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SYNOPSIS 

This thesis -- 'Statistical Analysis of the Average Life of Electric 

Bulba: A comparative study' consists of six chapters of which chapter 

four and five are contributory, chapter six on the summary conclusion 

of the thesis. First three chapters of the thesis are introduction and 

discussions on the selection of a life testing model and the underlying 

methods of statistical inferences which has been used in the subsequent 

chapters towards the contribution in the· thesis. 

The introductory chapter one contains a statement of the problem 

we have undertaken a brief review of earlier studies and exploration of 

the possibilities of further work in relation to the present study, aims 

and scope of ·the study. It also provides a brief discussion on the 

concept of life testing and reliability and distributions of life times. 

A survey of some basic life testing models which has been used in con­

tributory chapters has also been appended in this chapter. 

chapter two of this thesis is devoted on discussions on the 

selection of a. life testing model to suit the analysis and prediction 

for a particular set of data. Almost all life testing data available 

for analysis and prediction are incomplete or censored. Most of the 

tools and techniques available in life testing literature for discri­

minating between competing life testing models a.re sensitive to the 

nature and size of censoring. This chapter contains a handful of 
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discussion on these problems and way out to face them. It a.lr-;o contains 

the methods of plotting procedures and some other parametric methods 

for discrimination among the family of models. A test of exponen-

tiali ty against log-norma.l and a test of weibull against garmna model 

also appended in this chapter. 

Chapter three of this thesis is a discussion on the methods of 

statistical inferences. As we have pointed out, most of the life tes­

ting data available for analysis are either incomplete or censored. 

Again censoring is not unique. There are different types of censoring 

and the form of likelihood changes with the type of censoring. Again a 

censored data available for analysis and prediction may be grouped or 

ungrouped. Methods of statistical inferences are sensitive to each and 

every characteristics of data and influences the prediction. Discussions 

on the use of methods of statistical inferences in relation to the 

characteristics of available data are the prime issues of this chapter. 

Methods of least-squares, minimum likelihood, censoring, lifetable and 

Acturial method, Product Limit estimator, Likelihood Ratio Test necessary 

for the subsequent contributory chapters are appended in this chapter. 

For a comparative study among different brands of incandiscent 

electric bulbs, estimation of average life and other life parameters on 

actual life data are essential. Chapter four of this thesis is contri­

buted on the estimation of reliability and life parameters. D:tta to suit 

our purpose were not readily available. In order to generate 11 fe data 

on incandiscent electric bulbs, we have done an experiment in the labo­

ratory. Description of the experiment is appended at the beginning of 
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this chapter. It also contains screening and choice of models to suit 

the analysis of the data obtained from the experiment, least-squares 

and maximum likelihood estimates of life parameters, goodness of fit 

of the fitted model, and comparison of survival curves. 

Selection of the best brand of incandiscent electric bulb depends 

not only on the average life or reliability and life parameters but also 

on the intensity of light and consumption of power. Chapter five of 

this thesis is contributed towards the measurement and comparison of 

intensity of light and power consumption of different brands of incan­

discent electric bulbs. 

This chapter contains experimental descriptions of measuring 

intensity of light and consumption of power of different brands of 

incandiscent electric bulbs. It also provide voltage-intensity rela­

tionship. Estimates of intensity of light at average line voltage for 

different brands and power categories. A comparison of model component 

and overall intensity of light between brands of power categories are 

also appended in this chapter. study on voltage-current relationship, 

prediction of flow of electricity through the filament of the bulbs in 

order to estimate the power. coni=:umptJon, estimates of power consumption 

at the average line voltage, comparison of component and overall power 

consumption between brands of power categories are also included in 

this chapter. It also provides estimates of cost-benefit factors and 

finally cost per unit of light for different brands and power categories. 
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chapter six corresponds to the concluslon pnrt of the thesis where 

findings of contributory chapters have summarised and comments on 
I 

different findings have passed. It contains a brief review of the 

limitations and the generalizations of present contribution; their 

relative advantages and shortcomings and scope of further work in 

connection with the present study. 
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CHAPrER ONE 

BRIEF Ina OF THE PROBLEMS AND THE 
STATISTICAL TOOLS FOR THE STUDY 

1.1 Statement of the Problem 

Electric bulb is an important component of our everyday life. We 

can not think of a modern life in its absence. A few manufacturing 

industries including one multinational are producing incandiscent 

electric bulbs of different power in Bangladesh. Volume of production 

of these industries is small enough to meet the denand of the country. 

As a result, a large quantity of incandiscent electric bulbs are to 

import every year to meet the deuand of the local ma.rket. Taking all 

. together, indigenous and imported, as many as ten brands of incandiscent 

electric bulbs are available in the local market. 

The only specification that an incandiecent electric bulb contains 

on its body or on the packet is that the maximum power to be consumed 

in terms of watt/hour for a given voltage of the electricity supplied. 

The amount of power consumed by an electric bulb is converted into heat 

and light energy, the proportion of heat and light being dependent on 

the nature of the raw mterial used and the technological devices of 

the manufacturer. The life span and the guarantee period of a bulb are 

also dependent on these factors. Local manufacturers themselves are 

lacking of these inforne.tions of their products. Multinational and 
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nanufacturers may have these information of their products. Since 

ours is a sellers narket, they do not feel it necessary to provide 

these informtions to the consumers. Rather they avoid, even on 

inquiry, in the name of business secrecy. The consumers are helpless 

in choosing the beet one but to depend on the attractive colourful 

advertising propaganda. 

1.2 Aims and Scope of the study 

The reliability of an electric bulb depends on (a) the average 

life; (b) the guarantee period i.e., the minimum life span, while the 

quality depends on (c) the average power consumption or total power 

consumption during the life span and (d) average intensity of light or 

the total amount of light it is providing during its life time. 

Reliability informations are very much important for large scale 

consumers in scheduling their procurement or purchase in order to 

replace the fused bulbs. Advance informations about the expected 

number of bulbs to fail in a ruture time interval is essential for 

the purpose. Thie is possible if reliability informations are available. 

A bulb may have larger guarantee period but smaller average life 

' while other may have smaller guarantee period but larger average~~-

Similarly a bulb may have lower power consumption. Simultaneously it 

may provide small amount of light. A bulb may have larger average life 

while it may provide smaller quantity of light and so on. Thie implies 

that neither of these criteria uniquely or partially with some other can 
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determine the cost effectiveness of an electric bulb in terms of total 

amount of light it is providing during its life time and the total cost 

we are to pay for this amount of light unless we consider all the four 

factors together with the cost of the bulb. 

In order to estima.te the reliability infor1m.tions the study is 

aimed to conduct a life testing experiment on incandiscent bulbs of 

different manufacturers and of different power in the laboratory for 

collecting life data under identical conditions. A long time is required 

for completing such an experiment with a moderate size full sample or 

with a type-II censored sample. To economize the experiment in terms 

of both time and money. We have decided to consider a type-I censored 

sample in this experiment. To complete the study, two other experiments 

are to be performed for collecting data on the intensity of light and 

consumption of power. The collected data would be used for estimating 

the reliability and quality informations. An information-wise compa­

rative study among different manufacturers would be ma.de first followed 

by prediction of percentage of failures at some future points of time. 

Finally, a cost benefit analysis would be done to point out the cost 

effective one in the interest of all the consumers. 

Tu.vis (1952) studied the lifetimes of 417 incandiscent electric 

lamps of 42 different manufacturers, the data being collected from 

different sources under different conditions. He has assumed and fitted 

a normal curve to the data but the fit was not good. Epstein and Sobel 

(1953) used sequential teat plan under the assumption of exponential 



4 

thing and found a good result. Mandenhall and Hader (1958) used a 

mixture of exponential distributions in analysing life time of incan­

discent electric bulbs. Their findings were reasonable. They had 

proposed a weibull model for further analysis. Investigation to single 

out a suitable life model to graduate the observed data is a must 

without which a successful analysis can not be carried on which is also 

a prime objective of the study. 

1.3 Concept of Life Testing and Reliability 

When we purchase a consumer's goods we expect it to function 

properly for a reasonable period of time. Unless a consumer is provided 

with some infornationa about the average life or guarantee period, he 

would not, in general purchase a new item, if an old item of known 

reliability is available. Life testing experiments are designed to 

measure the average life of the product or to answer such questions as 

what is the probability that the item will fail in the time interval 

ft, t+h}, given that it was working at time t'? 

In a simple life testing experiment a number of items are subjected 

to teats and the data consists of the recorded lives of all or some of 

the items. No matter how efficient the manufacturing process is, one 

or more failures may occur. Thia failure rray be due to1 

i) careless planning, substandard equipment and raw 

material used, lack of proper quality control, etc. 



ii) random or chance causes. Random failures occur quite 

unpredictably at random intervals and can not be 

eliminated by taking steps at the planning, production 

or inspection stageJ 

iii) wear-out or fatigue, caused by the aging of the item. 

Reliability is a term that is used in our daily life 

in various contexts which means something or some one 

we may depend on or count. 

5 

In life testing problem we are interested in a quantitative measure 

of reliability of an item or a system. 

The probability of failure free operation of an item in the time 

interval (o, t) is known as the reliability of the item upto time t. 

This probability is also known ae survival probability. In the absence 

of censoring, the non-paramatric estimate of this probability is given 

by the ratio 

s(t)/ = 
t = X 

No.of items surviving >,:: x 

No. of items initially exposed to test 

If f(t) be the probability density function of the life time T, 

of the item, then the probability that the item would fail just before 

time t is given by 

t . 

F(t) = J f(x) dx 
0 

(1.2) 
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rate of failure and generally denoted by h(t) or Ht). In acturial 

and life contingency problems this limiting conditional probability is 

known as the force of mortality. Thus, 

lim F( t + x) - F( t ) 1 lim F(t+x) - F(t) 

h(t) = x~ 0 X / 1 - F(t)J = 1-:-F(t) x➔o X 

r(t) f( t) (1.5) ... 
= ::: 

1 - F(t) s( t) 

=? f(t) = h (t) S(t) ... . .. (1 . 6) 

(1.5) implies that h(t) IIBY be a function of t or nay be a constant. 

If it is a function of time, then it ma.y be a increasing or a decree.sing 

function of time or nay be mixed one. Depending on which the distri­

bution may be IFR, DFR or MFR. Again, 

f( t) 
h(t) = ---

1 - F(t) 

d 

d F(t) 
= 

dt [l - F(t)J 

= - - log £"1 - F(t) J 
dt e 

=> h(t) dt = - d loge s(t) 

=> j h( u ) du = - log
8 

s( t) = H( t) 

0 = cumulative hazard fUnotion 

(1. 7) 
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t 

=> s(t) = exp [- J h(u) du} ..... (1.8) 
0 

I-
t 

=> f( t) = h(t) exp 5 h(u) ~u) .... (1.9) 
0 

The mean life of the distribution is given by 

o(, o<. 

E(t) = J f f( t) dt = Jt h(t) S(t) dt 

0 0 
,,:::,,C 

= s(t) J t h( t) dt - 11-:t (t, h(t) S(t) dt} dt 

0 

c>C <:::>('.. 

- J H(t) 
s( t) 

/ 
- H (t) 

dt = J S(t) dt (1.10) 

0 
0 

O(;. 

Similar way, E (T
2

) = 2 J t s(t) dt, 

0 

In general, E(Tr) = r .... (1.11) 

0 

Another important parameter of life distributions is the expected 

residual life i.e., expectation of life after t period has elapsed 

and is given by 



R(t) = 

= 

= 

E (T - t T ~ t) 

J
ex, ( !""-- t) f( u ) du 

s(t) 
t 

~ 

J 
t 

s(u) du 

S(t) 
. . • • (1. 12) 

The conditional probability that the ith item having been survived 

upto time t would fail in the interval ( t 1 , t 2 ) is given by 

s(t) 

The expected number of items to fail in the interval (t1 , t
2

) is 

ni 

N ( \, t2 / tl, t2 > t) = z I\ i ( tl, t2) 
i = 1 

..... 

9 

(1.14) 

Where t 1 , t 2 are the minimal and maximum time during which an item can 

fail with non-zero probability. An item can either fail at time t or 

survive. Then the underlying distribution of the probability of failure 

process for the 1th item is a point binomial with mean Ai and 

variance Ai (1 - 7"--i) / ni when ni is the No at risk of failure 
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at time t. FUrther, assuming the propensity of failure for items are 

independent of ea.ch other, the pooled variance of the number of failure, 

N is given by, 

n 

Var(N) = 2_ ni 

1 = 1 ni 

(1.15) 

The standard error of the estimates of number of failures in the time 

interval (t1 , t 2 ) is given by 

(1.16) 

Thus the stochastic behaviour of the failure process can be studied 

through either of these four functions (i) the hazard function (ii) the 

survival or the reliability functions, (iii) the probability density 

function and (iv) the distribution function. 

so far we have considered T as a continuous random variable. 

It nay happen that the life times are grouped observations or may be 

some integral numbers, then we are to treat T as a discrete random 

variable. Let T can take on values ot t 1~ t 2 £ L 
and the corresponding probability function be 



The corresponding survival function is the 

S( t) = P (T ~ t) = ~ p ( t.) r L J 

The hazard function may be defined as 

But P(tj) = s (tj) - s(tj +l ) 

S( t j +l . ) 

= 1- ----' j 
s(tj) 

=)S(t)= rr [1-h(tj)_} 

j: t j Lt 

11 

... (1.17) 

... (1.18) 

(1.19) 

= 1, 2 (1.20) 

(1.21) 

In a similar way we may write H(t) = - loge S(t) (1.18) 

But it is to be noted that 

H (t) f= h(tj) in general 

~R}.hahi Univelsity Librq 
Docu,,,eontion Scctioa 
Document No.J1.;./.5/~1 
"""··t :2. '3 . 2 · 9 '') . 
Ud C•••••• ••••••••••......--• 
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1.5 Some Important Life Distributions 

Numerous pararratric models are used in the analysis of life time 

data and in problems related to the modeling of aging or failure process. 

Among univariate models a few particular distributions occupy a central 

role because of their demonstrated usefulness in a wide range of 

situations, Foremost in this category are the exponential, Weiball, 

gamma and log-normal distributions. The motivation for using a parti~ 

cular model in a given situation is often rm.inly empirical, if having 

been found that the model satisfactorily describes the distribution of 

life times in the population under study, This does not of course, imply 

any absolute "correctness" of the model. Sometimes there are informations 

about the aging or failure process in a population that suggest a parti­

cular distribution, though such inforrm.tions are rarely specific enough 

to narrow considerations to just one family of models. This situation 

will no doubt improve as our understanding of aging and failure processes 

deepens. Some theoretical motivation for particular models are avai­

lable in Shooman (1968) and Johnson and Katz (1970). 

1.5.1 The exponential distribution 

The distribution is easy to handle for statistical inference but 

too much sensitive for prediction. ~vis (1952) and Epstein (1958) 

showed that this distribution can be used as a model to graduate the 

lifetimes of a wider range of manufactured items. Feigl and Zelen (1965) 

showed that this distribution can be used in the study of survival or 
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remission times in chronic diseases. The distribution ie characterized 

by a constant hazard function h( t) = l\ , t >/ D :, /\ > O • In other 

words, the exponential distribution arises in situations where the 

failure rate appears to be more or leas constant. The probability that 

the item survives for at least time t is 

t 

s(t) = exp s h(x) dx 

t t -Jlf 
= exp - jJ'- dx = L 

2' 
-Jrt 

=) f(t) = h(t) s(t) = J\ e 

(1.22) 

(1.23) 

There are however, some other elementary considerations which lead to 

an exponential distribution. These assumptions are stated belowr 

1) The failure of the item in a given interval of time [to, t 1J 
on the condition that the item works until time to depends 

only on (t1 - to), the length of the time interval and not 

or to, the position of the time interval. 

2) On the condition that the item works until time to, the 

probability that the item will fail in an infinitesimal 

interval {t, t + ti} 
higher order. 

is proportional to h except for 

3) The probability of failure at t -· 0 i.e., the instant 

the test started is zero. 



Let S( t) c p (T ~ t ) 

= probability that the item survives for 

at least time t. 

14 

Let ?\ be the constant of proportionality in assumption (2). 

In view of the assumptions (1) and (2), we may write using Kolmogrov 

equation, 

s(t + h) = S(t) [1 - /\h} + o(h) 

s(t + h) - s(t) 
or, = - ?\ s(t) + o(h)/h 

h 

Taking limit h ➔ 0 on both sides, we have 

d s(t) 
= - 7' S( t) 

dt 

d s(t) 
or, = - /\ dt 

s(t) 

or, d log s(t) c - 'J\ dt 
e 

=> s( t) = A exp ( - /\ t) (1.24) 

Using initial condition for assumption (3), we have, s(o) = 1 = A 

=> -J\t 
s(t) = e 

= ) f ( t / /\ ) = /\ C - ~t .... (1.25) 



The distribution with 7\ = 1 is called the standard exponential 

distribution. Its probability density function is shown in Figure 

below. 

f(t) 1. 0 

0.5 

0 1 

Figure 

2 

t 
3 4 

Standard exponential p.d.f. 

15 



1.5.2 Some interesting properties of 
exponential distribution 

16 

The mean and variance of the distribution given in (1.20) or (1.22) 

are 
1 

-}- and respect! vely. The pth quantile is given by 

P(T L. t ) = p p 
t 

t ) - dt or, )\ e = p 
() 

A[-~ - At ]tp or e = p 

or, 1 - e 
-/\tp 

= p 

or, e 
-.i\tp 

= 1 - p 

or, - /\ tp = log (1 - p) e 

. - 1 
loge (1 - p) (1.26) 

=) tp = 7'-

The distribution is memoryless, that is, if an item has survived t hours, 

then the probability of its surviving an additional h hours is exactly 

the same as the probability of surviving h hours of a new item. 

Ma th ene. tically, 

P [ T 1 t + h / T ~ t} = 

oe. -)Pl 
/ /1 e 

Jt-1-ii 
dx. 

(1.?7) 
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The inter failure times are independent and identically distributed 

as exponential. Let t 1 f=- t
2 
~ L t be the first r r 

ordered observations of a random sample of size n for the exponential 

distribution. 

Let wi = (n - i + 1) (ti - t 1_1 ), i = 1, 2 r 

with to = p 

The jacobian of transforn:e.tion is 

o<w1, w2, .... , wr) n I • . ... 
oct1 , 

= 
t2, ' tr) (n - r) ! 

(n - r) J r 

=) f( wl, w2 , wr) rr f(ti) ... ' = nl . 
i = 1 

n! 
{n - P)! 

-7\[Xti e 

7{' (IT e;it;} (e~J.+,-,r-P 
+ (n- P)lr,J 

y, 

t7Jef [-~ ,.!, W✓-J 

/'::I 

. .. 

's =) wi are independently identically distributed as exponential. 

(1.28) 

(1.29) 

(1. 30) 

Since wi is a linear function of the inter failure time between ith 

and (i - l)th failure so does the inter failure times. 
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1.5.3 The two-parameter exponential distribution 

so far we have discussed the negative exponential distribution 

excluding the threshold parameter or guarantee time, that is, a time 

say before which it is assumed that an item or a system 

can not fail. In na.ny situations inclusion of such a parameter becomes 

essential. It can be done by mere replacing the life time t by 

t• = t -f-"' , while t' satisfies the restriction t' >,, o. For 

example, if we replace t by t' = t -/'V in (1.20) or (1.22), 

we get 

f( t /)() = Ac - 7\( t - r ) (1.31) 

The mean a.nd survivor function of (1.31) is~+~ and exp[-J.(f-r)] 

respectively which are different from the mean and survivor function 

(1.23) or (1.25) but variance and other properties re!IB.ins unaffected 

by inclusion of the guarantee time or threshold parameter. 

1.5.4 The Weibull distribution 

Historically though exponential is the first widely used lifetime 

distribution model. But the assumption of a constant hazard function 

is too much restrictive one. Later realizations that many inferences 

are sensitive to departures from the exponential model has lead to 

greater caution in the use of exponential model. Weibull (1951) 

investigated a model which is, perhaps, the most widely used li fetlme 

distribution now-a-days bec&U88 of its flexibility in graduating constant, 



increasing and decreasing failure rate life time data. The hazard 

function of the distribution ie characterized by 
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h( t) = o( /3 ( t) /3- 1, 0( I O , /3 ) 0 , t ~ 0 (1.32) 

This distribution includes exponential ae a special case for /J = 1, 

.L:c,/J-:::.1., /,({j-=o(, a constant. If /3> .1, h(t) is an increasing 

function of time t, while it is a decreasing function for {JL 1 • 

The cumulative hazard function of the distribution in the time interval 

(O, t) is given by 

H(f) = }~ /J {o( ,x. l-' dx. 
() 

/3 
=°? S{i)::: t71(._p [-(at) 7 

' 
/J-1 ) /1 

='Jf(t)~rxf3(0't} eJLP[-{c(I: J 

The rth raw moment of this distribution is, 

/ oe d /1-P = P j {r>-t (j(f) t 
c1 

cc /J 
:: ~) t P-t e7-p [- o<. t] dt 

0 

(1. 33) 

(1. 34) 

(1. 35) 



Where J( > 0 

/ - / I 
The . mean of the distribution /w, = o( 1(1-t µ J 

The variance of the distribution, 

The pth quantile of the distribution is given by 

1 [- log 
e 
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(1.37) 

(1.38) 

(1.39) 

(1.40) 

Thie distribution arises as an asymptotic extreme value distribution 

(Gambel, 1958). The shape of the probability density function of this 

distribution depends on (3 while o( is a scale parameter. Values of /J 

DB.y vary from application to application but the analysis of f(t) 

and h( t) for different values of /1 shows that IJ should lie in 

the range of 1 ,/. /!> ~ 3 (lawless, 1982). 

1.5.5 The log-Normal distribution 

The log-normal distribution is also a widely used life model. 

For example, Nelson and Hahn (1972) used this model for analysing 

failure times of electrical insulations. Whittemore and Altschuler 

(1976) used it in the study of times to the appearance of lullR cancP.r 
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in cigarette smokers. When logarithm of life time T is distributed 

normlly with mean ft- and variance (/'3/ then the life 

said to have a log-normal distribution with 

[(T) = exp ( 
"v 

r+~ ) 

V(T) (2/- + 
2 (}'-2 -1) and = exp (/') (exp ... 

The probability density function of T is given by, 

1 
f(t) = --- exp 

tr V2l\ 

The log-norllBl survivor function is given by 

where 

The hazard function of the distribution 

f(t) 
h(t) = sf-[J 

time T is 

.... (1.41) 

. .. (1.42) 

(1.43) 

(1.44) 

(1. 45) 

is not available in closed form. The hazard function h(t) has h(o) = O, 

increases to a maximum, then decreases. h( t) ~ o as t7~. The 

shape of the distribution depends on . fl' . For small values of f' , 
. 

the distribution is more or less asymptotic. A.a the value of (I' 

increases, the distribution becomes closer and closer to the exponential 
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distribution. In that case, it is difficult to distinguish one from 

the other. It is a mixed failure rate distribution. 

1.5.6 The Gallllll8. distribution 

Generally, the one parameter gamrra. distribution is not in use as a 

life distribution. The probability density function of the two parameter 

gaDlII8. distribution is given by 

/\ 
j(t} ==-

1K 

-At 
e 

) (1.46) 

where k) 0 and i'\ "JO are index and scale parameters of the distri­

bution. Buckland (1964) showed that this distribution can be used in 

graduating life data in many situations. 

The hazard function and the survival function of the distribution 

is not available in closed form. For integral values of K , the survival 

function IIB.Y be expressed as 
oe--

S(t} = jftt)Jt 

dx 
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) 

-At 
foP K=1 ,5/t) = e 

,? 

-?if 
j-{I) ~ e 

_7'1(t) 
- -~t - -- ,.5/t) e 

- ;i\f - constant (1.48) 

=) for J,( = 1, the two parameter gamma distribution reduces to one 

parameter negative exponential distribution. 



For J( =fl-> t5(f} = 

==/ ft(t) = ;:;y 
e-?it (1 ~ ;, t) 

,A (?'t) iJ1l-­

e7tt {/+lil} 

As t increases, h(t) also increases for 

For I{ = 3, 
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( 1. 49n) 

t( = 2; 

(1. 49b) 

=) As t increases, h(t) increases for K = 3. This is true for 

all values of K • In a similar way, it can be shown that h(t) 

decreases for all values of I<< i . 

Again the limiting value of h(t) ae t➔oe is constant and equal 

to A i.e., for '1 = 2 

(1. 50a) 

Similarly for l{ = 3, 

Lt '1/t)=- Lt 
l:➔oe l:. ➔oC 

.... (I. 50b) 
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In a similar way, 

J..-t.J._ 
I: 

0 ..... (1. 51) 

The m.g.f of the distribution is 

0(. e-t )If-I -}{t 
11{0) = j e ~ (M e dt 

0 Ti< 

( I- f_)-K (1.52) 

=7 k(k + 1) (k + 2) (le+ r - 1) (1.53) 

This distribution does fit a wide variety of life time data but 

difficult to work with it than those of Weibull model because its 

survival and hazard functions are not available in closed form. The 

galDilB distribution also my arise for a mixure of exponential distri­

bution. The hazard function of gamne. distribution ie Yery close to 

that of Weibull model except at the extreme right i.e., for very large 

values of T. so, it is very difficult to distinguish one with the 

other in case of type - 1 censored data. 



CHAPI'ER TWO 

ON THE SELECTION OF A LIFE TEST!~ MODEL 

2.1 Problems in Choosing a Life Model 

statistical analysis of life data is a topic of importance in view 

of its wide application in Engineering, Industry, commerce, Bio-medical 

studies, Defence, Manpower planning and other fields. A substantial 

number of potential life models have been prcposed so far but all 

models are not equally suitable to explain each and every set of data. 

some of the models are so close that it is very difficult to distinguish 

one from the other with a small set of censored data. For e:xample, 

log-norne.l distribution with scale parameter greater than two is hardly 

distinguishable from exponential distribution. Similarly, when 

coefficient of variation is less than one, Weibull and gamne. distribution 

is difficult to distinguish. Moreover, apart from time trend, failure 

times may be affected by some other covariates especially in Bio-medical 

and Manpower studies where patients and personnels are subjected to 

individual variations. These effects when imposed on the probability 

density function (p.d.f) causes fluctuations in the p.d.f and creates 

confusion in ma.king decision. 

Above all, most of the life data are heavily censored while tests 

availabl~ for discriminating among the models are sensitive to sample 

size, th~ number of failed items and the type of censoring. Again, 
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choosing a model is also related to availability of appropriate sta­

tistical tools. Ta.king all together, it is a tedious job to choose a 

suitable model which can explain and interpret an obserYed life data 

reasonably. 

Among the models available for life testing, the exponential model 

with_ constant poission intensity 'h' is by far the most simple and 

the easiest to handle statistically. Hence, first step in choosing a 

life model to explain a set of observed data is to see whether the set 

of data conforms to an exponential density or not. In general, life 

data are available in censored form, while tests available for censored 

data are still not sufficient in all situations. Teets of exponentiality 

due to Chen, Hollander and Langberg (1983), Hollander and Proschan (1979) 

are against a fixed alternative. The process of embedding exponential 

into Weibull or Gamma. distribution and to test for the shape parameter 

to be equal to unity, due to Crow (1974) is too much complex, because no 

good method is available for eetimting the shape parameter of the said 

distributions for type-1 and randomly censored data. Moreover, such 

tests are not valid for snall r, the number of failed items. Omnibus 

tests due to Pettit (1977) based on an empirical distribution function 

may be applied to type-1 and type II censored data but these are also 

limited to large n ~ r/2, where n is the total number of items under 

study. Tests due to Gail and Gaswirth (1978) based on Gini statistics 

are applicable to type II censored data only. Test pr0posed by Barlow 

et al. (1972) and modified by Bain Engelhardt and wright (1985) cannot 



28 

be used for randomly censored data. Thia teat also faile to discri­

minate between exponential and log-nornal for type II censored data. 

Even for type I censored data, if the censoring time is large enough, 

this teat nay give misleading result. This nay also happen if the 

failure times are affected by covariates other than trend. In fact, 

there is no clear cut teat to discriminate between exponential and mixed 

failure rate models. It is also difficult to discriminate among the 

members within a family of distributions. 

2.2 The Plotting Procedures 

2.2.l Estimated survivor or Hazard 
function plotting 

Plots of estiue.ted survivor or cumulative hazard function provide 

useful pictures of univariate lifetime data, as well as inforrration on 

the underlying life distribution. They can be used for informal checks 

on the appropriateness of a model and for obtaining parameter estirratea 

within a model. 
A 

Flota of H(t) = 
,.-"I. 

- log s(t) e against time t have 

been already suggested for help in assessing the shape of the hazard 

function in a distribution. Similar plots can often be used to help 

assess whether a specific parametric family of models is reasonable. 

The basic idea is to oake plots that should be roughly linear if the 

proposed family of models is appropriate, since departures from linearity 

can be readily appreciated by eye. Suppose, for example, that the 
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possibility of an underlying exponential distribution is being consi­

dered. The survival function for the exponential distribution is given 

by 

s(t) = 
- ,7\t 

e 

,/'\. 

(2.1) 

Therefore, if -log
8 

s(t) is plotted against t, the resultant graph 

should be roughly linear and passing through the origin, if an exponential 

model is appropriate. Similarly, the survival function for the expo­

nential distribution having the threshold parameter or the guarantee 

time /"'- ie given by 

S(t) = e -7'<t -r > 

=7 logeS(t) = - 7\(t-;--) 

=) - loge s(t) = +7\t - /\fr' 

= 

A 

(2. 2) 

It shows that if - log
8 

S(t) be plotted against t, the resulting 

graph would be roughly linear and having an intercept on Y-axis in 

negative direction, if a two parameter exponential model le appropriate. 

The survival function for the Weibull distribution is given by 



s(t) = 

/J 
=) - loge s( t) = {o< t} . 

= > log [- loge s( t)] = /3 logo( + /J logt 

= 1' + (3 log t ...... 

/"-, 

This _ implies that if log [ - log
8 

s(ti} be plotted against 

log t the resulting graph would be a.n a.ppropria. te straight line having 

an intercept on the Y-axis in positive direction if the underlying life 

times suit a two para.meter Weibull distribution. 

When the plots are appropriately linear, one can obtain graphical 

estimates of the parameters by fitting a straight line to the plot a.nd 

calculating the slope and intercept by the method of lea.st square. The 

types of procedures described above can be used for models in which some 

transform of a life time T, say, Y = g(T), has a location-scale 

parameter distribution and the survivor function is available in closed 

form. That is, 

s(t) = Pr (T ~ t) 

= Pr (x > X ) 

= S1 
(x - r- ) (2.4) 

ll' 
..... 

where t = g -1cx). Then s1 - lrs (t)] = \;../IA- is a linear 

-1,- /\ )j function of x = g(t), and a plot of s1 L ~(t) Verses g(t) should 

be roughly linear if the family of models being considered is reasonable. 



The linear hazard rate distribution 

o( +pt hae cumulative hazard function 

with hazard function h(t) = 

H(t) = (J{t + !3f'. Thus 
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t -l H(t) = o< + Bt 
2 

is a linear function oft, and approxinately 

linear plots of t -l H(t) t should result if the model is a 

Rayleigh distribution. 

2.2 •. 2 Probability and hazard plots 

When the data are uncensored or type II censored, it is custonary 

to use probability plots, rather than the plots of estinated survival 

function or the cumulative hazard function. These are similar to the 

plots of estimated survival function, except that, instead of entire 

estimated survivor function, a single point is plotted for ea.ch life time. 

Probability plots in their most common form are used with location­

scale parameter models. Let T is a random variable with distribution 

function of the form F [tu' 1-4} , where fl' is a scale parameter 

and /"" is a location parameters ( v' / 0 7 - oe 4' /-' .£. ac ). Let 

•••• .(t(n) be the ordered observation in a random 

sample of size n for the distribution of T. A probability plot is 

'S -1 ) a plot of \i) against quantities mi = F (ai , where ai is a fixed 

estinate of F ( t(i~-r). Since F1[F{(t(i~-!-)JJ~ t(1)_-fA-, 

if the stated model is reasonable the plot of the points (t(i)' mi) 

should be roughly linear. In fact, the points should be fairly near 

the line x = /" + ~ m and thus estiim.tes of r and d' can be obtained 

from the plots. 
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The ai 18 are sometimes referred to as plotting positions. Several 

choices for the ai's are used in practice but the two most popular are 

ai ( i - o. 5) = n .... 
ai i 

= n + 1 

An alternative is to plot the points (t(i)'o<..i), where 

o( i = 
i ( ) - 1 2. n-j+l 

j = 1 

It is shown in l,a.wlees (1982) that 

o<i 
J\ 

. . . . .... 

(2.5) 

· (2.6) 

(2.7) 

Hence this plot should be appro~nately linear with elope }\ 

To facilitate probability plots, special probability graph papers are 

available for common distributions. The graph papers have a scale based 

-l(a) on values of F but lebeled with a scale. This saves the trouble 

-l(a). ( ) of computing F We need only to plot the points t(i), ai • 

Another frequently used plot is the so-called hazard plot due to 

Nelson (1972). ThiA iA eAsentially thtt nam" •" A Jlrohahlllt.y plot. o,· 
A 

a point plot obtained from S(t), except that instead of being bae~d on 
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the PL estinate, the plots are based on the empirical hazard function 

defined as, 

dj 
nj 

. . . . .... 

where dj is the number of failure at tj and nj is the risk set just 
A 

(2.e) 

prior to tj. The usual procedure is either to plot H(t) or a transform 
A 

of it in full or to base a point on H(t). When the data are type II 

censored, the observed lifetimes tti)~·t(
2
)~ ••• Lt(k) are the 

first k ! lifetimes in a sample of size n and the number of items at 

risk just prior to t(j) is nj = n -j + 1. This gives, 

Ii(t(i)+o) = 
i 

2. (n - j + 1) -l i = 1, 2, ••• k (2.9) 

j = 1 

....._,. 
Plots involving H(t) are used in exactly the same way as plots involving 
A 

s(t), the connection being obvious in view of the fact that H(t) = 

- log s(t). For one parameter exponential distribution, 
e 

H(t) = 'J\ t (2.10) 

For an exponential distribution with a threshold parameter or, guarantee 

time, 



H(t) = /\ (t - r ) 
= 

= .... 

For a two parameter Weibull distribution, 

=) log H(t) = ~ logo( + ~ log t 

= '30 + P logt 

.... ( 2 .11) 

(2.12) 

Hazard plots can be ma.de on ordinary probability paper, but since 

H(t) = - loge s(t), values 
___. 

of H(t) need to be converted to values of 
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s{t) = exp [ - Hlt)] to correspond to the a scale on the paper. 

To enable hazard plots to be made with as few calculations ae 

possible, commercial hazard plotting papers have been prepared for 

certain common distributions. The scales on the paper are set up so 

that the points (t, H(t)) give a straight line, and thus if the assumed 

model is appropriate, a plot of the points {t(i )' H{ t(i) + 0 )} should 

be roughly linear. 

Generally plots are used informally. It does not nake too much 

difference exactly what plotting positions are choosen and whether plots 

are baaed on s(t) or H(t). Plots baaed on relatively small number of 
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observations nay give misleading idea about the form of the distri­

bution. An idea of the variability inherent in a plotting procedure 

is desirable for the investigator, specially about the variances of 

the quantities plotted. A detailed discussion about plotting is 

available in cox (1978). 

Plots are not meant as a substitute for forual test and estimation 

procedures but provide an idea about the model and methods of crude 

parameter estin:ates. Thus a complete statistical analysis would require 

a combination of both inforilal and fornal methods. 

Discrimination among the Family of Models 

Hazard function is the basic criterion which can adequately 

discriminate one li(e model from the other but in practice, it is not 

measurable. We can only measure cumulative hazards for a specified 

time interval. For any distribution, the cumulative hazard function 

H(t) in the time interval (0, t) is given by 

t 

H(t) = ) h(u) du= - log s(t) (2.13) 

0 

where s(t) is the survivor function in the time interval (0, t) and 

h(t) is the real hazard function but not measurable. We have for 

exponential distribution 



h(t) = h1 , a constant 

=) H ( t) = h1 t .•.. 

For Rayleigh distribution, we have 

For Weibull distribution, we have 

h(t) = o</3 ( o( t)P-l 

=)H(t) =(o(t/
1 

. ... 

Similarly for gamma distribution, we have 

H(t) = 
l(k, ht) 

1 - I (k, ht) 

and for log-normal distribution, 

H(t) = 
logt - m 

1-¢(--) 
6 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

( 2 .18) 



I (k, ht) = incomplete gamma function 

logt - m 
~(--

6 
) = incomplete norml deviate, 

For any distribution, H(O) = o = )' when t = o, there is no time 
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hazard, More generally, we can define H(tj - t 1 ) in the time interval 

(ti _t j ) , j > i = o, 1, .... r - l; as 

H(tj - ti)= 
tj 

h( t) dt 

ti 

= 
tJj 

h(t) dt - h(t) dt 

0 0 

( 2.19) 

Thus we can replace t by the difference (tj - ti) in equation (2,14) -

(2.18). Formulation (2.19) has the advantage over (2.13) in the sense 

that we can have r (r + 1) 
2 

estine. tee of H ( t) taking ti = O from 

formulation (2.19), whereas, we can have only r eetimtes of H(t) 

from formulation (2.13) with respect to r observed failure times. 



This will increase the efficiency of the investigation, especially, 

when r is suall. we can -estimate s(t) for any observed point in 

time for any data, irrespective of the nature of censoring and thus 

for any observed time interval which give us estimates of cumulative hazards 

in the time interval ( t .,t. ), using Kaplan-Meier product limit estillB tor 
:t J 

defined by 

TT 
nj - dj 

s(t) = .... ( 2. 20) 

nj 

J: tjL t 

where nj is the number of individuals at risk at tj and dj is the 

corresponding number of failures. Let us denote the estioe.ted cunrulative 

hazard at the kth failure time in the time interval (O, tj) by 

A 
Hjk = log s(t)/t >,:, tj) - log s(t t 7/ o) ( 2. 21) 

j ) i = o, 1, •••• , r - 1, k = 1, 2, •••• , r -j+l. 

Now if we fit a third degree polynomial in tj taking ti~ o as 

(2.22) 

Where ujk is the error term and test the coefficients hi'R for zero, 



we can reach the following decisions comparing with the theoretical 

hazard functions: 

The observed data conform to 

(i) a simple exponential model or a log-normal model if 

h
0 

= o , hl -=p- o , h2 = o = h 3 

(ii) a Rayleigh model or a log-nornal model if h 0 = o, 

(iii) a 'Weibull/Extreme value or a Ganuna. or a log-normal if 

h
3 

f: o. 
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(iv) Since H(o) = o , so h
0 

> o for any case gives us a clue to 

investigate whether the observed data is affected by 

covariates other than time hazard. No other method can 

provide us any information in this regard. Thie is an 

advantage of this method. 

The method discussed here is being investigated by Mian (1987) 

(v) FOr two parameter negative exponential model, the 

survival function is given as, 
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s(t) = exp 

=) H(t) = -ln s(t) = 1't -1'1"' 

=) H( ~ ) = H( t) t =/-'- = 0 

=) For t L f' , H ( t ) L 0 

This implies that for a two parameter exponential model, the fitted 

polyn~mial is expected to have a negative constant term in addition to 

equation (2.14). Similar is the case with all other location-scale 

parameter family of models when the threshold or guarantee time para­

meter is introduced. 

2.4 A Test of Exponentiality Against log-normal 

Even with a full sample, it is a difficult problem to distinguish 

between exponential and log-normal distributions. Often, both the 

models give equal fit to the data though they differ significantly with 

respect to hazard function. The log-normal hazards first increases with 

time and then decreases, whereas, exponential hazard is constant over 

all .possible interval in time and the distribution is known as memoryless 

distribution. 

-
Teets so far available for discriminating a log-normal distribution 

from exponential are mostly based on full samples. The test due to 

Chen, Hollander and Langberg (1983) is applicable only to moderately 

censored data. In this reepeot, works of Shapiro and Wilks (1965), 



(1975), Michael and Schucany (1979) are also worthy Hegazy and Green 
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of mention. The test available for type II censored data due to Tiku 

( ) 1 One because i t requires calculation of variances 1981 is also comp ex 

and covariances of the ordered sample observations. 

In discriminating between exponential and log-nornal, 

Let Ho: The underlying distribution is exponential. 

H1 : The underlying distribution is log-norual. 

Under Ho, 

H(t) = ht. (2.23) 

If t 1 , t 2, •••• tr be the 'r' observed failure times, we can estimate 

'r' mean values of 'h' corresponding to r observed intervals in time 

.... ' rand can test their equality which is equivalent 

to test the equality of several means. s For alternative hypothesis, h' 

are subject to opposite trend so a linear test may give wrong conclusions. 

As a result, a quadratic test statistic is desired. 

Corresponding to equation (2.21), let the esti11Bted average hazards 

in the time inter~l (0, tj), at the kth failure time, be denoted by 

,-'\ 
hjk and given by 

= 

/'- A 

log S(t/t ~ t
1
j) - log S(t/t >-.. 0) 

tj ..... (2.24) 
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l 
1 

11 
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1 f t Thus mean hazard in the interval (o, tj) is for every va ue o • 

given by 

r-j+l 
(2 . 25) 

k = 1 

Henc~ mean hazard taking all possible intervals (j = 1, 2, ••• , r) 

is given by 

r r-j+l 

h =-
1 L (2.26) 
r 

which is the estiuated constant hazard under HO. The cumulative hazard 

under HO in the interval (o, tj) is given by 

~ 

Hj = htj (j = 1, 2, ••• , r) •••• (2.27) 

The sum of squared deviations from the estirrated mean cumulative hazard 

H under HO is given by 

r ,A 

2 (r-j+l) 
- ___,. 2 

(Hj - H j) .... (2. 28) 

j=l 

r-j+l 
/'-

2 
,A.. 

where Hj 
1 Hjk .... = r-j+l lc=l 

.... (2.29) 



With (r _ 1) degrees of freedom. The sum of squares of errors due 

to regression fit ting is given by 

r r-j+l 
:z' 

X 2 " )2 (Hjk - Hj . . . . .... 
j=l kcl 

r(r+l) 
with - 1 degrees of freedom. 

2 

Now let us define a test statistic as 

r /\ 
- -- 2 L (r-j+l) (H j - H j) 

r(r+l) - 2 j=l r-j+l ,,,... .... 
F= r 

A --" 2 
2 (r - 1) 2 ~ (H jk - Hj) 

j=l k=l 
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(2. 31) 

The statistic F is distributed as Snedecor• 8 variance ratio 

r(r+l) 

F with 

(r - 1) and 
2 

- 1 degrees of freedom. Srraller values of F 

favour Ho, while the higher values favour H1 • This test is being 

investigated by Mian et. al (1987). 

2.5 A Test of Weibull Model against Gamn:a Model 

works due to Ma.nn and Fertig (1975), Littel et al (1979), Tiku 

and Singh (1981) for discriminating a Weibull model from a Ganma model 

are worthy of mention. But all these tests are very clumsy and 

inferences cannot be drawn without expert knowledge and use of special 
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tables. Very S
imple test that can be performed with easy 

We require a 

and simple to handle. 

Let 
HO The underlying distribution is weibull 

H
1 

The underlying distribution is Garone.. 

0nder HO, the survivor function 

s( t) = exp 
(2.32) 

- log s(t) = 

or log [ - log s( t )} = f3 log?, + f3 logt 

Let, ½;- = log [" - log s(t)] , 

{i = fJ 1 og 7'- , logt 

Now let us fit the linear model 

(Et = error term) 

by ordinary least square method and teat the goodness of fit. If the 

fit is not good, we can directly reject HO. If fit is good, then we 

can generate survival probabilities via estinated hazards for the 

Weibull model using the eatimted parameters from the linear regression 

fitting and rest the departure of the generated survival probabilities 



from the observed survival probabilities for significance. 

departure is statistically significant, we can reject HO in 
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If the 

favour of 

The sum of squares of derivations due to linear regression is 

given by 

. . . . .... (2.34) 

.,.... "" a 
~ and {3 are the ordinary least square estimators of ro where 

and '3 • The sum of squares of deviations due to model under Ho is 

given by 

(2.35) 

where s(t) is the observed survival probability from Kaplan Meier 

---(1958) product limit estillll.tor and s(t) is the survival probability 

from the model under Ho. Now let us define a test statistic ae 

F= 

f /_iog { - log ;(t)j - log 

I(ft-tl, -P~t )2 
t 

\ - log s(t)j] 2 

.... 

F is distributed as Snedecor's variance ratio F with (r-2), (r-2) d.f. 

The calculated values of F greater than the theoretical values at 

the specified level of significance will reject the null hypothesis. 

The test is being investigated by Mian et. al (1987). 
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CHAPTER THREE 

MErHODS OF STATISTICAL INFERENCES 

~. l The Method of Lea.et Square 

The method of lea.et squares gets its name from the minimization 

of a eum of squares. As a general principle, it states that if we 

wish to estima.te the vector of parameters~ in some expression 

p (x, Q) = o, where the symbol x represents &n observation, we should 

choose our estimate Q so that 

. . . . •••• 

is minimised. As with any other symmetric principle of estiUBtion, the 

acceptibility of the method of least squares depends on the pr0perties 

of the estimator to which it leads. Unlike the method of naximum 

likelihood, it hae no general optimum properties to recommend it, even 

asymptotically. However, .in an extremely class of situation, it does 

have the aptlmum property even in sma.11 samples, that it provides 

unbiased estimators, linear in the observations, which have minimum 

variance. Thie situation is usually desoribes as the linear model, in 

which observations are distributed with constant variance about mean 

values which are linea.i,- function of the unknown iarameters, and in which 

observations are all uncorrelated in pairs. 
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be a set of k variables which influence 

t hi f Y d X • 8 are as the variable y and the linear rela ions P O an i 

i = 1, 2, • • • • • n 

In natrix notation, this linear model may be written as 

'(= xe+u .... 

where }"'is a (n x 1) Vector of observations, X is a (n x k+l) 

natrix of known coefficient with n > k+l, g is a (k+l x 1) Vector 

of parameters and U is a (n x 1) Vector of error random variables with 

E(U) = 0 (3.4) 

and the dispersion m.trix 

V(u) .,. E (uu') • (3. 5) 

where I is a (n x n) identity DB.trix. The method of lea.st squares 

requires that we minimize the eca.lur sum of squares 

S = U/ 1J = ( )" - x O ( ( (' - xQ ) .... (3.6) 

for variation in the components of O. A necessary condition that 
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S would be minimized is that 

= 0 ... (3. 7) 

On differentiation, we have 

I 2x· { r -X 9 ) = o . . . . .... 
which gives for our least square estinator the Vector 

{ 3.9) 

If /x·-x / = O, then we use the generalized inverse, i.e., 

. . . . .... {3.10) 

Q is unbiased with V(Q) = (i·x) - l (/' 2• Details about the optimum 

properties of lea.et square estime.tors are available in Kendall and 

Stuart, vol. 2 (1961) and in oany other texts. 

If components of Q are found to be significantly correlated with ea.ch 

other, we are to improve the eetiuator of Q as suggested by Hoerl, 

Kennard and Baldwin (1975) as 

where I is a (k+l) x (k+l) identity matrix. The quantity m is 

defined as 
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2 (k+l)s ( 3.12) 
m= .,..7 ;'\ .... .... 

gg 

2 
A 

is the ordinary where s is the estimated error variance and g 

lea.st square eetirm. tor of G. 

In reference to life testing and reliability, the cumulative 

hazard function or its transform, in many ca.see are linear functions of 

time·or the corresponding transform. This relationship in mny ca.see 

can be estim.ted by the method of lea.st squares. Because, the method 

has the advantage that it requires no distribution function of the life 

times. 

3.2 The•Ma.ximum Likelihood Method 

Let ••••• , X n be a :random sample observation from a 

population having the probability dens! ty function f (xJ SL). Where 

Q is a parameter vector. The joint probability density function 

of these n sample observations, regarded as a function of the unknown 

parameter ~ is called the likelihood function (L.F ) of the sample 

and is written as 

.... 

The likelihood is the value of a density function for a given sample. 

So far discrete random variable it is a probability. The principle of 

naximum likelihood directs us to take as our estirmtor of g that value, 
A 

say o, within the permissible range of O 
'"'-" - which ne.kes the likelihood 
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....... 
function as large as possible. That is we choose -2., so that for any 

admissible value of Jt, 

..... (3.14) 

In cases where the range of the distribution f(x, 2,) is independent 

of the parameter or if f(x g) is zero at its terminal points for all 
'-v 

Q and Q ma.y take any real value in an interval, solution of maximum 
-..,/ "'V' 

likelihood estimators become easier. Under these regularity conditions, 

if the likelihood function be differentiated at lea.et twice with respect 

to Q, then the stationary values of the likelihood function within ,..._, 

the interval will be given by the solution of the equation 

( 3.15) 

A sufficient but not necessary condition that any of these stationary 
A 

values, say ~ be a local maximum is that 

If there are more than one local maximum available, we are to choose 

the largest one provided that there is no terminal maximum of the 

likelihood function at the extreme permissible values of Q. 

and have their maximum at the same 

(3.16) 

value of Q. In practice, it is often simpler to work with the logarithm 



of the likelihood runction than with the function itself. 

regularity conditions, 

a logL ~L /L .... 
= Jg oQ 

Since L 10 and di- O, we therefore can write, 
t)_Q = 

6logL 

'";)~ 
= 0 .... 

d)ogL 
~o for which 

~g2 
.... 

--v' 
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Under the 

(3.17) 

( 3.18) 

( 3.19 ) 

If the parameter vector ~ contains k-parameters Ql, g2, •••• , Qk 

so that 
L(.@/6 ) = L{e,, ~., -- --·y el{/x, ,, x.1.,,· .. ,, x,,) 

== ~/! J { x; J e1 .) o~ ✓ --- - / 0x) 
I = I 

(3. 20) 

Then the maximum likelihood estimate of the parameter Qi' i = 1, 2, ••• 

k, is given by 

1,2, ••• , k 

1,2, •••• k 

Let Q be a consistent estirm.tor of Q and E(Q) ct. Expanding in 

Taylors series, we can write, 



0 :::: 

(3.22) 

* A A Where g lies between O and t. Since t and Q are consistent 
)II. 

estimators of Q, in large samples Q will tend in probability to .,,..,... . 

Q
0

, the true value of Q. Further (~~~tl will tend in 
-v t:10 

probability to its expectation i.e. 

(°"inJL) I 
E ae~ Vah ({j) 

.... 

-:-1 

( 3. 23) 
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==> 0 = t + ett /4 VaJ1-{§) .... (3.24) 
'v' ....,,,-

Maximum likelihood estimators, though widely used in statistical theory 

are not unique in general. It may or llRY not be unbiased. But 

generally, it is consistent and attains the minimum variance bound 

under regularity conditions. sometimes, the likelihood equations 

become too much complicated that iteration methods must be used. 

Details about this estimtors are available in Kendall and Stuart 

(1961), Mood, Graybill and Boes (1974) and nany other texts. 
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3.3 Censoring 

Life testing experiments are usually destructive in the sense that 

the item are destroyed in running the experiment and cannot be used 

again. Again time to conduct the experiment is also an important factor 

because of the rapid change in technology. Sometimes it ma.y happen that 

before completing a life testing experiment on a particular model of a 

system, the model is replaced by a new improved and cost-effective 

model. This is in particular true for electronic systems due to rapid 

progress in technological devices. Thie lee.de ue to cut short the 

experimental time ae well the number of items to be observed to fail 

i.e., instead of observing the life times of all the items in a sample, 

only a part of it. such a process is known as censoring. Censoring is 

almost mendatory in life testing experiments with costly sophisticated 

items. 

By censoring, we mean that in a sample of size n, a known number 

of observations is missing at either end (in case of single censoring) 

I or at both ends (in case of double censoring). Life time data often 

I come with such a feature that creates special problems in the analysis 

j of the data. Censoring occurs when exact life times are known for only 

a portion of the individuals under study; the other portion of the 

life times are known only to exceed certain values. It means that only 

a lower (or upper) bound on life time is available for the individuals 

in the sample censoring is common in life testing experiments because 

of time lilllits and other restrictions on data collection. In a life 

testing experiment, for example, it nay not be feasible to continue 
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experimentation until all items under study have failed. If the 

experiment is terminated before all have failed, then for items still 

unfailed at the time of termination only a lower bound on life time 

is available. This is not to say that there is no information avai­

lable on their life times of unfailed items but only that the infor­

mation on them is partial. Let in a sample of size n, the r(rL n) 

i tern-have failed from starting of experiment to the time period .t • 

Here the exact life time of ( n-r) items is not known but their initial 

time period is available. Thie (n - r) items is called censored from 

n items. 

In fact censoring arises in ~riety of reasons, and we consequently 

distinguish among several types of censoring processes in the discussion 

that follows. The basic problem is to determine the sampling distribu­

tion and corresponding likelihood function for a given process and then 

to determine the properties of statistical methods derived from this. 

Even in relatively simple situations one has to rely heavily on large 

sample methods. In complicated situatio11?it may even be difficult to 

write down a likelihood. 

One should not confuse censoring with truncation. Censoring 

idea has come for the case of sample i.e., the portion of the sample. 

But the idea of truncation has come in case of population. In the case 

of censoring we analyse a part of sample values. But in case of trun­

cation, analysis is involved for the part of population values. By 

the following example we can clee.r about the difference between the 

censoring and truncation. Let F(x) be the probability distribution 
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function of the continuous life time variable X and f(x) = d: F(x) (,.25) ,,_ 
be the density function of X such that F(x) = j f(x) dx • • • (3.26) 

and )r(x)dx :c: 1. ..... ,, (3.27). Now if we sup:ose the restriction that 
0 

X 7,; "'117 , which is called the truncated distribution the required 

form of f(x) could be 

j{x) f (x) 

fJ(x) Jx 1-)f(x} dJt 

==-Jr7-JJ[!-f(Jn)j o J-(x)j~(m) ···· 

The form of distribution when some values are censored from the sample 

are as follows. suppose that there are n individuals under study 

and that associated with the !th individual is a life time Ti and 

a fixed censoring time Li. 8 The Ti' are assumed to be independently 

identically distributed (i.i.d) with p.d.f. f{t) and survivor 

!Unction s(t). The exact life time Ti of an individual will be 

observed only if Ti .L Li. The data from such a setup can be conve­

niently represented by the n pairs of random variables (ti, bi) 

where 

ti = min (Ti, Li) and l½. = -
{

l if Ti L Li 

0 if Ti > Li 

That is bi indicates whether the life time Ti is censored or 

not, and ti is equal to Ti if it is observed, and to Li if it is 

not. The joint p.d. f. of ti and ~ i is 

..... 
Here ti is mixed random variable with a continuous and a discrete 

component. 



3.4 Likelihood Under Different 
Types of censoring 

There are various types of censoring. A few are discussed here 

with their corresponding distribution function and likelihood function. 

(i) Type I censoring: In this type of censoring (simple or double) 

observations are censored at the par-assigned time. That is, experi­

ments are ran over a fixed time period in such a way that an individual■ 

life time will be known exactly only if it is less than some predeter­

mined value. In such situations the data are said to be type I 

censored. It is also called "Time ceneord". Suppose in a life teat 

experiment n items are (my be) placed on test; but before the 

experiment starting it decide that this experiment will be stoped (ie 

terminate) after time L has elapsed. Than the life time of the item 

is lcnown ' e:xactly which is failed within time L, the items had still 

not failed, these unfailed items exact life time is not known but only 

known that their life time is e:rileed time L. These items are not 

failed at time L, which failure time therefore censored. A type I 

censored sample is one that arises when individuals 1, 2, n are 

subjected to limited periods of observation 11 , 12, •••• Ln So 

that an individuals lite time Ti is observed only if Ti~ Li. Where 

all of the Li 19 (i.e. the termination time) is equal, we sometimes say 

that the data are simply type I censored, to distinguish this from the 

general case. It should be noted that in type I censoring the number 

of exact life times observed is random in contrast to the case of 

type II censoring, where it is fixed. Let ith individuals life time 



Ti and a fixed censoring time Li . The Ti's are assumed to be 

identically independently distributed (i.i.d) with p.d.f f(t) and 

survivor fn S(t). Here exact lifetime Ti of an individual 
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will be observed only if Ti£ Li. The data from such a set up can be 

conveniently represented by the n pairs of random variables (ti, bi) 

where 

ti= min value of (Ti, Li) and 

value of di = 1 if Ti ~ L.i 

andcil = 0 if Ti '> Li 

That is bi indicates whether the life time Ti is censored 

not . The value of 11ti II is equal to Ti if it is observed and to 

if it is not. Now we get the joint p. density function of ti 

is 

p(ti, &"i 
di 1-Ci 

) = f(ti) S(Li) .... 

Here ti is a mixed random variable that is it is mixed with 

or 

Li 

andfi" 

(3.32) 

continuous and discrete component. In the discrete part. We get, 

Pr( ti = Li ) = Pr ( Ji ::: 0 ) 

= Pr (Ti) Li) 

= S(Li) (3.33) 
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For values ti L_ Li, the continuous p.d.f is 

Pr ( ti / [ i • 1 ) = Pr (ti/ti ~ Li ) 

f(ti) (3.34) 
= 

l - S(Li) 

In the above case the notation Pr(ti/ 61 m 1) mean the p.d.f of 

ti, when ti < Li. The joint distn. of ti, Ei thus has 

components. 

,5(L,') 
••• (3. 35) 

~a,n ) p (r> ) f(t,·;, J/ :=:I)== /J( t,/ 0" =::: 1 · OJ.::::/ .? 

-/:,-LL/ 

.J{i ,) {t - .5 (L/)j 
----x 
[I- S{L,)j 

j{t/) .... 

So from the above expressions 

di /- JI 
Pr (ti, bi) = r(ti) s(Li) (3.37) 



It pairs (ti, 6 i) are independent, the likelihood function will be 

n /; 
L=.fT f(-U) 

I-;:. I 

From the above L.F we can estima.te the unknown parameter which is 

essential of our analysis. 
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TyPe II censoring: In this ·type of censoring certain fixed number of 

observations are censored at either end or both ends. That is in this 

case, number of observations are pre-assigned at _the time of experi­

ments. The number of censored values is not a random variable a 

natheantical constant but the time to fail these pre-assigned number 

of items is a random variable. Let in an experiment n items are placed 

on test for life times. A type II censored sample is one for which only 

the r saallest observations in a random sample of n items are 

observed (1 ~ r L n). Experiments involving Type II censoring are 

often used, for example, in life testing, a total of n items is 

placed on test, but instead of continuing untill all n items have 

failed, the test is terminated at the time of the rth item failure• Let 

in an experiment the data consist of the r emllest
1

lifetimee T(l)~ 

.... L T(r )' out of a random sample o·.(n life times 

Tn from the life distn. in question. If Tl' T2 

Tn are identically independently distributed (i, i, d) and have 
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a continuous distn. with p.d.f is f(t) and survivor function S(t), 

it follows from general results on order statistics that the joint 

p.d.f of the order statistics T(l) T( 2) • • •• T(r) is 

The above j.p.d.f gives the likelihood function when it is taken 

as the parameter ~-

n 
(n-r )/ 

,:, 

f( -t 0)) 

n-r 

From the above L· F we can determine the unknown paramter Q. 

Progressive TyPe II censoring: In this censoring, censoring is 

completed in just two stages: at the time of the r 1 th failure, n1 

(3.39) 

of the reaaining (n-r1 ) unfailed items, again selected and removed. 

The experiment then terminates after r 2 items have failed. That ie 

a generalization of type II censoring is the progressive type II 

censoring. 

At this time there are (n - r 1 - n1 - r 2 ) items still unfailed 

and in this experiment"cfhe r 1 observations of the let stage ie 

T(I) ~ T(~) ~ . . . . . L. T(P,_) 



and the observation of the 2nd stage is 

Now the sampling distn. of the two stage observation, is 

( t t t * ~ g (1) (2) • • • ( ) t t 
rl ! (1)' (2)' 

.... 

. . . . 

We know in the case of type II censoring 

and the 2nd term of equation (3.41) can be obtained by the left 

truncated distn. with p.d.f and survivor function 

Respectively. 

J(t) 
6{i(P,)) 

s rt-J 
o (tCP,J) 
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(3.43) 



are the r
2 

eroo.lleet observations in a 

random sample of siz_e (n-n
1
-r

1
) from this truncated distn. • By 

equation (3.42) the 2nd term of equation (1.) ie therefore 

- {:n-P,-n,)J 

(n-?i-n,-ryJ 
Because 

re (-f )}n- Ji-n1-r2-
Lv' (PJ = 

/a ({[!-J-.))]h- >': ·-IJ;.~ "1_ -

[t5 { frr;;)]"- ~ - n, 
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••• (3.46) 

This joint p.d.f is the likelihood function when it is taken as the 

parameter _2. ·. 



Random censoring: In the case of Random censoring, the censoring 

times are often effectively random of an life time experiment• speci­

fical_ly we assume that the censoring time Li for the i th individual 

is a random variable with survivor and density function s(t) and 

G(t) respectively and further that L1 , L2 
Ln are stochastically 

independent of ea.ch other and of the failure times T1 , T2, •••• Tn. 

Note that the random censorship model includes the special case of 

type I censoring, where the censoring time of each individual is fixed 

in advance, as well as the case where items enter the study at random 

over time and the analysis is carried out at some prespecified time. 

This latter situation occurs in some medical studies. Let (Ti, Li), 

i = 1, 2 •••• 4 be independent and, as in the case of type I censoring, 

Define 

and cG· :::: 1 

01", J7 = 0 

.ij- T,
0 

LJ_1• 

.i/r- T/ > l,' 
The data from observation:)on n individuals consists of the pair {t,~ J;) 
The p.d.f of (ti, di ) is easily obtained if f(t) and s(t) are the 

p.d.f's for Ti and Li than, using the same notation as in the likelihood 

function of the type I censoring, we have 

Pr(ti = t, 6""1 i::: 0) 

= P(Li => t, Ti )- Li) 

= g(t) s(t) ..... (3.48) 

and Pr (ti = t, E1 c 1) D p (Ti C t, Ti ,L. Li ) 

= f( t) G( t) .... 
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The above two e:xpreesion can be written together as way 

.... 

· and sampling distn . of (ti l; ) is 

(3. 51) 

If the £11 • G( t) and S( t) do not involve any parameter than which 

can be neglected from the above function than we get 

... ( 3. 52) 

Then the likelihood fn is 

(3.53) 
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The above L.F is same of the result for L.F of type I censored 

sampling. Therefore the random censorship model includes the special 

case of type I censoring, where the censoring time of each individual 

is fixed in advance. 

Details about censoring mechanism are available in Lawless (1982), 

Kalbfleisch and Prentice (1980) and other texts. 

3.5 The Life Table and Acturial Method 

Let N items are kept under observations for a certain period and 

out of N, n items are observed to fail within the specified period. 

Then n 
N 

is the relative frequency of failure in the specified 

period. The life table is essentially an extension of the relative 

frequency table to the case of censored data. With the life table, 

of course, one emphasises estimation of the conditional probability of 

failure in an interval, given survival at the beginning of the interval 

and the probability of surviving past the end of an interval. 

~et the time axis be divided into (k+l) intervals Ij 

j = 1, 2, , ••• , k+l with a 0 = o, ak = T and ak+l = oG 

= (a. 1 , aj) 
J-

where 

T is the upper limit on observations. For ea.ch item of a random 

sample of size n from some population, suppose that one observes 

either a life time t or a censoring time L. The data are however 

grouped so that it is only known in which interval a particular item 

has failed or has censored and not the exa.ot life times or censoring 

times. The data therefore consists of the number of life tim~and 
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censoring times falling into ea.ch of the (k+l) intervals. In the case 

of the last interval it can be considered that only lifetimes 1k+l' 

are in the interval, since all items not failing by time T 

some time in Ik+l• 

must fail 

Let the distribution of life times from the population under study 

has survivor function s(t) and let us define 

pj = s(aj) = Pr lan item surviving beyond Ij_1 ) 

pj = Pr(an item surviving beyond/it survives beyond I . 1) J-

pj . . . . .... (3.54) 
= 

pj-1 

j = 1, 2, •••• k+l (3.55) 

This implies that probability of surviving past Ij is given as the 

product of conditional probabilities of surviving past intervals upto 

Ij, given survival to the beginning of each interval and forms the basis 

for the approach to life table estimtion. If there is no censoring, 

= 

where Nj is the number of items at the risk of failure at the beginning 

of the jth interval Ij and is given by 

Nj = Nj-l - Dj-l - Wj-l (3.57) 



where = Number of lifetimes in Ij = (aj-1' aj) 

wj = Number of censoring times in Ij 

If there_is no censoring, 

The variance of Pj for censored sample is given as 

j 

Var(Pj) = P/ 2. 
i=l 

If there is no censoring 

.... 

Details about this method is available in Elandt-Johnson (1977) and 

Lawless (1982). 

3.6 The Product Limit Estimator 
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(3. 59) 

Graphical representation of the empirical survivor function or 

the empirical distribution function ie an essential way of portraying 

ungrouped univariate survival data. llon- para.metric estinate of the 

survivor function of the distribution for the life distribution under l study is also provided by euch graphical representation. If there lo 

1 

l 
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f i the empirical survivor no censored observations in a sample o s ze n, 

function {f.s.F) is defined as 

s(t) = 
Number of lifetimes observed upto time t , t ~ o ••• ( 3. 60) 

n 

l 
This is a step function that decreases by n just after ea.ch observed 

life time if all observations are distinct. 

are d lifetimes equal to t, then ESF 

More generally, if there 

d drops by n just part t. 

When dee.ling with censored data, some modification is necessary, since 

the number of life times greater than or equal to t will not generally 

be known e:xaotly. The modification due to Kaplan-Meier (1958) is known 

as ;•reduct Limit Estimator (PLE) or Kaplan-Meier Estim.tor. The 

estimator is defined as follows. suppose that there are n items in 

•••• .C::tk are k distinct lifetimes and mj 

items are censored in between (tj-l' tj), j = 1, 2, ••• k. The 

possibility of more than one failure at tj is allowed and let dj be 

the number of items failing at tj, J = 1, 2, •••• , k. In addition 

to the observed life times t 1 , t 2, ••••• , tk, there are also censored 

times tjt for individuals whose lifetimes are not observed but gree.ter 

than The product limit estim.tor of the survivor function s(t) 

is defined as 

s(t) = TT .... 
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~ 
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1 
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where nj is the number of items at the risk of failure at t j i.e., 

the number of items retaining in the system and uncensored just prior 

tot . , j= 1, 2, •••• , k. If a censoring time t~l and a life time tj 
J 

are recorded as equal, the adopted connection is that censoring time 

is adjusted an infinitesioal amount to the right, so that tjL ie consi­

dered to be infinitesimally larger than tj. In other words, an item 

with_ censoring time equal to tj is included in the risk set at tj. 

If the largest observation, the product limit Estimator is defined 

only upto the last observation. The motivation for PLE is essentially 

the same as for the survival function in the lifetable method. That is, 

the PLE is build up as a product and ea.ch term in the product can be 

thought of as an estiIIB.tor of the conditional probability if the surviving 

past tj, given survival till just prior to tj, j= 1, 2, •••• , k. 

The product limit Estimator is, in fa.ct, a limiting case of the standard 

life table method, when the number of intervals becomes infinite and 

length of all intervals except the last one approaches zero. 

is always a step function with s(o) = 1, drops by a factor n . 
J 

immediately at censoring times tjl' The effect of censoring is, 

however, felt in the values of nj and hence in the sizes of the steps 

in s( t ). 

Since the survivor function S(t) is a non-increasing left 

continuous function, the probability that an item would fail at tj is 

thus given by 



Lim 
where s(tj + o) = 

x~ o+ 

.... 
S ( t. + x) J J = 1, 2, • •.' k 

J 

Contribution to the likelihood of a survival time censored at tjl is 

given by 

Thus, we obtain 

which given the data, can be viewed as a likelihood function on the 

space of survivor function s(t). The maximum likelihood estimate 
A A 
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of s(t) is s(t) that ne.ximises L. Clearly s(t) is discontineous 

at the observed failure times since otherwise L = o. Further, subject 

to tjl/' tj, s(tj + o) is ue.ximised with the adopted connection 

j = 1, 2, •••• , kJ l = 1, 2, •• • • , m. 
J 

and s(t
0
l) = 1, 1 = 1, 2; ••• , mo. 

a discrete survivor function with hazard 

at t 1 , t 2, •••• tk respectively. Thus 

A 

The function s(t) is then 
..... ,'.'I ..... 
?\1, 7\z.. ,- -·· ~I( 

components/\_, t:. ' •••• , .,k 
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... (3.66) 

(3.67) 

Thia shows that PLE is a non-parametric maximum likelihood _estimator of 

the survivor function. 



Again 

~ /~·'1-.4JJ S(t) =.!fl: (-
;: Jl:-t 'd 

=. ff 4j = /4 ;11-"" ~ 
;: ~!:..t 
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where ej is the conditional probability of survival at tj given the 

risk.set nj. Now 

= E [ . . .. ~] 

( 3. 70) 

Thie ehowe that the PLE is an unbiased estimator of the survivor function 

conditional on the risk set, further, 

v(sCt))~ 
J: t; ~t 

(3. 71) 



........ 

Var [ s(t) J 
j: t.L t 

J-

= 0 .... 

This shows that the PLE is a consistant estimator of the survivor 

function. 

3.7 The Likelihood Ratio Teet 

Let x1 , x2, ••• xn be a random sample from a distribution with 
,/ 

p.d.f f(x,Q) where Q = (Q1 , Q2, •••• Qk) is a vector of unknown 

parameters taking on values in the parameter space _f2_ • The 

likelihood function for Q is defined as 

n 

L(Q) = Tl f(x, 0 ) 

i=l 

The maximum likelihood estine.tor of Q is given by 
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U/(B) ~ J,(. 
(3.74) 
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u; (g)~s are called scores and the k x 1 vector U(Q) = [u1(Q), 
L 

.... ' I 
Uk( Q)} is called the score vector. It is shown in 
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Cramer (1946) that under mild regularity conditions, the score vector 

is asymptotically normlly distributed with mean O and covarianoe 

matrix I(Q) with entires 

J1,,loj L ( f:)) 
0 (J:i °J0/ (3.75) 

Thia implies that BU(Q) is asymptotically standard k-variate normal 
/ 

where BB = I(Q). This mee.ns that under the null hYPothesis 

Hos g = gt> 

( 3. 76) 

is asymptotically 2 
A(k) • Thie further implies that under 

Ho: Q = Qo, 

.... (3.77) 

is asymtotically If g is partitioned such that 
/ ' 

g = (91' g2) and we consider 
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is asymptotically distributed as 
2 

X(p) where Ql is a p x 1 vector 

and~ (g10 ) is the naximum likelihood estinate of e2 under Ho. 

survival distributions with censoring, specific assumptions about 

For 

censoring is required for this test. One approach is to assume that 

censoring times are distributed accrose intervals and modify Chi-square 

in the spirit of standard life table method of estimation or PLE method. 

This· is not particularly attractive. Rather we assume that censoring 

occurs only at the end of intervals Il' 1
2

, •••• Ir. Let Sj be the 

probability of survival beyond Ij. To test the best fit, let us 

consider the hypothesis 

Ho: Sj = Sjo' j = 1, 2, •••• , r 

s. ,s 
J satisfy only o ~ sj ~ 1 

l Thie leads to the likelihood ratio statistic as 

1 

J 
1 
I 

1 
( 3. 79) 

which follows approximately chi-square distribution with 
k 

Since PL estinatee are non-parametric 
d. f. 

We can us~ PL estima.te of s(t) i n place of 

MLE of the survival function. 
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CHAPT:IB rolJR 

ON THE ESTIMATION OF LIFE PARAMETERS 

4.1 Description of the Experiment 

In order to obtain informations on life parameters, generally 

manufactured items such as mechanical or electrical components or systems 

are subjected to life teat experiments which involve putting items in 

question into operation. We did such an experiment in a laboratory in 

the department of statistics, University of Rajehahi. For our experi­

mental purpose, the electrical net-work was designed and installed by 

the engineering department, University of Rajshahi under the supervision 

of a qualified electrical engineer in collaboration with my supervisor. 

The electrical net work had three parallel lines. Each of the three lines 

was installed separately from the basper (11Bin switch) and separated by 

two cutouts. The line were connected by loose wire and set on the table 

of buttom holder. The arrangement of electrical network is shown in 

Figure I. We have pointed out in the statement of the problem in 

Section 1.1 that as nany as ten different brands of incandiscent electric 

bulbs are available in our local narket. Again ea.ch brand of bulb has 

different power, ranging from 5-250 watt in general. It would be better 

if we could inclu'de all brands and all power categories of ea.ch brand in 

our study. But resource constraints compelled us to limit our experiment 

and consequently our study. We had to include only three brands of bulbs, 

each with two power categories. For selecting the brands, we have done 

a preliminary uarket survey regarding the sell volume of different brands 
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of incandiecent electric bulbs by power category in Rajshahi. The result 

of the survey is shown in Appendix I. As per this survey, Phillips has 

the highest sell volume, Belco is leading in the medium sell volume group 

while Bengal belongs to the lowest sell volume group. Of the power 

categories, 60 watt hae the highest sell volumes followed by 100 watt. 

Accordingly, we have included Phillipe, Belco and Bengal each with 60 W 

and 100 W power categories in our experiment as well in the study. 

It is mentioned earlier that life testing experiments are destructive 

one and we were in resource constraint, we put 20 bulbs of each category, 

in total 120 bulbs, in the experiment. Twenty holder points was set with 

each cut-out. The holder points were numbered serially 1-120. The bulbs 

were set in holder points by random allocation. For the purpose, bulbs 

were placed in identical packets, mixed together and numbered. Two sets 

of random numbers were drawn simultaneously -- one for holder position 

and the other for bulbs. Let x be the ramdom number representing holder 

positions and Y be the random number representing bulbs. Then the 

random set (x, y) represent the yth bulb placed in the xth holder. 

Since, life testing experiments are time censoring, we had decided 

in advance to run the experiment for three calendar months which would 

produce a type-I censored data. Later on, we encountered a problem. 

On the eighth day of the experiment, the uain switch connecting our 

experimental net-work was burnt. It took 42 hours to replace the min 

switch by a new one. In addition, there were 66 recorded hours of 

electricity failure during the period of experiment. ConAidering the 
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electricity failure as a loss time, in total we have recorded 108 hours 

of loss time. As a result, we have extended our experimental time for 

5 days more. It is to be noted that we could not record electricity 

failure, if there by any, in between 11 p.m. and 7 p.m. Of course, 

possibility of electricity failure during this period is very little. 

However, as it is a comparative study, we assume that the effect due to 

this. unobserved loss time, if there be any, would be distributed to all 

brands and all power categories equally. 

We have set our experiment on 29th March, 1989 at 11 p.m. and the 

experiment was terminated on 4th July, 1989 at 3 p.m. We had no facility 

to stay in the laboratory for 24 hours observations. We have recorded 

observed failure times at eight hours interval -- 11 p.m., 7 a.m. and 

3 p.m. Failure times were considered at the centre of the interval at 

which failure occured. The lose times are shown in Appendix II. The 

observed failure times and the actual life times are shown in Appendix III 

for ea.ch brand and for each power category separately. 

I 
J 4. 2 Choice of the Model 

~ 
j 

! Choice of a model to graduate and analyse a particular set of life 

data for the purpose of inference is very difficult, since inferences 

are very much sensitive to underlying models, especially, with censored 

data. we have discussed the problem i n detail in Section 2.1. In the 

process of selecting a model, the first step is to estim.te the survival 

I 
1 probabilit ies by non-para.metric methods like the life table method or the 

j 
l 



Kaplan-Meier method (PLE). Analysis of data can be done on the basis 

of non-parametric methods of estimation but it is not very much useful 

for inference purposes, particularly with censored data. Graphical 

representation of estimated survival function or its transform may give 
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us some insight about the form of the distribution which we have discussed 

at length in Section 2.2. We have estimated the survival probabilities 

at f~ilure points in time for all the six categories of incandiecent 

electric bulbs under our study by the PLE defined in Section 3.6, equation 

(3.61). Survival probabilities estimated thus are shown in Appendix IV. 

A graph of H( t) = - ln s( t) against time t is found to be approxinately 

linear having a negative intercept on the Y-axis for all the six categories 

of life times under investigation. The graphs are shown in figures (2-7). 

The length of the x-axis between the origin and the point .through which 

the line is passing are varying for the six different categories. Aleo 

the angles these lines are ma.king with the positive direction of the 

X-axis are differing with each other. It is evident from our discussion 

in Section 2.2 that the underlying distributions belong to some location­

scale family of distributions. It also implies that the distributions 

in question, more or less, belong to the same family differing in their 

location-scale parameters or to close allies. 

To identify the family of distributions to which each of the six 

categories of lifetimes belongs, we have followed the method of polynomial 

fitting discussed in Section 2.3. We have tried a third degree polynomial 

for each category of lifetimes. We found second and third degree coe­

fficient nearly zero and statistically insignificant. A negative 
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constant and a positive linear term constant were observed to be statis­

tically significant for all the six categories of lifetimes. The 

coefficients of fitted lines with their standard errors are shown in 

table 1. The fitted linee dectate that the underlying life distributions 

clearly follows a two-parameter negative exponential distribution differing 

in the guarantee period and expected lifetimes with each other. 

Table - 1: The fitted polynomials for six different categoriee 
of incandiecent electric bulbs. 

Categories 

Phillipa-6ow 

Belco-6ow 

Bengal-60\,I 

Phillipe-lOOW 

Belco-1001,,/ 

Bengal-100\t/ 

The fitted polynomials 

.,,-\ 

H(t) = - 2.5926169 + 1.87768 x 10-3t 
(0.0161456) (4.29303 X 10-5) 

,"\ 

H(t) = - 0.16686420 + 3. 45564 x 10-4t 
-6) (0.0001729) (5.94709 X 10 

~ 

H(t) = - 0.6209808 + 1.10228 x 10-3t 

(0.0041068) (2.87496 X 10-5) 

~ 3 
H(t) = - 2.311633 + 1.49006 x 10- t 

(0.0108923) (3.16105 X 10-5) 

~ 3 
H(t) = - 2.4381843 + l.59606 X 10- t 

( 0.0123059) ( 3. 43895 X 10-5) 
.,.. 
H(t) = - 0.0050471 + 2. 76858 x 10-4t 

(4.19201 X 10-6) (4.59519 X 10-6 ) 

( jFigures in the parenthesis indicate standard errors of the estimate. 
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In ea.ch case, the coefficient of the linear term or in other words, the 

regression coefficient, which my be considered as scale parameter of a 

location-scale family of distribution, is lees than unity. It implies 

that there is no possibility to confuse the underlying distributions 

as log-normal. 

4.3.1 Least square estimates 

since the survival function of the two parameter exponential distri­

bution is available in closed form, it is easy to set the least square 

estiuates of the parameters. Let 

1 
f( t) = 

t-m 
exp (- -- ), 

0 
t ~ m 

=> s(t) = exp -(t-m)/ G 

Taking Ln on both sides of equation (4.1), we get, 

ln s(t) = - (t-m)/g 

or, -ln s(t) = 

or, - lh S(t) = 
m t --- +--G Q 

which can be written as a simple regression model 

y = a+ bt + u 

where, 
y = - ln s(t), dependent variable. 

( 4.1) 

( 4. 2) 
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a = _ m/g, unknown parameter 

t = Observed failure point in time. 

1 
b = T, unknown parameter. 

u = random error observed on s(t). 

Graphs (2-7) shows the suitability of choosing a simple regression model. 

The values of a and b for all the six categories of incandiscent 

A 1 
electric bulbs are available from Table 1. Where Q = ~ and 

The leas~ square estimates of the guarantee time parameter m and 

the scale parameter Q are appended below for the six categories of 

incandiscent electric bulbs. 

Table-2: Lea.st square Estimates of Para.meters. 

Name of bulb Gurantee period Scale iarameter 
,A 

m Q 

Phi-60 1380. 73 532.37 

Bel-60 482.90 2893-97 

Ben-60 563.36 907. 21 

Phi-100 1551.36 671.11 

Bel-100 1527.62 626.54 

Ben-100 18.23 3611.95 
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4.3.2 Maximum Likelihood Estinatee 

The lea.et square method provides us only estimates of the parameter 

m and ~ but not the precise estimate of the standard error of the 

estimates. We can predict the survival probabilities at various points 

in time using lea.st square estinates but these estimtes fails to give 

us expected lifetime estima.te and a confidence interval for the true 

expected lifetime. 

Once the form of the lifetime distribution is singled out, it is 

easy and mostly desired to have the naximum likelihood estimates of 

parameters because of their optinal properties. Since our data is 

tYPe- I censored, it is essential to find out the appropriate distribution 

function in order to obtain the ma.ximum likelihood estimates. Let us 

assume the form of the probability density function of two parameter 

exponential model as 

The experiment was terminated at a preassigned time T = 2280 hour. Here 

the number of items that failed before time T is a randam variable which 

we denote by R. Let P(t) be the probability of failure before time T. 

Then "R" has a binomial distribution, 

r = o, 1, 2, •••• , n ( 4. 5) 
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where p = P(T) = 1 - exp - (T-m) /Q 

and q = 1-P = exp - (T-m) /9 
.... ( 4.6) 

Here the items that failed where not replaced. The data consiete of 

of r iteme that failed 

before T and (n-r) items that survived beyond T. 

Therefore, 

We consider the conditional p.d.f of the failure time, given that the 

item has failed before time T. This is given by 

exp - (t-m)/Q 

( T/Q ) = --------­
(1 - exp - (t-m)/G} 

0 L t LT 
= O, otherwise 

Thus the joint p.d.f of \l)' t( 2 ), •••• , t(r) is given by 

n r/ 
- . . . . . .... 

= 
( 4.9) 
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The likelihood of the sample is the J'oint pd f oft t t 
• • (1)' (2)' ···• (r) 

and r. Hence 

77! 

n! 

nJ 

Taking log on both sides of (4.10), we get, 

.[(ti-m) + (n-r) (T-m) 
logL = loge - rlogQ - Q 

where C is a constant. 

( 4.10) 

( 4.11) 

Differentiate both sides of the above equation with respect to Q, we get, 

'J'tJL - _ -1!. I{t,'-1>J)r(n-P){T- »7) 
l1- - 0 -j- tJ.,,,.. 

-~ 0 - - p~ +L {t,:_,;;)) + 0-tiJ( T - iiJ) 
- ?J-i-

~ - § =. [£{tt'-~-t- (?J-P)(-r-iil}J/,~ 

== Lr!:-✓-- Piit+ ~ -rjr- JJm +~ in
1
] /J? 
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Now we eatinate m, consider Q fixed, say Q = Qo and consider the 

maximization of 

L [t(l)' \2)' •••• t(r)' r / o] as m varies over the permissible 

range m = t(i) 

.Max L [t(l)' t( 2 ), 

i = 1, 

.... , 
2, •••• , r. It is quite clear that 

\r )' r / gJ is attained at m which 

minimises (ti - m) of the denominator of equation (4~10). Thus ~ 

is the uaximum possible value of m subject to m = i = 1, 2, 

•••• , r. Or, 
A 
m = Min ( -"-

\1)' \ 2), .... , \r))· We note that m 
is independent of Q. Here 

..-'\ 

m = t(l) la called guarantee period i.e., 

"'­an item will survive at time t(l)' its probability is one. Neither Q 

A. 
is unbiased for Q, nor t6).) is unbiased for m but Q and t(l) are 

jointly sufficient for Q and m. 

If be the rth auallest observation in a random sample of 

size n from the exponential distribution given in (4.4), then 

r 
1 

E C\r )-m) = g J. 
i=l n- ~+l 

=) E(t(l) = 
Q 

E (;) (4.13) m + = . . . . .... n 

Since the naximum likelihood estiue.tors are biased, so test of signifi-

cance and confidence interval based on their asymptotic variance aay lea.d 

misleading conclusions. Kalbfleish and Prantice (1980) have shown that upper 

limit of survival probabilities based on asymptotic confidence interval 

exceeds unity. Lawless (1982) suggests that for tYPe-I censored data 
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....... 
2 r Q -- x2 

0 (2r-1) ..... (4.14) 

=) E(QJ = 2r - 1 
2r Q 

,......,, 
2r ~ g = .. 2r:r- . ... . ... (4.15) 

is unbiased for Q. In a similar way, 

--..,/ 
--v 
m = 

....-"\ Q 
m--n --n ... ( 4.16) 

is an unbiased estination of m. 

fV 
( 2r ) 2 Var (9) "' = Var (9) 2r-l 

2G2 
= 2r-l ... (4.17) 

-../ 

Var (in' ) 
,..... Var (Q) 

2 " --.../ = Var (m) + - Cov (m, g ) 2 n n 

~ + 
2 g2 

= n2 2 n (2r-1) 

Q2 
( 2r + 1 ) = -2- 2r - 1 

.... . ... 
n 

( 4.18) 

The unbiased estimates of m and Q along with their estimated standard 

errors are appended below in table number 3 for the six different incan­

discent electric bulbs under study. 



Table-3: Unbiased M.L.E of the parameters with Estimated 
standard Errors 

Name and power Guarante!., parameter Scale p~meter 
of bulb m g 

Phillips-6ow 1408.1327 517.3454 
(26.7443) (135.8615) 

Belco.-6ow 469.4676 2000.6470 
( 148 .0405) ( 960. 6140) 

Bengal-Gow 611.4597 870.8056 
( 44. 9228) (221.1848) 

Phillips-lOOW 1547.3275 673. 4504 
( 35.1060) ( 198. 5896) 

Belco-lOOW 1601. 3785 519.0574 
( 27 .0571) (153.0616) 

Bengal-lOOW 26.5548 3490.9035 
(184.9499) ( 1200 .1140) 
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:l Figures in the parenthesis indicate standard error of the estinates. 

The mean of the distribution defined in (4 . 4) is given by 

E(T) = m + Q ( 4.19) 

Therefore, the unbiased estimated average life is given by 

,....._,. 'V -
E(T) = m + Q ..... 

Estimated variance of the estirmted mean life is given by 



r,,/ 

Var E(T) 
= Var (m) + Var (Q') + 2 Cov (m, g) 

Var ('ai') and Var (3') axe given by (4.18) and (4.17) 

Cov ('m, Q) = Cov [(; _ g ) 2r 
n ' 2r-l 

. .. Var 

= cov 2r 
2r-l 

( m, g ) _ 2r 
n(2r-l} 

2r 
2r-l 

= 0 -
n(2r-1)2 

= - n ( 2r-1) 

rv 
E {T) = 

(2r-1) n2 
2 

(2n - 4n + 2r + 1) 
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.... 

tV 
The distribution of E {T) is asymptotically normal with mean E (T) and 

variance defined by (4.21). Therefore, 

,-.J 

z = E( T ) - ~( T ) ...,.....,___ N ( o' 1 ) 

Vvar E(T) 
( 4. 22) 

The quantity Z defined in (4.22) can be used as pivotal quantity which 

provides confidence limits and significance test for the mean life. The 

unbiased estimates of mean life length along with 95% asymptotic confi­

dence intervals for the six different brands of incandiscent electric 

bulbs under study are given below in table number 4. 
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Table-4: Unbiased Estimates of Mean Lifes. 

Name and power Estimated 95% Asymptotic 
of the bulb Mean life interval Confidence 

E[,) 
Phillips-60w 1925.6724 1667.6677 2103. 6771 

( 131.6350) 

Belco-6ow 3270.1146 1460. 5762 5079. 7130 
( 923.2645) 

Bengal-60w 1482. 2653 1061.6705 1902.0601 
( 214. 5892) 

Phillips-l00W 2220.7779 1045.1604 2596. 3954 
(191.6416) 

Belco-l00W 2120. 4358 
(147. 7064) 

18 30. 936 3 2409.9403 

Bengal-l00W 3525.4593 1264.6914 5786. 2252 
(1153.4525) 

*Figures in the parenthesis indicate standard error of the estinates. 

It is observed from Table-4 that the estirm.ted mean life of different 

brands with same power are differing in a wide margin. Naturally question 

arises whether these observed differences in the estimated mean values are 

statistically significant or not. Since the asymptotic distribution of 

the estimated mean life are nornal. 



98 

vnu,-AJ 

is the pooled estimate of Q and is the apprcpriate test statistic for 

testing significance difference between Mee.n life's of two categories 

of same power. The calculated values of t with appropriate d.f. for 

pairwise difference are shown in table- 5 below. 

Table-5: Calculated values of student's t-statistic 
for pairwise differences in Mean life. 

Power of bulb Pair Degrees of 
in Watt/hour compared freedom 

6ow Phillipe-Belco 23 
Phillipe-Bengal 30 
Belco-Bengal 24 

100W Phillips-Belco 23 
Phillips-Bengal 20 
Belco-Bengal 20 

calculated 
value of t 

2.25549* 
1.6890086 
2.6672209* 

o. 4012851 
1. 5161952 
1. 7130034 

(4. 23) 
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4.4 Goodness of Fit 

Based on plotting procedures and polynomial fittings, we have 

decided that the underlying distribution of survival times of incandi­

scent electric bulbs are two parameter exponential. Accordingly we have 

estina.ted the parameters and survival probabilities using least square 

and maximum likelihood methods. Now we are to ascertain whether the 

estinated survival probabilities are in agreement with the observed ones. 

If the degree of deviation is insignificant between the observed and 

estimated set of survival probabilities than we can conclude that our 

choice of model is justified and we can go into further analysis. Other­

wise, we are to search for an alternative model. 

The method we are using for testing goodness of fit is the likelihood 

ratio test. Since our censoring time is fixed, so no assumption about 

censoring is required. Let sj be the probability of survival beyond tj. 

The underlying hypothesis to test the goodness of fit are, 

Ho: j = 1, 2, •••• , r 

satisfy only 0£ Sj £ 1 

For testing the above hypothesis, the required test statistic is 

x2 = -

..... 
where L { s10 , 

.......S ) is the estimated likelihood function under • • • ro 

" Ho and L ( s1 , ~S) is the estimated likelihood function based on • • •' r 
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observed survival probabilities i.e., P.~.E. of survival probabilities. 

Under Ho, we have 

t-m 
s( t) = exp ( - ) 

0 

... ....... 

fro 
A A .... s( tr) => L( S10' \o' ... ' ) = S( t 1 ) s( t· 2 ) 

= exp ( -
:z(ti - rn'J 

,,..._ ) .... 
0 

r nrdj 
"" A -" · n 1T Similarly L (s1, s2, • • • • Sr) = ( ) 

j=l j=tjL t nj 

Finally our test statistic becomes 

>?(t,·- ;;r) 
~ I {J;x_p[-i! fj 

.It tr ( 11j- d/) 
(/:=./ j-//,jLt ~ 

( 4. 28) 

The values of estimated chi-squares for six different categories of 

incandiscent electric bulbs under study are shown in Table-6. 
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Table-61 Values of Estimated Likelihood Ratio Statistic 

Name and power 
of the bulb 

Phillipa-6ow 

Belc(?-60W 

Bengal-60W 

Phillips-l00W 

Belco-l00W 

Bengal-lO0W 

I Estimated Likelihood-Ratio 
: Using unbiased Using lea.at 
: m.l. estirm.tes square estioates 

1.4844 1.0079 

0.8740 0.9993 

1.4512 0.9909 

0.9461 0.9894 

1.4791 1.0009 

0.9350 0 .9993 

The theoretical value of chi-square of 5% level of significance with 

one degree of freedom is 3.84 which is larger than all our estimated 

values. Thie implies that the observed data is well graduated by 

a two parameter exponential model so that we can mke inference using 

the estimted model. 

Comparison of Survival curve 
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Suppose that lifetimes and censoring times are available from each 

of two populations, specified by 

we define a dummy regreesor variable x that takes on values l or 0 
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according to whether an individual comes from the first or the second 

population so that the covariate vector x =(1 o) if the individual 

belongs to the first population when X = (o 1) if the individual 

belongs to the second population. Now we can write the hazard function 

as 

for the combined population. Let s1i be the conditional probability 

of surviving t(i) for individuals from the first population and s2i 

be the corresponding surfival probability for individuals from the 

second population. The hazard function for the two distributions are 

The two distributions are identical iff /3 = O. A test of /J = 0 

is equivalent to the test s1(t) = s2(t). 

Let ni be the total number of individuals at risk just prior to 

t(i) from the combined sample and n1i and n2i be the corresponding 

number for the first and second population, so that ni = n11 + ':ti• 

Similarly let dli and d2i be the number of failures from the first 

and the second population respectively at t(i) such that di= dli + 

d
2

i be the total number of failure at t(i)" 

With the combined sample from the two populations and the dummy 

regresaor variable x, the score vector of exponential ordered score 
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test (sometimes referred to ae Savage or Log-rank teet) with censored 

data is given by 

k 

u( o) = ), 1 or 2 

The infornation quantity (variance of the difference) ie given by 

k 

I(o)= I_ 
i=l 

( 
di(ni - di) nli n2i 

. ni 2 (ni - 1) 
) 

A test of Ho: {3 = o (equivalently, s1 ( t) = sit) can be based on 

either 

z = 
u(o) 

,.......____. N(o, 1) 

Large absolute values of Z provide evidence against equality of the 

two survival curves. Alternatively, 

= I( 

The later is sometimes referred to as Ma.ntel-Haenszel (1959) test. The 

calculated values of z2 for pairwise comparison are shown in table 7. 



Table-7 1 Pairwise Comparison of survival curves for 
different Power categories/Brands. 

Power Comparison Pair calculated 

60 Phillipe-Belco 5.2755• 

Phillips-Bengal 3.0671 

Belco-Bengal 6.1910• 

100 Phillips-Belco 0.0164 

Phillips-Bengal 0.1835 

Belco-Bengal 0.1852 

~Significant at 5% level. 
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CHAPI'ER FI VE 

STUDY OF COST-BENEFIT FACTORS OF DIFFERENT BRANDS 

OF INCANDISCENT ELECTRIC BULBS 

5.1 Introduction 

In Chapter Four, we have studied the reliability parameters, that 

is, guarantee period, intensity of failure and average life time of 

different brands of incandiscent electric bulbs by power categories 

under investigation. It has been discussed at length in Chapter One 

that the overall quality of an incandiscent electric bulb depends not 

only on reliability parameters but also on the benefit factor, that is, 

the intensity of light and the cost factor, that is, the amount of 

power that it consumes per unit time to unit the light. Hence, only 

a larger mean life time or a larger guarantee period or a smaller inten­

sity of failure of one branch can not assure that it is better than any 

other branch unless we study the cost benefit factors and calculate 

how much we are to pay for per unit of light. This chapter is aimed to 

study these cost benefit factors of different brands of incandiscent 

electric bulbs under investigation. 

5.2 Measurement of Intensity of Light 

Following instruments are essential to measure the intensity of 

light: 
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1) Lux meter: It is an instrument which can measure the intensity 

of light directly in the unit of lux. It has a reflector. The 

light of the glowing bulb from unit distance falls directly on 

the reflection and the lux meter in this reflector read the 

intensity of light in lux which one lux = 0.093 

2) Variac or Variable stabilizer: This instrument can stabilize 

the voltage of electricity flow in the range of 0-240 volts 

and any desired voltage can be used to observe the variation 

in the intensity of light. But the variac itself cannot read 

the voltage. Since voltage in a variable range can be stabi­

lized, the instrument is called variac for this reason. 

3) Avometer or Multimeter: It is an electric meter which can 

measure the flow of electricity through a conductor, the 

voltage of electricity and many other electrical parameters. 

we have used an avometer to measure the line voltage through 

the variac since variac itself cannot measure the voltage. 

4) Incandiscent electric bulbs under study. 

5) A meter scale. 

Measurement of intensity of light is an electro-physical experiment 

which require a standard dark room. Department of statistics has neither 

dark room nor these appliances to conduct the experiment. we hAve con­

verted a room of the department of statistics temporarily into dark room 
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using black screens, while the Department of Applied Physics and 

Electronics helped us with instrument a and technical know-how to rtm 

the experiment. The outline of the experimental setup is shown in 

circuit diagram (Fig. 8), 

108 

The stabilizer was connected to the electric line directly. The 

bulb under experiment and the avometer was connected to the line through 

the stabilizer. The distance of the filament of the bulb to the centre 

of the reflector of the lux meter was fixed at one feet. The voltage 

was fixed first by adjusting_ the variac and then the bulb was made on 

to measure the intensity of light for that voltage. The lux meter could 

not give any reading for intensity of light below 60 volt. The reason 

is that a certain amount of power is required first to heat the filament, 

only after which light can be emitted. Intensity of light was measured 

for three bulbs of each category and the experimental results are appen­

ded in Appendix v. 

5.3 Voltage-Intensity Relationship 

According to Ohm's law, the ratio of potential difference V between 

any two points on a conductor to the current C flowing between them, 

is constant, provided the temperature of the conductor does not change. 

In other worde, 

V 

C 
= constant 

or, V = RC 
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where R is the resistance of the conductor between the points 

considered. It simply means that provided R remains constant, current 

is directly proportional to the potentional difference across the ends 

of a conductor. In case of a.n inca.ndiscent electric bulb, the filament 

of the bulb is the conductor in question which becomes red hot a.nd fina­

lly glows to emit light when current is passed through it. The amotmt 

of current passing through the filament is proportional to the voltage 

of electric line, no doubt, but not directly. The reason is that a 

portion of the current passing through the filament is converted to heat 

which changes the resistance of the filament. It implies that the amotmt 

of light emiting by an incandiscent electric bulb in unit time is rela­

ted to the line voltage but the nature of the relationship is not exactly 

known. Plots of the measured intensity of light against line voltage 

in Figures 9-l 4 indicate a polynomial relationship between intensity of 

light and the line voltage for all the bulbs under study but the degree 

of polynomials may vary from one another in degree or in parameters and 

hence in expected intensity for given average line voltage. we have 

fitted third and four degree polynomials to every set of data in the range 

of 60-240 voltage. The coefficients are found significant upto third 

degree, When four degree is included the computer accepts four degree 

but regrets third degree. If we replace third degree by four degree, the 

improvement in the sum of squares regression is insignificant. Thia 

recommends a third degree polynomial to explain the voltage intensity 

relationship in the range of 60-240 volt for all the brands of incandi­

scent electric bulbs. In other words, 

E (I/60 4 V L. ( 5.1) 
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Table 8: Fitted Polynomials of Voltage-Intensity Relationship. 

Power Brand bo bl b2 b3 --
60 Phillips 90.17227 -2.49267 

( 10. 97824) (0.25411) 
0.01937 

(0.001803) 
-0.00002856 

(0.00000398) 

Belco 53.60156 -1.41526 0.00991465 -0.00000837 
(9. 40419) (0.21768) (0.00154439) (0.00000341) 

Bengal 81. 529J) 
(13. 2977 

-2.156~ 
(o. 30701 

0 .01581 
(0.00218381) 

-0.0000199) 
(0.00000482 

100 Phillips 127 .12705 
(15.98724 

-3-72416 
(o. 37006) 

0 .03159 
( 0 .00262548) 

-0.00005644 
( 0. 00000 5802) 

Belco 99. 6480) -2.8J9~1 0.02364 -0.00003655 
(23.19753 (0.53 9 ) (o .00380958) (0.00000842 

Bengal 110.26486 -3.28646 0 .02813 -0 • 0000 4 79 4 
(13.99016) (0.32383) (0.00229752) ( 0 .00000508) 

Figures in the parenthesis bl.d/i.cate standard error of estimates. 
\_ 

R2 

0.99922 
(2.20748) 

0. 9990 5 
(1.89098) 

0.99865 
( 2. 67309) 

0.99903 
(3. 21468) 

0.99775 
(4.66451) 

0.00021 
(2.81311) 

I-' 
I-' 
0\ 
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Where I is the amount of light emiting per second by an incandiscent 

electric bulb, V is the line voltage and b
0

, b
1

, b
2 

and b
3 

are cons­

tants. The fitted polynomials in the unit of lux are shown in Table 8. 

Though the voltage-intensity relationship in the range of (60-240) 

volt is found to be a third degree polynomial, actually the line voltage 

varies in the range of (190-240) volts in general. In this range, the 

voltage-intensity relationship is found to be a linear one, that ie, 

E (I/190 ~ V ~ 240) =a+ bV 

The fitted linear relationship in the unit of lux for different brands 

of incandiscent electric bulbs are shown in Table 9. 

Table 9: Fitted Voltage-Intensity Linear Relationship 

Power Brand a b R2 

60 Phillips -218. f§4)9 i-79086 o.99~8g 
( 2. 43 9 0.01130) (0.4 2 8) 

Belco -219.48214 
( 4-47158) 

1.60893 
(0.02073) 

0.99934 
(0.86731) 

Bengal -236.8i9)9 
(6.943 7 

1.80536 
(0.03219) 

o.990J1 (l. 34 1) 

100 Phillips -202.51619 1.98457 0. 99958 
(4-37227) (0.02021) (o .84805) 

Belco -255.5314) 
(42.05389 

(. 16829 0.96867 
0.19499) (8 .15682) 

Bengal -234.24571 
( 14. 94205) 

2.14114 
(0.06928) 

0.99583 
(2 . 89818) 

Figures in the parenthesi a indicate standard error of estimates. 



5.4 Choice of the Model for Predicting Intensities 

The average line voltage estimated during the period of experiment 

is found to be (V = 215.00) and the estimated intensity at this average 

line voltage as per fitted polynomial, and linear relationship for 

different brands are shown in Table 10. 

Table 

Power 

60 

100 

10: Estimated Intensity at Average Line Voltage 
of Different Brands for the Two Models 

V = 215 

Brand Estimated Intensity In 
polynomial Lux Linear 

Phillips 165.7457 166.6006 
(2.1318) ( 0.1909) 

Belco 124.4192 126.i318 
(o. 7880 J (0.3 14) 

Bengal 150.2102 
( 1.1045) 

151.3131 
(0.5563) 

Phillips 225.6760 
(1. 3356) 

224.1664 
(0.3523) 

Belco 210.2526 210.6509 
( 1.8970) (3.3173) 

Bengal 227. 4795 
(1.1476 

226.0994 
(1.1823) 

Figures in the parenthel!lie indicate standard error of the 
estimates. 
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Estimated intensity displayed in Table 10 reflects that at the 

average line voltage v = 215, the third degree polynomial and the linear 

model reproduce almost identical results. Moreover, standard error of 



estimates are, in general, higher for the polynomials than the linear 

fittings. This influences us to consider the linear model (5.2) 

instead of the polynomial (5.1) for estimating the average intensity 
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at the average line voltage. It is to be noted that the estimated value 

of a for all the brands under study are negative. This . is due to the 

fact that a certain portion of the total power used are converted into 

heat and the parameter a may be considered as a function of that por­

tion of power in absolute value. The parameter b may be interpreted 

as the rate of change of intensity for unit change in voltage beyond a. 

5, 5 comparison of Parameters for Different Brands 

We are paying for the power to get light only. The portion of the 

power consumed in heating purpose may be considered as wastage. The less 

is the amount of wastage, the higher is the amount of benefit which pin 

points the quality of a bulb. Naturally, one may raise the question, 

whether or not, the amount of wastage of power is differing signifi­

cantly between any two brands of same power under study. This is equi­

valent to a pair-wise of test for significance difference of a. Again 

a higher rate of change in the intensity of light for unit change in 

line voltage also indicates higher benefit and quality of a bulb in 

question. so, we are to investigate, whether or not, the rates i.e. 

values of b for different brands of same power under study are diffe­

ring significantly. 
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It is difficult to conduct a precise test for significant difference 

between different brands for these parameters using separate models for 

each brand as is shown in equation (5.2) because we are lacking of 

distributional concepts. Rather, we may use a single linear model 

combining two or three brands together using dummy variables to perform 

these tests under ordinary least square eet up. 

For the jth branch of ith power category, we may write the 

voltage-intensity relationship in the range of (190-240) volt as 

j = 1, 2, 3; i = 1, 2 ( 5. 3) 

For each i, the three equations in (5.3) may be combined together as 

(b2 - b1 ) n2v + (b3 - b1 ) n
3
v ' .. 

E(I/V) = a 2 + (a
3 

- a 2 ) n
3 

+ b2V + (b3 - b2) n3v 

for an observation of I 

otherwise 

in i th brand 

( 5. 4A) 

( 5. 4B) 

Now testing the significance of n2 in (5.4) is equivalent to testing 

the difference of (a
2 

- a 1 ) in (5.3). Similar is the case with n3, n2v, 

n3v etc. in (5.4). 

Pairwise comparison of different brands by power as per model 

(5.4A) and (5.4B) are shown in Table 11. 
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Table 11 Pair-wise comparison of Parameters 

Power Brands d. f. 
Difference in Di II eren ce In scale 
intercepts 'a' parameter 'b' 

60 Belco-Phillipe 12 -1.047850 -0 .181930~:H 
( 5.092538) -(0.023610) 

Phillips-Bengal 12 17.405000~ -0 .014500 
( 7-358470) (0.034116) 

Belco-Bengal 8 17. 357150 -0.196430"~ 
(8. 258489) (0.038287) 

100 Belco-Phillips 12 -53.015240 0.183720 
( 42 • 280 568 ) ( 0 .196041) 

Bengal-Phillips 12 -31. 729520 o .156570 
(15.568610) (0.072194) 

Bengal-Belco 8 21.285720 -0 .02715 
(44.629525) (0.206932) 

Figures in the parenthesis indicate standard error of the difference 

It is evident from Table 11 that the scale parameters of 6o watt 

Phillips and Bengal a.re greater than that of Belco while interupt 

parameter of Phillips is greater than that of Bengal. This apparent 

difference may not suggest that intensity at average line voltage may 

differ significantly among the brands tmder study. It is interesting 

that in case of 100 watt, the brand do not differ significantly from 

one another either in intercept parameter or in scale para~eter still 



they may differ in intensity at the average line voltage. Pair-wise 

comparison of intensity at average line voltage for different power are 

shown in Table 12. 

Table 12: Pair-wise comparison of Intensity of Light of Different 
Brands by Power at the Average Line Voltage v = 215 

Power· Brande Difference in S.E. 01 'tne 
in ten ei ty in Difference d. f. Value of t 

Lux 

60 Phillips-Belco 40 .16280 0.40878 8 98. 2504't'tt 

Phillipe-Bengal 15. 2875 0. 58813 8 25.9934~ 

Bengal-Belco 24.8753 0.66338 8 37-4978~ 

100 Phillips-Belco 13.51544 3. 33593 8 4.0515~ 

Phillips-Bengal 1.93303 1.23370 8 1.5669 

Bengal-Belco 15. 44847 3.52167 8 4.3867~ 

0.001 

It is clear from Table 12 that in case of 60 watt bulbs, Phillips 
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has the highest intensity of light which differ significantly from both 

Bengal and Belco, while Bengal has the second highest intensity which 

differ significantly from Belco at the average line voltage V = 215. Of the 

100 watt bulbs, intensity of both Phillips and Bengal are significantly 

higher than Belco while Phillips and Bengal do not differ significantly 

at the average line voltage V = 215. 
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5.6 Measurement of Power Consumption 

Consumption of power is the cost factor of an incandiscent electric 

bulb. Unless we measure it, cost-benefit analysis is not possible. The 

power may be defined in various way but the simplest one to serve our 

purpose is the product of the line voltage and the amount of current 

passing through the filament of the bulb in question in one hour is the 

amount of power that the bulb consumes at the given line voltage. At a 

given line voltage V !f C :::::: :::> be the amount of current passing 

through the filament of the bulb under investigation in one hour, then 

the power consumption of the bulb at line. voltage V is 

Power= CV watt/hour ( 5. 5) 

Generally we use the tr - Killo-watt/hour. lf we divide the E):}uation 

(5.5) by one thousand we get power in ~illo-watt/hour. To measure the 

power consumption, actually we need only to measure the amount of current 

passing through the filament of a bulb at different line voltage and 

establish a suitable voltage-current relationship to estimate the power 

consumption at the average line-voltage. This would also help us in 

estimating the total power consumption during the life-time of a bulb. 

we have used the following instruments in measuring the amount of 

current passing through the filament of a bulb: 

1) Voltmeter: It is an electrical meter which can measure 

the voltage of electricity. 



2) Avometer: It is also an electrical meter which has 

multiple use in electrical technology. We have used 

the meter to measure the amount of current passing through 

the filament of a bulb. 

3) Variac or Variable stabilizer: It is an instrument which 

can control the voltage fluctuation and can be used at a 

variable range of voltage of the electricity. 

4) Incandiscent electric bulbs under study. 
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The experimental set up is shown in circuit-diagram (Fig. 15). The 

stabilizer connected to the electric line directly. The voltmeter and 

the bulb under study was connected to the stabilizer in series while the 

avometer was connected to the bulb in parallel position. First we have 

fixed the voltage of the line using the variac and then we switch on 

the bulb to get reading on the avometer a which gives the amount of 

current passing through the filament of the bulb under investigation in 

ampere/hour. Experiment was done on three bulb of each category chosen 

at random. The experimental results are given in Appendix VI. 

5.7 voltage-current Relationship 

we have discussed in Section 5.3 that there is a functional rela­

tionship between line voltage V, the resistance of the filament R and 

~ the amount of current passing through the filament C, that is, under 
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constant resistance, 

V = RC 

V 
C =·R 
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But resistance increases as heat increases due to increase in line 

voltage. Hence the linear relationship is disturbed. The fitted 

relationship between line voltage and current is found to be a third 

degree polynomial in the range of 0.240 volt for all the brand of 

electric bulbs under study. In other words, what we have found is 

E ( c/o ( V < 240) = P, V + .... ( 5. 6) 

where C is the amount of current passing through the filament of the 

bulb per hour in ampere unit. The fitted polynomials in the unit of 

ampere/hour are shown in Table 13. Actually, the line voltage varies 

between 190-240 volts in general. Within this range, the current­

voltage relationship is found to be linear one, that is, 

E ( C/190 ~ V ~ 240j == o( + ~ V ( 5. 7) 

Table 14 delineates the fitted linear relationship in the unit of 

ampere/hour for different brands of incandiscent electric bulbs under 

study. 

rl 
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But resistance increases ae heat increases due to increase in line 

voltage. Hence the linear relationship is disturbed. The fitted 

relationship between line voltage and current is found to be a third 

degree polynomial in the range of 0.240 volt for all the brand of 

electric bulbs under study. In other words, what we have found is 

E (c/o < V < 240) = ~ V + ( 5.6) 

where C is the amount of current passing through the filament of the 

bulb per hour in ampere unit. The fitted polynomials in the unit of 

ampere/hour are shown in Table 13. Actually, the line voltage varies 

between 190-240 volts in general. within this range, the current­

voltage relationship is found to be linear one, that is, 

E (C/190 ~ V f 2402) = l 5. 7) 

Table 14 delineates the fitted linear relationship in the unit of 

ampere/hour for different brands of incandiscent electric bulbs under 

study. 
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Table 13: Fitted Polynomials of voltage-current Relationship. 

Power Brand ~l f2 f3 
R2 

60 Phillips 2. 704099--03 -1. 51944-05 3-4476-08 0 .90763 

(2. 54179-04) (3.04899-06) (9.20825--09) (0.01045) 

Belco 2 .62301--03 -1. 53421-05 3.556567--08 0.90603 
(2.53282-04) (3.03024-06) (9.17577--09) (0.01042) 

Bengal 2. 73310-03 -1.64582-05 3.024162--08 0.98564 
(2.56637-04) (3.07848-06) (9. 29730-09) (0.01056) 

100 Phillips 5.136097--03 -3.09801--05 1.090103-08 1.99005 
(3. 91722--04) (4.69889-06) (1.41911-08) (0.01611) 

Belco 4. 59314--03 
( 4. 34015-04) 

-2.69217--05 6.108107-08 0.98583 
( 5. 20622-06) (1. 57233-08) ( 0.01 785) 

Bengal 4.67603--03 -2. 72077-05 5-944091-08 0.98814 
(3. 90738-04) (4.68709-06) (1.41555--08) (0.01607) 

Figures in the parenthesis indicate standard error of estimates. 
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Table 14: Fitted Voltage-current Linear Relationship 

Power Brand o( {3 R2 

60 Phillips 0.10743 5.808571-04 0. 99948 
( 1. 428 4 3-0 3 ) (6.62299-06) (2. 77059-04) 

Belco 0.09365 5- 788571-04 0.99959 
( 1. 2 568 5-0 3 ) ( 5.82745-06) (2. 437798-04) 

Bengal 0.09728 5. 537143-04 0.99932 
(1.55568-03) (7.21299-06) (3.01741-04) 

100 Phillips 0.18249 9. 5028 57-04 0.99964 
(1. 95450-03) . (9.06214-06) (3. 790967-04) 

Belco 0.17662 . 8.928571-04 0.99991 
(8 .89438-04) ( 4.11393-06) (1. 725164-04) 

Bengal o. 20405 7 .028571-04 0.99981 
(9.05347-04) ( 4.01328-06) (1.036253-04) 

Figures in the parenthesis indicate standard error of the estimates. 



5.8 Choice of the Model for Predicting 
Flow of Electricity 
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It is evident from Section 5.7 that the voltage-current relation­

ship in the range of (0T240) volt is a third degree polynomial whereas 

in the range of (190-240) volt it is linear. The actual line.voltage 

varie8 in the range of (190-240) volt in general. we are to investi­

gate. whether the amount of current estimated from the two models 
/\ 

differ significantly at the estiI1B.ted average line voltage V = 215. 

The estimated current at the average line voltage as per fitted polyno­

mial and linear relationship for different brands of bulbs under study 

are shown in Table 15. 

Table 15: Estimated Flow of current at Average Line Vo 1 tage 

Power Brand Estima rrent in mere Hour 
Linear 

60 Phillipe 0.2218 0.2323 
(2-54197-04) (1. 13132-04) 

Belco 0.2082 0.2181 
( 2. 53300-04) (9. 95446-05) 

Bengal 0.2069 
(2. 56655-04) 

0.2163 
( 1. 23214-04) 

100 Phillips o. 3768 0.3868 
(3.91750-04) ( 1. 54800-04) 

Belco o. 3510 o. 3685 
( 4. 34046-04) (7.04321-05) 

Bengal 0.3384 
( 3. 90766-04) 

o. 3551 
(2. 74105-04) 

Figures in the parenthesis indicate standard error of the estimates. 
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An eye view through the Table 15 reflects that the linear model 

slightly over estimates the flow of current at the average line voltage 

but the difference is within the permissible limit of 5%, The linear. 

model calibrates the data at the extreme point of v = 240 whereas, the 

polynomial over estimates at this extreme point. Moreover, in almost 

all cases, standard error of estimates are higher for polynomial than 

the ·linear model. Considering all those facts, a linear model is advan­

tageous over the polynomial to predict voltage-current relationship in 

the range of (190-240) volts. 

5.9 comparison of Power consumption for Different Brands 

Once we know the voltage-current relationship, we can utilize the 

formula (5.5) to estimate the power consumption of an electric bulb at 

· any desired line voltage. As per formula (5.5), we have 

Power = V C watt/Hour 

= I6o5 k.w./hour 

The estimated flow of current in ampere/hour is given in Table 15 at the 

average line viltage V = 215. The estimated power consumption in watt/ 

hour for different brands at the average line voltage. Replacing inten­

sity (I) by current (C) in equation (5.4B), a pairwise comparison of 

different brands of same power is given in Table 16 using the linear 

model for current flow at the average line voltage. 



Table 16: Pair-wise Comparison of current Flow of 
Different Brands by Power 

Power Branda Difference in S.E. of the 
current flow difference 

60 Phillips-Belco 0.0142 1. 5069-04 

Phillips-Bengal 0.0160 1.6727-04 

Belco-Beng~l 0.0018 1. 5840-04 

100 Phillipe-Belco 0.0183 1. 7006-04 

Phillips-Bengal 0.0317 3.1479-04 

Belco-Bengal 0.0134 2.8300-04 

~ Difference is highly significant. 
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d. f. Olloulahiil 
t-value 

8 94. 2321:t!H 

8 95.6515~ 

8 ll.3635'H~ 

8 107. 6029"~ 

8 100. 7001~ 

8 47.34a2~" 

Analysis of '!'able 16 reflects that Phillips passes highest current 

followed by Belco and Bengal for both the power categories. In other 

words; brands can be ordered as per current flow as Phillipe ) Belco> 

Bengal . at the average line voltage. Since average line voltage is 

constant at V = 215, it reflects that on the average, consumption of 

power is highest for Phillips and lowest for Bengal. 

cost-Benefit FB.ctors 

Let Ttj be the average life of an electric bulb belonging to the jth 

brand and ith power category and xij be its price so that xufTij be the 

cost of the bulb for unit time. Again let Pij be the amount of power 



consuming by the bulb in unit time at the average line voltage and Y .. 
~ 

be its cost so that Zij = Yij + x✓T~ be the total cost in unit time 

for burning the bulb. Now if Lij be the amount of light emitting by 

the bulb in unit time at the average line voltagethen Z✓Lij be the 
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cost per unit of light. In estimating the cost benefit factors, prices 

of bulbs are taken from the local retail market. Estimated average 

life Tij are available from Table 4 of Chapter 4. Pij's are eetinated 

from Table 15 of Chapter 5 at the average line voltage V = 215 volt 

using the equation (5.5). Cost of power Yij's are estimated as per 

current tarif of PDB (Power Development Board). L .. 's are estimated 
~ 

by adjusting time unit from Table 10 of Chapter 5. Linear estimates 

of Plj's and Lu's are considered in eeti~ting cost benefit factors. 

Table 17 shows the estimates of cost benefit factors. 



power Brand 
i j 

60 Phillips 

Belco 

Bengal 

100 Phillips 

Belco 

Bengal 

Table 17: Estimated-cost-Benefit Factors at the 
Average Line Voltage V = 215 

Average life Average power Unit cost cost of power 
in hours OODSUDlption in Taka per month 

T-- per month in xij in Taka lJ KWH pij yij 

1925.6724 35.9600 16.00 · 79.80 

3270.1146 33.7619 13.00 75.77 

1482. 2653 33.4a32 13.00 75.26 

2220. 7779 59 .8766 19.00 122. 78 

2120.4358 57 .0438 15.00 117.67 

3525.4583 54. 969 5 15.00 113.95 

Total cost Total amom1t 
per month of light av-
in Taka ailable per 

Z ijy ij+:x:/T ij month in 
(1.00000) 

Lij 

as. 79 401.6007 

1a.63 304. 7859 

81.57 364.7493 

128.97 540. 3665 

122.76 507. 7866 

117 .01 545.0261 

Cost per 
unit oi 
light in 
Taka 
Zij!'Lij 

0.2136 

o. 2579 

0.2236 

o. 2387 

o. 2417 

0.2147 

I-' 
\.>,I 
\.>,I 



CHAPrER SIX 

SUMMARI SATION OF RESULTS AND CONCLUDING RfflARKS 

6.1 summarisation of Results 

Empirical survival probabilities for all categories of bulbs, under 

investigation are given in Appendices IIA-IIE. Graphs displayed in 

Figures 2-7 (pp. 81-86 ) based on the survival probabilities that the 

underlying distributions of failure times for all the six categories of 

incandiscent electric bulbs tm.der investigation for tentatively follow 

two para.meter negative e:xponentd.al distribution. Results displayed in 

Table one , (p. 87) also support that the underlying failure time distri­

butions are two-parameter negative exponential,least square estimates of 

parameters are shown in Table two (p. 89 ). These estimates are biased 

and displayed for comparison only. Unbiased maximum likelihood estimates 

of parameters are portrayed in Table three (p. 95). A comparison of 

least square estimates and unbiased maximum likelihood estima_tes shows 

that in general least square over estimates the scale parameter (failure 

rate parameter) while it under estimates the location parameter (g_uaran­

tee time). It is evident from Table three that of the 60 watt power 

category, Phillips has the highest guarantee time followed by Bengal 

and Belco. Their failure rates also follow the same order. In compari­

son to guarantee times and failure rates of other brands, the failure 

rate of Belco is observed to be mu~_h smaller. Of the 100 watt category 

Belco has the highest guarantee period followed by Phillips end Bengal. 

It is to be noted that for unbiased estimate, the guarantee time of 



Bengal 100 watt is found to be statistically insignificant which is a 

contradiction with graphical result (pp. 81_86) and the result shown 
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in 'l'able one (p. 87 ). However, for uniformity, this insignificant 

result has been considered in further analysis. In this power category 

also, the failure rates follow the same ordering as the guarantee time. 

The unbiased estimates of mean life times for all the brand-categories 

under study are given in Table four including a 95% asymptotic confi­

dence interval. The results are self explanatory. Of the 60 watt 

category, Belco hae the highest estimated average life followed by 

Phillips and Bengal while Phillips has the minimum coefficient of 

variation followed by Bengal and Belco. Of the 100 watt category, Bengal 

has the highest estimated life time followed by Phillips and Belco while 

Belco has the minimum coefficient of variation followed by Phillips and 

Bengal. Pairwise comparison of estimated mean life are shown in Table 

five (p. 98) which reflects that the larger estimated average life for 

Belco 60 watt over Phillipe and Bengal is statistically significance 

while Phillips and Bengal do not differ significantly for 100 watt, 

brands do not differ among themselves with respect to estimated average 

life. The likelihood ratio statistic for goodness of fit of fitted 

distributions using both l.mbiased maximum likelihood estimates and the 

least-square estimates are given in Table six (p. 101 ). The results 

reveal that the data are well graduated for all the six categories with 

both least square and unbiased m.l-. estimates. Results of Mantel-

Haenozel (1959) test for pair-wise comparison of survival curves of 

brands within the power category are displayed in Table seven (p. 10,V• 

The result4 are in agreement with the results of Table five (p. 98 ), 

that is, for 60 watt, the survival curve of Belco differs significantly 



from Phillips and Bengal while Phillips and Bengal do not differ 

significantly and for 100 wat½, the brands do not differ with one another. 

significantly. 

Relationship between voltage of electric line and the intensity 

of light has been discussed in section (5.3) and found as -

E (I/60 L V L.. 240) = b + blV + b v2 + b v3 
0 2 3 

where I is the amount of light emitting per second, V is the line 

voltage, b
0

, b1 b
2 

and b
3 

are· constant. No light was available for 

line voltage below 60 and no· reading on light could be taken beyond 

line voltage 240 due to limitations of instruments. Fitted polynomials 

with standard error of estimates of b
0

, b1 , b
2 

and b
3 

are shown in 

Table eight (p . 116). Practically line voltage varies in the range 

of 190-240 volts in general. In this range of line voltage,the voltage 

· intensity relationship is fo1.md as 

E (I/190 L V £ 240) = a + bV 

Fitted linear relationship for different brands and power along with 

the standard error of estimates are displayed in Table nine (p. 117 ). 

The intercept term for all the brands and power are found to be negative 

which is consistent with the facit that a certain amount of power is lost 

for heating the filament before emitting light. The scale parameter b 

is the rate of increase of intensity for unit change in the line voltage. 

For 60 watt power category, the rate of increase of intensity of light 

is found to be highest for Bengal followed by Phillips and Belco while 
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for lOO watt, it is found to be highest for Belco followed by Bengal 

and Phillips apparently. 

The apparent wastage of electricity is found to be highest for 

Bengal followed by Belco and Phillips in order for 60 watt, while it 

is highest for Belco followed by Bengal and Phillips for 100 watt. The 

ratio (- a/b )may be considered as an index for wastage of electricity 

which is found to be highest for Belco followed by Bengal and Phillips 

for both 60 watt and 100 watt. 

Estimated intensity of light at the average line voltage are 

displayed for both linear and polynomial relationships in Table ten (p. 118) 

and found to differ insignificantly. For this reason, the linear rela­

tionship is considered for further analysis. Pairwise comparison of 

parameters for different brands of same power are displayed in Table 

eleven (p. 121). For 60 watt, magnitude of intercept parameter is sig­

nificantly larger than those of Phillips and Belco, while Phillips and 

Belco do not differ significantly. Si.de by side, the scale parameters 

of Belco is found to be significantly smaller than those of Phillipa and 

Bengal, while Phillips and Bengal do not differ significantly. The 

Brands do not differ from one another significantly with respect to para­

meters in case of 100 watt. 

A comparison of intensity of light at the average line voltage for 

different brands by power category is given in Table twelve (p. 122). 

It is observed that for 60 watt power category all the brands differ 

significantly with each other and their relative ordering is Phillips) 

Bengal> Belco. F':)r 100 watt category, Belco has significantly smaller 



intensity than those of Phillipe and Bengal, while Phillips and Bengal 

do not differ significantly. 

Voltage-current relationship has been studied in section 5.7 and · 

folllld to be a polynomial of third degree, that is, 

where C is the amount of current flowing through the filament of the 

bulb for a given line voltage V in the range of 0-240 volts. Fitted 

polynomials are displayed in Table thirteen (p. 127). It is mentioned 

earlier that in reality, line voltage varies in the range of 190-240 

volts generally. Current-voltage relationship in the range of 190-240 

volts is found to be a linear one, thaf is, 

EtC/190 ~ V ~ 240) = o( + ~V 

Fitted linear relationships for different brands and power categories 

of incandiscent electric bulbs are appended in Table fourteen (p.1 2s)• 

~stimated flow of cu~rent at the average line voltage as per _polynomial 

relationship and linear relationship are shown in Table fifteen (P-129) 

from where it is evident that the polynomial under estimates the observed 

flow of current at the average line voltage. Again, it over estimates 

the flow of current at the upper end points of line voltage. These facts 

instigated us to consider the linear relationship for further investi-

gation. This table also reflects that flow of current is highest for 

Phillipa and lowest for Belco for both 60 watt and 100 watt power 

categories of bulbs apparently. Table sixteen (p. 131 ) confirms these 

result, where pair-wise comparison has been ma.de by power categories. 
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All the estimated cost-benefit factors including cost per unit of 

light at the average line voltage are appended in Table seventeen 

(p. 133 ). This table indicates that cost per unit of light is highest 

for Belco for both 60 watt and 100 watt bulbs. In case of 60 watt bulbs, 

minimum cost goes to Phillips while for 100 watt bulbs minimum co.st 

goes to Bengal. For 60 watt bulbs, relative costs of Belco and Bengal 

are 17.18 per cent and 13.30 per cent higher than Phillips, while the 

relative cost of Bengal is 4.47 per cent higher than the Phillips. The 

relative coat of Belco and Phillips at the average line voltage in order 

are 11.17 per cent and 10.05·per cent higher in comparison to Bengal 

for 100 watt power category, while it is 1.24 per cent higher for Belco 

in comparison to Phillips. 

6. 2 concluding Remarks 

Apparently one should decide to purchase that bulb for which cost 

per unit light is minimum. But there are other fa.ctors to consider. 

Of these factors, first comes the guarantee period. Since average life 

of an electric bulb is not too small, consumers would expect a longer 

guarantee period. Second, cost of a bulb. If cost of a bulb is signi­

ficantly higher than an alternative brand, consumers should prefer the 

low cost one. Above all, the room space where bulbs are used for light 

is an important factor which we did not consider at all. The optimality 

of light with respect to room space may convert a low cost bulb into 

high cost one. Some one may study this factor for further investigation. 

considering the factors discussed above, it is not possible to say 



explicitly which one is to prefer but preference will vary from consumer 

to consumer depending on their necessity, availability of alternatives, 

ability to invest for a bulb and knowledge or' guarantee period, average 

life and the intensity of ~ight. Phillipe yields its maximum capacity 

at 250 volte. We have calculated the coat per unit of light at the 

average line voltage V = 215. If this average line voltage is changed, 

there will be a change in cost per unit light and that change may not 

be proportional to change in voltage which may upset the present results. 

In establishing the voltage-intensity relationship in Section 5.~ and 

voltage-current relationship in section 5.7, we have considered the 

·average of 3 observations on intensity of light and flow of current for 

the same line voltage. Instead, if exact observations could be used some 

difference may be expected in the estimated parameters which may effect 

the cost per unit of light. These are left as further scope for future 

investigation. 



Sl. 
No. 

1. 

2. 

3. 

4. 

5. 

6. 

.7. 

8. 

9. 

10. 

AFPENDIX - I 

Consumption Fattem of Incandiscent Electric Bulbs 
(% of sell volume) 

Power 
Brands 60 watt 100 watt 

Belco 16 17 

Bengal 9 10 

Crown 6 6 

Emon 

NEC 15 14 

Paramount 1 6 

Phillips 20 19 

Seiko 5 5 

Singer 14 14 

sainik 8 9 

- Records no sell during the short survey period of 3 days 
in the selected retailer shops. 
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APPENDIX II 

LOSS TIME ACCOUNT 

]ate Time of loss l Amount of loss cumulative 
From To ; time in hour sum. 

1-4-89 3.15 p.m. 5. 45 p.m. 2. 50 2. 50 

5-4 7.05 a.m. 8.20 a.m. 1.25 3.75 

6-4 9.00 p.m. 10.45 p.m. 1.75 5. 50 

8-4 11.30 a.m. 2.30 p.a. 3.00 a. 50 

8-4 7.15 p.m. 
to 
10-4 1. 15 p.m. 42.00 50. 50 

29-4 7.00 p.m. a. 30 p .m. 1.50 52.00 

30-4 9.00 a.m. 10.00 a.m. 1.00 53.00 

3-5 11.00 a.m. 12.00 a.m. 1.00 54.00 

4-5 7.30 a.m. a.15 a.m. 0.45 54.75 

7-5 11.00 a.m. 12.15 a.m. 1.15 56.00 

9-5 a. 30 p.m. 10.00 p.m. 1.30 57.50 

11-5 5.15 p.m. 7 .15 p.m. 2.00 59. 50 

12-5 7.00 p.m. 9.30 p.m. 2. 30 62.00 

14-5 4.15 p.m. 5.15 p.m. 1.00 63.00 

16-5 10.30 a.m. 1.30 p.m. 3.00 66.00 

18-5 7.30 p.m. 10.00 p.m. 2.30 68 . 50 

19-5 9.45 a.m. 11.15 a.m. 1.30 10.00 

22-5 7.00 p.m. 10. 30 p.m. 3. 30 73. 50 

31-5 9.45 a.m. 12.45 a.m. 3.00 76. 50 

1-6-89 5.00 a.m. 7.00 a.m. 2.00 78. 50 

2-6 3. 50 82.00 

3-6-89 3.30 p.m. 5. 30 p.m. 3.00 85.00 

4-6 11.00 a.m. 12.45 a.m. 1.45 86.75 

6-6 9.55 p . m. 9. 30 p.m. 0.15 07.00 

(contd.) 
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LOSS TIME ACCOONT (contd.) 

10-6 3.15 p.m. 6.00 p.m. 2.45 89.75 
12-6 0-30 a.m. 10.00 a.m. 1.30 91.25 
13-6 3. 45 p.m. 7.30 p.m. 3.45 95.00 
16-6 5.00 a.m. 5. 45 a.m. 0.45 95. 75 
17-6 11. 30 a.m. 1.30 p.m. 2.00 97. 75 
18-6 9.15 p.m. 10-30 p.m. 1.15 99.00 

21-6 11.00 a.m. 1.00 p.m. 2.00 101.00 

24-6 9.15 p.m. 11.15 p.m. 2.00 103.00 

25-6 9.00 a.m. 11.30 a.m. 2. 30 105. 50 
' 

27-6 1.00 p.m. 1.30 p.m. 0.30 106.00 

2-7-89 11.00 a.m. 1.00 p .m. 2.00 108.00 
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APPENDIX III 

OBSERVED FAILURE TIMES & LIFE TIMES IN HOURS 

Table Appendix IIIA showing life times of Phillipe-60W 

I Dlte Time of : Observed life: Loss time within: Exact life Sample I 

No. : of failure failure : time in hour : observation : time in 
I I : period ; hour I I 

34 3-6-89 7.00 a.m. 1516 82 1434 

116 ,, II II II II 

40 4-6-89 3.00 p .m. 1548 85 1463 

79 6-6-89 7 .00 a.m. 1588 87 1501 

• 49 7-6-89 3.00 p .m • 1620 87 1533 

70 9-6-89 7 .00 a.m. 1660 87 1573 

01 13-6-89 3.00 p.m. 1764 91.25 1672.75 

82 II II II II II 

55 16-6-89 7.00 a.m. 1828 95. 75 1132.25 

73 II II II II II 

52 19-6-89 3.00 p.m. 1908 99 1809 

85 22-6-89 7.00 a.m. 1972 1.1 1871 

43 28-6-89 3.00 p.m. 2124 106 2018 

76 II II II II II 

04 2-7-89 11.00 p.m. 2228 108.25 2119. 75 
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APPENDIX IIIB 

Table ehowing life times of Belco-6ow 

Samplt! : Tu.te of Time of : Observed : Loee time within: Exact life 
No. : failure failure : life time : obeervation : time in 

I ! in hour ! period : hour I 

119 28-4-89 3.00 p.m. · 660 50. 50 6o9. 50 

57 6-5-89 3.00 p.m. 852 54.75 797. 25 

120 12-5-89 3.00 p.m. 996 59. 50 936. 50 

33 20-5-89 3.00 p.m. 1188 70 1118 

87 30-5-89 11.00 p.m. 1436 . 73. 50 1362. 50 

09 6-6-89 11 .oo p.m. 1604 87 1517 

63 17-6-89 7.00 a.m. 1852 95. 75 1756.25 

39 26-6-89 11.00 p.m. 2004.10 105. 50 1978. 50 

10 4-7-89 3.00 p.m. 2268 108 216o 



APPENDIX IIIC 

Table showing life times of Bengal-6ow 

Sample : Tu. te of : 'rime of : Observed l Loss time l Exact life No. l failure : failure l life time : within obeer- : time in I I : in hour ! vation period: hour ' , 
110 . 30-4-89 3.00 p.m. 708 53 655 

58 II II II II II 

80 4-5-89 11.00 p.m. 812 54.75 757.25 

47 II II II II II 

62 715 11.00 p.m. 884 56 828 

05 10-5-89 7 .00 a.m. 940 57. 50 882. 50 

74 12-5-89 11.00 p.m. 1004 62 962 

48 15-5-89 3.00 p.m. 1068 63 1035 

71 20 ... 5-89 3.00 p.m. 1188 70 1118 

08 23-5-89 11.00 p.m. 1268 73. 50 1194. 50 

77 28-5-89 7 .oo a . m. 1372 73. 50 1298. 50 

38 1-6-89 7.00 a.m. 1468 78. 50 1389.50 

89 5-6-89 7. 00 a.m. 1564 86.75 1477.25 

33 12-6-89 11.00 p.m. 1748 91.25 1656.75 

101 20-6-89 11.00 p.m. 1940 99 1841 

35 28-6-89 3.00 p.m. 2124 106 2018 
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APPENDIX IIID 

Table showing life times of Phillipe-lOOW 

Sample : D:I. te of Time of : Observed : Lose time l Exact life 
No. : failure failure : life time : observation l time in 

I j in hour j period j hour 
I 

07 9-6-89 3.00 p.m. 1668 87 1581 

16 11-6-89 7.00 a.m. 1708 89.75 1618.25 

46 13-6-89 11~00 p.m. 1772 95 1677 

61 II II " II II 

118 17-6-89 3.00 p .m. 186o 97. 75 1762.25 

19 21- 6-89 11.00 p.m. 1964 101 1063 

28 " II " II II 

103 23-6-89 3.00 p.m. 2004 101 1903 

22 26-6-89 1.00 p.m. 2068 105. 50 1962. 50 

94 28-6-89 7.00 a.m. 2116 106 2010 

37 1-7-89 7 .00 a.m. 2188 106 2082 

25 4-7-89 7.00 a.m. 226o 108.25 2151. 75 
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APPENDIX IIIE 

Table showing life times of Belco-lOOW 

Sample : late of Time of : Observed l Loss time ; Exact life 
No. ; failure failure l life time : within obser-l time in 

I : in hour : vation period; hour I 

23 11-6-89 3.00 p .m. 1716 09.75 1626.25 

11 " II II " II 

17 II II II II II 

98 13-6-89 7.00 a.m. 1756 91.25 1664.75 

59 14-6-89 3.00 p.m. 1788 95 1693 

02 17-6-89 11.00 p.m. 1868 97.75 1770.25 

53 19-6-89 7.00 a.m. 1900 99 1801 

14 20-6-89 11.00 p.m. 1940 99 1841 

107 23-6-89 11.00 p.m. 2012 101 1911 

56 26-6-89 7 .OO a.m. 2068 105. 50 1962. 50 

50 28-6-89 3.00 p.m. 2124 106 2018 

41 2-7-89 7 .00 a.m. 2212 106 2106 
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APPENDIX IIIF 

Table showing life times of Benga.1-lOOW 

Sample DLte of I Time of : Observed l Loss time l Exact life 
No. failure : failure : life time : within obser- : time in 

I ! in hour ! va tion period : hour I 

51 11-4-89 3.00 p.m. 252 50. 50 201. 50 

42 19-4-89 11.00 p.m. 252 50.50 401-50 

99 28-4-89 3.00 p.m. 660 50.50 609. 50 

15 7-5-89 7.00 a.m. 868 54.75 013.25 

60 17-5-89 11.00 p.m. 1124 66 1058 

30 28-5-89 7.00 a.m. 1372 73.50 1298. 50 

12 9-6-89 11.00 p.m. 1676 87 1589 

03 22-6-89 3.00 p.m. 1980 101 1879 

18 4-7-89 3.00 p.m. 2268 108 2160 



Life time 

1430.00 

1463.00 

1501.00 

1533.00 

15B-00 

1672. 75 

1732.25 

1009.00 

1871.00 

2018.00 

2119.75 

APPENDIX IVA 

Table of survival probability in case 
of Phillipe-6ow 

survival prob.: survival prob. ; survival prob. 
obtained from : when parameters : parameter are 
Kaplan Meier : are obtained : obtained from 
estimate : from m.l.e ; regression 

0.90 .9586 .9116 

0.85 .8993 .8569 

a.so .8356 -7978 

o. 75 • 7855 • 7513 

o. 10 • 7271 .6970 

0.60 .5996 • 5779 

0.50 .5344 • 5171 

0.45 .4607 .4475 

0.40 .4087 • 3983 

0.30 • 3076 • 3022 

0.25 .2530 .2497 

when 



Life time 

6o9. 50 

797. 25 

936. 50 

1118.00 

1362. 50 

1517 .oo 

1756.25 

1978. 50 

2160.00 

APPENDIX IVB 

Table of survival probability in case 
of Belco-6ow 

: Survival prob. I Survival prob. I Survival prob. 
: obtained from : when parameters : when parameter are 
: Kaplan Meier : are obtained : obtained from 

estimate ! from m.1.e ! regression 

0.95 0.9512 0.9527 

0.90 0.8895 0.8954 

0.85 0.8464 0.0504 

0.80 o. 7932 o. 7986 

o. 75 o. 7269 o. 7382 

o. 70 0.6879 o. 6957 

0.65 0.6316 o. 6418 

0.60 0.5034 o. 5932 

o. 55 0.5468 0.5522 
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Lite time 
in hour 

655.00 

757.25 

828 .oo 

882. 50 

962.00 

1035.00 

1118.00 

1194. 50 

1298. 50 

1389. 50 

1477. 25 

1656.75 

1841.00 

2018.00 

APPEND! X I VC 

Table of survival probability in case 
of Bengal-6ow 

: Survival prob. : Survival prob. 
: obtained from I when parameters I 

: Kaplan Meier I are obtained I 

• estimate I from m.l. e. 

0.90 0.9512 

0.80 0.8458 

0.75 o. 7798 

0.10 o. 7325 

0.65 o.6686 

0.60 0.614a 

0.55 o. 5589 

0.50 o. 5119 

0.45 0.4543 

0.40 0.4092 

0.35 o. 3700 

0.30 0. 3010 

0.25 0.2436 

0.20 0.1988 

152 

survival prob. 
when parameter 
are obtained 
from regreeeion 

0.9039 

0.8075 

o. 7469 

o. 7034 

0.6444 

o. 5945 

0.5426 

0.4987 

0.4447 

o. 4022 

0.3652 

0.2996 

0.2445 

o. 2012 
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APPENDIX IV D 

Table of survival probability in case of Phillips-l00W 

: Survival prob. survival prob. : survival prob. 
Life time : when parameters are t when parameters : when para.meter 
in h,our : obtained from Kaplan~ are obtained : are obtained 

: Meier estinate from m.l.e ! from regression 

1588.00 0.95 0.9413 0.9468 

1618.25 0.90 0.9000 o.9_051 

1677.00 0.00 0.8248 0.8297 

1762.25 0.75 o. 7267 o. 7303 

1063.00 0.65 0.6257 o. 6285 

1903.00 o.6o o. 5897 0.5921 

1962. 50 o. 55 0.5398 o. 5419 

2010.00 o. 50 0.5030 o. 5049 

2082.00 0.45 o. 4520 0.4535 

2151. 75 0.40 o. 4075 o. 4087 
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APPENDIX IVE 

Table of survival probability in case of Belco-l00W 

: survival prob. : SUrvi val prob. : survival prob. 
Life time : when para.meters are: when parameters : when parameters 
in hour : from Kaplan-Meier : are obtained : are obtained 

1 estimate : from m.l.e from regression 

1626.25 0.85 0.9532 0.8543 

1664.75 0.80 0.8850 0.8034 

1693.00 0.75 0.8381 o. 7680 

1770. 25 o. 70 o. 7222 o. 6789 

1801.00 0.65 o. 6807 0.6464 

1841.00 o.6o o. 6302 o. 6064 

1911.00 0.55 o. 5507 0.5423 

1962. 50 o. 50 0.4907 o. 4995 

2018.00 0.45 o. 4481 0.4571 

2106.00 o. 40 o. 3782 o. 3972 
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APPENDIX IVF 

Table of eurvi val probability in case of Bengal-100-W 

: survival prob. : SUrvi val prob. : survival prob. 
Li:fe time : when parameters : when parameters : when parameters 
in hour : are obtained from : are obtained : are obtained 

! bpla.n-Meier estine.te; from m.l.e from regression 

201. 50 0.95 0.9512 0.9505 
f 

401. 50 0.90 0.8983 0.8993 

609. 50 0.85 0.8465 0.8490 

813.75 a.so o. 7985 0.8023 

1058.00 0.75 0.7446 o. 7498 

1298. 50 o. 70 0.6953 o. 7015 

1589.00 0.65 0.6398 0.6473 

1079.00 o.6o o. 5889 o. 5973 

2160.00 o. 55 0.5434 o. 5526 



Given I 
voltage, 

I 

60 

70 

80 

90 

100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 

210 

220 

230 

240 

APPENDIX - V 

Average Intena~ty of Light for Given Line voltage 
1n Lux :per Second 

60 watt bulbs 
Average Intensity 

I lOO watt bulbs 
Phillips Belco Bengal Phillips Belco 

0.50 o.oo 0.80 1.40 1.10 

1.30 0.37 1.63 2.90 2.20 

2.60 1.13 2.27 5. 50 4.40 

4.80 2.27 3.83 10.07 7.63 

8.20 4. 50 6.60 16.03 12.60 

13.23 7.73 10.43 25.07 20.10 

19.97 12.37 15.07 36.27 29.47 

28.23 18.40 22. 57 43.10 42.47 

40.97 24.87 31.17 70. 70 57.60 

52.30 33. 77 41. 57 88. 50 76.60 

68.30 44.27 58.07 110.00 96.10 

86.00 57.50 74.6o 131.50 116. 70 

104.00 71.27 90.50 153. 40 130.00 

121.40 86.63 104. 50 174. 30 150. 20 

139. 70 101.63 124.87 194. 40 176.30 

158. 30 118. 50 143. 77 213.00 197.90 

175.90 135.25 161.00 235.60 216.80 

193.10 149.37 178. 50 253. 50 236.80 

211.20 167.27 195. 27 273.40 257.90 
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Bengal 

1.60 

2.80 

5. 30 

9.47 

15.6o 

23. 97 

35.37 

49.64 

68.80 

88.10 

109. 50 

131.90 

153.80 

174.00 

194. 70 

214. 70 

234. 30 

255. 30 

2e3. 60 



APPENDIX - VI 

Average Electricity Passing Through the Filament for 
Given Line Voltage in Ampere Per Hour 

Given , Average Electricity Flow 
Voltage : 60 watt bulbs : · 100 Watt bulbs 

0 

l 

3 

5 
7 

10 

15 

20 

30 

40 

50 

60 

70 

80 

90 

100 

ll0 

120 

130 

140 

150 

160 

170 

180 

190 

200 
210 
220 
230 

240 

Phillips :Belco :Bengal : Phillips Belco 

0 

0.0033 

0.0083 

0.0133 

0.0183 

0.0257 

0.0377 

0.0483 

0.687 

0.0860 

0.1017 

0. ll50 

0.1250 

0.1347 

0.1440 

0.1527 

0.1613 

0.1693 

0.1767 

0.1840 

0.1913 

0.1900 

O. 2053 

0. 2ll 7 
0. 2177 

0.2237 
0.2293 
0.2357 
0.2413 

0.2467 

0 

0.0027 

0.0080 

0 .0130 

0.0177 

0.0250 

0.0360 

0.0467 

0.0660 

0.0827 

0.0973 

0.1100 

0.1200 

0.1280 

0 .1360 

0.1440 

0.1517 

0.1590 

0.1660 

0 .1730 

0.1800 

0.1857 

0.1917 

O .1977 

0.2033 

0.2097 
0.2153 
0.2210 
0.2267 

0.2327 

0 

0.0030 

0.0083 

0.0133 

0.0183 

0.0257 

0.0373 

0.0407 

0.0683 

0.0857 

0.1003 

o.n30 

0.1227 

0.1310 

0.1307 

0.1460 

0.1530 

0.1600 

0.1667 

0.1730 

0.1797 

0.1857 

0.1927 

0.1970 

0.2027 
0.2080 
0.2133 
0.2190 
0.2247 

0.2307 

0 

0.0053 

0.0153 

0.0250 

0.0347 

0.0483 

0.0703 

0.0910 

0.1283 

0.1607 

0.1883 

0.2027 

0.2201 

0.2373 

0.2503 

0.2663 

o. 2793 

0.2913 

o. 3023 

0. 3121 

0.3233 

0.3337 

o. 3430 

0.3537 
0.3630 

0.3727 
o. 3820 
o. 3910 
o. 4017 

0.4107 

0 

0.0047 

0.0137 

0.0223 

0.0310 

0.0433 

0.0633 

0.0817 

0.ll53 

0.1447 

0.1100 

0.1920 

0.2080 

0. 2240 

0.2390 

o. 2530 

0.2667 

o. 2787 

0.2893 

0.2993 

o. 3090 

0.3190 

o. 3287 

0.3373 
0.3467 

o. 3550 
o. 3640 
o. 3730 
0. 3020 

o. 3910 

157 

Bengal 

0 

0.0047 

0 .0140 

0.0227 

0.0317 

0.0443 

0.0643 

0.0030 

0.1177 

0.1473 

0.1733 

0.1927 

0.2100 

o. 2260 

0. 2400 

0.2537 

0.2667 

o. 2790 

0.2900 

o. 3000 

o. 3090 

o. 3170 

0.3247 

o. 3310 
o. 3380 

0.3440 
0.3523 
0. 3')80 

o. 3650 

0.3737 
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