7)) = J' (a,-w,(y/'j(k»cxp[f (K.MdK . (4.3.6)
(u}(h,-h'j(f')) = (ukh,-h.',,-(—-ﬁ)) = I(a,-t//,»t//",-(—};)) Cxpl_f(:’{'.f').ldlz' (43.7)

-

into equation (4.3.4), gives

d(V/;'/:{,-(K)) Pk + RJ(V/iV/}(K’)) = 2ik, [v(a,‘t//kt//_’,.([{')) - (rx,{t//,y/}(—le))] (4.3.8)
I .
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The tensor equation (4.3.8) becomes a scalar equation by contraction of the indices iand
j n
M{%&@ + 24162 + B2 Ky (R)) = 2iky Loy} (R) ~apwiv i (R D). (43.9)
The term on the right hand side of equation (4.3.9) is called energy transfer term while
the 2™ term on the left- hand side is the dissipation term.
Solution for the final period of decay the third-order correlation terms can be neglected in
comparison to the second-order correlation terms. With this truncation approximation, the
solution ofequétion (4.3.9) may- be written as

. - Nok?
By = SR expl-2207 + B i - 19)) = =2 —expl-24G7 + B )0 -10)) - 43.10)

Nok® .
where £, =2ﬂk2(t//,.!//,7)is the magnetic energy spectrum and J(k) =2 is the
z

constant of integration and can be obtain as by corrsin | 18].
By integration equation (4.3.10) with respect to k, we obtain the magnetic energy decay
law for the final period

3/
(Y Nok'2
2 821

4.3.11)

_3/
( —Io) 2 expl——QR(! —10)1.

4.4. THREE-POINT CORRELATION AND SPECTRAL EQUATIONS.

T'he same procedure can be used to find the three-point corrclation equation i,e by taking

the momentum equation of MHD turbulence at the point p and induction equations of
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magnetic field fluctuation, governing the concentration of a dilute contaminant

undergoing a first order chemical reaction at p’and p”separated by the

e

F'as
1/ 2
oy ruy oy iy Ohy __on ry 0y ,
or Oxy, oxy, ox; Oxj, Oxy,
: ' ' 2
6/7: il ah’, K, 611’, ) o°h Rb,
ot Ox}, Ox k ax}( ax;(
ony el ouy oM
,] H _, " j f "
+u —h =A S — RIT;.

ox}, oxy  Oxgpaxy
Multiplying equations, (4.4.1) - (4.4.

taking ensemble average, one obtains

ouhih}) s b
or axk

Xk

i 0% Curhih) X &% i)
), X ax Ox},

Using the transformations

into equation (4.4.4), we get

; 5"7[ iy — gy 1= -

vector rand

(4.4.1)

(4.42)

(4.4.3)

3) by Iy ,uh; and uh respectively, adding and

ity

X1
= 2RCuhih’) -
6.9
oxy  Or

[ (ugghihyy — (g by ]+ -a—%-[ (upuy, l?,fh;,’-} = (upuih ) ]

Wiy 8%k
——— + V ———

6xkaxk

(44.49)
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r I’I' 2 1y n
ouy Iy A+ )6 Cuphihy

8% (uhih") 0% (u k")
2. Z Ny "y
or O, Ory, 4( ' M) +2r

Brf o} M aror

. d torr d NI 0 T 0 1.0
= a;(ll]”k h"]?j) + 5;{(1(/”1(11,'17]-) - 5';2- (!1/:’1'[(/1]}1]) - ﬂ‘(h]hkh‘.hk)

Nupug iy . Aupshibg )
org o

r

8 sy &
- éﬁ(u,ukh,-hj) + —é’—k— (wuilyhyy -

SISOV
+ +
on orf

= 2Rl . (4.4.5)

Using the six dimensional Fourier transforms of the type

R = [ [ @BIRIBIR Y expli (K + k') ldRdK . (4.4.6)
(g (PRI (7)) = j I<¢1¢k(/3)ﬁ,‘(k)ﬁ}(k')>exn[f(i?f'+i?’-f"")Jd13dl~?’, (44.7)

G} (P (PG (7)) = J I GBR PRV TR Yexpli (R 7 + k) dRak!,  (4:4.8)

(g h(FYHG (1)) = .[ _[(¢/¢k/3;'(1%)13}(K"))CXP[I?(/%-'F‘+’;'-’A7'),|‘”{"”{"’ (4.4.9)
CEIGLAGE .[ I BPSEOBHRDexpli(K 7+ KWK

iy = [ [ BB RDexpli(Ri+ kR,

—00 —00

(4.4.11)
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with the facts that
(upuphihpy = Cupaphilty,  Cupdihilgy = il

we can write equation (4.4.5) in the form
d ran 2 12 ’ R tran
2 BB+ AL A PG+ K2 20y kb + 22 Keii)) =

iCky + ki Xeid BiB}) — iy + ki XB1 B BifB)) — ik + ki Xeidr Bi 57
+iky + kY5 B + iChy +K)BIBYY (4.4.12)
In order to relate the terms on the right side of equation (4.4.]2) derived from the
quadruple correlation terms and {rom the pressure force terms in equation (4.4.5), we take

the derivative with respect to x,of the momentum equation (4.4.1) at pand combine

with the continuity equation to give

2 2
— oW = 0 (H]llk - hlhk) .
Oxi0x;  Oxj0xy, (4.4.13)

Multiplying equation (4.4.13) by h/i, taking time averages and writing the equation in

[

terms of the independent variables 7 and 7'

2 2
B AL A Sy 177773
ooy oo ondn

[az 82 2

+ + +——— N bl = by 1) )+
dndr,  Andry,  dndrg, ooy }( o m ) (4.4.14)

Which in Fourier-space can be written as
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iy = oKk ik Rk kil K Bi) ~BB))
g K2+ 1'% + 2k k)

(4.4.15)

Thus, the equations, (4.4.14) and (4.4.15) are the spectral equation corresponding to the

three-point correlation equations. Equation (4.4.15) can be used to eliminate BB

from the equation (4.4.12).

4.5. SOLUTION FOR TIMES BEFORE THE FINAL PERIOD

It is known that the equation for final period of decay is obtained by considering the two-
point correlation equation after neglecting the third order correlation terms. To study the
decay for times before the final period, the three-point correlation equations are
considered and the quadruple correlation terms are neglected. But, to get a better picture
of the MHD homogeneous turbulence decay from its initial period to its final period,
three-point correlation equations are to be considered. llere, We neglect the quadruple
correlation terms since they decay faster than the lower-order correiation terms.

Putting the value of (yﬁ,’[)’;') from equation (4.4.15) into equation (4.4.12) and neglecting

all the quadruple correlation terms, we have
< B AL A+ Py YK+ K2 +2P,k PRPLS ke, Bip7y=0.
21,7(475//3:/3,-)4‘ (1+ Py X MReRy + 2= KPP, (4.5.1)

The tensor equation (4.5.1) can be converted to a scalar equation by contraction of the

indices 7 and j, and inner multiplication by &,

, R :
%(k,w,ﬁ!ﬁm AL+ PR+ K2+ 2Py ki + 27 Kk BB =0+ (459
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Integrating the equation (4.5.2) between 1, and 1, and gives

ki <1 BiB7Y = kil<d1 Bi B expl=Al(1 + Py Yk? + k'3 £ 2Py ky kj cos@ -2 %J(z ~1p)}

(4.5.3)
! "
where {(¢,3; 3; Yois the value of (¢34 at 1 =1,.and @ is the angle between K and

K'. Now, by letting r' =0 in the equation (4.4.6) and compaiing with equation (4.3.6)

and (4.3.7). we obtain the relation

(i i(K)) = _[(¢, BUR)BI KK’ (4.5.4)
and -
(aryivi(-K)) = _[(af,ﬂ,f(—i% VAN ~KDdK' (4.5.5)

Substituting equations, (4.5.3). (4.5.4), and (4.5.5) in equation (4.3.9), one obtains

SR+ 2207 + LR = [aik [ piRIBIE ) - - ROp-R:

, , 2R :
xexp] - A{(1+ Py Y2 + k) 420 kk COSO—‘I'}(’—") kK. 4.5.7)

Now. K’ can be expressed in terms of k'and 0 as —27rk'2d(cos())n’lz'(cf. Deissler [22])

With the above relation, equation (5.7) to give

‘7’,<w,-w;</%» +2[k% + fuw,-w;u('» =2 o i Roi R - i pic-Ropr-Ron),
‘ 0

1
X k'z[ Iexp{—- /1(/ - I())[(‘ + P,” )(/(2 - k'z )+ 2[’1\]/(/\"(.‘080 - g—]}n’(cos 0)}(”\". (458)
-1
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In order to make further calculation it is necessary to assume a relation which gives
[(¢lﬂ,.’/3;')(K,K')—(¢,/},7ﬂ,.’)(—k',—-le')_]()zls a function of k and &'. -
Following Loeftler and Deissler [57]. we assume that

ik B CRVBIK) ~ o B~ R Bi- R D = *(_‘5_(1)5[1(2;('4 -2

. (4.5.9)
where &, is a constant depending on the initial conditions. The negative sign is placed in
front of &, in order to make the transfer of energy from small to large wave numbers for
positive value of §,.

Combining equations, (4.5.8) and (4.5.9), and completing the integration with respect to

cos@ , one oblains

d ' E 2 R ,.‘~__50w3,5_5.3
<ty iR+ 2 + Yy ()= V(,_,O)Oj(k kS -5k

R
x[exp{— AU =1+ P Yk 2 + K'Yy =21y k! +2-] }
. R ,
- exp{— A = 1)1+ Py YA 4 k'2) 420y kk' + 2-1 Y k. (4.5.10)
Multiplying both sides of equation (4.5.10) by k?, we et
dEky,
4

R ,
+24] k? + &, =G (4510

where, E,, = 27zk2(y/,-w;-(1% )) is the magnetic encrgy spectrum function and G is the

magnetic energy transfer term and is given by
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G=—' ‘50 J.(k3kr5_k5k13 _C‘( —/l[ [ ] P 2 12 ’ R
‘“’(’“’0)0 X = M=+ Py )k + k%) - 2Py k' + 21
—exp{—- AU =1 + PA-_I )(k2 +k'2)+2PMkI('+2§] } ]dk’. (4.5.12)
Integrating Eq. (4.5.12) with respect to k', we have
SoPy 7 |
G= g exp[—ZR(r~ro>]exp[—/1(r—tox‘l+ L )kZ]
dA72(1—10) 2(14 Pyy) 2 M
4
y 15Pyk L] 5Py, 3 e, u Py’ _ilys
W —1)2(+ Py U=10) [+ Py )2 v P {1+ Py, )2 '
(4.5.13)

The series of equation (4.5.13) contains only even power of k and the equation
represents the transfer function arising owing to consideration of magnetic field at three-

point at a time.

It is interesting to note that if we integrate equation (5.13) over all wave numbers, we find

that

o . .
I('?dk =0 , _ (4.5.14)
0

which indicating that the expression for (7 satisfics the condition of continuity and

homogeneity.

The linear equation (4.5.11) can be solved to give
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R _
L, =exP[ *2/1(/\:2 + :{)(1 —1p) ]j(?cxp[ 2A(k2 +—§)(r—10) ]dr

ol —2a0k2 4 R
+J(kyexpl ~24(k +Ni=t9) ] 4.5.15) -

2

Nok* . . , . :
where J(k) = 1s a constant of integration and can be obtained as by Corrsin [18]

Substituting the value of G as given by equation (4.5.13) iﬁto equation (4.5.15), and
integrating with respect to 1, we gel

Nok? R
E, = —_8;~C:(p[ ~ 2A(k> + 1= 1) ]

So Py V7 , 3k
o 7 exl- 280 =ty lesp] - 2228y ]| 5
4721+ Ppp)72 M 2Py (1) 242

|
(TP =6k 431" -21y, ) 8 2O =20y +3) 00 ]
3 5. .
3/1(|+PA,,’)(I‘—10)"2 3(|+] [) (’_’0) 2 3(1+PA1)"‘2
(4.5.16)
@
Al —1
where, N(w)=e? J.ex dx | @ =k l+]’:) :

0
By sctting r = 0, j = i ,dK = -2k *d(cosO)dk and E,, = 27k* () in Eq.(4.3.5),

we get the expression for magnetic encrgy decay with the fluctuating concentration as

L
o= IF'""‘”‘ (457
0
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The substitution of equation (4.5.16) and subsequent integration with respect to & leads

to the result

votmia 5

8“\/— 4281+ Py )i+ 2P,y 16

(h,-h,)

1 SPA/I (71)}\4 *-6) _'351)]‘4 (3PA{2 *2PM +3)

16(1+2P)) 8(1+20,)?
. 8P (P2 -2y +3) [.3.5.0000n (2n+9)
32801+2p,)° a2n+ 12214 Py, )"
or,
(hihi) 2
1:hi) No(t—1t9) *
S = expl- 2R( - 1) ~UT v sy0u -yt ]
| 8222 V7m (4.5.18)
where
0- T | 9 S PmGly -6 350y 3Py’ —2/’,1/ +3) ]

5
(|+PM)(1+2’)M)/2 16 16 1427 8 (|+2pM)

Thus, the decay law for magnetic energy f{luctuation governing the concentration of a
dilute contaminant undergoing a first order chemical reaction before the final period may

be written as

_3/
(%) = expl- 2R( —’0){1‘((1 —tg) 2HYG —’0)_5] . (4.5.19)
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The first term of right side of equation (4.5.19) corresponds to the energy of magnetic
field fluctuation of concentration for the two-point correlation and the second term

represents that energy for the three-point correlation.

4.6. CONCLUDING RERARKS

This study shows that the magnetic field {luctuation of concentration decays slowly than
the velocity fluctuation and if the chemical reaction of the first order is selected in the
concentration, then the effect is that the magnetic field fluctuation of concentration is

much more rapid and the faster rate is governed by exp[— 2R(1 =1, )]'.

In equation (4.5.19), the term associated with the three-point correlation die out faster
than the two-point correlation. For large times, the last term of equation (4.5.19) becomes

negligible and the decay law for the {inal period becomes

g

=3
(h?y = X expl-2R(t ~tg)| (1 =19) 2
In absence of chemical reaction, i.e., if we pul R =0, the result shows completely

accords with the result obtained earlier by sarker and kishor [91}].
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DECAY OF DUSTY FLUID TURBULENCE BEFORE THE FINAL PERIOD IN A

ROTATING SYSTEM.

5.1. INTRODUCTION

In geophysical flows, the systcm is usually rotating with a constant angular velocity.
Such large-scale flows are generally turbulent. When the motion is referred to axc;,s,
which rotate steadily with the bulk of the fluid, the coriolis force and centrifugal force
must be supposed to act on the {luid. The coriolis force due to rotation plays an important
rolc in a rotating system of turbulent [low, while the centrilugal force with the potential is
incorporated (o the pressure. Kishore and Dixit [43], Kishore and Singh [41], Dixit and
Upadhyay [25] and Kishore and Golsefied [45] discussed the effcct of coriolis force on
acceleration  covariance in ordinary and MIID turbulent flows. Shimomura and
Yoshizawa |97]), Shimomura [98,99] discussed the statistical analysis of turbulent
viscosity, turbulent scalar flux and turbulent shear flows respectively in a rotating system
by (wo-scale Dircct-intcraction approach.

Saffman [89] derived an equation that described the motion of a fluid containing small
dust particles, which is applicable to laminar {low as well as turbulent flow. Using the

equations given by Saffman, Micheal and Milier [64] discussed the motion of dusty gas
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occupying the semi-infinite above a rigid plane boundary. Sinha [100] and Sarker (92]
considered dusl particles on their own works.

Batchelor and Townsend [2] studied the decay of turbulence in the final period. The
decay of turbulence in the final period occurs when the effects of the inertia [orces are
negligible. Dicssler {21,22] devéloped a theory for the decay of homogeneous turbulence
al times before the {inal period. Locfter and Diessler [57] discussed the decay of
temperature fluctuation in homogencous turbulence. In their approach they considered
the two- and three-point correlation equations and solved these equations after neglecting
the fourth and higher order correlation tlerms. Using Deisser’s theory Kumar and Palel
[52,53] studied the (irst order reactant in homogencous turbulence before the {inal per-iod,
Sarker and Kishore [91] studied the decay of MHD turbulence at the time before the final
period.

Kishore and Upathdyay [49] studicd the decay of MUD turbulence in rotating system. In
the next, Sarker and Islam [96] studicd the decay of MHD turbulence before the final
period for the case of multi-point and multi-time.

By considering the above theories we have studied the decay of dusty {luid turbulence
before the final period in a rotating systen. In this problem we have considered the two-
and lhrcc-poi;n correlation equations and solved these cquations aller neglecting the
quadruple correlation terms. Finally the energy decay law of l'lui:lualing velocity of dusty

{luid turbulence in a rotating system is obtained.
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5.2 BASIC EQUATIONS

The equation of motion and continuity for turbulent flow of dusty incompressible {luid in

a rotating system are given by

Oui  Ouuy) P, 2%, _ '
ot " Ox; ™ +V6xk8'ck =2 € Qi + [ (1 —vy), (5.2.1)
5 e ; )
avi 6\!,- k

Vv, ——=——(v; ~u;).
o 'ms(' i) (52.2)

and
ou;  Ov; :
—_ - .= 0 . Whe
Ox; Ox; (5-2.3)

Here u;, turbulent velocity components; v; dust particle velocity components; g, fluid
density; v, kinematic viscosily; €, ,constant angular velocily components; €,4;,
alternating tensor; 7, , modified pressure (sum of hydrodynamics pressure divided by
. . . . 4 4 .
fluid density and potential of a centrifugal force); my =§7rRSpS,mass of a single
spherical dust particle of radius R ps. constant density of the material in dust particles;
. . kN , .
k., stock’s drug resistance; f =---, dimensions ol frequency: N, constant number

P

density of dust particle:

5.3. CORRELATION AND SPECTRAL EQUATIONS

The equation of motion of dusty fluid turbulence in rotating system for the point / and

P separated by the vector 7
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ou;  O(wuy)  oF, o2 ;
R T R el A URa (5.3.1)
and
ou' A , 2,
u, wjup) — op, o“u; ) o o
ot a‘(}c ax-’, a‘('}( axlrr( ~ 2 Epmki ’””.j + f(llj - bj.) , (532)

Multiplying equation (5.3.1) by 1'; and equation (5.3.2) by v;and taking the ensemble

average, we have -

GBIy s Kuujidyuey ) .\ Oty ) _ (6(!’,,,1; Py

T2 (62 (u,-u'jz . uju'; )
ot Oxy, Oxy, Ox; Ox’; xpdxg  OxpOxy

= 2(€ ki Qo (10 )+ €y QuCupdi)) + [ (2w’ = v, iy =) (5.3.3)
By use of the transformation

0 0 0

6r',- ax,- B 5.;’ ’

equation (5.3.3) can be written as

Aujuy +6(u,-u'juk) a(zf,-u;-u},)_ ( ('9(1’,””]) AR )) 5 62(11,-113-)
or ory, ory, Or; or Or Ory,

- 2(€ ki Q,,,(u,-u_'l- + € ukj Q,, (u,-u_’l- )+ _/‘(2(1(,11_’,) - (v,-u_'[) - (u,-v;-)). (5.3.4)

Now we wrile equation (5.3.4) in spectral form in order to reduce it {0 an ordinary
differential equation because of the physical significance ol thc spectral quantities. For

this, we use three-dimensional Fourier transforms defined as follows:

(up' (F)) = J.(u/,.y/l’l-(le)) exp(ile.f')dle . ' (5.3.5)

—o0
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o0
Cujrga’s (F)) = I(W,-I//k V/;-(]e)) exp(iK )dK | ' (5.3.6)
-0
=} .
(Pt (7)) = _[(/1 W' (K)) explik 7)dK (5.3.7)
o)
and (v,-uj,— = J‘(,u,-v/;,-(l%)) exp(il%.f')dle - (5.3.8)
—
where K is known as a wave number vector and dR = dK | dK,dK5 .
From equation (5.3.6). we have
w0 o
(u,-uku’j (7)) = J‘(’/’i‘/’k v/'j(li')) exp(—i[%.f')dle = J‘://,-y/kr//} (—Ie)exp(fl%.f')d[% .
—co —00
Interchanging the subscripts iand j and then -interchanging the point Pand P’, gives
o]
Cudjug (7)) = Guaugai(=r)) = J.(y/,-://,\. y/,’-(-—l\"’)) exp(iK.F)dK . (5.3.6a)
—o :
*0]
(Ui Pyy (F)y = (Pyytd'y (=7)) = J‘MV/.'I'(_[Q)) exp(iK.7)dK (5.3.7a)
o
=04
(upy's(P)) = (vt (7)) = J.(/(,-f//_'/-(—l()) exp(iK.7A)dK . (5.3.8a)

-0
Substituting equations, (5.3.5), (5.3.6). (5.3.6a). (5.3.7). (5.3.79). (5.3.8) and (5.3.8a) into

equation (5.3.4) and making it in scalar form by contraction of the indices iand j.

we pel
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_(y/ 1// )+(2Vk +2 € ki €2, +2 €, O R/)(l//,y/ )=

=ik [y iy HK) =y (=K ). (5.3.10)

The pressure terms drop out of equation (5.3.10) because of the continuity relation

O 5 ov;
ax,- 6x,-

In order to obtain the three-point equation, we consider the equation of motion of dusty

Muid turbulence in rotating system at the points p.p and pTas

Ou; N 6(14,-11,) or 621!

a ey o o, " dx)0x; =2 € Qi + [ = vy) (5.3.11)
o’ A(u'u)) ' a24". ,
J jH)or Y " '
o e o, e 2 €nir ity + [y = vy) (5.3.12)
' ) O
and
Qup  O(ugui) 9P ézll" V. .
ot + ari’l =_a\’]’; +I/ax;0i; —26",” qullk +-/(”k -—\)k)‘ (5313)

Multiplying equation (5.3.11) by wjuy ., cquation (5.3.12) by w;u; and equation (5.3.13)

by u; u , adding and taking ensenmible average and using the transformations

Jd 0 0 0 0 0

0 :
—_——— — —, and——=-- —— ,oncobtains as
d; 61 y Ox] 6‘; 7 o) . oy

a ‘oo a 6 ' a [ a [
lu ]y — —— a1y — — Qg gy + — g g g ) + ——(uptd gy )
31< it 'y arj< itk b al‘/'< L A ar) IR A o) orf fHjlgU]

a "
——(—i(i’u uf) - (l’u Y+ 5 (1"14 Iy +7—(/’ il )) +
b
j i
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62(71-11'-”") a(;,. T 82 '
+ 2|_,(____’_ J ./L_ A l“j”k) + o Siiflljllk ) ) - . .
oy Oy 01/ 3'7}51_7’-%)_ (€ Q,,,(“,-Hjuk Y+ S Q”(u,-ujuk)

* Eqik Qg Qi) + [ GGy ~ vy = (v’ - Q). (5.3.14)

In order to convert equation (5.3.14) 1o spectral form, we can define following six

dimensional Fourier transforms:

oW o)

(u,—ufi (Mg (7)) = j J.(ﬁ,-/]}- (l{’)/?j(' (I{") exp[i([%.f' + l%'f’)‘]dl%dl%’ , (5.3.19)

—0) —0)

(g’ (P (71) = f J'w,-ﬁ,ﬂj,(/{')ﬁ;;(k')exp]_iu{'.f-+1%hf-');|d1€:;ﬂ€", (5.3.16)

—
©
(Puy (P (7') = f j(aﬂ}(ﬁ)ﬂ;:(k')exp[i(i%f-+/%'.f-')]d/_%dk' (5.3.17)
o5 —on
and
o o
CHIGIAGE J' I<y,ﬂ_;(k)ﬁz(K") expli( K7 + K7 |dRdR", (5.3.18)
—o0 -

By using the mcthod uscd in obtaining cquation (5.3.6a), the following relations hold

(u,-u}(ﬁ)uf,- (P (r) = (uju/u}(—f')u/': (F'—=r)) =

o A i s (53.16a)
::J ﬁﬂﬂmmp«:kwﬂukwmmmKI+Kf)wmm
—0—m
(s (R (Fuj (7" = Cugrpui (=P (7 =)y =
(5.3.16bh)

=7 - Tt A > apet
= | femmr-& - Ropyky espliR s+ Rkl

—00 =N
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where the points pand P’ are intercly

anged to obtain cquation (5.3.16a). For equation

(5.3.16b), pis replaced by p", P is replaced by p" ., and p" is replaced by |

Similarly,

PPy (")) = (PHi(=F e (7 =) =

RN o)

= f f(aﬂ}'(—l%-ﬁ")ﬁ,:(k') expli(R i + R 7yjakaRe 317

—00 —00

ity PP = (P (— ey (F = i) =

o
1 * o1 "ot T L A A 5.3]7b
= f f(aﬂ,-(—K = K) By (K') expli( K7 + K'F)]dKdK' ( )
(up i (7)) = (v (=Fug (7' = F) =
o o .
e e (5.3.18a)
= _[ f(rfﬁ}-(K)ﬂk’(K’) expli(K.F+ K' ) [dKdR'
. -0 -
'y (FYVR (P)) = (o (= (7 = 7') =
. . e e ... (5.3.18b)
= f f(y,( Bi(=K = K"V 35(K) expli(K 7 + K" 7)) dRdK’
—~00 —o0

Substituting the preceding relation into cquation (5.3.14), we get
‘; BBy = (k> +kk) + k' XB: 35 85> =itky + ki XBiB13 5k )
af '
~ikp (3, By PR = KPR R —iki< P i (=K ~ KB (K)]

ik + kDo By + ik (e~ K = KR (R )+ ik (api(-K = KB (K))
o,
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2 ot €y Qut g Qo 1BBYARY + X B (R) B (R
=P OBRE D = B =R = KVBLR) - o (- RBI(R). (5.3.19)

The tensor equation (5.3.19) can be converted to a scalar form by contraction of the

indexes i and / and inner multiplication by ky ;

n,’, i BiBiBE) +2v(K? +kiki + k' Xk B BLBEY =iy (K + kf)(/i—ﬂ;ﬂiﬂ;i =
~ikikiBi i (K = KNBY (R = ik ki By i B~ - R BICR)]
—%kk [~iCk; + kXt 1)+ ik (i (~K — BB} (R0 + ik (B (—K - RN
=2kl o Sty Lt Sqip QBB+ il X RIBLR™)
— B RIBLRY =y ; BH=K = KVBLK) ~ i Bi-K =K B3K).  (5.3.20)

To obtain a relation between the terms on the right hand side of equation (5.3.20) derived

from the quadruple corrclation terms. pressure terms, rotational terms and the dust

particle terms in equation (5.3.14). take the divergence of the equation of motion and

combine with the continuity cquation to give

Lo’r __2wm) (5.3.21)
L ax,-ﬂ\',- aYian

Multiplying the equation (5.3.21) by ujuj, taking cnsemble average and writing the
] H .y .t H
resulting equation in terms of the independent variables rand r', gives

2 ‘o 2 ’
i 52(1),,;”;) " 0?(1>,_,£_,‘,D . az(l’u,'-rrl,'}) _ 0"(14,-1!,11,1:,?) _ O~ (e ) i

e o r.r i,
P o ;O iy iy i
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8° (uinpiug ) 6 “Qugujug)
&Mar, P ot (5.3.22)
The Fourier transform of equation (5.3.22) is
” (kiky + kik) + kik; +kik
___( ap ) = ikt ! I 1)(/3,/3/ﬂ,/3k) (5.3.23)

k2 4 kk+ k"2

Equation (5.3.23) can be used to eliminate the quantities (efipi), (a/};(—[% - 12")13;;),

etc. from equation (5.3.20).

5.4. SOLUTION FOR TIMES BEFORE THE FINAL PERIOD

In order to obtain the equalio-n for final period of decay the third order correlation terms
are neglected compared to the second order correlation terms. Analogously, it would be
possible to obtain a solution for times before the final period of decay by neglecting the
fourth order correlation terms. [f this assumption is made, all the fourth order correlation
terms in the right side of equation (5.3.23) should be neglected. Thus from equation

(5.3.20) and equation (5.3.23), we obtain
%(kk ﬂlﬁ;ﬂ;{l) + 2["(/‘72 + k,ki + k'z)"' (€mii Qm + € Q,+ Cqik Qq) ~8f1x
x (ki i BiBR) = 0 (5.4.1)

where

W, A0 - (v BICRIBE (RN — (iR = ROBL RN ~(ra i (-R - KIB(K)

=SBk (5y)

and § is an arbitrary constant.
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Integrating equation (5.4.1) between (he limits 7y and 1., we get

ki Bilfi k) = ki APif3i h Do expl {=2v(k 2 + kk' cos ) + K2+ 2e,; Q,, +
+ € Qn"‘ Eq/k Q(’)—S_'/'}(/ _’())] (5-4-2)
where (/3; /31 /17 )¢ is the value of BifSifiyat 1 =1gand 0 is the angle between & and k',

Lelting r" =0 in equation (5.3.15) and comparing the result with equation (5.3.6) shows

that

v wi(R) = jﬂ,-ﬁ,fﬂ;:(l%)d/%'. (5.4.3)

Substitution of equation (5.4.2) and (5.4.3) in equation (5.3.10) result in

tl f . ]
d7 ('//i'//i> + (2‘/[(2 +2 € mki Qm +2 € nki Qn - R/ )(V/iV/i)

0 ]
= I2m'kk W —/7,-/?,'-(—/2')/3;('(~I%'i|0k'2[ expl-{21(k% + kk'cos@ + k')
0 ' -1 '

+2E 1 L+ € QL+ € Q) = S —19)]d (cos O) |k’ ' (5.4.4)
where K’ = dKjdK5dKY writlen in terms of k" and ¢ as — 27k’ % (cos0)dk' .
In order Lo find the solution completely and following Deissler {22]. we assume that
e L3 0} = i3 -ROBL R g = =Foh K0 k) - (545)

where /3, is a constant determined by the initial conditions. The negative sign is placed

in front of Sy in order to make the transfer of energy from small (o large wave numbers

or positive value of fiy.
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Substituling equation (5.4.5) in cquation (5.4.4), writing (w;i%) in terms of the energy

spectrum function as

2 ’ l
E =27k “{yw}) (5.4.6)

and carrying out the integration with respect to cos@ |, result in
dly 2 | :
QU+ 2y Q426 Q- RYVE = (5.4.7)

where W is the energy transfer term and is given by

o
Ho 7 5
/) ="V ! f 2 2
W 2v(t—to) (k k -k k Yexp[—{2v(k* —kk'+ k )+2(e,,; © mt €nti Qp +

+€qik Qg) =S —10)] ~exp[{-2v(k? + kk' +k'2Y+ 2e s Qppt € Qyp +

g Q) =S} —10)]}dk, (5.4.8)

Integrating equation (5.4.8) with respect to k', we get

ﬂo\/
3
T a10) T gy e S S S S
—to 1% ~1p
w105 vas—E 19 K5 S (5.4.9)
(t 1) (=1g)2 (=190  (1-1p)2

The series of equation (5.4.9) contains only even power of &, it is interesting to note that

J.de =0, (54.10)

0



Chapter V, Part A
g 83

For oblaining the energy spectrum function £, equation (5.4.7) can be written in integral

form as

E = exp[~- (2”" +2 € ki $2y +2 €k 2, — R} —1p)]x J.exP[(Zsz +2 €t Qpy +

+2 €, Qp = RfY( —10)IWdr + C(k)expl- (2Vk +2 € Qp +2 €, Q, — RIN—1p)]
(5.4.11)

4

where C(k) = Jok

3 is a constant of integration and can be obtain following deissler
4

[22]. The constant Jg is known, as Loitziansky’s invariant when the turbulence is

isotropic,
Substituting the values of W from equation (5.4.9) in equation (5.4.11) and integrating
with respect to 1, we gel

Jokt
E=- g CXP[—(z\fk2 +2 € mki glm +2 ellkl " Rf }(f _IO )‘l__
¥/

3 .
ﬁO I expl~—5" ==~ {2 Qmt+ Enii Q,+ €qik Q) - ST — 1)) %
256v Wh(1 —1p)

10 12
1sv2 kS 122 kb T2k 16V2 & n—%k”!'“(w)]

I i S e
y2 (t-19)2 v? (t—1g)? 3?2 (1-19)2 3v? (1—1p)?
(5.4.12)
|
oD
V(f—[o) 2
where F(co):exp(—a)z) exp(xz)a’x, w = k[ 5 1.
0

The expression for the energy decay is obtained from equation (5.3.5) by setting

F=0, j=i, df =27k d(cosO)k and E = 2k vl
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Thus,
<”"2”" ) :[Edk = 3?(57—3)72[; eXP(~(2 € ki Ly €ps Q= REN = 10)1( ~ 14 )—55' +
+0.2296 v~ exp[-2{(€ i QU+ €y Qe+ qik Q) =S H = 1))t ~10)7
(5.4.13)

Thus, the energy decay law of velocity fluctuations of dusty fluid turbulence in a rotating

system may be written as

-5
2 . }
(u”) = A exp[-(2 ki X 2 €y Q) = RN —1))(r —=1g) 2"+

+B exp[_z{(emli Qm"’ Enli Qn+ €qik Qq); S —’O)J(’ —’0)_7 (5.4.14)

5.4. CONCLUDING REMARKS

In equation (5.4.14) we obtained the decay law of dusty fluid turbulence in a rotating
system before the final pcriod considering three-point correlation equation after
neglecting quadruple correlation terms. If the system is non-rotating and the fluid is clean

(Qs=0, [ =0),the equation (5.4.14) becomes

-5
(112) =A(—-1y)2 +B (1—10)”7

which is obtained earlier by Deissler [22].
This study shows that the effect of rotation in presence of dust particles in the flow field,

the turbulent energy decays more rapidly than the encrgy for non-rotating clean {luid.
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For large times, the effect of the higher order inertia terms is very negligible and gives

the -5/2 power decay law for the final period.
If the higher order correlations were considered in the analysis, it appears that more term
, S

in higher power of (¢ ~7p) would be added to equation (5.4.14).



CHAPTER -V
PART - B

DECAY OF DUSTY FLUID MHD TURBULENCE BEFORE THE FINAL

PERIOD IN ROTATING SYSTEM.

5.1. INTRODUCTION

Magnetohydrodynamics (MHD) is an important branch of Fluid dynamics. MHD is the
science, which deals with the motion of highly conducting fluids in the presence of a
magnetic field. The motion of the conducting fluid across the magnetic field gen.erates
electric currents which change thé magnetic field, and the action of the magnetic field on
these currents gives rise to mechanical force which modifies lhe. flow of the field.

Funada, Tutiya and Ohji [29] considered the effect of coriolis force on turbulent motion
in the presence of strong magnetic field with the assumption thét the coriolis force term is
balanced by fhe geostropic wind approximation

The problem considered here is an extension of the part-A of this chapter. In part-A, we
have considered the ordinary turbulence but in this part, we have considered the MHD

turbulence,
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Following all the references, which are given in part-A of this chapter and Funada, Tutiya

and Ohji [29], we have obtained the decay law of magnetic energy fluctuation of dusty

fluid turbulence in rotating system.

5.2, BASIC EQUATIONS

The equations of motion for viscous, incompressible MI1D dusty fluid turbulent flow in a

rotating system are given by

o, 0 o 0%u;

oy ) = ™ ki i+ S (=) (5.2.1)
i - , S .

—a—hL + _8_ (g —uhy) = —~0-2h"

a o TS Mgy oy (5.2.2)

%' + v 2‘2— = -—-i_(v. -

o Koy Ty (5.2.3)

wilh
On, _dv, ol ~0
ox, B ox, B ox, B (5.2.4)

where u;(%,7), ith-component of turbulent velocity about the mean at a point P(%,1);

hi(X,1), ith-component of magnetic ficld Muctuation about the mean at a point P(%,1);

W(x.l)=—I-i+l(hz)+%|f2x.{‘lz. total  MID pressure inclusive of potential and
f2

centrifugal force; p(£,7), hydrodynamic pressure: €,,. constant angular velocity

components : «,,,;. alternating tensor: 2, fluid density: A = . magnetic diffusivity;
Al
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v, kinematic viscosity ; P, magnelic prandtle number; m_ = i;rRS’p‘ , mass of single
s =3P
spherical dust particlc of radius R;; p;, constant densitly of the material in dust particles;
KN . ] ]
f =-—, dimension of frequency; N, constant number density of dust particle; x,,
p .

space coordinate; the subscripts can (ake on the values |, 2 or 3 and the repeated

subscripts in a term indicates a summation.

5.3. TWO-POINT CORRELATION AND SPECTRAL EQUATIONS

The induction equation of a magnetic ficld at the point P is

5
h; i ou: o h:
D gy Py Lo o (5.3.1)
ol xy B, By
and the point P’ is
oh! oh'; 'y azh'l.
Lt u), J —hp == e (5.3.2)
ot oxy, oxj, vy, Ox,

Multiplying equation (5.3.1) by A’ and equation (5.3.2) by h., adding and taking

ensemble average, we get the two-point corrclation equation for the Muctuating magnetic

field as

iy o R ST
(.;! J + E[(llkh"hj) - <”ihkhj>l+ 5;}:[(”](/7’-,7]-) —(l(jh,'hk )J

o (hily | & (i)

(5.3.3)
Ox . xy, X}, Oxy

Angular bracket (.......... } which is used to denote an ensemble average.
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Using the transformation

and the Chandrasekhar relations [13]
CGuhihy) = G ly) @by == b ity
equation (5.3.3) becomes

oh; li'j )
o

2 '
5 8% (')
+2 W RS ~ Qi B = 24— L Ry

af‘k [< ki j> < I’ 1[( I‘I >l 81-k al'k <1

iy (5.3.4)

Now we write equation (5.3.4) in spectral form in order to reduce it to an ordinary

dilferential equation by use of the following three-dimensionat Fourier-transforms

(i (P)y = _[(v/iv/_',-(l%)>cx1>(f(/{’.f)]d/%, | (5.3.5)
(“ihkh}(’"'» = J‘(aivlky/_’i(]%))exp[f(l&f)»ldk , (5.3.6)

(nkh,-h.',-(f')) = (uﬂz,-h",(~r’)) = I(a,-w,-y/',-(v—/("))cxplf(i&.i’)]dl&' (5.3.7)

-

(equation (5.3.7) is obtained by interchanging the subscripts i and j and then the points

pand p)and hence

dlys v’ [% R N , "
iY-if’ciifﬁ-~’Z #2002 (s (R ) = 2k Kayrawr (KD =Gy (KDL (5.3.8)
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The tensor equation (5.3.8) becomes a scalar form by contraction of the indices iand j

dwy }(K))

" +22k2(§//,-y/;(k)) = 2iky [(a,rr//ky/,'-(](n'))—(aky/iy/;(—[%))] ) (5.3.9)

The term on the right hand side of equation (5.3.9) is called energy transfer term while

the 2" term on the lefi- hand side is the dissipation term.

5.4. THREE-POINT CORRELATION AND SPECTRAL EQUATIONS

Similar procedure can be used to find the three-point correlation equation. For this
purpose we take the momentum equation of MIID dusty fluid turbulence in a rotating
system at the point P and induction equations of magnetic field fluctuation at the points

P'and P" separated by the vector 7and 7'as

2
4
6u,r +Uk au, -hk 6/7, - _6” Y a ”I

ot Ox}, Ox}, Ox; Oxy, Oxy,

—_2 €kt Qi + [ (g =), (5.4.1)

2
: : . 2
6/1: i 6/1’, _h, au’, _ 2 8' 7,, , (5.42)
or ox k ax,( Oxk axk

" " " 2 LX)
alzj- ”ahj "aujzl 0 hj

+! 1k a " At
xk axkaxk

- e — (54.3)
ot a\ik

Multiplying equations, (5.4.1) - (5.4.3) by k]

%l and gl respectively, adding and

taking ensemblc average, onc obtains

a(u, h,’h;)
ot

a ¢ tyH rr? ”
+ 9 [ (11;@1,/1}/1',’-)—-(hkll,h,fh';-) ]+ - [ Qup Iy = Cupihy i) ]
a-xk ) ' a.\‘k ’

IR 2 T
i | i |

o
+ | Qi) = (updiihg ) = —
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9* Cuplih'y) 8% (u R
J I - .
+ ;{ + 2~ |- 2 € mkl Qm<”l”ihj) + f((“/h,'/?j) - <v1h;"h_’;‘ ))

Ox}, X}, Ox}.0x}, (5.4.4)
Using the transformations
o0 8,0, 8 _02 0 3
ox;, oy o &y On oxy o
into equations (5.4.4), one obtains
LD, R 8% Gy " D% (b
T Ay ) — ’—f—+(1+PM)—_——< . j>+2PM————< 1hify)
ot Ory Ory, Orp oy o Oy o
8 0 0 %,
= ———(uL R + == CGuuy "y — ~—(hyhy iy — —— (gl e by
6:-k< i) ar,;< i) ar,;< thg i) ar,;(/k i)
HKupay Ihy oy ihy,
——a—(u,u}(h}h;-)+—a—(1qz,l}h,'§/1;-)— t k,' J>+ <[ J" k2
ory, oy, : ory, ory
G(Wh,fh’j’-) G(Wh}h;) o ‘n 'pn
+ Y + af‘[' -2 Emkl Qm(“ihihj> + f((ulhihj) _<v:'hihj>) . (54.5)
! )
Using the six dimensional Fourier transforms of the type
' o0 oo
FRVE (R = RYAUKT f(R 7+ k' )|dRdK' (5.4.6)
(uhi (7 Y5 ()) = (B Bi(K) 33 (K yexpli (K + ki )e ,
—) —00 .
o @

Cuptl (PR (FYA () = j j i (RIBUR B (R Y explf (K 7 + K 7)]akaK", O-4T)

-0 =0
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OGN = [ [ bR BB R YexplicR 7+ Fpakak, (548)

N = [ [ A ROB R expli (R + k.7 yaRak,
g (5.4.9)
GGG ) £ ] ;[ (BB BIKIBG(K Nexpli (K7 + k' #)|dRaR' (54.10)
e = | [ omEs R Dexpli R+ k7 NaRAR", a1
and
@Y = [ [ GBI & WexpliR 5 + k 7))k 5412

with the facts that
Cupuphphiy = Cuphihyd,  Cupdihihgy = Cupiihpch)

we can write equation (5.4.5) in the form
d ' qn 2, 112 L € mkl Q, _._/_‘ 1Y
BB+ AL (14 Py YK K2 1 2Py gkl + 22— o KAI)
= i(ky +ki Xy a Bi Y — ilkic + ki X P Br BB}y — iy + ki Xeidi i)

+itkg + kg 5(¢/¢i/3/'( By +ithy + kBB~ S i By (5.4.13)
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In order to relate the terms on the right side of equation (5.4.12) derived from the
quadruple correlation terms and from the pressure force terms in equation (5.4.5), we take
the derivative with respect to x,.of the momentum equation (5.4.1) at pand combine
with the continuity equation to give

o’w 92
- = wiuyg —hh,),
dx,dx) anaxk( i) - (5.4.13)

Multiplying equation (4.4.13) by ii'h; ; » laking time averages and writing the equation in

terms of the independent variables 7 and 7
2 2
B A S (VIS
aIIaP[ allafi 6;,6;,

ot F  F P
= + + +
Ondry  Onory  Onor; oy,

}((u,uk h}h;-) - (h,hkh,fh;" )) . (5.4.19)

Which in Fourier-space can be written as

(kikic + kiky + keky, + kiki, Xy e BiBTY —  Bi By BiB7)
K+ k% + 2kik)

~(¥BiBj) = (5.4.15)

Thus, the equations (5.4.14) and (5.4.15) arc the spectral equation corresponding to the

three-point correlation equations. Equation (5.4.15) can be used to climinate (yﬁ,-'ﬂ;)

from the equation (5.4.13).

5.5. SOLUTION FOR TIMES BEFORE TIIE FINAL PERIOD.
Itis known that the equation for final period decay is obtained by considering the two-

point correlation equations after neglecting the third order correlation terms. To study the
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decay for times before the final period, the three-point correlation equations are
considered and the quadruple corrclation terms are neglected because the quadruple

correlation terms decays faster than the lower-order correlation terms.

§ From equation (5.4.15) and (5.4.13) after neglecting all the quadruple correlaiion terms,
we have
d o o A EmkiQy o
— GBS+ AL (14 Pag )G +K7%) 4 2Py i +2Llﬂ—§ ké:8:87)
+ fGuBipT ;=0 (5.5.1)

The tensor equation (5.5.1) can be converted to a scalar equation by contraction of the

indices i and j, and inner multiplication by £,
d ! B k2 +k'2)+ 2Py kK
— U BB+ AL (1 Py K™+ k%) 4 2Py

+2 E-’i""TQﬂ - Lj— Kk 8Dy = 0 (5.5.2)

where (u; Bi 81 = R{¢; B B;) and |- R =S here R and S are arbitrary constant.

Integrating the equation (5.5.2) between 7, and ¢, and gives
' : tam ) 2 2
kil BBy = kL Bi B Jexp{=AL (1 + Py (K™ +K77) +

. Emtl Qi _ Sy, _ :
+ 2Py kgk cos0 + 2" AW fo)} (5.5.3)
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where (¢ f3; f; )qis the value of (g5} at f=1;and 0 is the angle between K and

K'. Now, by letting r" =0 in the equation (5.4.6) and comparing with equations, (5.3.6)

and (5.3.7), we obtain the relation

(i) = f(¢fﬂ}(1%)ﬂ;’(£'))d/2’ (5.5.4)
and
(i (=K)) = _[ BB =K) =R "))dK" . (5.5.5)

Substituting equations, (5.5.3)-(5.5.5) in cquation (5.3.9), we obtain

%w/,-w; (R))+ 2462 (i (R)) = j 2k [ BLRVBIE Y — i B RVBI-R D),

I

e ,
xexp] — A{(1+ Py YKk +k'2)+ 2P kK cos @ + 2 S0k 2 Py VIR (557
A / 2 ) 0 ( )

Now, dK’can be expressed in terms of k'and 0 as — 27rk'2cl'(cos(7)c/1;’,(cf. Deissler [22])

With the above relation. equation (5.5.7) to give

2 iRy 12K yiRy =2 [k iR s - @ Rop- R
0

1
= ) §2 A '
X J-CXI’J“ Al - ’0)[(' £ Py YK+ K'Y+ 2Py cos 6 + 2-C--'-’1‘-’A——"'~ ~ f}—j} /(cos @) |dk'.
_I .

L

(5.5.8)

In order to make further calculation it is nccessary to assume a rclation, which gives

KB BKLK") - (¢,[i,’ﬂ;’)(-—l€,-l€")]” as a function of k and k',
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Iollowing Loeffler and Deissler [57], we assume that

iU B RVBIR) = BB - RV BI-R Wy = 20 12kt - k42 (5.5.9)

(22
where &, is a constant depending on the initial conditions. The negative sign is placed in
front of &, in order to make the transfer of energy from small t6 large wave numbers for
positive value of J,.

Combining equations (5.5.8) and (5.5.9), and completing the integration with respect to

cos0 , one obtains

o)

dq s CRWY + 24k 2 By =00 43,05 ;5.3
a,’(2ﬂ<v i (KN + 24k Qady i (K)) o —10) 6[(" k™ ~kk )"

l

; Q
XI:epr— A = 1Q)[(1 + Poy YK + k'2) =21y k' +-25ﬂﬂfﬂ - % }

Q, f ,
- exp{~ Mt = 1)U+ Py YRE + k2) + 2Py k' + ﬁﬂfi—ﬂ- —J—;—] } Lk, (5.5.10)

Multiplying both sides of equation (5.5.10) by k%, we have the magnetic energy
spectrum function E,, = 2717’(2((//,-(//']-) and then we obtain

L,

a1 + 22 Epy =0 | (5.5.11)

where, G is the magnetic energy transfer term and is given by

o] .
' € it §2
G=~—(l—5—°l—) I(k3k'5 —kSk'3Iexp{— A=+ Py WK+ k'2) = 2Py kK 4 2 =
Vi =1y
0
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s
_A —exp{—l(r—ro)[(l-i- Py k% + k') + 2P,‘,kk’+25—’1’~""—2’1'_~£] }
A p)

P kK (5512

Integrating equation (5.5.12) with respect to k', we have

§0PM\/7_E c Q S l
G=- 37 y %7 expl:_ 2 mkll m _/;1_(’ _ ’O)}
41 2(1—19)" 20+ Pyy) 2

xexp[—l(l—!o)(]_szM )sz 157, k*
L+ Py 421 —19)2(1+ Pyy)

2 2
L] 30y 2__}'_ 56 Tar Pr™ (L8
(=10) lv(1+ Py )2 2V I+ Pa) |1+ Py )2 : (5.5.13)

The series of equation (5.5.13) contains only even power of k£ and the equation

represents the transfer function arising owing to consideration of magnetic field at three-
point at a time.
It is interesting to note that il we integrate equation (5.5.13) over all wave numbers, we

find that

o0

J(ia’k =0 (5.5.14)
0

which indicating that the expression for G satisfies the condition of continuity and

homogeneity.

The linear equation (5.5.11) can be solved to give
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E,, =exp[ 42/1k2(l—f0) ]I(icxp[ 21!(2(.'—10) ](,'1

+J(kyexp[ —22k*(1-1,) ] (5.5.15)

2
where J(k) =

is a constant of integration and can be obtained as by Corrsin [17]

Substituting the value of G as given by equation (5.5.13) into equation (5.5.15), and

integrating with respect to 7, we get

Nok? Soly Jr
Em= 0 exp[ _ZMZ(’—’O) ]" 3 0 M
7

41 "(] - IU)

PA y 3k

xexp[— {2 € mkl Qm fg}(’—’o)]e‘(l’[ —k ’1( )(”"O) ][

5
2Py —’O)A;t2

1/
/ 2
TPy -6KS a0, —21’,+3) L 84720y " - 20y +3)
5

K’ N@) |
, 37 ;
A1+ Py =19) 2 30+ Pag)? (1-19)"? 31+ Py )2

(5.5.16)

@
2 2
where, N(w)=¢e~ " J."' dx =k

0

]+ Py

By seting F=0,j= i,dK = -2mk%d(cosO)dk and E, = Zfrkz(y/,y/}) in equation

(5.3.5), we get the expression for magnetic cnergy decay law as

(h I Gilyy

IF"’dk - (5.5.17)
0
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On subslitution of equation (5.5.16) and subsequent integration with respect to k leads to

the result

_3/
Wiy Noll—tq) 72 : =2
- O(yO) enpl-(2 iy - )] 2000 10)
8472 2 428(1+ Py )1+ 2Py)

of 24 5P (P =6) 35y (31 -—2PM +3),
16 16(1+2Py,) 8(1+ 2Py )>

. 8 (3P, —2PM +3) Z 135,000 (2n+9)
3. 2 +20,) m2n+ 022" (14 Py )"

or,
(hihi) N )"%
11 -1 -
D0 SN0 explof2 € g QSN0 QU 1)
8472 Jon (4.5.18)
where

0= Fia [_ 5 PA-f(7PM“6)_3_5PM(3PMZ_2PM+3)+ ...... ]
: .
(4P, )1+2p,)5 1616 1v2n, 8 (+2p)

Thus, the decay law for magnetic energy fluctuation of dusty fluid MIID turbulence in a

rotating system before the final period may be written as

3
<h2) =X(t~19) 2 +exp[~{2 €, Qp — ST ”’0)-5' . | (4.5.19)
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5.6. CONCLUDING RERARKS

The first term in the right side of equation (5.5.19) corresponds to the magnetic energy
for two-point correlation and the second term represent magnetic energy for the three-
point correlation. The term associated with the three-poiﬁt correlation die out faster than
the two-point correlation term. For large times, the last term in the equation becomes
negligible, leaving the —3/2 power decay law for the {inal period.

This study shows that for a given magnetic f{ield fluctuation .of dusty fluid turbulence in a
rotating syste.m, the energy decays more slowly than the ellérgy of velocity fluctuation of
dusty fluid turbulence in a rotating system which are obtained in part A of this chapter.

If we consider non-rotating clean fluid, equation (5.5.19) will be reduced to Sarker and
Kishore {91]. If the effect of dust particle is not taken in to account, the result will be

completely same with the result obtained by Kishore and Upathdyay [49].



CHAPTER -Vi

PART- A

DISTRIBUTION FUNCTION IN THE STATISTICAL THEORY OF
TURBULENCE FOR VELOCITY AND CONCENTRATION UNDERGOING A

FIRST ORDER REACTION.

6.1. INTRODUCTION

The starting points for modern studies of kinetic theory are the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) equations. These arc a coupled infinite hierarchy of equations
for multi-particle distribution functions, which are obtained by integrating the Liouville
equation over some of the variables. Two major and distinct areas of investigation in non-
equilibrium statistical mechanics are the kinetic theory of gases and the statistical theory
of fluid turbulence. Various analytical theories in the statistical theory of turbulence have
been discussed in the past by -Hopf [35], Kraichanan [51]), Edward [2¢] and Herring [33].
Lundgren [58] derived hierarchy of coupled equations for multi-point turbulent velocity
distributions in the statistical theory of turbulence that resemble with BBGKY hierarchy

of equations in the kinetic theory of gases. Pope [81] considered the probability density

function for the instantaneous composition of reacting mixture of gases. Kishore and

Singh |40,42] derived transport equation for the bivariate joint distribution function of

i i : ion in convective turbulent
velocity, temperature and velocity, temperature and concentration

flow respectively.
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In the following, we have defined the distribution functions for the simultaneous velocity
and concentrations of dilute contaminant undergoing a first order chemical reaction and
derived the equations for evolution of distribution functions. These equations are similar

to the BBGKY equation in structure.

6.2. FUNDAMENTAL EQUATIONS
The equation of motion for viscous, incompressible turbulent flow [58] and field equation

of concentration undergoing a first order chemical reaction [52] are given by

611(r l)
I 1J‘ ° fulx, o

+
ot 6x Ox 4x

'z’x’+v—a——a~u . 6.2.1)
lx - X ‘ Ox Ox

€L _p2lc_pe | (6.2.2)
ar  ox  oxox

-0 (6.2.3)

where u is the fluctuating velocity component, v is the kinematic viscosity, C is the
fluctuation of concentration, D is the diffusive cocllicient of contaminant, R is the

constant reaction fate. u and x are the vectors in the whole process of this part.

6.3. DISTRIBUTION FUNCTIONS AND SOME OF THEIR PROPERTIES

. : ; ation in terms of
We define now the joint distribution function of velocily and concentration n

- (1 (1) )y : that
Dirac-Delta functions. The one point distribution. 1! ) g1y s definodsuch th
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_/'l(l)(v(l),¢(]))a’v(l)d¢(l) is the probability that the fluid velocity and concentration at a
time 1 are in the element dv{ about vV and dqb“) about ¢(') and is given by

fl(')(x(]),v(‘),(ﬁ(”,t) = (5 ( RO ‘,(')) y ((,‘(l),q}(”)). | (6.3.1)
Similarly, the twlo—poinl distribution function is given by

1.2
AP OO g0 0 ,0) 40y

5 (1D =Dy 5 (O M5 D g5 c@D _ gDy (632)

And so on, an infinite number of multi-point distribution functions f3(|’2’3), 4(]’2’3’4)elc.

can be defined.
The following properties of the constructed distribution functions can be deduced from

the above definitions.

6.3.1. REDUCTION PROPERTY

Integration with respect to pair of variables at one point lowers the order of distribution

by one

S =

' 1‘2
7349

L

dv(2)n'¢(2) _ ./-‘(I)

.-f3(1,2,3)d‘,(3)d¢(3) =f2(l’2)

educ wmber of
and so on. Also integration with respect to any one of the variablcs reduces the 1

Delta-functions in the distribution by one
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j fl(l)dv(‘) - ((S(C'(l) _¢(i))>,

J‘ £ 0dg® = (s —vD))
and

J‘fzu.md¢(2) =D v MM = M5 @@ D)y,

J"fz(l’z)d\,(z) = <5(“(|) _\,(|))5((_'(‘) -—q’)“))(S(C(Z) _¢(2)» o

6.3.2. SEPARATION PROPERTY

I two points are far apart {from each other than the pair of variables at these points should

be statistically independent of cach other i.e.,

Iim

7D = 407

x(z) —.r(l)l——)oo

and similarly

(1.2,3) _ ~(1.2)
13 = ]
-0

. (3
| f777, and so on.
M@y |

L3 _.2)

6.3.3. COINCIDENCE PROPERTY

When two points coincide in a flow ficld, the components at these points should be

o 2) _ 4
obviously the same, that is 2("2) must be zero unless y(@ = v and ¢( =¢ . But

,/'2("2) must also have the property
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J' J‘ D@y gy - O

and, hence, it follows that

: 1,2 1

lllnx(z) —)_\-(l) f2( ) = fl( )5(‘;(2) — 1,“))5(¢(2) _¢('))
and similarly,

. 1,2 )
llmx(3)_)x(|) f3( -2:3) =f2(] 2)5(\:(3) —\r(‘))5(¢(3) ——¢(|)) , elc.

6.4. CONTONUITY EQUATIONS EXPRESSED IN TERMS OF DISTRIBUTION

FUNCTION
An infinite number of continuily equations can be derived which will be satisfied for the

initial values of distribution functions. These can be derived directly from divu=0.

Taking the ensemble average of this equation gives

0=<_._a(!) u(l))_—_(%u(‘) _[ J' f‘(l)a’v“)d¢('))=~% Jv(‘)_/'lmdv(')dqb('). (6.4.1)
ox X ov

. . i .
Similarly, multiplying the continuity equation by 5(u(2) ~viys (C 2) ¢( )) and taking

ensemble average, one obtains

. 0
0 — ((5(1/(2) _ 1,(2))6(('(2) __¢2))__i__”(”>
ax(

= ‘20 (5@ —vM)5c® - POy
Ox

é - - (2) _ 42)
h_a(_ﬁ- ,” <”“) (”(]) "(”)‘5((7(” ¢'m)§(u(2) \:(2))(5((_( ) ~ M)
Ox
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== “ O 702 g Magh (6.4.2)

The N-th order continuity equahon is given in similar way -

- J‘_[v(a)fﬁ(,'*z’ ------ M@ g o (6.4.3)
Ox

The continuity equations are symmetric in their arguments, i.e.,

<(3a) ”v(a)f}gl,z, ...... M) (@) g gt
Ox

- (,B) J.\,(ﬁ)/r(lz ------ N)dv(ﬁ)d¢(/f’) (6.4.4)
ox

Since the divergence property is an important property and it is easily verified by the use

of the property of distribution function as
0 M (12) 3 0 ) 9 oy, 8 )y 6.4.5
. Hv 73 Vagh = ) = ) =0 (6.4.5)

and all the properties of the distribution function obtained in sec. (3) can also be easily

verified.

6.5. EQUATION FOR EVOLUTION OF BIVARIATE DISTRIBUTION

FUNCTION

The equation for bivariate distribution function is obtained from the definition of the

constructed distribution function and equations, (6.2.1), (6.2.2) and (6.2.3). If we

differentiate equation (6.2.1) partially with respect to time, we get

@)
fo 3 @® —vMa D -
(4 !
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=D - ¢(1))§{5(“(n Oy 4 s - 1,(l))g’;{é(c(n) OIS

61: D

- (*J(C(‘) ¢(|))
av(

M _,Mm
b -—d(u )

('))aL(])_a__

scM—_ghyy  (65.1)
a¢(1)

+ (—5(11(]) -V

() ac®

Now substitutiﬁg the values of 661 and 5 from equation (6.2.1) and (6.2.2) in

equation (6.41), we get

af(” an
(1) _ 4,0 M _ M
——+(=8(C0 - gDy arﬁa(')é(” )
(=5 @ =y 0y oc!) 5™ Z g0y

Y0} a¢(1)

o 4 2,2

() _ gy 0 1 e a® @2 50,0 0y
+<5(C ¢ )[ ax(l){4ﬂ' |x(l)_x(2)| } (|) (ll )]
W _4My, 8 8 m 9 M _ M
OO =g (57556 O
0 1y _ ()
M _,Mm c® c )
+(6(u YD(—~ (,) ax(') )— ¢ S(CY ¢
+{(~5® - (l))R ch_2_ 5((3(1) ¢(‘))> 0 . (6.5.2)
1 o

nd
: erm
Various terms in equation (6.5.2) can be reduced onc at a time. for example, the 2™ t

on the left hand side of the equation is simplificd as
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s _ g0y, 0y »(0
O R avm‘j(" »
= (=5 = g1y, M —‘?—ﬁ(u(') —v(Dyy (6.5.3)
ax
Similarly 3" (crm can be simplificd as
ac
(5™ - (1))1 M - T _see® Z M
ax(l) a¢(') —D
= (s - (l))u(])a ~s(cM —gWy (6.5.4)
e

Now adding equation (6.4.3) and (6.4.4). we get

(—5((;(1)_¢(I)),_,(1)j__5(,,(l)_,,(l)))+((5(u(l)_v(i))u(i)_g_a(c(l)_¢(1)»
ax (! PY0)

—<u“)>< (5(:4(” vse® — gy (6.5.5)

The 4" term in equation (6.5.2) can be simplified in such a way

o 0 (2)1,(2)

WMy 0 1 6v(2)‘6t() (2 s _ ()
@ =T ’(” o Gy -

- (2 s —
;9_\;6)“ dr .[.Ua\‘ l).(” .\'2 i O\(z)) (=)

% 5(C(') _¢(|)){g(”(2) _ ‘.(?-))(3-(( (2) _ ¢2)))(i\‘(z)dl’(z)d(ﬁ(z)]

— 0 1___ J.J.J- _5_ . 1 ,,__(\,(2) . ‘?__) f(l z)dr(z)dv(z)dqﬁ(z)_l. (6.5.6)
IR R PNCINCIE D

The viscous term can be simplified as
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m_,m
PNGIPND T, D) o(u vy

(€D My

0 & 0 '
= av() lim +(2) M "5’727‘6'-(7)'<H(2))5(11(‘) —visc M — gy
X X

-9y 0 2) (L2) ;(2) 142
ol M 2) Y 2@ ax(2) ” 2 i )d¢( ) (6.5.7)

The dilfusive term can be simplified similarly, i.e.,

0 C'(l)) 0

0 _ 40
2 5 om0

<5(”(l) - v(l))D(

9 0 @) £0.2) 1,2 452
a¢(l)lxm() 0P e (2) '[¢ 7004,y (6.5.8)

And the reaction term can be simplified as

0 :
(-5® —yr c® o) PREQIPION

(|)< 5("(1) (U)C(HS(( (1) ¢(’) )= - R¢(l) ¢ f(l) (6.5.9)
o¢

Now summing up the whole process. the cquation for the one point distribution function

fl(]) is obtained as

G/IU) L0 (?/l(l) ) 3 [_‘1_ JIJ" é_____,_l_,_ ____(\,(2) __?__)2
ot " Ox 0] o) 4n oV ‘x(]) —.\‘(2)‘ ox'2)

d o (@ (1.2) 4,y 2
><f(l 2)(1\(2)d\,(2)d¢(7')+hm N BN O RN o %) 6x(2) .” f g

. 9 ”( @) 702 4D g
gm0 P e 7\(2) |
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—rp 2700 | (6.5.10)

Similarly, an equation for two points bivariate distribution function /( 2) can be derived

by differentiating equation (6.3.2), and by use of equations, (6.2.1) and (6.2.2) and

simplifying in the same manner written as

(1,2)
U2 2 @ 8 e, 2 1 ] F——
Ca oD PNe) PG ax(')\x“)—x(?)\

x (v 02 (12D DanDig® him 5y 69

(3)) {050 5 )

><!J.v(3)f3“’2’3)dv(3)d¢(3)}+-—?(—l-)—lim & . D- o __0 '”'g,,(3)f3(l,2,3)dv(3)d¢(3)

¢ x\ s x 1 ox (3) Bx 3)
) (12.3) 4 (3)dv(3)d 3)
ap(Z) -[”a\(") Q) _ ml( PNE ) /3 * 7]
i a D (123) 1 (3) 5 4(3)
MO L@ YL e ” Sy A ¢ 2y Im ), @

0 (1.2
(3) (3) J..[ ¢(3) f(l 2 ? {"’(1)d¢1) R(¢(” ¢ ¢(2) AN )/2( ) =90
ar Ox

(6.5.11)

(!, 23) (1.2,3,4)
This process can be continued o oblam equations for /3 14 and so on.

Logically it is possible to have an equation for every fy (N is an integral value), but the

syslem of equation so obtain are not closed. It seems that certain approximation will b?

required for the closure of the system of equations thus obtained.
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6.6. DISCUSSION AND CONCLUTION
Firstly, we can show an analogy the equations derived above with the equation BBGKY

hierarchy in the kinetic theory of gascs. The first equation of BBGKY hierarchy is given

as [109]

oV oy, 4D |
ﬁﬂ(l)+L‘,g) Hhoo_, ” Viz U3 @@ (6.6.1)
ot 6.\‘9) avg)

m axg)

where /)5 = r//(lvc(xz) - vg)l) is intermolecular potential energy. If we drop the viscous,

diffusive and constant rcaction rate terms from our one point hierarchy, it strongly

resembles with the above BBGKY hierarchy.



CHAPTER-VI

PART-B

DISTRIBUTION FUNCTIONS IN THE STATISTICAL THEORY OF MHD
TURBULENCE FOR VELOCITY AND CONCENTRATION UNDERGOING

A FIRST ORDER REACTION

6.1 INTRODUCTION

Kishore [39] studicd the distribution functions “in the statistical theory of MIID
turbulence. He has made an attempt for defining a hierarchy of distribution functions
for the simultaneous velocity and magnetic fields. Dixit and Upadhyay {25] studied
the same problem of Kishore [39] in the presence of coriolis force. In the next, Sarker
and Kishore [83] studied the distribution functions in ‘the statistical theory of
conveclive MHD turbulence. Beside these, there are also other theories already

discussed in part-A of this chapter.

In the following, an attempt is made for defining the distribution functions for the

simultaneous velocity, magnetic and concentration fields in MHD turbulence and

derives the equations for evolution of distribution functions. These equations are

similar to the BBGKY equations in structure.
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6.2. FUNDAMENTAL EQUATIONS

The equation of motion for viscous. incompressible MHD turbulent flow [13] and

field equation of concentration undergoing a first order chemical reaction [52] are

given by
du, o oW | '
-a—t—+5x;(uauﬂ —hahﬁ)z —5-\;(?+VV U, (6.2.1)
oh %,
_alg +’a§;(h“" 5~ tigh ﬂ)= Av2h, (62.2)
Q_C_-}-u £=DV2C_RC 623
o ong (6:23)
and
g”ﬂ = —a—]?g =0 ’
Ox, Ox, (©29

where u,, a- component of turbulent velocity; h,. - component of magnetic .

field; C’, concentration field; W = p, + p;,, stands for the generalized pressure; p,,
hydrodynamic pressure divided by fluid density p; py, =1/2(112), MHD pressure;
v, kinematic viscosily; A.magnetic diffusivty =(47r;10‘)"1; o, electrical
conductivity; u .l magnetic permeability; D, diffusive coefficient of contaminant; R

constant reaction rate.

. . HnMin: ith the
The total pressure W which occurs in equation (6.2.1) may be eliminated with

' H 3y Ty alt VAN —-ViZ..
help of the equation obtained by taking the divergence of equation (6.2.1}
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Vi = —i(uauﬂ ~ hah/;): -

Ox, 0x

duy Oup o, Ohg
Oxg Oxg  Oxg Oxg | . (6.2.5)

In a conducting infinite fluid only the particular solution of the resuiting equation

(6.2.5) is refevant, and so we have

L ouy 2up o ahb} i’

3 EE AT A (6:2.6)
and hence, equation (6.2.1) becomes
a ] a ] a]' '1' N
ou,, N 0 (”a”ﬁ _hahﬁ):“"‘l“ 3, Uglllp 100hg | dx
o oxg A7 Oxy J) Oxglxy  Oxpoxg ||X — x|
+ VVZI;l -
a (6.2.7)

6.3. FORMULATION OF TIIE PROBLEM

Here we consider a large ensemble of identical incompressible reacting fluid in
turbulent state. We also consider the turbulence and the concentration fields are
homogeneous, the chemical reaction and the local mass transfer have no effect on the

velocity field and the reaction rate and the diffusivity arc constant, ‘The fluid velocity

u, Alfven velocity h, and concentration field ' are randomly distributed functions
of position and time and satisfy the cquations of motion and continuity given by
equations, (6.2.1)-(6.2.4). The only difference between members of the ensemble are

the initial conditions that vary [rom member 1o member and our aim is to find a way

by which we can determine the cnsemble average at the initial time. In this regard, our

A . o e e tyroneric lerive
present aim is (o construct the distibution functions, study its propertics and d

the equation for the cvolution of these distribution functions.
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6.4. DISTRIBUTION FUNCTIONS AND THEIR PROPERTIES

We may consider the fluid velocity i, Alfven velocily i and concentration
fluctuation C at each point of the flow ficld in MHD turbulent flow. Corresponding

to each point of the flow field, we have threc measurable characters: v, g and ¢ and

2)

denote the pairs of these three variables at the points x(V x@& .  x(M g

(v(l),g(|),¢(l)),(v(z),g(z),gﬁ(z)), ....... (\!("),g("),¢("))al the fixed instant of time. It
is possible that the same pairs may occur more than once, therefore we simplify the
problem by mak'ing use of the assumption that the distribution is discrete (in the sense
that no pairs occur more then once). Symbolically we can express the distribution as

_ (v(l),g(l),¢(l)),(v(2),g(2),¢(2)), _________ ,(\,(")’g("),¢(n)).
The distribution functions of the fluid velocity, the Alfven velocity and concentration

field can be defined in terms of Dirac delta-functions.

The one point distribution function I"l(”(v“),g“),yi(”) is defined in such a way that

FI(])(V(]),g(!),(p(‘))dv(l)dg(l)dqﬁ“)is the probability that the fluid velocity, Alfven

. : : Q) M
velocity and concentration field at a time f are mn the clement dv’ about v,

dg(l) about g(l), d¢(l) about ¢(”. respectively; and is given as

6.4.1
FI(')(V(I),g(]),¢(I))=<(5(N(l) _‘,(l))(s(h(l) _g(l))(g(('ﬂ) ~¢(I)) ( )

and two point distribution function is given by

Lol 1))
FO M o0 g0 - (50,0 s g Myse® gy

2 5@ —y5h@ - g3 =47 (6.42)
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Similarly, we can an infinite number of multi point distribution functions F3“’2’3),

F4(]’2’3’4) , elc.

The distribution functions so constructed have the foilowing properties:

6.4.1. REDUCTION PROPERTY
Integrating with respect to pairs of variables at one point lowers the order of

distribution function by one, for example,

J-J.J.Fl(])dv(l)dg(])a'gé(i) =1

“ IFQ("Z)dv(z)dg(z)dgzi(z) =AM e

Also integration with respect to any one of the variables reduces the number of delta-

functions in the distribution function by one as

(7 Oav® = (5D = gD)s D - gDy,

(1 Vg O = (5D — Dy = g,

(7040 = (500 —vM)s® - gy

and

.[F'“'z)""(z) = 5w® vt = gMysc M)

(5P - g@ia @ -, ete

6.4.2. SEPARATION PROPERTY

ach other in the flow ficld. the pairs of variables al

If two points are far apart from ¢

these points are statistically independent of each other —1.€.,
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lim 70D - 0@

D540,

and similarly,

lim ﬁ'3("213) = ];'1(1,2)[,-'(3)_

— o

NONNNG! ete.

RONe)

6.4.3. COINCIDENCE PROPERTY

When two points coincide in a flow field, the components at these points should be

obviously the same, that is Fz("z) must be zero unless v(2) = v('), g(z) = g('),and

¢(2) =¢(D, but Fz(l‘z) must also have the property

J‘ J' J' 1Dty gg D g _ )

and, hence, it follows that

: (2 (D) g (2) D g‘,(Z)RJ(I) S(4(2) _ (1))_
hmx(z)_”(” 2 o0 )O(g g O ¢

Similarly,

3 |
lim 3 F3(|,2,3) : F.2(1.2)5(‘,(3) —vMs(e® — gMys(g ) _ My,
X —X

6.5. CONTINUITY EQUATIONS EXPRESSED IN TERMS OF THE

DISTRIBUTION FUNCTION
An infinite number of continuity equations can be derived for the convective MHD
turbulence, which will be satisficd for the initial values of distribution functions and

\ " equation (6.2.4), we
are obtained directly by div i = 0. Taking enscmble average of equation (6.2.4)

have
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au(')
0= " ”‘J,(n RUFRUFAUN
<6r(l)> ax

,__(_])_ ” Dy Dyt g g

4 [
== J’J‘ VD ED M g D g0
Yoy

F O
_ ”.[’3 DOt Vg
Oxy

and, similarly,

()
0= ”F . ROFRCPRUNMG

118

(6.5.1)

(6.5.2)

which are the first-order continuity cquation in which only one point distribution

function is involved. In a similar way, second-order continuity equations can be

derived and are formed to be

EQ(W J.J.ng)ﬁél‘z)dv(])dg(”u’(]}”) =0
xa

and

o ” 0 F0D 4D W™ = 0
P |

The Nth order continuity equations arc

and

_9 ”jg,(,')F,f,]‘z'"'“N)clv(')(/.amdcb“) ~0
ax,(,”

The continuity equations arc symmelric in then

v arguments -i.€..

(6.5.3)

(6.5.4)

(6.5.5)

(6.5.6)
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a_zl)_ J’J (,)I—(iz ...... r, N){ (") g ) g ) =
X

0 J‘ (5) ~(1.20r 5, N) 5 (5) 5 (5) 5 4(5)
= | e e ) ) g (5D g g8
ar("‘)j La I'N" dg*d¢ (6.5.7).

Since the divergence property is an important property and it is easily verified by the

use of the property of distribution as

0 ) 1) 1 (1) g (1) 4 (1) N _ o)
— d =_ L ) _a N—(-

and all the properties of the distribution function obtained in section (6.4) can also be

easily verified. |

6.6 EQUATION FOR EVOLUTION OF DISTRIBUTION FUNCTION

The equations for distribution function are obtained from the definition of the
constructed distribution functions and use of the equations, (6.2.2), (6.2.3) and (6.2.7).
Il we differentiate equation (6.4.1) partially with respect to time, we get

or"

= 6(5(14(” Vs HD - g Myse™ -p))
!

or

or(" 5
—L =" - g(l))5(c(l) —¢My 5 s =Dy

+(6w —vMsc® -'qs(‘))a%(wh(” ~gMy

+(§(H(|) - p(|))§(h(|) - g“)) 3’ {5‘(('(]) _ ¢(”)>
(
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au() 0

m _ .M
av(l) ——0(i vy

=<_5(],(1) (l))é(c(l) ¢('))

(1))@'_() 0

m _ (l) :
S0 )

+(~5@® —vMy5cM ¢

0(,'( )
+(—5(u(')—v(l))5(h(])—g(l))-——bl- sV —¢My (6.6.1)

a¢(')

If we use equations, (6.2.2), (6.2.3) and (6.2.7) in equation (6.6.1), we have

-() M, (0 00
O _ Con® _ gy _ g0y 2ot Pa by’ 1 o
of avg) axg) 4 Bxg)
1 1 | 1
ououy) oA | gy sy 0 (5(:,(!)_1,(1))>
Bxg)axg) arg)ar“) lX—“ av“)
- D ouQn§)
' i I |
+ =80 —vMsc® - pMy(- |ﬂ + (”” + vy (1)5("() gy
a\’%) 8.\'ﬂ
()
N _ L0 h oC (1) A1 _ 40
(6@ o5 M - gy -n§ i VI }a¢(‘)§(( -4y,
*p
or
(0,
o) . ety oy
3= (0 - g MoV =g =y ST Y
/i )
O p
an'ny 5
, 1 a g 0 o ()_ 0N
+(——(5(h(l) —g(” Yo (C M —¢( ))—*gﬁj—" 0 S(u »
5 , ]
] ,
; au(”au%) Dh(')ah;; e

(M _ oMy s — N DA [l -
+(@(hD - gy - ¢ )4 SO PR a\fga\ =



Chapter VI, Part B . - 121

xwi__(j'(”(l) __‘,(f)» + (-—(5(/1(” _ g(l))(g(('(l) ~¢(”)VV2M((1|) ____a ; (?(II(I) _ v(')))
avi) oy

oh (UH(I) '
“h 0 S(h1 — g(Dyy

+(5( N _‘,(l))é ¢ ¢(|))
ﬂrg) ag(

a u“)h(l)

+{=5) - v(l))cS'(C(') gy A

2 sl _ g
O IR %
ﬂ .

2
+<_(5‘(”(|)___,‘;(I))é‘((l'(l)_qﬁ(l))/lv ,1((11)%5(,1(1)_g(r))>
_ 2

R0
(S —vys™M _ f”),g’ o m(g(((n MO
ox'y) o

(=80 =y D)5 rM _ o) py2 My 9 S8 - gy
op"

d :
+(_(5(,,(l) - ‘,(l))(g(/,(i) —g(”)R(‘ .(l)},_q(]_)_ 5(()(0 _¢(|))>‘
9 (6.6.2)

Various terms in equation (6.6.2) can be siplified as that they may be expressed in

terms of one point and two point distribution functions. For example, the first term on

the right -hand side of the equation is simplificd as

(h (1)
(')Hn H/} L 5(Hu) "(I)»
)

S - gMyscM - gy (,

(')
N p

h a (h_ (0
= (s - gDz - ) “, L S0 »
Vo ‘/,‘

(Since Out(zl) /61'((1” =)
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= (-5(n D - gD - gyl 9 Toa -0,

“p (6.6.3)

Similarly, the 5" and 8" terms on the right-hand side of equation (6.6.2) can reduce as
y g ]

r')h(”u(
L9510 - g0y
o) 0D

(5(11(') (I))(5(C(]) ¢(]))

_ RO NP Dy, () 0 h_ 0
= (=6 —vM5( W - a—-T‘W'( ) -gMy) (6.6.4)

and

g0y ac o

(1) A
ov /7 o¢

&M —yMysH® _ s(c? ¢(')))

= (-8 - v - g1y -% s - gy, (6.6.5)
GAY ‘
A

If we add equatibns, (6.6.3), (6.6.4) and (6.6.5), we get

=(—(5(h(l) (‘))(S(C(l) ¢(|))“(|)_ (g(”(l) v(l)))

hH
2y

ECENUIPIEG ¢<”>~(” 2_ s —gMy)
ﬂ.\ﬁ)

Dy, M (1) _ 4
+<-6(ll(t) — v“))(')‘(li(]) —‘g( )) (ﬂ (l) S(C ¢ ))

ar/,.
o)
Dyser() _ gD __,)
— )y 2 (]){5(,,(1) v - g =g = v a.fa” (6.6.6)
g

. { { * equation (6.6.2) can be simplified
Similarly, the 2" and 6™ terms on the right-hand of equation (6.6.2)

as
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/(Uh(l)
! .
=6(hM = gMys ™ g0y nﬂ' 0 S _ ‘,m»
"\;}) ﬁ\(l)
m ag(l) or; -(1)
—&p ! 1
ol m},) : (6.6.7)
and
) 6v(” 01‘“)
= gﬂ V_._..*__-. .
(h A
08 Ox | (6.6.8)

We can reduce the 4™ term

=8N = gMysc® gy m2, 0 Om S -y

ov

-V 0 (Vzu(l)(‘i(u(]) ('))(9(12“)—,Q(”)ﬁ(('m“w”))

av(])
d 82 B I | D) i i 1
= '—V; —(]—j* E)—E])a m (II( {(S(N( ) - ‘l"( ))(S(h( —‘L’( ))(5‘(('( ) —¢( ))}>
C 1’ \q
p
) ‘
= -y b—-zisﬁlilnr(z) )‘([ (2)6 (2)- (”(2)((5(11(1) - \'(I))(S(/J‘”) _g(”)(S(('(') ,_.¢(|))}>
Vey e Ov Ry :
92 2 2 (@) (2) ()
=_Va_éz'“)"”" LN o <UI 1D x 5@® — vt - g e ® - g
v ox
ﬂ Il

) (2
v 5" =+ Msin - gMse® -_¢“’))m-(2)¢g(~’d¢( )

C a2
=-v O i (2)_, () — ”," W2 el D D)
gl x P ar}f’ax},” - (6.6.9)

Similarly, 7" and 9" terms of equation (6.0.2) reduce to
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o . 3,12, (2 3
=-A —"Il“)— |ll]lx(2)“>x( -(’2—)— (*23 J-JJ‘ ‘ )] v €2) i (2 )¢( )
%a p (6.6.10)

0 (2) - (L2) 5 (2) , (2} 4(2)
=-D—" (2) -Uj‘qﬁ I " dy ™ dg "
i - z) 2)
¢() )\‘ ( a () . (6_6_11)

Now, the 3 term of the equation (0.6.2) reduces to

S, (D5 (0 DPYR(
2 au,(,)au(ﬂ) alré)ahg)

-((5(11(') (I))é(C(l) ¢(‘)) —
o) Y e aPad)

DS T ) BRI
,x ~ x| a‘,(l)

(25,2 5,(2)5,(D)
-2 [‘1—”” 0 (L ey e %
6v((z') Ax a\'((zl) ‘x(z)mx(')‘ aY(ﬁz)a‘(f(zz) a";;z )axr(zZ)

o F‘U 2)(3’\ (z)d\!(z)c?'g(z)(f¢5(2) _ (6:6.12)

And, the last term of the equation (6.6.2) reduces (o

(0@ =y - gMyre D (7(i_) S - gy

o

—_pa® ---1"(”
o ap ! (6.6.13)

Now, summing up the whole process. the cquation for the onc potnt distribution
]

function Fl(l)(v,g,qﬁ) is obtained as

(D
a]“(l) W ar() ) 0!-,’( ) (‘) ( ) ﬂl
"’“—— + v

d )
+8 | b
a P 32) A g ’)Q() a\;
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m,( )“%2) ()0, (2)

7 (1.2) ; (2) » (2) 5. (2) 4 4(2)
f'
(2)(1 ( ) 0\’}}2)(_)‘( ) de'“'dviildg \“dg

0 o

av 1) an J‘.”.“m(l) I (2) (nl

i

0 9° 2) ~(1.2) , (2
tv—lim o) — J‘J.J’v&)p‘z(' ) g D g
i Oxjp Oxp

o .. 52 '
+ Al - (D) (12) 5 (2) , (2) ((2)
gl R ax(ﬂz)ax(ﬁz) J.” 8a 15 " dvidg ¢

9y 2 (12) 1 () () 2)
+D—lim (5 g (2),6)_ ”I #2 D gy D) g g (2)

o4y
_Rg® %R _g
a¢(|) l ’

(6.6.14)
1.2)

Similarly, an equation for two-point distribution lunction 13‘.,(‘ can be derived by

differentiating equation (6.4.2) and use of equations, (6.2.2), (6.2.3) and (6.2.7 and

simplifying in the same manner writlen as

12
oy ) @0 i 0 o8y a"é” 9 02
I IR U M T M TRLE Y AT () 2

ot ax(ﬂ) ox ﬁb My Og' Ox y;

2

(2) gc(zz) avé ) d (.2 _ #ﬁ" _I | (7 ]_ -
+85°( ) I I (

ﬂ 6‘1(2) (7\ (l)

2
ag(z) ar(ﬁz) ol dz

(3)5,3 (3) e (
g Ovy' 08a 0Rp 302 )3 gg D i ) - ot j J‘J‘--‘?-«-

x( 33 3, () ' 4 axt?
POPHORPROFNE Mgy "y
s a I
3}5,(3) (E) e
[ Bv( )ﬂ\ﬂ Ra pﬁ/; [’.(1_2‘_1)“,x(_l)(h.(l)”:lq(.?.)(w,(-‘)_|

lis) (2)’ ar(J)arts) avﬁ)ﬁ\u 3
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62
(D )Mh’
X (3)5.(3)
Gxﬂ ax/]

o .
+ V(H—-—l—"lllll 3) (1 + 0 lim (3)
a‘,g:) x\ avé?) X

”"[‘,(3)1*” 23 gy (3)dg(3)d¢m I—l( I|m (3 (|)+—--a(~27)--[im 3) ()
a aga XN —ax

- (3 7(12.3) 5(3) 5,(3) 54(3) J .
8x}]3)6x(3) '”g F v dg d¢ H’(—_—qia lim (3 "()+6¢},2) Ilmx(3)_”(”)

(3) G Jjjtﬁa 1"_“ 2033 4 3 g — R al Fl(l) 0.
6\1 a¢( )
: (6.6.15)

Containing this way we can derive the equations of 1”(] 23) F(l 234)

Logically, it is possible to have an equation for every [, (n is an integer) but the

system of equations so obtained arc not closed. It seems that certain approximations

will be required for the closure of the system of equations thus obtained.
6.7. DISCUSSION AND CONCLUSION

The first equation of BBGKY hierarchy in the kinctic theory of gases given by Ta-

You Wu [102] as

a1, (l)afl J‘J’_a'/’lz he ,{\,(2)(,‘,(2> (6.7.1)

o m ha ay(l) é—m 0\(1)

Where yry 9 = ( vc(zz)—w(zl)l)is intermolecular potential energy. If we drop the

. ) e el s cncti rms from our
viscous, magnetic and contaminant diffusive and constant reaction term

one-point hierarchy equation (6.6.14). we have
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~(1) (1) (1

91——-‘1——--{-1’(‘)_8_1-"*_ (l)(____fl) a\(” E)I’() a —l--X
or A Oxg) Ov(l) 01:“) 7\([:) (')\-((,,]) 4r
,(2) A L(2)4(2)
J-J-J-J- ‘ 61 01/, l";, ng_[; )l'“’) i\(z) e (2) 11(2)d¢(2)
ax(” ' (2) (|), D‘(Z)j (2 - ;2)nr(2) ¢ vy
=() ' (6.7.2)

which strongly resembles with equation (6.7.1) in BBGKY hicrarchy. The existence

of the term

5‘,(” (l)

can be explained on the basis that (wo characteristics of the flow ficld arc related to
each other and describe the interaction between two modes(velocity and magnetic) at

a single point.-
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EFFECT OF VERY STRONG MAGNETIC FIELD ON ACCELERATION
COVARIANCE IN MHD TURBULENCE OF DUSTY FLUID IN A ROTATING

SYSTEM.

7.1 INTRODUCTION

Taylor [104] pointed out that the equation of motion of turbulence relates the pressure
gradient and acceleration of-the fluid particles and that the mean-square acceleration can
be determined from the observation c;f the diffusion of the marked fluid particles. The
behavior of dust particles in a turbulent flow depends on the concentration and size of the
particles with respect to scale of turbulent fluid. A good deal of theorctical studies of
MHD turbulent has been made during last fiftecn years. Some authors (e.g. Ohji, [71])
have considered MITD turbulence in the absence of an external magnetic field in order to
gain a basic underslanding of a half adjusting process of the mechanical and magnelic

mode of turbulence. The essential effect in presence of an imposed magnetic ficld is that

the mechanical and magnetic mode of turbulence interacts not only with each other

through the seif-adjusting process but also with external magnetic field. If the external

magnetic field is very strong, the cffect of the later interaction will prcdommuncc that of

the self-adjusting process. Ohji [71] presented a first order theory of turbulence of an

. Hor ic ficld which is so
electrically conducting fluid in the presence of a uniform magnctic fic
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strong that the non-linear mechanism as well as the dissipation terms are of minor
important when comparing with the external coupling terms. Ohji [72], discussed the
effect of a very strong uniform magnetic ficld on incompressible MHD turbulence in
presence of a constant angular vel:'ocily and [1all effect. Kishore and Dixit {44] studied the
effect of a uniform magnetic field on acceleration covariance in MID turbulence. Dixit
[23] discussed the effect of uniform magnetic ficld on acceleration covariance in MHD
dusty fluid turbulence. .
In this paper, we have discussed the effcet of a strong magnetic field on acceleration
covariance in MLID turbulence of dusty fluid in a rotating system. Due to rotation,

coriolis force is produced which plays an important role in a rotating system of turbulent

flow, while the centrifugal force with the potential is incorporated into the pressure.

7.2. FUNDAMENTAL EQUATIONS
If U denotes the velocity, B the magnetic induction, P the pressure, p the density, v the

kinetic viscosily, o the conductivity and g the permeability. the MITD equation are

writlen in M. K. S. units as M. Ohji [71]

7 Sl . R
v +(U - grad)U — - (B-grad)3 =
ot .v ok

: oy B?)+ WU
- -;grad(]’ + ™ ) (7.2.1)

for the momentum, and

LI SR ] I g25 (7.2.2)
— . or — .o J ==~ % i
Py +(U - grad)B - (B grad)l -

. waentar 1iations
for the induction respectively, together with the supplementary ¢qu
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V-U=0 and V-B=0 (7.2.3).
where p, v, o and u are assumed constants.

Further, for convenient we introduce the Alfven velocity

- B |
H = T _ (7.2.4)

and the magnetic viscosity

A=—
Lo ' (7.2.5)
For a turbulent flow we can put U=U+u, H=H+h, P=P+ p
where U, Hand P are the mean values and u,» and p represents the fluctuating

components. Then, taking the statistical average (expressed by an overbar) of equations,

(7.2.1)-(7.2.3), we have

.=—%)-£:(P+§(11252)+VV2U,- 726
aa_ffu éf_k(H’U" ~U,Hy + by —ujhy) = V2, I' (72.7)
and
% _ %iii -0 (7.2.8)
i i
for the mean ficids, and subtracting these from equations (7.2.1)-(7.2.3), we get
%:i+£;(uiuk — hily )= Uy %-”k g’g‘ =
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Lo P p? 2 G ‘
== | P+ S (0 21 )+ W o, + e (e, ~ Bl ) —
p O, I- 3 U k) + VW 4 {ax]( (ujuy = hihy)
. OUi o 1 an? .
O 6xk "2 Ox; ‘ (7.2.9)
oOhi O oh; o
—+—(hjug —uihy )+ Uy —-— H, L =
a oy h & Yoy foy
a >
= ,lvzhi +{——~-(/1,-uk u; hk — Uy 91_{__ + Iy ‘21{*} (7.2:10)
Ox By ax,
and
_a_llj- _ 6/1,— —0
oy By (7.2.11)

for the fluctuating fields. Specially, if both U and H are steady, uniform and the turbulence is
spatially homogenous, the average equations, (7.2.6) and (7.2.7) are satisfied identically and it
"is seen that in the equations (7.2.9) and (7.2.10) the terms in the curly brackets vanish,

Equations, (7.2.9)-(7.2.10) becomes

ou; o ol oW 2

iU, L _-H _-—’—=————+VV U;, 7.2.12
o Uk Mg o i (7.2.12)
/s

M vy, O gy, P avt, (7.2.13)
ot a!'k atk

where W= P/p-l*-f‘[k/’lk .
Now, the equations of MHD dusty turbulence with effect of very strong magnetic field in

arotaling frame are
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o1 - . :
_i'L+Uk @'__1[ ?_/,'f_ = _61!’4 szu, _

of Oxy dxy, x;

‘ (7.2.14)
-2 € mik QmH,- +/ (l{’- - ",‘)

6/1, 6/1 a”.

—+Up —L 11, ==L = V%),

at k axk k axk h' . (7215)

and

v; v, k
—+tV, — == (v, —~y:

a Ox my (vi—~u;) 72.16)

l A . ~ . . . -
where W =P/p+ Hhy, +§|Qxx’ « I is the external applied magnetic field, <), the
angular velocity vector of a uniform rotation; #;’s and v;’s represents the turbulent

, : , 4 ,
component of velocity and magnetic field respectively. mg = 571'1?_,3,05 is the mass of a

. KN . . .
single spherical dust particle of radius R, ; f = , -, has dimension of frequency; K is

the stock resistance coefficient; N is the number density of the dust particles ; v;(%,¢) is

the fluctuating velocity of the dust particles. The third term of the right hand side of the

equation (7.2.14) represent the coriolies force which plays an important role in a rotating

System.

7.3. MATHEMATICAL MODEL OF THE PROBLEM

Let 4;(x;,r) denotes the ith component of the acceleration of fluid particles, which is

instantaneously at point P'(x; ), then
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' W'
Ai(xp,1) = Du’ au Uk~a—u—=—?—+VV ' u +
Di al an 6x,~
ah
+ Hy — =2 €y Qm“ + I‘(“ ) (7.3.1)

5.‘( k

Similarly, if A'J'-(x'j'-,

particle which is instantaneously at point P"(x';-

Al

)denote the jth component of the acceleration of another fluid

/), we can write

" L1} a] 1
Aj(xj,0) = ——+ W, u +Hy—5 -2 ey Q,,u + f(u v;) (7.3.2)
6xj : av,
Therefore,
v 2o 2, "
A,-Aj=a ey a,,v Zu " —11,(a i —a—v U
Ox;0x ; ox ; Oxgx Ox;
62 a 1 "
-H;— W'h +v V 29 u,u +v[1kV 2 — i+
8xi6x, Oxg ‘
"9 @ o 0° ,1} 6W"u;-
+VH |V o —hag + Hi Hy +2 ik Qm_é“—_
ox; . Ox0x; X j
- av‘W" 611 W oW ” oW'v;
2 ) ki Ol S +...__-——
- 2W €, Qmu,'u_, +f( ax,} axj o, ax,-_ )
2 [] n 2 ] " V 2 l. ". _ V ’211..]]".) _
Y (Vs = Vv 4 Vo ditlj = Fxt T
au'h" 6/1 u oW 'u j _

-2 € mik Q",H] —a}*—“z € i Qlly —

Xk 0

X
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Bl vl b

R R R e
axl (')X, a.\’k

; 6/1,vj .
—- Hy . Y+2] €k Qm(u,v u,uj) +21 €y Q,,(v,uj it ) +
k
+ em;k Enj[ QmQ"ll ll + f (11;11" V ”j u;,vi;_ + v:"vilj) ) (73.3)

Taking the average of the equation (7.3.3) and using the condition of spatial homogeneity

and by virtue of the solenoidal relation’s (7.2.11), W’u'}, W”u;-:, etc. do not exist. Since

the dust particles are taken as non-conducting, thercfore, h,vj, h; v =0 and assuming

that the instantaneous velocities at one point remain unaffected by the dust particles of

rn 1] t

the other points i.e. u;v;, u ;v; =0, we have

VAR AL
T 2 [ /H 2 2 — 2 —|—|—.
j -=-—a W +v? 9 0 it j — VIl S D+
J or;or Orgory Orory oryOry Oy
2 o 62/1 h 52 T
+vH) 0 —a—h p— 1 Hy L e Qputtj =
alkalk a, 61,@, aikalk
52 - 52 v oy
=2y ——— €,y Qi +21f—— il ; —~ 2 Epik Q, H— Py Ly
Oy, Ory, onory b

o v 0 v
+2 Epjl Q,Hy Bé—h,uj +f(H, o — h Hk o h,u

e P

=2 ey h;-u:,- =21 €y Cpuin i+ 4 €pikEnl Q,, Q2+

mn

+f (u,uJ +v,vj) (7.3.4)



Chapter VIl _ 135

where x;-' x' =r; and 2 = _6_ = ——i, Vx:_z = Vxnz =v2,

Oy ar, Ox;

I
The Fourier transform of various correlation tensors appearing in (7.3.4) are expressed as

spectral tensors:

ll N' J-¢U (k t)e’k ’dk h;h; = IV/y(Eat)elk;dé

—ﬁ A~ -]2_': ~ _lT A -H": ~
ll"hj = .[ry(k,t)el ’dk H hiuj = J.}l!'j(kJ)e{k ’dk (735)

Wiuj = j¢,]~(l§,t)ei’;'Fdl€, | vy = J' Mk, 0 i
It is noted that ¢;, v and A? .are true tensors but Ty and y; are skew tensors, and
from homogeneity;
8 (k) = k), vy (k) = w i(=k), Myt =M k),
Ly (k) = y i (k) | (1.3.6)
and from solenoidality, kiqi,]-(/;) = k,-l//,-j(lz) = k,-M,j(/;) = k;rg<kn) = ki}’ij'(kA) =0
ki (R = ey (B) = MRy = Ty (R = () = 0 | (7.3.7)

Again,

d a2 e T
_PWW 8 -[R(,;,t)e:k-rdk=_,?_. Iiij(k,t)c'k"dk
oror;  Oror; orj

= ~i%kik, J'R(lé,:)e"(’z'”dé = kik; J'R(!?,f)e”‘ "dk, | (138)

and
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O hh; on.
P, Lo,
Ory0ry Ory ory

I ihF
= —ill 5;11,/(,- J-l//{-/-e‘ dk

= —ikpl1H}, a—a— y/,j(k I)e'k Pk = -i*k% 12 12 Iy/ kg

'

= kz,quz t//,-jeik'ﬁdlz

where x denotes the cosine of the angle kand Hi.e. kull = ki 17, .

2 62 62 rn 2 62
v iuj =
alkaIk a:,a;,

2
= V2 0
O Ory,
= vk [gythone™ di
2 _ 2
- v, —————a—h-uj = -y 9
OnOry Oy OryOry
2
T Onony
—VvH, 9 6u,-llj:—v
6;,{61,( on Ory Ory
2
= -y
arkark

32

alkalk 61,6:,

J% (,0)e ™

Pk [y ke ak =202k [y 0™

H,(*— J},,(k l)e'k'c
Hyky J-yy(l?,r)eik'F dk = ivi Iy,-je"" Pk
Hy— Il",-,-(/?,r)e""  dk

. k7
iH,k,I (k, t)e””dk =~k ,u!lj e dlk

-2 —— J‘¢Ij (k I)e'k'dk - —2&]’(2 J‘(ﬁy Jkl

6,:

With the help of equations, (7.3.8)—(7.3.13), equation (7.3.4) b

CCOMes

136

(1.3.9)

(7.3.10)

73.11)

(73.12)

(7.3.13)
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—A—,Aj = vt .[;éy- (lg,l)ei’;'ﬁdl; + kik J.R(I;,!)e”;"A'dIQ +
+ k2 uH? '[q/,j(lé,l)e"’;-’"'dlé + ik I{yy(i,-r) - r,-j-(lé,z)}e"’z-"' dk
= 202 (€ it Qo+ €t ) '[qs,-j(k,z)e"’?-"di — k> '[qs,-j(/?,z)e’:-* i
+ 2ikpH e,y Q, ;u,-j(/E,z)e"’:-’"'d/E— Emik .[r,-j(lé,r)e”; % k)
Aot [(Cy k)= h1e™ a1 21k Qo et D)
x J.%-(I;,l)eﬁz'ﬁ dE]+ 4 €pin €t qu,-j(/é,z)e"’:-”‘dlé
+ I¢,J-(/2,t)ei£'fdl€ + .[M’j (b, )e'* T iy . (1.3.14)

Let us assume that

A}A'j‘- - IAEj (l;,!)z"k'ﬁdl; , then the spectral equations in this context become
Ay = vPkA gy + ki ROk, + K22 H Py + i il Gy = T -

2 . .
— (€ it QU= Enjt Q) — 20K By + 2ikuaH (€ ,y Q7 =

~ Emik erfl_') + jkﬂH(rij - ¥i) - 2/ (€mik Cm+ Enjl Q{:le

+4Q,, (8 — ) + /2 (B + M) (7.3.15)

This equation displays the effect of magnetic field on acceleration covariance in MHD

dusty turbulence in a rotating system.
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IFor the axi-symmetric case we can put

By (ko) = ¢ (0 + $P8y 5.0y 5 vy k) =y DDy (k) + P8,k

rij('lzv’) = I-ﬂ(l)Dij(kA) + F(Z)gij(gikﬁ); },U(];,[) - y(l)DU(£)+ },(2)9,,1,(3-’];)

Myh,t)= MODy k) + MPoysky; ik = k20,00 (7.3.16)
where § is the unit vector in the direction of /, and

. 5 kik ;
Dyy(k) = (k"5 - -k—Q) (7.3.17)
- o ki u

0 (5,k) = (1- ")dy; ST o Gikj +kisp) (7.3.18)
While the defining scalars ¢(2) = ——M @ are the functions of &, ky and time.
It follows from the homogeneity condition that

$ D k) = gD Gekr)s D ke =9 D (omh)

MDDk k) = M2 ke —ku) - (7.3.19)
for true tensors, and

F("z)(k,k,u) - [*(1,2)(;(’_;(/”) | (7.3.20)

for skew tensors.

Under these conditions. equation (7.3.15) becomes

' -1
AW = V2k4¢(1) + sz(k,l) + kzﬂzﬂzyf(l) + ivk3,u]{(y( ) -1 ))

' 2,40 4 9 _ (1)
2290 (e, Q- €t Q) =27k + 2iksel 11y Ly |
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o | -
~ Emik | ( )) + fhpH (1 M- 7“)) - 2f¢(‘)(emik Q,+ Enjl Q,)

+ 72" + MMy . (7.3.21)

and
AD =y 2D 12212 D 43D - 1)
=202 (et Qi €t )~ 229D + 21kl e,y QD
= €mit T+ el 0P -y D) =2 D e, Q4 €7 Q)

+ /2@ + M) ' (7.3.22)

7.4, CONCLUSION

Here we discussed the effect of very strong magnetic field on acceleration covariance in
MHD turbulence of dusty fluid in a rotr;lting system.

Defining scalars of acceleration covariance have been obtained in terms of the defining
scalars of various spectrum functions in the simplest form.

If we put f =0, in equations, (7.3.21) and (7.3.22), we get the effect of magnetic field

on acceleration covariance in MHD turbulcnce in a rotating system for clean flow.

Again, if the fluid is clean and the system is non- rotating (ie for /=0, Q=0), we

have

AD = 2450 4 kZR(k,t)+k2/121-12u/(‘) vivi3 (O _ry (7.4.1)
and |

A@) _ v2iAs2) 4 kzﬂzﬁzw(Z) +ivk3/111(y2) 1 (714.2)
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which is obtained earlier by Kishore & Dixit [44].

In order to estimate the order of magnitude of various terms in (7.3.21) and (7.3.22), we

introduce a = (112_ +h? /3)”2 as the level of turbulence and the characteristic length [ to

derive a relation of the form,

viscous dissipation terms w?il? v i

external coupling terms Ha?i HI~ R Hﬁ )

where R ,;is the Reynolds number. If the imposed magnetic field is sufficiently strong,

——is very small in comparison with 1, and, hence equations (7.3.21 & 7.3.22) becomes
H

AV = k2252 W IRk + 2ikpd (€ Q- e, 2, T
+ et (O =y D) =2 D (et Qb ey )+ 2P0 + M D) (7.43)
and
AP = kz;tszy/(z) + 2ikpd (€t Q,,yz)— E ik Q,,,l“(z) + _/kl,uH(I’(z)
- y(é)) — 2/ ik Ot €t W)+ @D +MPD) (7.4.4)

which show the predominance of the external magnetic field over other forces on

acceleration covariance in M11D turbulence of dusty fluid in a rotating system.
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