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SYNOPSIS

This thesis -- 'Statistical Analysis of the Average Life of Electric

Bulbs: A Comparative Study' consists of six chapters of which chapter

four and five are contributory, chapter six on the summary conclusion

of the thesis. First three chapters of the thesis are introduction and

discussions on the selection of a
methods of statistical inferences

chapters towards the contribution

The introductory chapter one
we have undertaken a brief review

the possibilities of further work

life testing model and the underlying
which has been used in the subsequent

in the thesis.

containg a statement of the problem
of earlier studies and exploration of

in relation %o the present study, aims

and scope of the study. It also provides a brief discussion on the

concept of life testing and reliability and distributions of 1life times,

A survey of some basgic life testing models which has been used in con-

tributory chapters has also been appended in this chapter.

Chapter two of this thesis is devoted on discussions on the

selection of a life testing model

to suit the analysis and prediction

for a particular set of data. Almost all life testing data available

~ for analysis and prediction are incomplete or censored. Most of the

tools and techniques available in

life testing literature for discri-

minating between competing life testing models are sensitive to the

nature and size of censoring. This chapter contains a handful of
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discussion on these problems and way out to face them., It also contains
the methods of plotting procedures and some other parametric methods

for discrimination among the family of models. A test of exponen-
tiality against log-normal and a test of weibull against gamma model

also appended in this chapter.

chapter three of this thesis is a discussion on the methods of
statistical inferences. As we have pointed out, most of the 1life tes-
ting data available for analysis are either incomplete or censored.
Again censoring is not unique. There are different types of censoring
and the.form of likelihood changes with the type of censoring. Again a
cengsored data available for analysis and prediction may be grouped or
ungrouped. Methods of statistical inferences are sensitive to each and
every characteristics of data and influences the prediction. Discussions
on the use of methods of statistical inferences in relation to the
characteristics of avallable data are the prime issues of this chapter.
Methods of least-squares, minimum likelihood, censoring, lifetable and
Acturial method, Product Limit estimator, Likelihood Ratio Test necessary

for the subsequent contributory chapters are appended in this chapter.

For a comparative study among different brands of incandiscent
‘electric bulbs, estimation of average life and other life parameters on
actual 1life data are essential. Chapter four of this thesis is contri-
buted on the estimation of.reliability and 1life parameters. Data to suit
our purpose were not readily available. In order to generate life data
on incandiscent electric bulbs, we have done an experiment in the labo-

ratory. Description of the experiment is appended at the beginning of
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this chapter. It also contains screening and choice of models to suit
the analysis of the data obtained from the experiment, least-squares
and maximum likelihood estimates of 1ife parameters, goodness of fit

of the fitted model, and comparison of survival curves.

Selection of the best brand of incandiscent electric bulb depends
not only on the average life or reliability and life parameters but also
on the intensgity of 1light and consumption of power. Chapter five of
this thesls is contributed toQards the measurement and comparison of
intensity of light and power consumption of different brands of incan-

discent electric bulbs,

This chapter contains experimental descriptions of measuring
intensity of light and consumption of power of different brands of
incandiscent electric bulbs. It also provide voltage-intensity rela-
tionship. Estimates of intensgity of light at average line voltage for
different brands and power categories. A comparison of model component
and overall intengity of 1light between brands of power categories are
also appended in this chapfer. Study on voltage-current relationship,
prediction of flow of electricity thréugb the filament of the bulbs in
order to'estimate the power consumption, estimates of power consumption
at the average line voltage, comparison of component and overall power
consumption between brands of power categories are also included in
thig chapter. It also provides estimates of cost-benefit factors and

finally cost per unit of light for different brands and power categories.
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chapter six corresponds to the conclusion part of the thesis where
findings of contributory chapters have summarised and comments on
different findings have pagsed. It containsg a brief review of %he
limitations and the generalizations of present contribution; their
relative advantaées and shortcomings and scope of further work in

connection with the pregent study.
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CHAPTER ONE

BRIEF IDEA OF THE PROBLEMS AND THE
STATISTICAL TOOLS FOR THE STUDY

1,1 Statement of the Problem

-

Electric bulb is an important component of our everyday life. We
can not think of a modern life in its absence. A few manufacturing
industries including one multinational are producing incandiscent
electric bulbs of different power in Bangladesh. Volume of production
of these industries is smal)l enough to meet the demand of the countri.
As a result, a large quantity of incandiscent electric bulbs are to
import every year to meet the demand of the local market, Taking all
. together, indigenous and imported, as many as ten brands of incandiscent

electric bulbs are available in the local market,

The only specification that an incandiscent electric bulb contains
on its body or on the packet is that the maximum power to be consumed
in terms of watt/hour for a given voltage of the electricity supplied.
The amount of power consumed by an electric bulb is converted into heat
and 1ight energy, the proportion of heat and 1light being dependent on
the nature of the raw material used and the technological devices of
the manufacturer. The life span and the guarantee period of a bulb are
also dependent on these factors. Local manufacturers themselves are

lacking of these informations of their products. Multinational and



mnufacturers may have these information of their products. Since
ours is a sellers market, they do not feel it necessary to provide
these informations to the consumers. Rather they avoid, even on
inquiry, in the name of business seorecy. The consumers are helpless
in choosing the best one but to depend on the attractive colourful

advertising propaganda,

1.2 Aims and Scope of the Study

The reliability of an electriec bulb depends on (a) the average
life; (b) the guarantee period i.e., the minimm life span, while the
quality depends on (c) the average power consumption or total power
consumption during the 1life span and (d) average intensity of light or

the total amount of light it is providing during its life time.

Reliability informations are very much important for large scale
consumers in scheduling their procurement or purchase in order to
replace the fused bulbs. Advance informations about the expected
number of bulbs to fail in a future time interval is essential for

the purpose. This is possible if reliability informations are available.

A bulb may have larger guarantee period but smaller average life
while other may have smaller guarantee period but larger average\liig.
Similarly a bulb may have lower power consumption. Simultaneously 1;
may provide small amount of light. A bulb may have larger average life
while it may provide smaller quantity of light and so on., This implies

that neither of these criteria uniquely or partially with some other can



determine the cost effectiveness of an electric bulb in terms of total
amount of 1light it is providing during its 1ife time and the total cost
we are to pay for this amount of light unless we consider all the four

factors together with the cost of the bulb.

In order to estimate the reliability informations the study is
aimed to conduct a life testing experiment on incandiscent bulbs of
different manufacturers and of different power in the laboratory for
collecting life data under identical conditions. A long time is required
for completing such an experiment with a moderate size full sample or
with a type-II censéred sample, To economize the experiment in terms
of both time and money. We have decided to congider a type-I censored
sample in this experiment. To complete the study, two other experiments
are to be performed for collecting data on the intensity of light and
congsumption of power. The collected data would be used for estimating
the reliability and quality informations. An information-wise compa-
rative study among different manufacturers would be made first followed
by prediction of percentage of failures at some future points of time,
Finally, a cost benefit analysis would be done to point out the cost

effective one in the interest of all the consumers.

Davis (1952) studied the lifetimes of 417 incandiscent electric
lamps of 42 different manufacturérs, the data being collected from
different sources under different conditions., He has assumed and fitted
a normal curve to the data but the fit was not good., Epstein and Sobel

(1953) used sequential test plan under the assumption of exponential



thing and found a good result. Mandenhall and Hader (1958) used a
mixture of exponential distributions in analysing life time of incan-
discent electric bulbs., Their findings were reasonable. They had
proposed a weibull model for further analysis. Investigation to single
out a suitable 1life model to graduate the observed data is a must
without which a succeassful analysis can not be carried on which is also

a prime objective of the study.

1.3 Concept of Life Testing and Reliability

When we purchase a consumer's goods we expect it to function
properly for a reascnable period of time. Unless a consumer is provided
with some informations about the average life or guarantee period, he
would not, in general purchase a new item, if an old item of known
reliability is available. Life testing experiments are designed to
measure the average life of the product or to answer such questions as
what is the probability that the item will fail in the time interval

Z%, tHE7, given that it was working at time t' ?

In a simple 1life testing experiment a number of items are subjected
to tests and the data consists of the recorded lives of all or scme of

the items. No matter how efficient the manufacturing process 1s, one

or more failures may occur. This failure may be due to:

i) careless planning, substandard equipment and raw

material used, lack of proper quality control, etc.



1i) random or chance causes. Random failures occur gquite
unpredictably at random intervals and can not be
eliminated by taking steps at the planning, production

or inspection stage;

i11) wear-out or fatigue, caused by the aging of the item,
Reliability is a term that is used in our daily life
in varioug contexts which means gomething or some one

we may depend on or count,

In 1life testing problem we are interested in a quantitative measure

of reliability of an item or a system,

The probability of failure free operation of an item in the time
interval (o, t) is known as the reliability of the item upto time t.
This probability is also known as survival probability. In the absence
of censoring, the non-paramatric estimate of this probability is given

by the ratio

No.of items surviving .; x

s(t)] ees (1.1)

t=1x No. of items initially exposed to test

If f(t) be the probability density function of the life time T,
of the item, then the probability that the item would fail just before

time t is given by

t
F(t) = j f(x) dx (1.2)
o]



rate of failure and generally denoted by h(t) or AM{t). In acturial
and 1life contingency problems this limiting conditional probability is

known as the force of mortality, Thus,

F(t4x) - F(t)

lim Bt + x) - P(t) 1 lim
M) = x50 XTT-RHE] = T Rt) xo x
_ () ) £(t) (1.5)
T 1o Rr(t) s(t)

= 2(t) =h (t) s(t) (1.6)

(1.5) implies that h(t) may be a function of t or may be a constant,
If it 18 a function of time, then it may be a increasing or a decreasing
function of time or may be mixed one. Depending on which the distri-

bution may be IFR, DFR or MFR. Again,

£(t) d ®»(t)
h(t) = —— =
1 - F(t) dt /1 - F(t)/
d
= - log, [l-F(t)J
dt
=> h(t) dt = - d log, S(t)
t
=> j h(u) du = - log, s(t) = H(t) .... (1.7)

= cumulative hazard function



t

exp [- j h(u) du] (1.8)

o}

h(t) exp [- jh(u) dlj (1.9)

I

=> S(t)

=) f(t)

The mean life of the distribution is given by

o ol
B(t) = j £ £(t) dt = jt h(t) S(t) dt
=k
= s(t)jt h(t) dt -~ j[—% (t, h(t) s(t) dt] dt
= =&
= - jﬁft) —?(—f—)— dt = Js(t) dt (1.10)
- H (t) o
o
Similar way, E (Tz) = ZJt - s(t) at,
In general, E(Tr) =r :T‘ gF 2 s(t) dt, cens (1.11)

o]

Another important parameter of life distributions is the expected

residual 1ife i.e., expectation of 1life after t periocd has elapsed

and is given by



R(t)

E(T-t T > t)

T(w- t) f(u) du
s(t)
t

_ 7 8(u) du e ceee (1.12)
T
t

The conditional probability that the ith item having been survived

upto time t would fail in the interval ( t, %, ) is given by

A S(t + ty) - s(t +t,) ( )
1(t,, t t., t % = erees 1.13
( 1 2/ 1 2 > ) S(t)

The expected number of items to fail in the interval (tl, t2) is

ni
N (t;, t,[t, t,>t) = ;Er VAVEN IR RS (1.14)
1=1

Where tl, t2 are the minimal and maximum time during which an item can
fail with non-zero probability. An item can either fail at time t or
survive. Then the underlying distribution of the probability of failure
process for the ith item is a point binomial with mean /A1 and

variance i (1 - i)/ ni when ni is the No at risk of failure
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at time t. Further, assuming the propensity of failure for items are
independent of each other, the pooled variance of the number of failure,

N is given by,

Var(N) = Z " A - Ay
= 2M - Ri) (1.15)

The standard error of the estimates of number of failures in the time

interval (tl, t2) is given by

4 .
S.B. (N) = Eﬁi(l - 7‘1)] (1.16)

Thus the stochastic behaviour of the failure process can be studied
through either of these four functions (i) the hazard function (ii) the
survival or the reliability functions, (iii) the probability density

function and (iv) the distribution function,

8o far we have considered T as a continuous random variable,
It may happen that the life times are grouped observations or may be
some integral numbers, then we are to treat T as a discrete random
variable, Let T can take on values qé tlé t, é_ Y A

and the corresponding probability function be



11

D (tj) = Pr(T = tj)v J=1, 2 (1.17)
The corresponding survival function is the
s(t) =P (T > ¢t) =Z P (tj) (1.18)
Je tj 2t
The lhazard function may be defined as
p(t;)
n(t;) =Pr (T =t/ T 2t,)= (1.19)
S(tj)
But P(t,) (t5) - s(ty,; )
S(tj +1 )
= h(t,) = 1- — (1.20)
J S(tj)
=85(t) = ]7’ [1 -h (tj) (1.21)
J: t;j VA
In a similar way we may write H(t) = - log,, s(t) (1.18)

But it is to be noted that

B (t) 7% h(tj) in general

J: tjé t

Raj habi University Library
Docuwinenttion Sectiom

DoLumcnt No. 2., .584
Date.. 22 7:.?2’..}
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1.5 Some Important Life Distributions

Numerous paramatric models are used in the analysis of life time
data and in problems related to the modeling of aging or failure process.
Among univariate models a few particular distributions occupy a central
role because of thelr demongtrated usefulness in a wide range of
situations. Foremost in this category are the exponential, Weiball,
gamma and log-normal distributions. The motivation for using a parti-
cular model in a given gituation is coften mainly empirical, if having
been found that the model satisfactorily describes the distribution of
life times in the population under study. This does not of course, imply
any abgolute "correctness" of the model., Sometimes there are informations
about the aging or failure process in a population that suggest a parti-
cular distribution, though such informations are rarely specific enough
to narrow considerations to Just one family of models. This situation
will no doubt improve as our understanding of aging and failure processes
deepens, Some theoretical motivation for particular models are avai-

lable in Shooman (1968) and Johnson and Katz (1970).

1.5.1 The exponential distribution

The distribution is easy to handle for statistical inference but
too much sensitive for prediction, Davis (1952) and Epstein (1958)
showed that thig distribution can be used as a model to graduate the
lifetimes of a wider range of manufactured items. Feigl and Zelen (1965)

showed that this distribution can be used in the study of survival or



remiggion times in chronic diseases.
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The distribution is characterized

by a constant hazard function h(t)=7" , t >0 - A20 - 1In other

words, the exponential distribution arises in situations where the

failure rate appears to be more or less constant. The probability

the item survives for at leagt time t 18

s(t)

t
= exp - §h(x) dx
t t -2t
= exp - Jﬂdx = £ raes
7
At
=y f(t) = h(t) s(t) = A ¥ cees

that

(1.22)

(1.23)

There are however, gome other elementary considerations which lead to

an exponential distribution. These assumptions are stated below!

1) The failure of the item in a given interval of time Z}o, t1;7

2)

3)

on the condition that the item works until time to depends
only on (t1 - to), the length of the time interval and not

or to, the position of the time interval.

On the condition that the item works until time to, the
probability that the item will fail in an infinitegimal
interval [%, t + FJZ is proportional to h except for

higher order.

The probability of failure at t =0 i.e., the instant

the test started is zero,



Let S(t) = p (P 2 ¢ )

= probability that the item survives for

at least time +¢.

14

Let A be the constant of proportionality in assumption (2).

In view of the assumptions (1) and (2), we may write using Kolmogrov

equation,

s(t +h) =s(t) [1- An] + o(n)

S(t + h) - s(t)
or, - == As(t) + o(h)/n

Taking limit h-—»0 on both sides, we have

d s(t)
— = - As(t)
dt
d s(t)
or, = - A dt
s5(t)
or, d log_sS(t)= - A dt
=> S{t) = A exp (~ At) cees

Using initial condition for assumption (3), we have, S(0) = 1

=> S(t) = G—)\t

=> f(t]A) = Ac A

-

(1.24)

A

(1.25)
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The distribution with A =1 1ig called the standard exponential
distribution. Its probability density function is shown in Figure

below.

f(t) 1.0

Figure : Standard exponential p,d.f.
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1.5.2 Some interesting properties of
exponential distribution

The mean and variance of the distribution given in (1.20) or (1.22)

i
are -5t and

Lt =
p(T p) P

respectively. The pth quantile is given by

or, - Atp= log (1~ p)

=> tp = '7 log, (1 - p) (1.26)

The distribution is memoryless, that is, if an item hag survived ¢ hours,
then the probability of its surviving an additional h hours is exactly
the same as the probability of surviving h hours of a new item.

Mathematically,

= o™ o p(r>om) ... (1.27)
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The inter fallure times are independent and identically distributed

as exponential. Let t, & t2 4 ceess £t be the first r

ordered observations of a random sample of size n for the exponential

distribution,
Let wi =(n-1+1)(t; -%_, )i=1,2 ... r (1.28)
with to =p

The Jjacobian of transformtion is

(Wyy Wor  eeee 5 W
B 1* Y2 r) ) nJ ceer eee {(1.29)
?(tl, thy  eeen 4 ) (n -r)!
(n-r)f T
=> f(HiWZ’ cee g wr) = T /7- £(t1)

,

=1

i
n-r
_ t-r) n! 7 PYE ~Atp
=0l e M (et (¢
- ;a77 é; A Z_Z—tT' -+ 6ﬂ—w”/)ir°J7

r

= A é’xﬁ[—ﬂ _ZM/‘/
-1

| 2] - B

oy ces N (1.30)

]
=> wi ® are independently identically distributed as exponential.
Since wi is a linear function of the inter failure time between ith

and (1 - 1)th failure so does the inter failure times.
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1.5.3 The two-parameter exponential distribution

So far we have discussed the negative exponential distribution
excluding the threshold parameter or guarantee time, that is, a time
gay ﬁv;7(7 before which it is amgumed that an item or a system
can not fail., In many situations inclusion of such a parameter becomes

essential. It can be done by mere replacing the 1ife time t by

£ =t -M , vwhile t' satisfies the restriction t' > o, For
example, if we replace t by t' = t -pM in (1.20) or (1.22),
we get
- t -
£f(t [x) = Ae A #) y t M ... (1.3)

The mean and survivor function of (1.31) is f”—}——?’T and exp [—-7\({3”/‘“)]
respectively which are different from the mean and survivor function
(1.23) or (1.25) but variance and other properties remains unaffected

by inclusion of the guarantee time or threshold parameter.

1.5.4 The Weibull distribution

Historically though exponential is the first widely used lifetime
distribution model. But the agsumption of a constant hazard function
is too much restrictive one. Later realizations that many inferences
are sensitive to departures from the exponential model has lead to
greater caution in the use of exponential model. Wweibull (1951)
investigated a model which is, perhaps, the most widely used 1lifetime

digtribution now-a-days because of its flexibility in graduating constant,



19

increasing and decreasing failure rate life time data. The hazard

function of the distribution is characterized by

h(t) = o 3 ( t)'e"'l, o y0, B0, t20 cees (1.32)

This distribution includes exponential as a special cage for B = 1,
z;c',ﬂ.—:i, h({)=oA, a constant. If B>1, h(t) is an increasing
function of time t, while it is a decreasing function for B<4£7 ,

The cumulative hazard function of the distribution in the time interwval

(0, t) is given by

! p-1 Je
//(f):/“ﬂ (ar)" = &xt) (1.33)
=> 5(1)= €*F [_((X"L}é] (1.34)
=) ft)=*P (aff/ﬂ“/fﬂ‘z”[“(f’(f/?/ (1.35)

The rth raw moment of this distribution is,

o
Mp = Ta/ 1" st) At

d

i

o £
g (T erp [Ft] " dt
o

::0(—'9/7/_—;%-7 .o cea (1.36)
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oC

Where ﬁ;:/ xH! g_xa/x, K20 (1.37)
a
The . mean of the distribution /hf, = o("/ /(113/.3.) (1.28)

The variance of the distribution,
7 /6/

- A[JE ] - {m_jja// (1.39)

The pth quantile of the distribution is given by

' 1 - 1o 1 - Z .
- [-18, (1-9)7] (1.40)

This distribution arises as an asymptotic extreme value distribution
(Gambel, 1958). The shape of the probability density function of this
distribution depends on /3 while o is a scale parameter. Values of VZ)
my vary from application to application but the analyeis of f(t)

and h(t) for different values of @ shows that B should lie in

the range of 14 A 43 (lawless, 1982).

1.5.5 The log-Normal distribution

The log-normal distribution is also a widely used life model.
For example, Nelson and Hahn (1972) used this model for analysing
failure timese of electrical insulations. Wwhittemore and Altachuler

(1976) used it in the study of times to the appearance of lung cancer
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in cigarette smokers. when logarithm of 1life time T is distributed
normlly with mean M and variance 0{7’ then the 1life time 7T |is

salid to have a log-normal distribution with

1) = exp ( P44 ) .. e (1.41)

and V(T) exp (2/™ + mz) (exp 0‘2-1) (1.42)

The probability density function of T 4is given by,

1 2
f(t) = —— - t - Lro .., .
(t) o R exp % (logeﬁ\ , L7 (1.43)

The log-normal survivor function is given by

| log, & — p
5(t)=7~¢/ (7’3[\ } e (1.44)

x

where ¢(X) :/ )/iﬁ/_ﬂ- é—.é— u” Aut coen (1.45)
g &

The hazard function of the diatribution

£(t)
"% = 5w

is not available in closed form. The hazard function h(t) has h(o) = 0,

increases to a maximum, then decreases. h(t)-> oas t>a, The
shape of the distribution depends on (® . For smll values of ¢,
the distribution is more or less asymptotic. As the value of ¢

increases, the distribution becomes closer and closer to the exponential
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distribution. In that case, it is difficult to distinguish one from

the other. It is a mixed failure rate distribution.

1.5.6 The Gamma distribution

Generally, the one parameter gamma distribution is not in use as a
life distribution., The probability density function of the two parameter

gamm distribution is given by

-7 —=At
Y
f[f} = s ? t >0 (1.46)

where I;()O and A >0 are index and scale parameters of the distri-
bution. Buckland (1964) showed that this distribution can be used in

graduating life data in many situations,

The hazard function and the survival function of the distribution
is not available in closed form, For integral values of KX , the survival
function my be expressed as
o
set) = [HL)AE
4 | W~ —AX

— j;ﬁiﬂfiﬁLfﬂf_# dx
I

X

r j,},(l(—-l 7 tx
-1 %

- [”#/—/?X[//r // - K( .T/M//,t r//v/

(;(—///

L




~AX
z Z

(’f~/)// “f E)Mj / by 2 —‘7—; dlx/
o) gt 2 [JW % e

NCE Y
-
QT e i
QZ—{}] 6”';§}’ ¢

Wl ‘ =
_ @) st (zé/”’ézé/ﬂt(—:,x:«—; g

(1)1 iz (W-3)]

( A F @t) )

i
I\’R

k-
"
°

For w=1, S()=°¢

At
#HY) L
=h(t) = 37 €
= A s constant

=:> for
parameter negative exponential distribution,

-----

23

E Mp&c/ 4,/

(1.47)

o

(1.48)

i = 1, the two parameter gamma distribution reduces to one
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we wsg, )= 0 (14 Y)

— At
s alt) =2 2 Y "
\S/f:) é—)‘t(/—f/'\é}

_ At A (1.49a)

I+ AE T v
ﬂ+:.’-

= As t increases, h(t) also increases for 4 = 2;

A [ﬂf/z/ Ad

— | (1.49b)
!+t +A th- ;P;L% +

For i = 3, =
i -

e

=> As t increages, h(t) increases for K= 3, This is true for

all values of K . In a similar way, it can be shown that h(t)

decreases for all values of X<{7.

Again the limiting value of h(t) as t->oC is constant and equal

to A i.e., for U= 2

.y 2-
Lt 4(t) = LE A :_/1 - A
f—soc LS A+4 A (1.50m)
Similarly for =3,
2
Lt 4(t)_ Lt A .
- /
E>ec £ /\’V—f‘-z_—— +
"‘Z}
_ X

A¢ (1.50p)
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In a similar way,

Lt i N
[—70/1”}*'5—?0 /'HJ— - X =0 (1.51)

The m.g.f of the distribution is

ot th
no)= ] ” (M} At
-
//“79) (1.52)
=7 fir = k(k+1)(k+2) .... (x+1-1) ceese (1.53)

This distribution does fit a wide variety of life time data but
difficult to work with it than those of Weibull model because its
survival and hazard functions are not available in closed form. The
gamma distribution also may arige for a mixure of exponential distri-
bution. The hazard function of gamma distribution is very close to
that of weibull model except at the extreme right i.e., for very large
values of T. 8o, it is very difficult to distinguish one with the

other in case of type - 1 censored data.



CHAPTER TwO

ON THE SELECTION OF A LIFE TESTING MODEL

2.1 Problems in Choosing a Life Model

Statistical analysig of life data is a topic of importance in view
of its wide application in Engineering, Industry, Commerce, Bio-medical
studies, Defence, Manpower planning and other fields. A substantial
number of potential 1life models have been proposed so far but all
models are not equally suitable to explain each and every set of data.
Some of the models are so close that it is very difficult to distinguish
one from the other with a small get of censored data. For example,
log-normal distribution with scale parameter greater than two is hardly
distinguishable from exponential distribution. Similarly, when
coefficient of variation is less than one, wWeibull and gamma distribution
is difficult to distinguigh. Moreover, apart from time trend, failure
times may be affected by some other covariates especially in Bio-medical
and Manpower studies where patients and personnels are subjected to
individual variations. These effects when imposed on the probability
density function (p.d.f) causes fluctuations in the p.d.f and creates

confusion in making decision,

Above all, most of the life data are heavily censored while tests
available for discriminating among the models are sensitive to sample

size, the number of failed items and the type of censoring. Again,
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choosing a model is also related to availability of appropriate sta-
tistical tools. Taking all together, it is a tedious job to choose a
guitable model which can explain and interpret an observed life data

reasonably.

Among the models available for life testing, the exponential model
with constant poission intensity 'h' |is by far the most simple and
the eagiest to handle statistically,. Heﬁce, first step in choosing a
1ife model to explain a set of observed data is to see whether the set
of data conforms to an exponential density or not, In general, life
data are available in censored form, while tests available for censored
data are gtill not sufficient in all situations., Testas of exponentiality
due to Chen, Hollander and Langberg (1983), Hollander and Proschan (1979)
are against a fixed alternative., The process of embedding exponential
into weibull or Gamma distribution and to test for the shape parameter
to be equal to unity, due to Crow (1974) is too much complex, because no
good method is available for estimating the shape parameter of the said
distributions for type-l and randomly censored data., Moreover, such
tests are not valid for smll r, +the number of failed items., Ommnibus
tests due to Pettit (1977) based on an empirical distribution function
may be applied to type-1 and type II censored data but these are algo
limited to large n £ 1r/2, where n 1is the total number of items under
study. Tests due to Gail and Gaswirth (1978) based on Gini statistics
are applicable to type II censored data only. Test proposed by Barlow

et al. (1972) and modified by Bain Engelhardt and wright (1985) cannot
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be ugsed for randomly censored data. This test alsoc fails to discri-

minate between exponential and log-norml for type Il censored data.
Even for type I censored data, if the censoring time is large enough,
this test may give misleading result. This may also happen if the
failure times are affected by covariates other than trend, In fact,
there is nc clear cut test to discriminate between exponential and mixed
fallure rate models. It is also difficult to discriminate among the

members within a family of diestributions.

2.2 The Plotting Procedures

2.2.1 Bstimated survivor or Hazard
function plotting

Plots of estimated survivor or cumulative hazard function provide
useful pictures of univariate 1lifetime data, as well as information on
the underlying life distribution. They can be used for informal checks
on the appropriateness of a model and for obtaining parameter estimates
within a model. Plots of Ekt) = - loge gtt) against time t have
been already suggested for help in assessing the shape of the hazard
function in a distribution. Similar plots can often be used to help
assess whether a specific parametric family of models is reasonable.

The bagic idea is to make plots that should be roughly linear if the
proposed family of models is appropriate, since departures from linearity

can be readily appreciated by eye. Suppose, for example, that the
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possibility of an underlying exponential distribution is being consi-
dered. The survival function for the exponential distribution is given
by

S(t) = 8-7\t

=) log,S(t) - At

1}

At (2.1)

"

=y - log S(t)

Therefore, if ~log, g}t) is plotted against t, the resultant graph
should be roughly linear and passing through the origin, if an exponential
model is appropriate., Similarly, the sufvival function for the expo-
nential distribution having the threshold parameter or the guarantee

time M is given by

S(t) - 9-7\(1;—/\‘ )

=7 logS(t) = - A(t—/)

=> - log, S(t) = +At -AM
= At -0 (2.2)

A
It shows that if - log, S(t) be plotted against t, the resulting
graph would be roughly linear and having an intercept onVaxis in

negative direction, if a two parameter exponential model is appropriate.

The survival function for the weibull distribution is given by
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g

s(t)= e (« t)

e
=> - log, s(t) -_-{a(i’_') .

=> log [— log, S(ty BlogeX + B logt

Il

Y+ B logt  ..... . (2.3)

A

This implies that if log ]| - log, s(ty be plotted against

log t the resulting graph would be an appropriate straight line having
an intercept on the Y-axis in positive direction if the underlying life

times suit a two parameter Weibull distribution.

when the plots are appropriately linear, cone can obtain graphical
estimtes of the parameters by fitting a straight line to the plot and
calculating the slope aﬁd intercept by the method of least square. The
typea of procedures described above can be used for models in which some
transform of a life time T, say, Y= g(T), has a location-scale
parameter distribution and the survivor function is available in closed

form, That is,

s(t)

pr (7 > t)

n
o)
H
~
[
v
L]
S’

-y o) @)

where t =g l(x). Then §; - l[s (t)] = xaf/u is a linear

=1,
function of x = g(t), and a plot of 5, "/ S(t)/ Verses g(t) should

be roughly linear if the family of models being considered is reasonable.
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The linear hazard rate distribution with hazard function h(t) =

e
o + Bt has cumulative hazard function H(t) = ot + ﬂ-—i . Thus

t H(t) = A+ g—;— ig a linear function of t, and approximately
linear plots of t -1 H(t) versus t should result if the model is a

Rayleigh distribution,

2.2.2 Probability and hazard plots

when the data are uncensored or type II censored, it is customary
to use probability plots, rather than the plots of estimated survival
function or the cumulative hazard function. These are similar to the
plots of estimated survival function, except that, instead of entire

estimated survivor function, a single point is plotted for each life time.

Probability plots in their most common form are used with location-

scale parameter models. Let T 4is a random variable with distribution

function of the form F[f;\"] y where /™ is a scale parameter
and / is a location parameters ( §* J0O , — o€ < M <ac ). Let
t(l)'{ t(2)< ....(t(n) be the ordered observation in a random
sample of size n for the digtribution of T. A probability plot is

a plot of t(i)'s against quantities mi = F bl(a.i), where ai is a fixed
t(1) - - 1) - t -
estimte of F ( —(—i—a)-\—/-h). Since Fl[F{L—(—i—g)T—h)j]': _(%’)\__/t:'

if the stated model is reasonable the plot of the points (t(i), mi )

gshould be roughly linear. In fact, the polnts should be fairly near
the 1ine x=M+ ( m and thus estimates of /A and §~ can be obtained

from the plots.
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The ai'g are sometimes referred to as plotting positions. Several

choices for the ai'? are used in practice but the two most popular are

L. (4-0.5)
n (2.5)
i

aj = -————n+1

An alternative is to plot the points (t(i),U(i), where

A1 = i(“'j‘“l)-l - (2.6)
i=1 -
It is shown in lawless (1982) that
E( t(i)) = —-—-0;\'
=y Ki = 7\E(t(i) )= E ( 7”(1) ) I (2.7)

Hence this plot should be approximtely linear with slope A

To facilitate probability plots, special probability graph papers are
available for common distributions. The graph papers have a scale based
on values of F _1(a) but lebeled with a sgcale., This saves the trouble

of computing F _1(a). We need only to plot the points ( t(i) , ai).

Another frequently used plot is the so-called hazard plot due to
Nelson (1972). This ia essentially the same am A probability plot or

A
a point plot obtained from S(t), except that instead of being based on
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the PL estimate, the plots are based on the empirical hazard function

defined as,

A
H(t) = 5 dj (2.8)
Jrtget nj

where dj is the number of failure at tj and nj is the risk set just
, A
prior to tj' The usual procedure is either to plot H(t) or a transform
IaS
of it in full or to base a point on H(t). when the data are type II

ensored, the observed lifetimes ty. <%, ¢ ... £t are the
¢ ’ (1)7%(2) (k)
first k ,1lifetimes in a sample of size n and the number of items at
risk Just prior to t(j) is ny =n -j +# 1. This gives,

i

'u\(?(i)+o)= 5 m=3+1)" Y 121,22, eeek  .un  (2.9)
J=1

St
Plots involving H(t) are used in exactly the same way as plots involving
P
S(t), the connection being obvious in view of the fact that H(t) =

- log, s(t). For one parameter exponential distribution,
H(t)= 7\-t seew s s (2.10)

For an exponential distribution with a threshold parameter or, guarantee

time,
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H(t) = A(t-/‘)
= = MA 4+ At
= Ao*ﬂf cess sees (2‘11)

For a two parameter Welbull distribution,

B ()= ()

=> log H(t) = Ploget + B logt

B +Plogt ... (2.12)

Hazard plots can be made on ordinary probability paper, but since
~—
H(t) = - log,, s(t), values of H(t) need to be converted to values of

Pt
E({) =exp [ - H(t)] to correspond to the a scale on the paper.

To errable hazard plots to be made with as few calculations as
pogsible, commercial hazard plotting papers have been prepared for
certain common digtributions., The scales on the paper are set up so
that the points (t, H(t) ) give a straight line, and thus if the assumed

N
model is appropriate, a plot of the points [t(i), B by + 0 )/ should
be roughly linear.
Generally plote are used informally. It does not make too much

difference exactly what plotting positions are choosen and whether plots

A
are based on 5(t) or Hit). Plots based on relatively small number of
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observations my give misleading idea about the form of the distri-

bution. An idea of the variability inherent in a plotting procedure
ig desirable for the investigator, specially about the variances of
the quantities plotted. A detailed discussion about plotting is

available in Cox (1978).

Plots are not meant as a substitute for formal test and estimation
procedures but provide an idea about the model and methods of crude
parameter estimates. Thus a complete statistical analysis would require

a combination of both informal and formal methods.

2.3 Discrimination among the Family of Models

Hazard function 1s the basic criterion which can adequately
discriminate one 1life model from the other but in practice, it is not
measurable. We can only measure cumulative hazards for a specified
time interval. For any distribution, the cumulative hazard function

H(t) in the time interval (0, t) is given by

t
H(t) = { h(u) du = - log S(t) (2.13)

0

where 5(t) is the survivor function in the time interval (0, t) and
h(t) is the real hazard function but not measurable, Wwe have for

exponential distribution .



h(t) = h,, a constant

it
oy

=> H(t)

lt LA )

For Rayleigh distribution, we have

h(t) =hy + k't

h, 2

DH(t) = hyt b,

where h, = kl/2 y

For Weibull distribution, we have

h(t) = aB (o(t)P?

ru) = (a )l

t5 +

2
= hlt + hzt + h3

ST R R RO Sede e T e Y e TR TR 4

Similarly for gamma distribution, we have

H(t) = = bt gt e L
1 -1I (k, ht)
and for log-normal distribution,
lo - m
p(RgE=2)
H(t) =
logt - m 5
1l - —r— =
g p ) = ht+ htS 4 Ll
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(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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I (k, ht) = incomplete gamma function

logt - m
g ( "—7;—-—- ) = incomplete normal deviate.

For any distribution, H(0) = 0 =7 when t = 0, there is no time
hazard. More generally, we can define H(tJ -ty ) in the time interval
(ti .t'j)' J>i= o’ 1, ace I‘—]_; asg

t

J :
H(tj ~t;) = j h(t) dt
ty |
t5 ty

= j h(t) dt - 5 h(t) dt

= H(tj) - H(t,)

= log S(ti) ~ log S(tj)

= log S(t/t >/tj) - log S(t/t > 4 ) (2.19)

Thus we can replace t by the difference (tj - ti) in equation (2.14) -
(2.18). TFormulation (2,19) has the advantage over (2.13) in the sense
that we can have E;£§~i—l) estimtes of H(t) taking t; = 0 from

formulation (2.19), whereas, we can have only r estimates of H(t)

from formulation (2.13) with respect to r observed failure times.
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Thig will increase the efficiency of the investigation, especially,

when r is smll. We can estimate S(t) for any observed point in
time for any data, irrespective of the nature of censoring and thus

for any observed time interval which give us estimates of cumulative hazards

in the time interval (tftj)’ using Kaplan-Meier product limit estimator
defined by '

n'j - dj
S(t)= ]T —_— o e s e se 00 (2'20)
n
J
Ji t.L t
J
where nj is the number of individuals at risk at tj and dj is the

corresponding number of failures. Let us denote the estimated cumulative

hazard at the kth failure time in the time interval (O, tj) by

A
Hy = log s(t)/t > tj) ~log s(t t 2, 0) ceee (2.21)

j>i=°, l, LIRS ,r—l, k= 1, 2, ....,I‘—j+1.

Now if we fit a third degree polynomial in tj taking ti =0 asn

E\ = h h,t h,t 2 h.,t 3 -
g = ho + hyty + hoty™ + haty” +uy cees coe (2.22)

vhere ujk is the error term and test the coefficients hi'H for zero,
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we can reach the following decisions comparing with the theoretical

hazard functions:

The observed data conform to

(i) a sgimple exponential model or a log-normal model if

h =o0, hl;ﬁ o, h2 = 0 = h}

(i1) a Rayleigh model or a log-normal model if h = o,

hl-?e' 0 ?‘:,hz, h3= o]

(111) a weibull/Extreme value or a Camma or a log-normal if

h3 7 O.

(iv) since H(o) = o, 80 h > o for any case gives us a clue to

investigate whether the observed data is affected by

covariates other than time hazard. No other method can

AT TS S

provide us any information in this regard. Thie is an

advantage of this method,

The method discussed here is being investigated by Mian (1987)

v For two parameter negative exponential model, the
1

survival function is given as,
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. A7O

S(t):exp —7\(1:—/“") 1t>//\”:/‘"?

=> H(t) = -In s(t) = At -AF

=>H(M)= H(t)t=p =0

=y For t<# , H(t) £ O
This implies that for a two parameter exponential model, the fitted
polynbmial is expected to have a negative constant term in addition to
equation (2.14). Similar is the case with all other location-scale

parameter family of models when the threshold or guarantee time para-

meter is introduced.

2.4 A Test of Exponentiality Against log-normal

Even with a full sample, 1t is a difficult problem to distinguish
between exponential and log-normal distributions., Often, both the
models give equal fit to the data though they differ significantly with
respect to hazard function. The log-normal hazards first increases with
time and then decreases, whereas, exponential hazard is constant over
all possible interval in time and the distribution is known asg memoryless

digtribution,

Tests so far available for discriminating a log-normal distribution
from exponential are mostly based on full samples. The test due to
Chen, Hollander and Langberg-(1983) is applicable only to moderately

censored data. In this respect, works of shapiro and wilks (1965),
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for every value of t. Thus mean hazard in the interval (0, tJ) is

glven by

o= ST M/ (rdH)e e eeees (2.25)

Hence mean hazard taking all possible intervals (J = 1, 2, «.sy r)

is given by
r r-j+l
A
h = % Z Z h:jk/ (r-j"'l) s e e s e (2.26)
=1 k=1

which is the estimated constant hazard under HO. The cumulative hazard
under HO in the interval (O, tj) is given by

AH‘J." =T1tj (J=1, 2y eoey T) vues (2.27)

The sum of squared deviations from the estimated mean cumulative hazard
/A~

H under HO is given by

r A
S (r-341) (H, -E,)° e (2.28)
3=1
r-Jj+1
where §j= 'r_-j%-l— 2 Hyoo o (2.29)

k=1
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S would be minimized is that

Js (3.7)
—5—6_ = 0 s 0. LU
On differentiation, we have
2)(/ ( r—XO ) = 0 seme eene (3‘8)
which gives for our least square estimator the Vector
A — .
o = (xx) ' xy (3.9)
If /X"X[ = 0, then we use the generalized inverse, i.,e.,
- 1 \¥ 7/
g = (x x') x }/ LI aeee (3.10)

or simply, B = X+r

-~ A y -
0 is unbiased with v(0) = (Xx"X) 1 @2. Details about the optimum

properties of least square estimators are available in Kendall and

Stuart, vol, 2 (1961) and in many other texts,

If components of O are found to be significantly correlated with each
other, we are to improve the estimtor of © as suggested by Hoerl,

Kennard and Baldwin {1975) as

I's

9 = (x"x +m)t x ¥ (3.11)

where I isa (E:i) x (EIE) identity matrix. The quantity m is

defined as
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m = (1f+1)52 (3.12)
/0\, A

Pl
where 52 igs the estimated error variance and 0 is the ordinary

least square estimtor of 6.

In reference to life testing and reliability, the cumulative
hazard function or its transform, in many cases are linear functions of
time-or the corresponding transform, This relationship in many cases
can be estimted by the method of least squares. Because, the method
has the advantage that it requires no distribution function of the life

times.

3.2 The Maximum Likelihood Method

Let X1y Xo» «tesey X, be a random sample obgervation from a
population hav;ng the probability density function f (xj 9 ). where
6 1is a parameter vector. The joint probability density function
of these n sample observations, regarded as a function of the unknown
parameter 8 is called the likelihood function (L.F ) of the sample

and is written as

L(9/L) =f(x/8) £(x,/8) ... f(x,18) .... (3.13)

The likelihood is the value of a density function for a given sample,
So far discrete random variable it is a probability. The principle of
mximum likelihood directs us to take as our estimator of © that value,

M
say iﬁ within the permissible range of 8 which makes the 1likelihood
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of the likelihood function than with the function itself. Under the
regularity conditions,
aIOgL EL /L sow (3'17)
0e 20
L oL it
Since L >0 and S5 ° 0, we therefore can write,
Dlogl
—7—— - o PR, R (5'18)
e
s
Jd1ogl.
fOI’ Wh.ich 2 40 M se e e (3‘19)
4]
s

If the parameter vector @, contains k-parameters 01, 02, cessy Ok

so that

LG )= L(61, 6,5 b/X 2, %)
= /‘f‘f[x,-/g,) O, = bx) (3.20)
J’:/

Then the maximum likelihood estimate of the parameter Oi, i=1, 2, ...

k, 1is given by

éJL £2/2§ } =0 ;1=

=1,2, ..., k
8/

or; BLWL {'é/6} =0 1i-=1,2, cies k (3.21)
26,

Let © be a consistent estimator of © and E(6) = t. Expanding in

Taylor s series, we can write,
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experimentation until all items under study hgve failed, If the

experiment ig terminated before all have failed, then for items still

unfailed at the time of termination only a lower bound on life time

is available, This is not to say that there is no information avai-
lable on their life times of unfailed items but only that the infor-
mation on them is partial, Let in a sampie of size n, the r(r4n)
item have failed from starting of experiment to the time period &t .
Here the exact life time of ( n-r) items is not known but their initial
time period is available. This (n - r) items is called censored from

n items,

In fact censoring arises in variety of reasons, and we consequently
distinguish among several types of censoring processes in the discussion
that follows. The basic problem is tc determine the sampling distribu-
tion and corresponding likelihood function for a given process and then
to determine the properties of gtatistical methods derived from this.
Even in relatively simple situations one has to rely heavily on large
sample methods. In complicated situationgit may even be difficult to

write down a likelihood.

One should not confﬁse censoring with truncation. Censoring
idea has come for the case of sample i.e., the portion of the sample.
But the idea of truncation has come in cage of population, In the case
of censoring we analyse a part of sample values. But in case of trun-
cation, analysis is involved for the part of population values. By
the following example we can clear about the difference between the

censoring and truncation. Let F(x) be the probability distribution
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d
function of the continuous 1ife time variable X and f(x) = e F(x) (3.25)

>~
be the density function of X such that F(x) =v/'f(x) dx e (3-26)

o
and ~Jﬂ;‘(x)dx =1, e (3.27). Now if we suppose the restriction that
o
X zZ™m y which 15 callied the truncated distribution the reguired

form of f(x) could be

(%) _ &)

Jlxmm) = S0 dx W
= ;(1)/[/-— Fm)] = J@&/5(7)

(3.28)

The form of distribution when some values are censcred from the sample
are asg follows. Suppose that there are n individvals under study
and that associated with the 1ith individuval is a 1life time T; and
2 fixed censoring time Lji. The Ti's are assumed to be independently
identically distributed (i.i.d) with p.d.f. f(t) and survivor
function g(t). The exact life time Ti of an individual will be
cbserved only if Ti £ Li. The data from such a setup can be conve-
niently represented by the n pairs of random variables (ti, é;i)
where
1 ifT™ £ 14
t{ = min (Ti, Li) and afi = { ceee (3.29)
0 ifTy > Iy
That 1is éﬁ indicates whether the 1ife time Ti is censored or
not, and ti is equal to T; if it is observed, and to L; if it ie
not, The joint p.d.f. of ty and 51 1s

di - dr |
P(fz’,ori):ﬂff} S(L/}l[ ceees  (3.30)

Here ti is mixed random variable with a continuous and a discrete

component.
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3.4 Likelihood Under Different
Types of Censoring

There are various types of censoring. A few are discugsed here

with thelr corresponding distribution function and likelihood function.

(1) Type I censoring: In this type of censoring (simple or double)
observations are censored at the par-assigned time. That is, experi-
ments are ran over a fixed time period in such a wey that an individuals
life time will be known exactly only if it is less than some predeter-
mined value. In such situations the data are said to be type I
censored. It is also called "Time censord"”. Suppose in a life test
experiment n items are (my be) placed on test; but before the
experiment starting it decide that this experiment gill be stoped (is
terminate) after time L hasg elapsed. Than the life time of the item
is known'exactly which is failed within time I, the items had still
not failed, these unfailed items exact life time is not known but only
known that their life time is exbewd time L. These items are not
failed at time L, which failure time therefore censored. A type I
cengored sample is one that arises when individuvals 1, 2, ... n =are
subjected to limited periods of observation Ll’ L2, sese Ln So

that an individuals lite time Ti is observed only if Ti € Li. Wwhere
all of the Li'® (1.e. the termination time) is eqﬁal, we sometimes say
that the data are simply type I censored, to distinguish this from the
general cage, It should be noted that in type I censoring the number
of exact 1ife times observed is random in contrast to the case of

type II censoring, where it is fixed. Let ith individuals life time
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T and a fixed censoring time Li. The mi'® are assumed to be
identically independently distributed (i.i.d) with p.d.f f(t) and
survivor fn S(t). Here exact lifetime Ti of an individual

will be observed only if Ti £ Li. The data from such a set up ocan be
conveniently represented by the n pairs of random variables (ti, Si)

where

ti = min value of (Ti, Li) and

value ofJi: 1 if T £k (3.31)

anddi =0 1if Ti > Li

That is 61 indicates whether the life time Ti is censored or
not. The value of "ti" is equal to TLi if it is observed and to Li
if it is not. Now we get the joint p. density function of ti andcﬁ
is

-

p(ti, §i ) = f(ti)‘ﬁ s(Li)HrI (3.32)

Here ti is a mixed random variable that ig it is mixed with

continuous and discrete component. In the discrete part. We get,

Pr ((ﬁ—"-'o)

Pr(ti = Li)

Pr (Ti > Li)

S(L1) (3.33)
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For values ti <. I1i, the continuous p.d.f 1is
Pr (ti /{1 =1) = Pr (t1/t1 £ 1i)

£(t1) (3.34)
1 - s(Li)

In the above case the notation Pr(ti/ 4, = 1) mean the p.d.f of
t1, when t1 < Li. The joint distn. of ti, d1 thuse has
components.

-{-'::L;', JF:—O
Pﬂ( ! ) .. ity => di=1

= p(d=0)

= S(L)) (3.35)
Aagi:

P ptei, fr=1)=pleilG=1) PlE=1)

47 £ Ly
Air) x[/ ~s(Lr )]
[l - S[L{ZZ

f(f‘l') (3.36)

[

So from the above expressions

pr  (t1, 1) = f(ti)J; s(Li)Mﬁ (3.37)
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It pairs (ti, 1) are independent, the likelihood function will be

Leit i)t su)T R

l': !

From the above L.F we can estimate the unknown parameter which is

essential of our analysis.

Type II censoring: In this type of censoring certain fixed number of

observations are censored at either end or both ends. That 18 in this
case, number of observations are pre-assigned at the time of experi-
ments. The number of censored values is not a random variable a
mthemtical constant but the time to fail these pre-agsigned number

of items is a random variable, Let in an experiment 1 items are placed
on test for life times. A type II censored sample is one for which only
the r gsmallest observations in a random sample of n 4items are
observed (1 £ r £ n). Experiments involving Pfype II cengoring are
often used, for example, in life testing, a total of n items 1is
placed on test, but instead of continuing untill all n items have
failed, the test is terminated at the time of the rth item failure- Let

in an experiment the data consist of the r smallest lifetimes T(l)é-

ﬁT(z):’-_ T(3)é cens < T(r)’ out of a random sample of n life times

T «esv. Tn from the life distn. in question. If T,, T

1.7 72 2

eee. Tn are identically independently distributed (i, i, d) and have
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a continuous distn. with p.d.f is f(t) and survivor function 5(t),
it follows from general results on order statistics that the joint

p.d.f of the order mtatistics T(l) T(z) . T(r) is

g (2(1), T(z) =+ T(z)® © ) = —(2—_;5‘, £(tgy) oo £ty

ZS(tr)] n;-r t(l) £ t(2) é"‘—(‘t(r) ees (3.39)

The above J.p.d.f gives the likelihood function when it is taken

as the parameter g.
L( /T(l), T(2) +o* T(x)) = '(nnTr)T £ L) ... f (T(r))
[s(t,) ] i (3.40)

From the above [/-F we can determine the unknown paramter ©O.

Progregsive Type II censoring: In this censoring, censoring is

completed in just two stagest at the time of the Ty th failure, n,
of the remining (n—rl) unfailed items, again selected and removed,
The experiment then terminates after r, items have failed. That is
& generalization of type II censoring is the progressive type II

cengoring.

At this time there are (n-—-rl -n - r2) items still unfailed

and in this experiment-}he r, observations of the lst stage is

Ty £Ta) & £ 7(13)
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and the obgervation of the 2nd stage is

F* K- Sl
T(l) é T(2)5 éT(rz)

Now the pampling distn. of the two stage observation, is
g tigyt oo * * x
(1) (2) (rl)! t(l), t(2), esss t(rz)

= 8 ( t(l) e t(ri) ) g, ZEtT;) Teet tziz)/

t(l)’ ..... (rllZ cees (3.41)

(n P) Jl(iu)) j /:L;,})—» —f{f/ﬂ))[&ﬂ(;ﬂ))] (3.42)

and the 2nd term of equation (3.41) can be obtained by the left

truncated distn. with p.d.f and survivor function

| #2)
é = 2 i—>/ i(!
4, (t) (i) r)

S(t)
s (tw3))

S, (t) = > Lo lmy L, (3.43)

Respectively.
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* gmallest observations in a

¥ ¥
T(l). T(2), vee T(rg)

random sample of size (n—nl—r

are the r,
1) from this truncated distn. . By

equation (3.42) the 2nd term of equation (1) ig therefore

ﬁ_(f(f,)) — z‘?«;—i)/fu};""' [("’f))

Y ~n, j 2~ }’ )7/ )’
i(/).‘é’ Z(l}.é s £ f('l) -
_ -n-m)b o f)) (4 i) -hel
= ) st
2 /SZf“$Q/ -~ -hn, .o (3¢“

Becausge

e pt—r ITIRT Laki Ity
[’5;(%)—1))] I’ = [‘5[{“‘2‘))‘/ (3.45)

No by putting the values of equation (3.41) we get
. ¥
gltw, tw_ ), Lo, Ly - 1th,))
n,
_ ni(n-p-— n:)l H,é(u)__,__./-({-(,,))[5(2‘(4))],( ve. (3.46)

(- r)l(n-r=-n-"r))
P
e+t ) — $UEE)) [ty

This joint p.d.f is the likelihood function when it is taken as the

parameter .

A8/t tey - tin), 1) £y -~ tin))
- 7
= i (n=r- n)l Fltey)— S Umy) [stey)] /

(- r,)i(n -n=n)

n-r—n-pg

HEG) FUAE) )~ Fltny) [Sty)] =L G
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Random censoring: In the casge of Random Censoring, the cengoring

times are often effectively random of an life time experiment- apeci-
fically we assume that the censoring time Li for the ith individual
is a random variable with survivor and density function $(t) and

G(t) respectively and further that L,, L, .... Ln are gtochastically
independent of each other and of the failure times Tl’ T2, ases Tn,
Note that the random censorship model includes the special case of
typ; I censoring, where the censoring time of each individuval is fixed
in advance, as well as the case where items enter the study at random
over time and the analysis is carried out at some prespecified time,
This latter situation occurs in some medical studies. Let (ri, Li),

i=1, 2 .... 4 be independent and, as in the case of type I censoring,

Define tf:M‘n (Tl',l-l')
and dr =1 - TP 4Ly

or, 5i=0 4 TI>Lr
The data from observationjon n individuals consists of the pair [f[,cﬁ:)

-~

The p.d.f of (ti, d; ) is easily obtained if f(t) and S(t) are the
p.d.f's for Ti and Li than, using the same notation as in the likelihood

function of the type I censoring, we have
Pr(ti = t, {i = 0)

P(Ly = t, ™1 > Li)

g(t) s(t) (3.48)

and Pr (¢4 =t, §; =1) =P (P, =t, T, = L
i i i i

= £(t) 6(t) (3.49)
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=7Lim  Var [s/(‘t)] = 0 .... (3.72)

This shows that the PLE is a consistant estimator of the survivor

function.

3.7 The Likelihood Ratio Test

Let x,, X5y «s+ X, be a random sample from a distribution with
A
p.d.f f(x,9) where ® = (99 Os1 cees Ok) is a vector of unknown
parameters taking on values in the parameter space 2. . The

likelihood function for © 1is defined as

L(e) = 7] f(x, ©) ..., (3.73)

n
i=1

The maximum likelihood estimator of © 1is given by

Lh.(g)) — 29153}1-(€/

Jar o ATLL K

(3.74)
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of incandiscent electric bulbs by power category in Rajshehi. The result

of the survey is shown in Appendix I. As per this survey, Phillips has
the highest sell volume, Belco is leading in the medium sell volume group
while Bengal belongs to the lowest sell volume group. Of the power
categories, 60 watt has the highest sell volumes followed by 100 watt,
Accordingly, we have included Phillips, Belco and Bengal each with 60 W

and 100 W power categories in our experiment as well in the study.

It is mentioned earlier that life testing experiﬁenta are destructive
one and we were in resource constraint, we put 20 bulbs of each category,
in total 120 bulbg, in the experiment. Twenty holder points was set with
each cut-out. The holder poiﬁts were numbered merially 1-120., The bulbs
were set in holder points by random allocation. For the purpose, bulbs
were placed in identical packets, mixed together and numbered, Two sets
of random numbers were drawn simultaneously -~ one for holder position
and the other for bulbs, Let x be the ramdom number representing holder
positions and Y be the random number representing bulbs. Then the

random set (x ’ y) represent the yth bulb placed in the xth holder.

Since, life teating experiments are time censoring, we had decided
in advance to run the experiment for three calendar months which would
produce a type-I censored data, Later on, we encountered a problem.

On the eighth day of the experiment, the main switch conneeting our
experimental net-work was burnt. It took 42 hours to replace the main
switch by a new one. In addition, there were 66 recorded hours of

electricity failure during the period of experiment. Considering the
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Kaplan-Meier method (PLE). Analysis of data can be done on the basis

of non-parametric methods of estimation but it is not very much useful

for inference purposes, particularly with cengored data, Graphical
representation of estimated survival function or its transform may give

us some insight about the form of the distribution which we have discussed
at length in Seotion 2.2. We have estimated the survival probabilities

at failure points in time for all the six cateéories of incandiscent
electric bulbs under our study by the PLE defined in Section 3.6, equation
(3.61). sSurvival probabilities estimated thus are shown in Appendix IV,

A graph of H(t) = - 1n S(t) against time t 1is found to be approximately
linear having a negative intercept on the Y-axis for all the six categories
of life times under investigation. The graphs are shown in-figures (2-7).
The length of the X-axis between the origin and the point through which
the line is passing are varying for the six different categories. Also
the angles these lines are making with the positive direction of the
X-axis are differing with each other, It ig evident from our discussion
in Section 2.2 that the underlying distributions belong to some location-
scale family of distributions. 1t also implies that the distributions

in question, more or less, belong to the game family differing in their

location-scale parameters or to close allies.

To identify the family of distributions to which each of the six
categories of lifetimes belongs, we have followed the method of polynomial
fitting discussed in Section 2.3. We have tried 2 third degree polynocmial
for each category of lifetimes. We found second and third degree coe-

fficient nearly zero and gtatistically insignificant., A negative
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constant and a positive linear term constant were observed to be statis-
tically significant for all the six categories of lifetimes. The
coefficients of fitted lines with their standard errors are shown in

table 1. The fitted lines dectate that the underlying life distributions
clearly follows a two-parameter negative exponential distribution differing

in the guarantee period and expected lifetimes with each other.

Table — 1: The fitted polynomials for six different categories
of incandiscent electric bulbs.

Categories E The fitted polynomials
1
2 -3
Phillips—-60W H(t) = - 2.5926169 + 1.87768 x 10 “t
(0.0161456) (4.29303 x 1075 )
Belco-60W ﬁ(t) = - 0.16686420 + 3.45564 x 10”7
(0.0001729) (5.94709 x 10‘6)
A
Bengal-60W f(t) = -~ 0.6209808 + 1.10228 x 10”7t
(0.0041068) (2.87496 x 107°)
I~
Phillips-100W ﬁ(t) = - 2.311633 + 1.49006 x 10™t
(0.0108923) (3.16105 x 10'5)
2 -3
Belco-100W H(t) = - 2.4381843 + 1.59606 x 10 “t
(0.0123059) (3.43895 x 10™°)
Bengal-ioow ' ﬁ(t) = - 0.0050471 + 2.76858 x 10™ %

(4.19201 x 10‘6) (4.59519 x 10-6)

( fFigures in the parenthesis indicate standard errors of the estimate.
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In each case, the coefficient of the linear term or in other words, the
regression coefficient, which may be considered as scale parameter of a
location-scale family of distribution, is less than unity., It implies

that there is no possibility to confuse the underlying distributions

as log-normal,

4.3.1 Leasgt square estimtes

Since the survival function of the two parameter exponential distri-
bution is available in closed form, it is eamy to set the least square

estimates of the parameters. Let

t-m

1

£f(t) = — exp (-
0

=> 5(t) = exp -(t-m)/ 0 .... (4.1)

Taking Ln on both sides of equation (4.1), we get,

In s(t) = - (t-m)/o

or, -ln§(t)= —— --—o-

. t
or, - 1lh 5(t) = --—%— + 5 cees _ (4.2)
which can be written as a simple regression model

a+ bt +u (4.3)

q
]

where,

4
U

- 1n s(t), dependent variable,
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_ m/g, unknown parameter

a

t = Observed failure point in time.
1

b = o unknown parameter.

u = random error observed on S(t).

Graphe (2-7) shows the suitability of choosing a simple regression model.
The values of a and b for all the six categories of incandiscent
electric bulbs are available from Table 1. Where 6'= —%— and

)

f"":—gg.

The least square estimates of the guarantee time parameter m and
the scale parameter © are appended below for the six categories of

incandiscent electriec bulbs.

Table-2: Least square Egtimates of Parameters.

Name of bulb Gurant%p period Scale %grameter
Phi-60 1380.73 532.37
Bel-60 482,90 26893.97
Ben-60 563.36 907.21
Phi-100 | 1551.36 671.11
Bel-100 1527.62 | 626.54

Ben-100 18,23 3611.95




20

4.3.,2 Maximum Likelihood Estimates

The least square method provides us only estimates of the parameter
m and @ but not the precise estimate of the standard error of the
egstimtes. We can predict the survival probabilities at various points
in time using least square estimates but thése estimates fails to give
ug expected lifetime estimate and a confidence interval for the true

expected lifetime,

Once the form of the lifetime distribution is singled out, it is
eagy and mostly desired to have the maximum likelihood estimates of
parameters because of their optimal properties. Since our data is
type- I censored, it is essential to find out the appropriate distribution
function in order to obtain the maximum likelihood estimates. Let us
agsume the form of the probability density function of two parameter

exponential model as

Htme) =4 expl- GG m 22T 70

The experiment was terminated at a preassigned time T = 2280 hour. Here
the number of items that failed before time T is a randam variable which
we denote by R. Let P(t) be the probability of failure before time T.

Then "R" has a binomial distribution,

p(R=r)=(2)p a7 T=0,1,2 weem e (4.5)
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where p= P(T)=1-exp - (T-m) /©

ceue .6
end ¢ = 1-P = exp =~ (T-m) /O (4.6)

Here the items that failed where not replaced. The data coneists of

the life times, t(l):é t(2)f£ sese f&t(r) of r items that failed

before T and (n-r) items that survived beyond T.

Therefore,

P(R=x)= () [1-Exp(t-m)/e 7% [oxp - (P-m)/07 "™ ... (4.7)

We consider the conditional p.d.f of the failure time, given that the

item has falled before time T. This is given by

exp - (t-m)/@

(1/6 )=
6 (1-exp - (t—m)/O) cesaa (4.8)
0/ ¢ é T
= 0, otherwise
Thus the Joint p.d.f of t(l)’ t(2)' cecey t(r) is given by
4 't(l), t(2), enes t(l‘)/g
A (4.9)

o° [1- e - (T—m)/9] i
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The likelihood of the sample is the joint p.d.f of t(l)' t(2)’ o t(r)

and r. Hence

Lty by s i) = gl b, ly,~ tay /6] (3) PP 3777

. — Zlti—m )
— P - s i
6" r (n_;y,[ //’7 %—Zj [ T/j

= [é L}”i/”’” 52'@‘19-”7/

ar n-rJ
"1 - Ger)r-my_ Eltr=m)
by 2] &
(-»)1 &F €

Il

nl 5['.)_'@‘/'—”7/4. G- (7=-m)/ ...  (4.10)
@-rjl or

Taking log on both sides of (4.10), we get,

S(t,-m) + (n-r) (1-m)

logL = logC -~ rlogé - 5 cane (4.11)

where (¢ 13 a congtant.

Differentiate both sides of the above egquation with respect to 6, we get,

et o, Eltizm)rlr)Crry

& Z e

> 0 — = PG+ Z(E=)+ (T 7))
= Lk

o B [E L= 1) 5 -r) (- AN

= [Tt~ P+ Q- — nii+lA /P e (412)
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Now we estimate m, consider © fixed, say © = 6o and consider the

maximjization of

L [f(l)’ t(2), cees t(r)’ r/ 6/ as m varies over the permissible
range m = t(i) [=1,2, vevu, r. It is quite clear that

Max L [t(l), Bay erer b(gy r / 6/ is attained at m which
minimiges (ti - m) of the denominator of equation (4.10), Thus #

is the maximm possible value of m sgubject to m = t(i)' i=1, 2,
essey To Or, n = Min ( t(l)' t(2)’ cesey t(r))' We note that m

is independent of ©. Here m= t(l) is called guarantee period i.e.,
an item will survive at time t(l)’ its probability ie one., Neither e
is unbiased for ©, nor tél) is unbiased for m but '3 and t(l) are

Jointly sufficient for 6 and m,

Ifr t(r) be the rth smllest observation in a random sample of

gize n from the exponential distribution given in (4.4), then

ol 1
E (t( )’m) =8 Iz; n- 41
7 B(ty=m+ &= = B(@) ... (4.13)

Since the maximum likelihood estimators are biased, so test of gignifi-

cance and confidence interval based on their asymptotic variance my lead
misleading conclusions. Kalbfleish and Prantice (1980) have shown that upper
1imit of survival probabilities based onl asymptotic confidence interval

exceeds unity. ILawless (1982) suggests that for type-I censored data



2 5‘ 2
o * (2r1)
7 B6) 5~ ©
COR-
. 21'-1 O ¢ v

is unbiased for @. In a similar way,

~ a3 ]
m = - = -2
m n = t(l) n [

is an unbiased estimation of m,

~, 2r 2 A
Var (8) = (2r_1 ) Var (©)
292
— 2r_1 LK
@)
Yar (O
Var (ﬁ; ) = Var (a) + 5 -
. n
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

The unbiaged estimates of m and 6 along with their estimated standard

errors are appended below in table number 3 for the six different incan-

discent electric bulbs under study.



Table-3 : Unbiased M.L.E of the parameters with Estimated

Standard Errors
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Name and power Guarantee parameter

Scale parameter
)

of bulb m

Phillips-60W 1408.1327
(26.7443)

Belco-60W 469.4676
(148.0405)

Bengal-60W 611.4597
(44.9228)

Phillips—-100W 1547.3275
(35.1060)

Belco-100W 1601.3785
(27.0571)

Bengal-100w 26,5548
(184.9499)

517.3454
(135.8615)

2800.6470
(960.6140)

870.8056
(221.1848)

673.4504

(198.5896)

519.0574
(153.0616)

3498.9035

(1200.1140)

*Figures in the parenthesis indicate standard error of the estimates.

The mean of the distribution defined in (4.4) is given by

ET) =m+ 0 cevee

Therefore, the unbiased estimated average life is given by

E(E‘) =,ﬁl/+a’ LICIE I )

Estimated variance of the estimated mean life is given by

(4.19)

{4.20)



~s
var E(T) = var (W) + var () + 2 cov (%, 3)

var (@

) and var (3 ) are given by (4.18) ang (4.17)

~r A o
Cov (m, © = Co - 2r A
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Jo Var E (7) = 5 (2n = 4n + 2r + 1)
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var (9)
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(4.21)

~f
The distribution of § (T) 1is apymptotically normal with mean g (T) and

variance defined by (4.21). Therefore,

~7

- K1) - K1) Mo, 1) .....
’ \/Var E(T) e

(4.22)

The quantity 2 defined in (4.22) can be used as pivotal quantity which

provides confidence limits and significance test for the mean life,

unbiased estimates of mean life length along with 95% asymptotic confi-

dence intervals for the six different brands of incandiscent electric

bulbs under study are given below in table number 4.

The
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Unbiased Estimates of Mean Lifes.
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Name and power Estimated A
of the bulb Mean life 9E§te:z:€t0tic Confidence
o 4
E(T)
Phillips-60w 1925.6724 1667.6677 2183.6771
(131.6350)
Belco-60y 3270.1146 1460.5762 5079. 7130
. (7923.2645)
Bengal-60w 1482.2653 1061.6705 1902,8601
(214.5892)
Phillips-100y 2220.7779 1845.1604 2596.3954
(191.6416)
Belco-100y 2120.4358 1830.9363 2409.9403
(147.7064)
Bengal-100w 3525.4583 1264.6914 5786.2252
(1153.4525)

!Figures in the parenthesis indicate standard error of the estimates.

It is observed from Table-4 that the estimated mean life of different

brands with same power are differing in a wide margin, Naturally question
arises whether these observed differences in the estimated mean values are
statistically significant or not. Since the asymptotic distribution of

the estimated mean life are normal,
| E(7) — Eq(7)] B
L=
6
"

2N gng 20=] N an i)
Zp =1 272 -]
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J6(7)= E(7) ]
Q’L\/ .zn(nz 414+ 20(n-2) , 4
Ak, —)

25” -

IE(T) — 5(7) /
/ninay o
( 2) /,z/v-, z,,_/ +7/(n_-27
) |
Vzuwzém f*znﬂ)4-4L. with BrB-1) L4

follows students t-distribution where = (z, 9 +r 6;)/(r1+r2-1)

is the pooled estimate of © and is the appropriate test statistic for
testing significance difference between Mean life's of two categories
of same power. The calculated values of t with appropriate d.f, for

pairwise difference are shown in table- 5 below,

Table-~-5: Calculated values of Student's t-statistic
for pairwige differences in Mean life.

Power of bulb Pair Degrees of Calculated
in watt/hour compared freedon value of t
60w Phillips-Belco 2% ' 2.25549%
Phillips-Bengal 30 1. 6890086
Belco-Bengal 24 2.6672209%
100w Phillips-Belco 23 0.4012851
Phillips-Bengal 20 1.5161952

Belco-Bengal 20 1.7130034
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4.4 Goodness of pit

Based on plotting procedures and polynomial fittings, we have
decided that the underlying distribution of survival times of incandi-
scent electric bulbs are two parameter exponential. Accordingly we have
estimated the parameters and survival probabilities using least square
and maximum likelihood methods. Now we are to ascertain whether the
estimated survival probabilities are in agreement with the cbserved ones.
If the degree of deviation is insignificant between the observed and
estimated set of survival probabilities than we can conclude that our
choice of model is justified and we can go into further analysis. Other-

wise, we are to gearch for an alternative model,

The method we are using for testing goodness of fit is the likelihood
ratio test. Since our censoring time is fixed, so no assumption about
cengoring is required, Let Sj be the probability of survival beyond tj‘-

The underlying hypothesis to test the goodness of fit are,
Ho: Sj = SjO’ j= 1' 2, csesy I

enes ces (4.24)

For testing the above hypothesis, the required test statistic is

P

L(é\ '] S [ LI Y § )
2 10 co ro’ 2
X = - 2 lnL (g-’ g y cese gr ) X(l) eas e (4.25)

A\ -~ feal
where L (54 SQP' ves Sro) is the estimated likelihcod function under

s ol -\
Ho and L (Sl, Spr  eees Sr) is the estimated likelihood function based on
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observed survival probabilities i.e., P.E.E. of survival probabilities.

Under Ho, we have

t-m

s(t) = exp (-

)

4]

A

=> L(§],» é;o, veor Bo ) = B(ty) §(t-2) veen S(t,)

o

t, - m
= exp ( - z(i,a, ) (4.26)
r n,-d
(8, § §) = /7 (—2) (4.27)
imilarly L 3 seve = —_— cas .
S arly 1, "2 r 321 j=tj4—t nj
Finally our test statistic becomes
?bi—m
7{':: : éx’a[ui:}’—/ G / (4.28)
o [M)
=/ GL;iJz-f 7

The values of estimated chi-squares for six different categories of

incandiscent electric bulbs under study are shown in Table~6.
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Table-6: Values of Estimated Likelihood Ratio Statistic

Name and power Estimted Likelihood-Ratio

7
of the bulb 5 Ueging unbiased Uging least

1 m.1l, estimates square estimates
Phillips-60W 1.4844 1,0079
Belco-60w 0.8740 ' 0.9993
Bengal-60W 1.4512 ' 0.9989
Phillips-100w 0.9461 0.9894
Belco-100y | 1.4791 1.0009
Bengal-100wW 0.9350 0.9393

The theoretical value of chi-square of 5% level of significance with
one degree of freedom is 3.84 which is larger than all our estimated
values. This implies that the observed data is well graduated by

a two parameter exponential model so that we can make inference using

the estimated model.

Comparison of Survival Curve

Suppose that lifetimes and censoring times are available from each

of two populations, specified by

. . / "_é:_/;fz- AL G 2o,
\]L(i)/“t,gzj-—“‘é? € & ’ Ry

we define a dummy regressor variable x that takes on values 1 or O
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;

according to whether an individual comes from the first or the second
population so that the covariate vector X =(1 o) if the individual
belongs to the first population when X = (o 1) if the individual
belongs to the second population., Now we can write the hazard function

{(é/x) = Ap(t) €Xﬂ:—é~ e

as

for the combined population. Let s11 be the conditional probability
of surviving t(i) for individuals from the first population and S21
be the corresponding sur¥ival probability for individuals from the

second population. The hazard function for the two distributions are
h(t)—h(t)'a and h,(t)= h (t)
1 - 0 e n 2 - o

The two distributions are identical iff )6 = 0. A test of ﬂ = 0

is equivalent to the test sl(t) = sz(t).

Let n, be the total number of individuals at risk just prioer to

i
t(i) from the combined sample and ny and n,y be the corresponding
number for the first and second population, aso that n; =Ny, 4+ 221.
Similarly let d11 and d21 be the number of failures from the first
and the second population respectively at t(i) such that di = dli +

d21 be the total number of failure at t(i)'

with the combined sample from the two populations and the dummy

regressor variable x, the score vector of exponential ordered score
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test (sometimes referred to ag Savage or Log-rank test) with censored

data is given by

dy npy

K
Uo) = ) ( d; -— ),) L= lor?2
i=1 i

The information quantity (variance of the difference) is given by

dy(ny - dj) nyy nyy

k
()= 2 ( >
i=1 "ng" (ng - 1)

A test of Ho: PB=o (equivalently, sl(t) = Sz(t) can be based on
either

U(o)
Il(oﬂ‘/z,..

~~— N(o, 1)

Large absolute values of Z provide evidence against equality of the

two survival curves. Alternatively,

2 [U&Jg? ~ x1)

The later is sometimes referred to as Mantel-Haenszel (1959) test. The

calculated values of 22 for pairwise comparison are shown in table 7.
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Table-7 t Pairwise Comparigon of Survival Curves for
different Power Categories/Brands.

Power Comparigon Pair Calculated 22

60 Phillips-Belco 5.2755~
Phillips-Bengal 3,0671
Belco-Bengal 6.1918*

100 Phillips-Belco 0.0164
Phillips-Bengal 0.1835
Belco-Bengal 0.1852

*significant at 5% level,



CHAPTER FIVE

STUDY OF COST-BENEFIT FACTORS OF DIFFERENT BRANDS
OF INCANDISCENT ELECTRIC BULBS

5.1 Introduction

in Chapter Four, we have studied the reliability parameters, that
is, guarantee period, intensity of failure and average life time of
different brands of incandiscent electric bulbs by power categories
under investigation. It has been discussed at length in Chapter One
that the overall quality of an incandiscent electric bulb depends not
only on reliability parameters but alsc on the benefit factor, that is,
the intensity of light and the cost factor, that is, the amount of
power that it consumes per unit time to unit the light. Hence, only
a larger mean life time or a larger guarantee period or a smaller inten-
sity of failure of one branch can not assure that it is better than any
other branch unless we study the cost benefit factors and calculate
how much we are to pay for per unit of light. This chapter is aimed to
study these cost benefit factors of different brands of incandiscent

electric bﬁlbs under investigation.

5,2 Measurement of Intensity of Light

Following instruments are essential to measure the intensity of

light:
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1) Lux meter : It is an instrument which can measure the intensity
of light directly in the unit of lux. It has a reflector. The
light of the glowing bulb from unit distance falls directly on
the reflection and the lux meter in this reflector read the

intensity of light in lux which one lux = 0.093

2) Variac or Variable Stabilizer: This instrument can stabilize
the voltage of electricity flow in the range of 0-240 volta
and any desired voltage can be used to observe the variation
in the intensity of 1light. But the variac itself cannot read
the voltage. Since voltage in a variable range can be stabi-

lized, the instrument is called variac for this reason.

5) Avometer or Multimeter : It is an electric meter which can
measure the flow of electricity through a conductor, the
voltage of electricity and many other electrical parameters,
we have used an avometer to measure the line voltage through

the variac since variac itself cannot measure the voltage.

4) Incandiscent electric bulbs under study.

5) A meter scale.

Measurement of intensity of light is an electro-physical experiment
which require a standard dark room. Departiment of statistice has neither

dark room nor these appliances to conduct the experiment. we have con-

verted a room of the department of Statistics temporarily into dark room
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ft
L — I‘ l

B
N —— Varlac %

Wi

L = Live
N = Neutral
E = Earth

V = Voltmeter
B = Bulb

S = Sensor
R = Recorder

K

Wi

Lux meter

Fig.8. Circuit Diagram For Measuring Intensity of Light .
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using black screens, while the Department of Applied Physics and
Electronics helped us with instruments and technical know-how to run

the experiment. The outline of the experimental setup is shown in

circuit diagram (Fig. 8),

The stabilizer was connected to the electric line directly. The
bulb under experiment and the avometer was connected to the line through
the stabilizer. The distance of the filament of the bulb to the centre
of the reflector of the lux meter was fixed at one feet. The voltage
was fixed first by adjusting the variac and then the bulb was made on
to measure the intensity of light for that voltage. The lux meter could
not give any reading for intensity of light below 60 volt. The reason
ig that a certain amount of power is required first to heat the filament,
only after which light can be emitted. Intensity of light was measured
for three bulbs of each category and the experimental results are appen-

ded in Appendix V.

5.3 Voltage-Intensity Relationship

According to Ohm's law, the ratio of potential difference V between
any two points on a conductor to the current ¢ flowing between them,

is constant, provided the temperature of the conductor does not change.

In other words,

constant

|
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where R 1is the resistance of the conductor between the points
considered. It simply means that provided R remains constant, current
is directly proportional to the potentional difference across the ends

of a conductor. In case of an incandiscent electric bulb, the filament
of the bulb is the conductor in question which becomes red hot and fina-
11y glows to emit 1light when current is passed through it. The amount |
of current passing through the filament is proportional to the voltage

of eiectric line, no doubt, but not directly. The reason is that a
portion of the current passing through the filament is converted to heat
which changes the resistance of the filament. It implies that the amount
of light emiting by an incandiscent electric bulb in wnit time is rela-
ted to the line voltage but the nature of the relationship is not exactly
known, Plots of the measured intensity of light against line voltage

in Figures 9-14 indicate a polynomial relationship between intensity of
light and the line voltage for all the bulbs under study but the degree
of polynomials may vary from one another in degree or in parameters and
hence in expected inteﬁsity for given average line voltage. We have
fitted third and four degree polynomials to every set of data in the range
of 60-240 voltage. The coefficients are found significant upto third
degree, When four degree is included the computer accepts four degree
but regrets third degree. If we replace third degree by four degree, the
improvement in the sum of squares regression is insignificant. This
recommends a third degree poiynomial to explain the voltage intensity

relationship in the range of 60-240 volt for a2ll the brands of incandi-

scent electric bulbs. In other words,

E (I/60 4 V£ 240) = b + by V + b2v2 + b5v3 cos (5.1)





















Table B8: Fitted Polynomials of Voltage-Intensity Relationship.

2

Power Brand bo by b, b3 R
60 Phillips 90.17227 ~2.49267 0.01937 -0.00002856 0.99922
(10.97824) (0.25411) (0.001803) (0.00000398 ) (2.20748)

Belco 53.60156 -1.41526 0.00991465 -o.oooooe;g 0.95905
(9.40419) (0. 21768) (0.00154439) (0.00000341 (1.89098)
B 1 -2.156 0.01581 ~-0,0000199 0.9986

enes (13. 29772% (0. 3078;3 (0.00218381) (0.00000482 (2. 67389)

100 Phillips 127.1270 -3,72416 0.03159 ~-0,00005644 0.99903
TR (15.987243 (0.37006) (0.00262548) (0.000005802 ) (3.21468)

Belco 99.6480 -2.87951 0.02364 —-0.0000365 0.99775
(23.19753 (0.53Z92) (0.00380958) (0. 000008423 (4.66451)

Bengal 110.26486 -3.28646 0.02813% -0.00004794 0.00027
(13.99016) (0.32383) (0.00229752) (0.00000508 ) (2.81311)

Figures in the parenthesis inaﬁcate standard error of estimates,

911
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where I is the amount of light emiting per second by an incandiscent

electric bulb, VvV is the line voltage and b bl' b2 and b, are cons-

o’ 3
tants. The fitted polynomials in the unit of lux are shown in Table 8,
Though the voltage-intensity relationship in the range of (60-240)
volt is found to be a third degree polynomial, actually the line voltage
varies in the range of (190-240) volts in general. In this range, the

voltége—intensity relationship is found to be a linear cne, that is,

E (I/190 £ v £ 240) = a + by cee cee (5.2)

The fitied linear relationship in the unit of lux for different brands

of incandiscent electric bulba are shown in Table 9,

Table 9: Fitted Voltage-Intensity Linear Relationship

Power Brand a b R2
60 Philli —218 429 79086
Hes 1214563855 (6/81150) (6729568
Belco -219.48214 1.60893 0.99934
(4.47158) (0.02073) (0~ 86731)
Bengal -236 839 1.80536 0.9
943% 3 (0.03219) (1 -34231)
100 Phillips —202.51619 1.98457 0.99958
(4.37227) (0,02027) (0.84805)
Bel -255.5314 16829 0.96867
e (42: 055393 ?o 19439) (8.15682)
1 -234.24571 2.14114 0.9958
pengs (12494§3§) (o 06928 ) (2.89 ega)

Figures in the parenthesis indicate standard error of estimates,
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5.4 choice of the Model for Predicting Intensities

The average line voltage estimated during the period of experiment
ia found to be (V = 215.00) and the estimated intensity at this average
line voltage as per fitted polynomial, and linear relationship for

different brands are shown in Table 10.

Table 10: Estimated Intensity at Average Line Voltage Vv = 215
of Different Brands for the Two Models

Estimated IntTensity In
Power Brand polynomial Lux Linear
60 Phillips 165.7457 166. 6006
(2.1318) (0.1909)
Belco 124.4192 126.2378
(0.7880) (0.3614)
Bengal 150.2102 151.3131
(1.1045) (0.5563)
100 Phillips 225.6760 224.1664
(1.3356) (0.3523)
Belco 210.2526 210.6509
(1.8970) (3.3173)
Bengal 227.479 226.0994
e (1.1476 (1.1823)

Figures in the parenthesis indicate standard error of the
estimates.

Estimated intensity displayed in Table 10 reflects that at the

average line voltage V = 215, the third degree polynomial and the linear

model reproduce almost identical results. Moreover, standard error of
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estimates are, in general, higher for the polynomials than the linear
fittings. This influences us to consider the linear model (5.2)
instead of the polynomial (5.1} for estimating the average intensity

at the average line voltage. It is to be noted that the estimated value
of a for all the brands under study are negative, This.1s due to the
fact that a certain portion of the total power used are converted into
heat and the parameter a may be considered as a function of that por-
tion of power in absolute value, The parameter b may be interpreted

as the rate of change of intensity for unit change in voltage beyond a.

5.5 Comparison of Parameters for Different Brands

We are paying for the power to get light only. The portion of the
power consumed in heating purpose may be considered as wastage. The less
is the amount of wastage, the higher.is the amount of benefit which pin
points the quality of a bulb, Naturally, oﬁe may raise the question,
whether or not, the amount of wastage of power is diff;ring signifi-
cantly between any two brands of same power under study. This is equi-
valent to a pair-wise of test for significance difference of a. Again
a higher rate of change in the intensity of light for unit change in
line voltage also indicates higher benefit and quality of a bulb in
question. go, we are to investigate, whether or not, the rates i.e.

values of b for different brands of same power under study are diffe-

ring significantly.
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It is difficult to conduct a precise test for significant difference
between different brands for these parameters using separate models for
each brand as is shown in equation (5.2) because we are lacking of
distributional concepts. Rather, we may use a single linear model
combining two or three brands together using dummy variables to perfoxm

these tests under ordinary least square set up.

For the jth branch of ith power category, we may write the

voltage-intensity relationship in the range of (190-240) volt as

B(I;3/V)=az +buV 5 §=1,2 35 1=1,2 (5.3)

For each i, the three egquations in (5.3) may be combined together as

B(I/v) = a; +(a, -—a;) D, + (a3 - 2y) Dy + byV +

(b, - by} DV + (b3 - b)) D3V oo (5.44)
E(I/V) = 2, + (8.3 - az)‘n3 + bV 4+ (b3 - b2) DgV ... (5.4B)
where D; = 1 for an observation of I in ith brand

0 otherwise

Now testing the significance of D, in (5.4) is equivalent to testing

the difference of (a2 - al) in (5.3). Similar is the case with Dy D,Vs

D,V etc. in (5.4).

3
Pairwise comparison of different brands by power as per model

(5.44) and (5.4B) are shown in Table 1l.
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Table 11 : Pair-wise Comparison of Parameters
Difference 1 Difference In scale
Power Brands d.f. intercepgs 'g‘ parameter 'b!
60 Belco-Fhillips 12 -1.0478%0 -0.181930***
(5.092538) -(0.023610)
Phillips-Bengal 12 17.405000% -0,014500
(7.358470) (0.034116)
Belco-Bengal 8 17.357150 -0.196430%*%
(8.258489) (0.038287)
100 Belco-Phillips 12 -53.015240 0.183720
(42.280568) (0.196041)
Bengal-Phillips 12 -31,729520 0.156570
(15.568610) (0.072194)
Bengal-Belco 8 21.285720 -0.02715
(44.629525) (0.206932)

Figures in the parenthesis indicate standard error of the difference

*P = 0,05, == P » 0.0001

It is evident from Table 11 that the scale parameters of 60 watt

Phillips and Bengal are greater than that of Belco while interupt

parameter of Phillips is greater than that of Bengal. This apparent

difference may not suggest that intensity at average line voltage may

differ significantly among the brands under study. It is interesting

that in case of 100 Watt, the brand do not differ significantly from

one another either in intercept parameter or in scale parameter still
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they may differ in intensity at the average line voltage, Pair-wise

comparison of intensity at average line voltage for different power are

shown in Table 12,

Table 12: Pair-wise Comparison of Intensit¥ of Light of Different
Brands by Power at the Average Llne vollage v = 215

Difference in 5.k. ol the

Power ' Brands intensity in Difference d.f. Value of t
Lux

60  Phillips-Belco  40.16280 0.40878 8 98,2504 **
Phillips-Bengal  15.2875 0.58813% 8 25.99347 "
Bengal-Belco 24.8753 0.66338 8 37, 4978 %%
EEE

100 Phillips-Belco  13.51544 3,33593 8 4.0515

Phillips-Bengal 1.93303 1.23370 8 1.5669
Bengal-Belco 15. 44847 3.52167 8 4.3867F%%

**¥ P 0.001

It is clear from Table 12 that in case of 60 watt bulbs, Phillips
has the highest intensity of light which differ significantly from both
Bengal and Belco, yhile Bengal has the second highest intensity which
differ significantly from Belco at the average line voltage V - 215, Of the
. 100 watt bulbs, intensity of both Phillips and Bengal are significantly

higher than Belco while Phillips and Bengal do not differ significantly

at the average line voltage V = 215.
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5.6 Measurement of Power Consumption

Consumption of power is the cost factor of an incandiscent electric
bulb. Unless we measure it, cost-benefit analysis is not possible. The
power may be defined in various way but the simplest one to serve our
purpose is the product of the line voltage and the amount of current
paseing through the filament of the bulb in gquestion in one hour is the
amount of power that the bulb consumes at the given line voltage. At a
given line voltage V ¢f ¢ T—____ = be the amount of current passing
through the filament of the bulb under investigation in one hour, then

the power consumption of the bulb at line voltage V is

Power = CV Watt/hour ... - (5.5)

Generally we use the tr - Killo-watt/hour. Lf we divide the Eguation
(5.5) by one thousand we get power in Killo-watt/hour.. To measure the
péwer consumption, actually we need only to measure the amount of current
passing through the filament of a bulb at different line voltage and
establish a suitable voltage-current relationship to estimate the power
consumption at the average line-voltage. This would also help us in

estimating the total power consumption during the life-time of a bulb.

We have used the following instruments in measuring the amount of

current passing through the filament of a bulb:

1) Voltmeter : It is an electrical meter which can measure

the voltage of electricity.
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2) Avometer : It is also an electrical meter which has
multiple use in electrical technology. We have used
the meter to measure the amount of current passing through

the filament of a bulb,

3) Variac or Variable Stabilizer : It is an instrument which
can control the voltage fluctuation and can be used at a

variable range of voltage of the electricity.

4) Incandiscent electric bulbs under study.

The experimental set up is shown in circuit-diagram (Fig. 15). The
gtabilizer connected to the electric line directly. The voltmeter and
the bulb under study was connected to the stabilizer in series while the
avometer was connected to the bulb in parallel position. First we have
fixed the voltage of the line using the variac and then we switch on
the bulb to get reading on the avometer & which gives the amount of
current passing through the filament of the bulb under investigation in
ampere/hour. Experiment was done on three bulb of each category chosen

at random. The experimental results are given in Appendix VI.

5.7 Voltage-Current Relationship

We have discussed in Section 5.3 that there is a functional rela-

tionship between line voltage V, the resistance of the filament R and

the amount of current passing through the filament ¢, that is, under
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Fig.15, Circuit Diagram For Measuring Current Consumption ,
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constant resistance,

Q
it

But resistance increases as heat increases due to increase in line
voltage. Hence the linear relationship is disturbed. The fitted
relatiénship between line voltage and curreﬂt 1s found to be a third
degree polynomial in the range of 0.240 volt for.all the brand of

electric bulbs under study. In other words, what we have found is
2
B(c/oCveat0)=fv+ (B3 49;3 (5.6)

where ( 1s the amount of current passing through the filament of the
bulb per hour in ampere unit. The fitted polynomials in the unit of
ampere/hour are shown in Table 13. Actually, the line voltage varies
between 190-240 volts in general., Wwithin this range, the current-

voltage relationship is found to be linear one, that is,
E (c/1904 v<£240) = X +PvV (5.7)

Table 14 delineates the fitted linear relationship in the unit of

ampere/hour for different brands of incandiscent electric bulbs under

study.
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Table 13: Fitted Polynomials of Voltage-Current Relationship.

2
Power Brand 51 82 ﬂ3 R
60 Phillips 2.704899-03 -1.51944-05 3.4476-08 0.98763
(2.54179-04) (3.04899-06) (9.20825-09) (0.01045)
Belco 2.62301-03 -1.53421-05 3.,556567-08 0.98603
(2.53282-04) (3.03824-06) (9.17577-09) (0.01042)
Bengal 2.73310-03  -1.64582-05 3.824162-08 0,98564
(2.56637-04) (3.07848-06) (9.29730-09) (0.01056)
100 Phillips 5.136097-03 -3.09801-05 7.090103-08 1,99005
(3.91722-04) (4.69889-06) (1.41911-08) (0.01611)
Belco 4.59314-0%  -2,69217-05 6,108107-08 0,98583
(4.34015-04)  (5.20622-06) (1.57233-08) (0.01785)
Bengal 4.67603-03 -2.72077-05 5.944091-08 0.98814
(3.90738-04)  (4.68709-06) (1.41555-08) (0.01607)

Figures in the parenthesis indicate standard error of estimates.



Table 14:

Fitted Voltage-Current Linear Relationship
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Power Brand A [3 R2
60 Phillips 0.10743 5.808571-04 0.99948
(1.42843-03) (6.62299-06) (2.77059-04)
Belco 0.09365 5.788571-04 0.99959
(1.25685-03) (5.82745-06) (2. 437798-04)
Bengal 0.09728 5.537143-04 0.99932
(1.55568-03) (7.21299-06) (3.01741-04)
100 Phillips 0.18249 9,502857-04 0.99964
(1.95450-03)  (9.06214-06) (3.790967-04)
Belco 0.17662 .8.928571-04 0.99991
(8.89438-04) (4.11393-06) (1.725164-04)
Bengal 0.20405 7.028571-04 0.999

(9.05347-04)

(4.01328-06)

81
(1.836253-04)

Figures in the parenthesis indicate standard error of the egtimatesn,
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5.8 Choice of the Model for Predicting
Flow of Electricity

It is evident from Section 5.7 that the voltage-current relation-
ship in the range of (0+240) volt is a third degree polynomial whereas
in the range of (190-240) volt it is linear. The actual line voltage
varies in the range of (190-240) volt in general, we are to investi-
gate whether the amount of curgent egtimated from the two models
differ signifiéantly at the estimated average line voltage G = 215,
The estimated current at the average line voltage as per fitted polyno-
mial and linear relationshiﬁ for different brands of bulbs under study

are gshown in Table 15,

Table 15: Estimated Flow of Current at Average Line Vvoltage

Estimated Flow of current in Ampere/Hour

Power Brand Polmomial Linear

60 Phillips 0.2218 0.2323%
(2.54197-04) (1.13132204)

Belco 0.2082 0.2181
(2.53300-04) (9.95446-05)

Bengal 0.2069 0.2163
' (2.56655-04) (1.23214~04)

100 Phillips 0.3768 0.3868
(3.91750-04) (1.54800-04)

Belco 0.3510 0.3685
(4.34046-04) (7.04321-05)

Bengal 0.3384 0.3551
(3.90766-04) (2.74105-04)

Figures in the parenthesis indicate standard error of the estimates.
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An eye view ﬁhrough the Table 15 reflects that the linear model
slightly over estimates the flow of curreﬂt at the average line voltage
but the difference is within the permissible limit of 5%. The linear
model calibrates the data at the extreme point of V = 240 whereas, the
polynomial over estimates at this extreme point. Moreover, in almost
all cases, standard error of estimates are higher for polynomial than
the linear model., C(Considering all those facts, a linear model is advan-
tageous over the polynomial to predict voltage-current relationship in

the range of (190-240) volts,

5.9 Comparison of Power Consumption for Different Brands

Once we know the voltage—current relationship, we can utilize the
formula (5.5) to estimate the power consumption of an electric bulb at

-any desired line voltage. As per formula (5.5), we have

Power Vv ¢ watt/Hour

It

V.C
-1—0-0—6- k-w./hour

The estimated flow of current in ampere/hour is given in Table 15 ét the
average line viltage V = 215, The estimated power consumption in watt/
hour for different brands at the average line voltage. Replacing inten-
sity (I) by current (C) in eguation (5.4B), a pairwise comparison of
different brands of same power is given in Table 16 using the linear

model for current flow at the average line voltage,
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Table 16: Pair-wise comparison of Current Flow of
Different Brands by Power

Difference in S5.E. of the d.f. Xlculated

Power Brands current flow di fference t-value

60  Phillips-Belco 0.0142 1.5069-04 8 94,2321 %*%
Phillips-Bengal 0.0160 1.6727-04 8 95,6515
Belco-Benghl 0.0018 1.5840-04 8 11.3635%*%

100 Phillips-Belco 0.0183 1.7006-04 8  107.6029%**
Phillips-Bengal 0.0317 3,1479-04 8  100.7001%**
Belco-Bengal 0.0134 2.8300-04 8 47.3482%%*

*i!Difference is highly significant.

Analysis of able 16 reflects that Phillips passes highest current
followed by Belco and Bengal for both the power categories. In other
words, brands can be ordered as per current flow as Phillips > Belco >
Bengal at the average line voltage. Since average line voltage is
constant at v = 215, it reflects that on the average, consumption of

power is highest for Phillips and lowest for Bengal.

5.10 cost-Benefit mctors

Let Tij be the average life of an electrio bulb belonging to the jth
brand and ith power category and Xy be its price so that xU/TU be the

cost of the bulb for unit time. Again let PU be the amount of power
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conguming by the bulb in unit time at the average line voltage and Yﬁ
be ita cost s? that ZU = Yﬁ + IH/TU be the total cost in unit time
for burning the bulb, Now if I.ij be the amount of light emitting by
‘the bulb in unit time at the average line voltagethen zﬁ/LU be the
cost per unit of light. In estimating the cost benefit factors, prices
of bulbg are taken from the local retail market. Estimated average
1ife TU are available from Table 4 of Chapter 4. P“'s are estimated
from Table 15 of Chapter 5 at the average line voltage V = 215 volt
using the equation (5.5). Cost of power Yu's are estimated as per
current tarif of PDB (Power Development Board). Lﬁ's are estimated
by adjusting time unit from Table 10 of Chapter 5. Linear estimates

of P,.'s and Ly's are considered in estimating cost benefit factors.

1\
Table 17_bhows the estimates of cost benefit factors,



Table 17: Estimated. Cost-Renefit Factors at the
Average Line Voltage ¥V = 215

power Brand Average life  Average power T{nit cost cost of power Total cost fTotal amount Cost per
i j in hours consumption in Taka - per month PeT month  of light av- unit of
. per month in X, in Taka in Taka ailable per 1light in
v KwH P v Y. Zpr+x/T.  month in Taka
y i v Y (1.00000) 7 o
I, # Ly
I\
60 Phillips 1925.6724 35.9600 16.00 79.80 85.79 401.6007 0.2136
Belco 3270.1146 33,7619 13.00 75.77 78.63 304.7859 0.2579
Bengal 1482.2653 33.4832 13,00 75.26 81.57 364.7493 0.2236
100  Phillips 2220.7779 59.8766 19.00 122.78 128.97 540.3665 0.2387
Belco  2120.4358 57.0438 15.00 117.67 122.76 507. 7866 0.2417
Bengal  3525.4583 54.9695 15.00 113.95 117.01 545.0261 0.2147

¢¢T



CHAPTER SIX
SUMMARI SATION OF RESULTS AND CONCLUDING REMARKS

6.1 Summarisation of Results

Empirical survival probabilities for all categories of bulbs under
investigation are given in Appendices IIA-IIE. Graphs displayed in
Figures 2-7 (pp. g1.gg ) based on the survival probabilities that the
underlying distributions of failure times for all the six categories of
incandiscent electric bulbs under investigation for tentatively follow
two parameter negative exponéntial distribution. Results displayed in
Table one (p. 87 ) also support that the wnderlying failure time distri-
butions are two-parameter negative exponential,least square estimates of
parameters are shown in Table two (p. 89 ). These estimates are biased
and displayed for comparison only. TUnbiased maximum likelihood estimates
of parameters are portrayed in Table three (p. 95). A qomparison of
ieast square estimates and unblased maximum likelihood estimates shows
that in general least square over estimates the scale parameter (failure
rate parameter) while it under estimates the location parameter (guaran-
tee time). It is evident from Table three that of the 60 watt power
category, Phillips has the highest guarantee time followed by Bengal
and Belco. Their failure rates also follow the same order, In compari-
gon to guarantee times and failure rates of other brands, the failure
rate of Belco is observed to be mugh smaller, Of the 100 watt category
Belco has the highest guarantee period followed by Phillips and Bengal.

It is to be noted that for unbiased estimate, the guarantee time of
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Bengal 100 watt is found to be statistically insignificant which is a
contradiction with graphicai result (pp.gi_gg ) and the result shown

in Table one (p. g7 ). However, for uniformity, this insignificant
result has been considered in further analysis. In this power category
also, the failure rates follow the same ordering as the guarantee time,
The wunblased estimates of mean 1life times for all the brand-categeries
under study are given in Table four including a 95% asymptotic confi-
dence interval. The results are self exflanatory. 0f the 60 watt
category, Belce has the highest estimated average life foliowed by
Phillips and Bengal while Phillips has the minimum ccefficient of
variation followed by Bengal and Belco. Of the 100 watt category, Bengal
has the highest estimated 1life time followed by Phillips and Belco while
Belco has the minimum coefficient of variation followed by Phillips and
Bengal., Pairwise comparison of estimated mean 1ife are shown in Table
five (p. 98 ) which reflects that the larger estimated average life for
Belco 60 watt over Phillips and Bengal is statisticelly significance
while Phillips and Bengal do not differ significently for 100 watt,
brands do not differ among themselves with respect to estimated average
life. The likelihood ratio statistic for goodness of fit of fitted
distributions using both unbiased maximum likelihood estimates and the
least-square estimates are given in Table six (p. 101 ). The results
reveal that the data are well graduated for all the six categories with
both least square and unbiased h-lu egstimates, Results of Mantel-
Haenozel (1959) test for pair-wise comparison of survival curves of
brands within the power category are displayed in Table seven (p.104).
The resultgare in agreement with the results of Table five (p. 9g ),

that i1s, for 60 watt, the survival curve of Belco differs significantly
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from Phillips and Bengal while Phillips and Bengal do not differ

significantly and for 100 watt,,the brands do not differ with one another
significantly.

Relationship between voltage of electric line and the intensity

of light has been discussed in section (5.3) and found as -

3

E (I/60 £ V4 240) = b_ + byV + b,v2 + b,V

'

3

where I is the amount of light emitting per second, V 1is the line
voltage, bo’ bl b2 and b3 are constant. No light was available for
line voltage below 60 and no reading on light could be taken beyond
line voltage 240 due to limitations of instruments, Fitted polynomials
with standard error of estimates of bo’ bl’ b2 and b5 are shown in
Table eight (p. 116). Practically line voltage varies in the range

of 190-240 volts in general. In this range of line voltage,the voltage

-intensity relationship is found as

E (I/190 £V £ 240) = a + bV

Fitted liﬁear relationship for different brands and power along with

the standard error of estimates are displayed in Table nine (p. 117 ).
The intercept term for all the brands and power are found to be negative
which is consistent with the fagt that a certain amount of power is lost
for heating the filament before emitting light. The scale parameter b
is the rate of increase of intensity for unit change in the line voltage.
For 60 watt power category, the rate of inorease of intensity of light

is found to be highest for Bengal followed by Phillips and Belco while
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for 100 watt, it is found to be highest for Belco followed by Bengal
and Phillips apparently.

The apparent wastage of electricity is found to be highest for
Bengal followed by Belco and Phillips in order for 60 watt, while it
is highest for Belco followed by Bengal and Phillips for 100 watt, The
ratio (- a/b-)may be considered as an index for wastage of electricity
which‘is found to be highest for Belco followed by Bengal and Phillips

for both 60 watt and 100 watt.

Estimated intensity of light at the average line voltage are
displayed for both linear and polynomial relationships in Table ten (p. 118)
and found to differ insignificantly. For this reason, the linear rela-
tionship is considered for further analysis. Pairwise comparison of
parameters for different brands of same power are displayed in Table
eleven {p. 121). For 60 watt, magnitude of intercept parameter is sig-
nificantly larger than those of Phillips and Belco, while Phillips and
Belco do not differ significantly. Side by side, the scale parameters
of Belco is found to be significantly smaller than those of Phillips and
Bengal, while Phillips and Bengal do not differ significantly. The
Brands do not differ from one another significantly with respect to para-

meters in case of 100 watt.

A comparison of intensity of light at the average line voltage for
different brands by power category is given in Table twelve (p. 122).
It is observed that for 60 watt power category all the brands differ
gignificantly with each other and their relative ordering is Phillips >

Bengal > Belco, For 100 watt category, Belco has significantly =maller
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intensity than those of Phillips and Bengal, while Phillips and Bengal

do not differ significantly,

Voltage~current relationship has been studied in Section 5.7 and -

found to be a polynomial of third degree, that is,
E(C/0 < ¥ £ 240) = 131" + ézvz + %vB

wheré C 1s the amount of current flowing through the filament of the
bulb for a given line voltage V in the range of 0-240 volts. Fittled
polynomials are displayed in Table thirteen (p. 127). It is mentioned
earlier that in reality, line voltage varies in the range of 190-240

volts generally. Current-voltage relationship in the range of 190-240

volts is found to be a linear one, that is,

E(C/190 £ ¥V £240) = oA + Pv

Fitted linear relationships for different brands and power categories

of incandiscent electric bulbs are appended in Table fourteen (p.32g).
kgtimated flow of current at the average line voltage as per polynomial
relationéhip and linear relationship are shown in Table fifteen (p.129)
from where it is evident that the polynomial under estimates the observed
flow of current at the average line voltage. Again, it over estimates
the flow of current at the upper end points of line voltage. These facts
instigated us to consider the linear relationship for further investi-
gation. This table also reflects that flow of current is highest for
Phillips and lowest for Belco for both 60 watt and 100 watt power
categories of bulbs apparently. Table sixteen (p. 131 ) confirms these

result, where pair-wise comparison has been made by power categories.
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All the estimated cost-benefit factors including cost per unit of
light at the average line voltage are appended in Table seventeen
(P.133 ). This table indicates that cost per wnit of light is highest
for Belco for both 60 watt and 100 watt bulbs. In case of 60 watt bulba,
minimum cost goe& to Phillips while for 100 watt bulbs minimum cost
goes to Bengal., For 60 watt bulbs, relative costs of Belco and Bengal
are {7.18 per cent and 13.30 per cent higher than Phillips, while the
relative coast of Bengal is 4.47 per cent higher than the Phillips. The
relative cost of Belco and Phillips at the average line voltage in order
are 11,17 per cent and 10.05 per cent higher in comparison to Bengal
for 100 watt power category, while it is 1.24 per cent higher for Belco

in comparison to Phillips.

6.2 Concluding Remarks

Apparently one should decide to purchase that bulb for which cost
per unit light is minimum. But there are other factors to consider.
Of these factors, first comes the guarantee period. Since average life
of an electric bulb is not toc small, consumers would expect a longer
guarantee pericd. Second, cost of a bulb., If ccst of a bulb is aigni-
ficantly higher than an alternative brand, consumers should prefer the
low cost one, Above all, the room space where bulbs are used for light
is an important factor which we did not consider at all, The optimality

of light with respect to room space may convert a low cost bulb into

high cost one. Some one may study this factor for further investigation.

considering the factors discussed above, it 18 not possible to say
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explicitly which one is to prefer but preference will vary from consumer
to consumer depending on their necegsity, availability of altermmatives,
ability to invest for a bulb and knowledge of guarantee period, average
life and the intensity of light. Phillips yields its maximum capacity
at 250 volts. We have calculated the cost per unit of light at the
average line voltage V = 215. If this average line voltage is changed,
ther? will be a change in cost per unit light and that change may not

be proportional to change in voltage which may upset the present results.
In establishing the voltage-intensity relationship in Section 5.3 and
voltage~current relationship in Section 5.7, we have considered the
‘average of 3 observations on intensity of light and flow of current for
the same line voltage. Instead, if exact observations could be used some
difference may be expected in the estimated parameters which may effect
the cost per unit of light., These are left as further scope for future

investigation.



APPENDIX - I

Consumption Pattern of Incandiscent Electric Bulbs

(% of sell volume)

s1. Power
No. Brands 60 watt 100 watt
1, Belco 16 17
2e Bengal 9 10
3, Crown 6 6
4. Emon - -
5. NEC 15 14
6. Paramount 7 6
T. Phillips 20 19
.B. Seiko 5 5
9. Singer 14 14
10, Sainik 8 9
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— Records no sell
in the selected

during the short survey period of 3 days

retailer shops.



LOSS TIME ACCOUNT

APPENDIX 1II
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Time of losgs

! Amount of loss

Date ! Cumulative
From ! To ! time in hour X sum,
1-4-89 3,15 p.m. 5.45 pom. 2.50 2.50
5-4 7.05 a,m, 8.20 a.m. 1.25 3.75
6-4 9.00 p.m. 10.45 p.m. 1.75 5.50
8-4 11.30 a,.m, 2.30 p.m. 3.00 8.50
8-4 7.15 p.m.
to .
10-4 . : 1.15 p.m, 42.00 50.50
29-4 7.00 p.m. 8.30 p.m, 1.5 52,00
30-4 9.00 a.m, 10.00 a.m. 1.00 53,00
3~5 11.00 a,m, 12,00 a.m, 1.00 54.00
4-5 7.30 a.m, 8,15 a.m, 0.45 54.75
T-5 11,00 a.m, 12.15 a.m, 1.15 56.00
9-5 8.30 p.m. 10.00 p.m. 1.30 57,50
11-5 5.15 p.m, 7.15 p.m, 2.00 59.50
12-5 7.00 p.m. 9.30 p.m. 2.30 62.00
14-5 4.15 p.m, 5.15 p.m. 1.00 63.00
16-5 10.30 a.m.  1.30 p.m. 3,00 66.00
18-5 7.30 p.m. 10.00 p.m. 2.30 68.50
19-5 9.45 a.m. 11.15 a.m. 1.30 70.00
22-5 7,00 p.m. 10,30 p.m. 3,30 73,50
31-5 9,45 a,.m, 12.45 a.m. 3.00 76.50
1-6-89 5.00 a.m, 7.00 a.m, 2.00 78.50
2-6 3,50 82.00
3-6-89 3,30 p.m. 5.30 p.m, 3.00 85.00
4~6 11.00 a.m. 12.45 a.m, 1.45 86.75
6-6 9.55 p.m. 9.30 p.m. 0.15 87.00

{ contd. )



10-6
12-6
13-6 .
16-6
17-6
18-6
21-6
24-6
25~6
27-6
2-7-89

LOSS TIME ACCOUNT (contd. )

3.15 p.m,
8.30 a.m,
3.45 p.m,
5.00 a.m,
11.30 a,m,
9.15 p.m.
11.00 a.m,
9.15 p.m.
9.00 a.m,
1.00 p.ﬁ.
11.00 a.m,

6.00 p.m.
10.00 a.m.
7.30 p.m,
5.45 a.m,
1.30 p.m.
10.%0 p.m,
1,00 pom,
11.15 p.m,
11.30 a.m,
1.30 p.m,
1.00 p.m,

2.45
1.30
3.45
0.45
2.00
1.15
2.00
2.00
2.30
0.30
2.00

89.75
91.25
95.00
95.75
97.75
99.00
101.00
103.00
105. 50
106.00
108.00
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APPENDIX III

OBSERVED FAILURE TIMES & LIFE TIMES IN HOURS

Table

Appendix IIIA showing life times of Phillips-60W

144

Sample E Date E Time of E Observed 1life | Loss time withini Exact 1life

No. ! of failure E failure Aj time in hour g SZEEEZation E ;iﬂz in
34 3-6-89 7.00 a.m, 1516 82 1434
116 . : . . "

40 4-6-89 3,00 p.m. 1548 85 1463

79 6-6-89 7.00 a.m. 1588 87 1501
.49 7-6-89 3.00 p.m. 1620 87 1533

70 9-6~-89 7.00 a.m, 1660 87 1573

01 13-6-89 3,00 p.m, 1764 91,25 1672.75
82 " " " g "

55 16-6-89 7.00 a.m. 1828 95.75 1732,.25
73 " " " " "

52 19-6-89 3,00 p.m, 1908 99 1809

85 22-6-89 7.00 a,m, 1972 1.1 1871

43 28-6-89 3,00 p.m. 2124 106 2018

76 " " " " "

04 2-7-89 11,00 p.m, 2228 108.25 2119.75




AFPPENDIX IIIB

Table showing life times of Belco-60W
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Sample | Date of | Time of | Observed | Loss time within | Feact 1iTe
No. ! failure ; faillure | life time ! observation | time in
! : 'in hour ! period ! hour
119 28-4-89  3.00 p.m, - 660 50. 50 609. 50
57 6-5-89 3.00 p.m. 852 54.75 797.25
120 12-5-89  3.00 p.m, 996 59. 50 936,50
33 20-5-89 3,00 p.m. 1188 70 1118
87 30-5-89 11,00 p.m. 1436 73.50 1362.5%0
09 6-6-89 11.00 p.m. 1604 87 1517
63 17-6-89 7.00 a.m., 1852 95.75 1756.25
39 26-6-89 11.00 p.m.  2084.10 105.50 1978.50
10 4~7-89  3.00 p.m. 2268 108 2160




Table showing 1ife times of Bengal-6ow

APPENDIX IIIC

Sample | Date of | Time of | Observed | Loss time ! Bxact life
No. ! failure i failure 1 life time | within obser-! time in
H ! 1 in hour ! vation period! hour
110 30-4-89 5.00 p.m, 708 53 655
58 " " " " "
80 4-5~89 11,00 p.m, 812 54.75 757.25
a7 n "o " " "
62 715 11,00 p.m. 884 56 828
05 10-5-89 7.00 a.m, 940 57.50 882.50
74 12-5-89 11.00 p.m, 1004 62 962
48 15-5-89 3,00 p.m. 1068 63 1035
7 20.-5-89 3,00 p.m. 1188 70 1118
08 23-5-89 11.00 p.m, 1268 73.50 1194.50
77 28-5-89 7.00 a.m, 1372 73.50 1298, 50
38 1-6-89 7.00 a.m. 1468 78.50 1389.50
89 5-6-89 7.00 a.m. 1564 86.75 1477.25
33 12-6-89 11.00 p.m. 1748 91.25 1656. 75
101 20-6-89 11.00 p.m, 1940 99 1841
35 28-6-89 3,00 p.m, 2124 106 2018




APPENDIX 1IIID

Table showing 1ife times of Phillips-100Ww
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Sample ! Date of i Time of | Observed |} Loss time ! Exact life
No, ! failure ! failure ) life time | observation | time in
! ' ! in hour ! period ! hour
07 9-6-89 3,00 p.m, 1668 87 1581
16 11-6-89 7.00 a.m, 1708 89.75 1618,.25%
46 13-6-89 11,00 p.m. 1772 95 1677
61 " " " " "
118 17-6-89 3.00 p.m, 1860 97.75 1762,.25
19 21-6-89 11.00 p.m, 1964 101 1863
28 " " " " "
103 23-6-89 3,00 p.m. 2004 101 1903
22 26-6--89 7.00 p.m. 2068 105.50 1962,50
94 28-6-89 7.00 a.m. 2116 106 2010
37 1-7-89 7.00 a.m. 2188 106 2082
25 4-7-89 7.00 a.m, 2260 108.25 2151.75
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APPENDIX IIIE

Table showing 1life times of Belco-100y

Sample ! Date of i Time of | Observed | Loss time } Bract life
No. ! failure i failure | life time | within obser-! time in
H : { in hour ! vation period! hour

23 11-6-89 3.00 p.m, 1716 89.75 1626.25

11 " " " n "

17 " n " ' " "

98 13-6-89 7.00 a,.m, 1756 91.25 1664.75

59 14-6-89 3.00 p.m. 1788 95 1693

02 17-6-89 11.00 p.m, 1868 97.75 1770.25

53 19-6-89 7.00 a.m, 1900 99 1801

14 20-6~89 11.00 p.m. 1940 99 1841
107 23-6-89 11.00 p.m, 2012 101 1911

56 26-6-89 7.00 a.m, 2068 105.50 1962,50

50 28-6-89 3,00 p.m. 2124 106 2018

41 2-7-89 7.00 a,m, 2212 106 2106




APPENDIX IIIF

Table showing 1ife times of Bengal-100w
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Sample ; Date of ! Time of ! Observed | Loss time | Bxact life
No, ! failure y failure !11life time } within obger-| time in
! : ! in hour ! vation period! hour
51 11-4-89 3.00 p,m, 252 50.50 201.5%0
42 19-4-89 11.00 p.m, 252 50.50 401-50
99 28-4-89 3.00 p.m. 660 BO. 50 609.50
15 7-5-89 7.00 a.m. 868 54.75 813.25
60 17-5-89 11,00 p.m., 1124 66 1058
30 28-5-89 7.00 a.m, 1372 73.50 1298.50
12 9-6-89 11,00 p.m. 1676 87 1589
03 22-6-89 3.00 p.m. -1980 101 1879
18 4-7-89 3,00 p.m. 2268 108 2160
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APPENDIX IVA

Table of survival probability in case
of Phillips~-60w

Survival prob, | Survivel precb, | Survival prob. when

Life time § obtained from ; when parameters } parameter are
! Kaplan Meler | are obtained ! obtained from
! estimate ! from m,l.e ! regression
1430.00 0.90 .9586 .9116
1463,00 0.85 | .8993 .8569
1501.00 0.80 .8356 . 1978
1533.00 0.75 . 1855 | « 7513
1573.00 0.70 . 7271 .6970
1672.75 0.60 .5996 5779
1732.25 0.%0 5344 5171
1809,00 0.45 L4607 . 4475
1871.00 0.40 . 4087 .3983%
2018.00 0.30 3076 : .3022

2119.75 0.25 .2530 .2497
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APPENDIX 1IVB

Table of survival probability in case
of Belco-60w

Survival prob. | Survival prob, Survival prob,

Life time é obtained from é when parameters § when parameter are
| Kaplan Meier | are obtained ; obtained from
! estimate ! from m.1l.e ! regression
609.50 0.95 0.9512 0.9527
797.25 0.90 0.8895 0.8954
936.50 0.85 0.8464 0.8504
1118.00 0.80 0.7932 0.7986
1362,50 0.75 0.7269 0.7382
1517.00 0.70 0.6879 0.6957
1756.25 0.65 0.6316 0.6418
1978._50 0.60 0.5634 0.5932

2160.00 0.55 0.5468 0. 5522
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APPENDIX IVC

Table of survival probability in case
of Bengal-60y

Survival prob. Survival prob. Survival prob.

Lite time § obtained from § when parameters g when parameter
in hour ! Kaplan Meler ! are obtained ! are obtained
! estimate ! from m.l,e. ' from regression
655,00 0.90 0.9512 . 0,9039
757.25 0.80 - 0.8458 0.8075
828.00 0.75 0.7798 ' 0.7469
882.50 0.70 0.7325 0.7034
962.00 0.65 0.6686 0.6444
1035.00 0.60 - 0.6148 0.5945
1118,00 0.5 . 0.5589 0.5426
1194.50 0.50 0.5119 0.4987
1298.50 0.45 0.4543 0.4447
1389.50 0.40 0.4092 0.4022
1477.25 0.35 0.3700 0.3652
1656.75 0.30 0.3010 0.2996
1841.00 0.25 0.2436 0.2445

2018,00 0.20 0.1988 0.2012
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APPENDIX IV D

Table of survival probability in case of Phillips-100vw

Survival prob,

! Survival prob, Survival prob.
Life time | when parameters are

1

1

1

1

]
when parameters ! when parameter
are obtained } are obtained
1
|

S I,

in hour obtained from Kaplan
Meler estimte from m.,l.e from regression

1588,00 0.95 0.9413% 0.9468
1618.25 0.50 | 0.9000 0.9051
1677.00 0.80 0.8248 0.8297
1762.25 0.75 0.7267 0.7303
1863.00 0.65 0.6257 0.6285
1903.00 0.60 0.5897 0.5921
1962.50 0.55 0.5%98 0.5419
2010.00 0.50 0.5030 0.5049
2082.00 0.45 0.4520 0.4535

2151.75 0.40 0.4075 0.4087
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APPENDIX 1IVE

Table of survival probability in case of Belco-100W

! Survival prob. ! Survival prob. ! Survival prob,
Life time | when parameters are|] when parameters | when parameters
in hour { from Kaplan-Meler | are obtained | are obtained

! estimte ! from m.1l.e ! from regression
1626.25 0.85 0.9532 0.8543
1664.75 0.80 0.8850 0.8034
1693.00 0.75 : 0.8381 0. 7680
1770.25 0.70 0, 7222 0.6789
1801.00 0.65 0.6807 0.6464
1841.00 0.60 0.6302 0.6064
1911.00 0.55 0.5507 0.5423
1962.%0 0.50 0.4987 0.4995
2018.00 0.45 0.4481 0.45T1

2106.00 0.40 0.3782 0.3972
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survival probability in case of Bengal-100w

Survival prob,

Survival prob,

Survival prob.

Life time g when parameters when parametera g vhen parameters
in hour i are obtained from ; are obtained ! are obtained

' Kaplan-Meler estimate ! from m,1l.e ! from regression
201.50 0.95 0.9512 0.9505 ‘
401.50 0.90 0.8983 0.8993
609.50 0.85 0.8465 0.8490
813.75 0.80 0.7985 0.8023
1058.00 0.75 0.7446 0.7498
1298.50 0.70 0.6953 0.7015
1589.00 0.65 0.63%98 0.6473
1879.00 0.60 0.5889 0.5973
2160,00 0.55 0.5434 0.5526
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Average Intensity of Light for Given Line Voltage
in Lux per Second
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Glven g SO T T S T00 wakt bulbs
voltase: Phillips Belco Bengal Phillips Belco Bengal
60 '0.50 0.00 0.80 1.40 1.10 1.60
70 1.30 0.37 1.63 2.90 2.20 2.80
80 2.60 1.13 2.27 5.50 4.40 5.30
90 4.80 2.27 3.83 10.07 7.63 9.47
100 8.20 4,50 6.60 16.03 12.60 15.60
110 13.23 7.73 10,43 25.07 20.10 23.97
120 19.97 12.37 15.87 36.27 29.47 35.37
130 28,23 18.40 22.57 43.10 42.47 49.64
140 40.97 24.87 31.17 70.70 57.60 68.80
150 52.30 33,77 41.57 88.50 76.60 88.10
160 68,30 44.27 58.07 110.00 96.10 109.%0
170 86.00 57.50 74.60 131.50 116.70 131.90
180 104.00 .27 90.50 153. 40 130.00 153.80
190 121,40 86.63 104.50 174.30 158.20 174.00
200 139.70 101.63 124.87 194. 40 176.30 194.70
210 158.30 118.50 143,77 213.80 197.90 214.70
220 175.90 135,25 161.00 235.60 216.80 234,30
230 193.10 149.37 178.50 253.50 236.80 255. 30
240 211.20 167.27 195.27 273.40 257.90 283.60




APPENDIX - VI

Average Electricity Passin
g Through the Filament for
Given Line Voltage in Ampere Per Hour
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—
%i;igge: 60 watt b“;;ﬁver%ge e F{g; Watt bulbs

' Phillips Belco Bengal | Phillips Belco Bengal

0 0 0 0 0 0 0
1 0.0033 0.0027 0.0030 0.0053 0.0047 0.0047
3 0.0083% 0.0080 0.0083 0.0153 0.0137 0.0140
5 0.0133 0.0130 0.0133 0.0250 0.022% 0.0227
7 0.0183% 0.0177 0.0183 0.0347 0.03%10 0.0317
10 0.0257 0.0250 0.0257 0.0483 0.0433 0.044%
15 0.0377 0.0360 0.0373 0.0703 0.0633% 0.0643
20 0.0483 0.0467 0.0487 0.0910 0.0817 0.0830
30 0.687 0.0660 0.0683 0.1283 0.1153 0.1177
40 0.0860 0.0827 0.0857 ~ 0.1607 0.1447 0.1473
50 0.1017 0.0973 0.1003 0.1883 0.1700 0.1733
60 0.1150 0.1100 0.1130 0.2027 0.1920 0.1927
70 0.12% 0.1200 0.1227 0.2207 0.2080 0.2100
80 0.1347  0.1280 0.1310 0.2373 0.2240 0.2260
90 0.1440 0.1360 0.1387 0.2503 0.2390 0.2400
100 0.1527 0.1440 0.1460 0.2663 0.2530 0.25%7
110 0.1613 0.1517 0.1530 0.2793 0.2667 0.2667
120 0.1693 0.1590 0.1600 0.2913 0,2787 0.2790
130 0.1767 0.1660 0.1667 0.3023 0.2893 0.2900
140 0.1840 0.173%0 0.1730 0.3127 0,2993 0.3000
150 0.1913 0.1800 0.1797 0.3233 0.3090 0.3090
160 0.1980 0.1857 0.1857 0.3337 0.3190 0.3170
170 0.2053 0.1917 0.1927 0.3%430 0.3287 0.3247
180 0.2117 0.1977 0.1970 0.3537 0.3373 0.3310
190 0.2177 0.2033 0.2027 0.363%0 0.3467 0.3380
200 0.2237 0.2097 0.2080 0.3727 0.3550 0.3440
210 0.2293  0.2153 0.2133 0.3820 0-3$§2 g-igig

.2210 0.2190 0.3910 0.3 .

iig g:iii; 8.2267 0.2247 0.4017 0.3820 0.3650
240 0.2467  0.2327  0.2307 0.4107 0.3910 0.3737
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