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Abstract 

In this thesis we have investigated some aspects of the protoplanetary theory of 

planetary formation, namely, the structure of a protoplanet, sedimentation of 

heavy elements in a protoplanet, and the effect of mass loss on the orbit of a 

protoplanet. 

The thesis contains five different chapters. The first chapter deals with a brief 

outline of the current view of planetary formation while in the other chapters we 

have investigated the problems under consideration. 

In chapter 2, we have determined the structure of a protoplanet by numerical 

method in which the protoplanet is assumed to be a sphere of solar composition, 

which is in a steady state of quasi-static equilibrium. It is also assumed that the 

only source of energy in a protoplanet is gravitational. Regarding the heat 

transference of heat inside the protoplanet we have considered two cases of 

interest i) the convective case and ii) the conductive - radiative case. 

In chapter 3, the distribution of thermodynamic variables in a protoplanet has been 

determined by polytropic method assuming that the protoplanet is a polytrope of 

index n = .5, l, 3/2 and 3. 

In the fourth chapter, we have investigated the segregation time of falling grains 

inside a protoplanet. We have calculated the time for two possible cases of 

interest, namely, i) the mass of the grain remains constant during falling, ii) the 

grain mass increases due to its adherence with other grains, and have found that a 

solid core having mass roughly equal to that of a terrestrial type planet can form at 

the centre of a protoplanet in a reasonable short period of time on astronomical 

$Cale. 



In chapter 5, we have investigated the effect of mass loss on the orbital distance of 

a protoplanet in a two body problem as well as in a three body problem, and have 

shown that the planetary spacing observed today can satisfactorily be explained in 

terms of mass loss from a set of identical protoplanets. 
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Chapter-I 

Planetary formation 

1. Introduction 

The formation of the planetary system has been a topic of interest to the mankind 

ever since the dawn of civilization. However, scientific theories for the formation 

of the system largely dates from Descartes ( I 644) when he proposed his vortex 

theory of planetary formation. Since that time many theories have been advanced. 

In most cases these theories were primarily speculative because of the lack of 

observational characteristics of the system. Fortunately for the theorists of today 

there are some convenient observational constrains of the system. For example, 

i) There exists a central condensation, the Sun, which is many times (a factor 

of750) more massive than the sum of the remaining parts of the system. 

ii) The Sun rotates very slowly, both in relation to the angular momentum 

present in interstellar gas clouds and in relation to the angular momentum 

of the planets. lnfact, the sum of the angular momenta of the planets about 

the Sun is about 200 times larger than that of the Sun about its own axis. 

iii) There are nine known planets in orbit about the Sun. 

iv) The orbits of the planets all lie close to a well-defined plane, so that the 

planetary system is essentially two-dimensional. The rotation of the Sun 

about its own axis is also essentially in the plane. 
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v) All the planets move in the same, prograde, sense round their orbits. There 

is also a tendency for the planets to rotate about their own axis in the same 

sense; while the majority of the satellites also have pro grade orbits. 

vi) There exists a clear division in the chemical composition of the planets, 

which corresponds both to their different spatial position and to their 

different masses. 

vii) The orbital distances of the planets roughly follow the Titius-Bode law. 

This cannot be considered independently of the angular momentum of the 

planets. Nevertheless, some explanation is needed for the consistent 

increase in the distance between the planets ( or in their angular momentum 

per unit mass) as one moves away from the Sun. 

viii) There are also some minor objects to be found in the system. They are 

meteorites, comets, asteroids, etc. 

ix) The age of the solar system based on the meteoritic observation is about 

4.5 billion years, etc. 

In the theoretical modelling of the system these constraints serve as the boundary 

conditions for the theorists. From time to time many theories have so far been 

advanced for formation of the system. Some reviews are available in, for example, 

Williams and Cremin ( 1969), Woolfson ( 1969), Mccrea ( 1972), Pickett and Lim 

(2004). There are found two schools of thought for formation of the solar planets: 

the planetesimal model and the protoplanetary model. 

2. Planetesimal model 

The planetesimal model is often referred to as the standard model of the formation 

of the solar system. In this model, the solar system formed about five billion years 

ago from a placental cloud of gas and dust that was cold, large and slowly 

rotating. The cloud collapsed, perhaps triggered by the shock wave from a nearby 
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supernova. Most of the mass, which was already concentrated towards the 

rotational axis of the cloud, fell straight to the center due to its low angular 

momentum. The remaining, higher angular momentum material rained down 

towards this central, growing protosun, but not directly, because the large spin 

prevented direct accretion, and so instead the material fell into a circumstellar 

disk. The disk is called the solar nebula .It is from the disk that the planets 

somehow coalesced. Close to the forming Sun, where the temperatures were high 

enough to vaporize most volatiles, the terrestrial planets formed by the 

accumulation of silicon, iron, nickel and other planetary grains into progressively 

larger bodies. Far from the Sun, where it stayed cool enough for various ices to 

form, providing additional solid material for planet building, the gas giants were 

born. Most of the remaining nebular material then dissipated, the thermonuclear 

fusion of hydrogen into hillium started in the core of the Sun, and the remaining 

solid debris was incorporated into larger bodies, thrown into highly eccentric 

orbits, or incorporated, uncoalesced, in the asteroid and Kuiper belts. The result is 

the planetary system more or less as we know it today. The growth of 

planetesimals and formation of planets by accumulation of planetesimals have 

been and is being under thorough investigation by many, some of these 

investigations are those of Goldreich and Ward ( 1973 ), Greenburg, Hartman, 

Chapman and Walker (1978), Harris (1978), etc. 

3. Protoplanetary model 

In the protoplanetary picture, the planets, as we know them today, have formed 

from a set of identical gaseous giant protoplanets, identical in mass, radius and 

chemical composition, which subsequently formed planets by contraction and 

possibly mass loss. The most of the observed feature of the solar system is found 

to be explainable in this scenario of protoplanetary formation (for example, 

Mccrea and Williams 1965, Williams and Handbury 1974, Willams and Crampin 

1971, Williams and Bhattacharjee 1979). The formation of protoplanets has thus 

~!ways been a topic of interest for the cosmogonists. Earlier attempts to produce 
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protoplanets by different mechanisms are those of McCrea ( 1960), Woolfson 

(1964) and Cameron (1978). 

McCrea ( 1960) put forward the protoplanet theory, which as a central feature, 

explained both the slow rotation of the Sun and the formation of the planets. The 

model begins with a dense interstellar cloud that is going to form a stellar cluster. 

As it collapsed, it became turbulent and colliding streams of turbulent material 

created dense regions, which moved haphazardly in the less dense background 

material. These were termed floccules. When they collided they coalesced and 

about 20 of them would have formed a stable aggregate according to Jeans' 

criterion. Here and there in the cloud an aggregate would have formed of 

sufficient mass to act as a substantial gravitational attracter and this would 

eventually have become a star. Smaller aggregates would then have been captured 

in orbit around the star to form a planetary system. 

The most detailed version of Woolfson's theory was published in I 964. In this 

theory, he considers the encounter between the Sun and a protostar of mass 

3xl0 32 gm. The closest approach distance is taken to be 6.67xl0 14 cm, comparable 

to the dimensions of the planetary system. Woolfson takes the protostar to have a 

mean radius of the order of 3 x IO 14 cm, so that its mean density and mean 

temperature are both very low, namely 4x 10 -12 gm cm-3 and 30 K respectively. lt 

is assumed that the Sun moves past the star that is to be distorted. Woolfson 

produced a computer model of such a distorted star, where its interior is 

represented by a series of discrete point masses. The model considered is two 

dimensional, and most of the mass is concentrated in one point at the centre. The 

remainder of the star is represented by a network of points in the outer annular 

region, and mutual gravitational attraction between these points is considered. In a 

real star, pressure would keep such points apart. However, in the computer 

simulation he is able to follow the material after it has left the star. He finds that 
' 

this material can move in orbits with a perihelion distance ranging from 31 
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Astronomical Units to .05 Astronomical Units, depending on when ejection from 

the disto1ted star occurs. He concludes that these limiting distances are in very 

good agreement in the solar system. A study of the condensation of protoplanets 

indicates that, while they all lose considerable quantities of material, stable core 

should form which will not disrupt under solar tidal forces. However, the 

collapsing planetary cores will lack an axis of symmetry and it is shown that as 

they collapse a filament of mater should be left behind. Condensation in this 

filament can give rise to satellite families and approximate calculations give 

results consistent with the orbital characteristics of Jupiter's satellites. 

Cameron ( 1978) put forward the protoplanet theory, which involved a very 

massive disk with mass equal to that of the Sun, with planets forming by direct 

condensation as giant protoplanets with up to 30 times the mass of Jupiter. These 

large bodies were then assumed to have been broken up by collisions and 

subsequently the debris collected together again to form a few giant planets and a 

large number of small bodies, the asteroids. This process would have required the 

disposal of a considerable mass of material but Cameron did not deal with this 

problem. One of the features of the model is that material falling onto the disk as 

it is forming gives a great deal of turbulence and hence energy dissipation. 

Cameron then called on a theoretical result from Lynden-Bell and Pringle (1974) 

that if a rotating disk evolves in such a way that its energy of rotation decreases 

while its angular momentum remains constant then this is achieved by material 

close to the spin axis moving inwards while material further out moves outwards. 

This is tantamount to an outward transmission of angular momentum. Another 

feature of this model is that it does not give the meteoriticists what they want a hot 

nebula. Cameron pointed out quite specifically that at no time, anywhere in the 

solar nebula, anywhere outwards from the formation of Mercury, is the 

temperature in the unperturbed solar nebula ever high enough to evaporate 

completely the solid materials contained in interstellar grains. 
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With the discovery of extra solar planets the interest in the protoplanets has 

rekindled. It is now widely accepted that many, perhaps most, young stars have 

disks around them. Some of these stars are also found to have some gas giant in 

orbit about the parent stars. About 10% of the stars surveyed have exoplanets, a 

number that is certain to improve as observation improve. These gas giants have 

mass comparable to Jupiter. Presumably these gas giants form from the 

protostellar disks .The most widely accepted explanation for gas giant formation is 

the core-accretion model ( e.g., Mizuno 1980, Pollack 1984, Pollack et al. 1996). 

In this scenario, solid material, including various ices, accumulates to form the 

future core of a gas giant planet. The same process is responsible for the formation 

of the terrestrial planets ( e.g., Whetheri II 1990). Once a trigger mass of about 10-

15 Earth masses is achieved, the core rapidly gathers nebular gas; Jupiter, for 

example, contains at least 300 Earth masses of hydrogen and helium. The actual 

accretion of the core may take anywhere from about IO to 100 million years, 

depending on model dependent parameters, particularly the local surface mass 

density of the disk ( e.g., Pollack et al. 1996). The core accretion scenario has the 

great advantage of working. Other authors have pointed to some of the difficulties 

with the model: gas giants like Jupiter may not even have appreciable cores (e.g., 

Guillot 1999); planetary migration, if it occurs, is a much faster phenomenon than 

planet building by accretion, and so the core of a proto-Jupiter would fall into the 

Sun before it could become massive enough to shut down migration, at least in a 

non turbulent nebula (e.g., Nelson et al. 2000a); it is difficult to make objets more 

massive than Jupiter (Boss 2002). However, the single greatest defect, and one 

that is very difficult to fix, is that of timescale. Even as gas, dust and ice 

accumulate to form the protoplanetary disk around the young protostar, the race 

against the time has started. We know, based on observations of young stars (e.g., 

Briceno et al. 2001 ), that stars older than about 10 million years do not have 

massive, optically thick circumpolar disks. Protoplanetary disk dissipate, and 

although the timescale for the disappearance of the disks is not entirely certain, it 

is on the order of or smaller than the timescale for core-accretion. Thus, by the 
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time a core reaches the trigger mass, the nebular gas may have disappeared. There 

may be exposed cores of failed gas giants in the universe, but they are not among 

the extrasolar planets so far detected and, at any rate, their small masses make 

them invisible to detection by current spectroscopic methods. It is possible that 

Uranus and Neptune are examples of such objects, although they might owe their 

relatively small gaseous envelopes to photoevaporation from nearby, massive stars 

(Boss 2002). In the gravitational instabilities model giants could form directly 

from disk via gravitational instabilities. Formation of gas giants through instability 

has recently been discussed by many authors (e.g., Boss 2000, 20001, 20002, 

20003, Nelson et al. 2000, Rich et al. 2003). According to this model, the 

protoplanetary disk becomes gravitationally unstable early in its development. The 

manifestation of the gravitational instabilities is non-axisymmetric structure 

having multiarmed spirals. As spiral features intensify, and perhaps interact with 

each other, gaseous giant protoplanetas might form from the nebular material. 

Since protoplanetary core formation would then occur by the sedimentation of 

dust and ice into the growing gas spheres, the predicted core mass should 

substantially lower than the needed in the core accretion model (Boss 2002). The 

gravitational instability scenario is attractive, both aesthetically and scientifically. 

But the question is, can the gravitational instability of the disk form stable 

protoplanets? The answer to this question is not yet very clear. The formation of 

protoplanets in gravitational instability mechanism is a twin problem. It is one 

thing for a disk to break into spiral arms, another thing for the spirals to produce 

Jupiter like planets. The disk evolution has been extensively investigated in recent 

years by many authors (e.g., Tornley et al. 1994, Truelove et al. 1997, Nelson 

2000, Pickett et al. 2003). lt is found that the gravitational instability is very fast 

and furious and the formation of stable protoplanet is model dependent (Pickett 

and Lim 2004). Tidal, thermal or rotational stresses in the disk are often enough to 

rip apart potential protoplanets before they are fully formed (Pickett et al. 2000a, 

b ). A recent smoothed paiticle hydrodynamics simulation of a protoplanetary disk 

is found to produce long lasting protoplanetary clumps under highly idealized 
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conditions (Mayer et al. 2002). However, some of the latest simulations seem to 

suggest that gravitational instabilities are a promising route to giant gaseous 

protoplanets. Assuming that protoplanets do form via gravitational instability and 

in course of evolution they reach a state of quasi-static equilibrium we attempt to 

determine the structure of a protoplanet in the next section. 
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Chapter-2 

Structure of a protoplanet: Numerical method 

1. The Model of a protoplanet 

By a protoplanet we mean a non-rotating nonmagnetic spherical gaseous object of 

mass M = 2 x 1030 gm and radius R = 3 x I 012 cm, as suggested by several authors 

( e.g., McCrea 1960, McCrea and Williams 1965). The object is assumed to be in a 

steady state of quasi-static equilibrium in which ideal gas laws hold. We also 

assume that there is no nuclear energy source in the protoplanet. The only source 

of energy is gravitational. For heat transfer inside the protoplanet we consider two 

possible cases of interest, namely, i) the convective case and ii) the conductive­

radiative case. The temperature gradient for convective heat flux is given by ( e.g., 

Schwarzschild 1958) 

(2.1) 

where T is the temperature, P the pressure, y the ratio of specific heats, and r is 

the usual radial distance. 

For heat flux in the conductive-radiative cas~ we follow Erika Bohm-Vitense 

( 1997) in which the formulation states that the total heat flux in which both 

conduction and radiation play their role in transference of heat is given by 

with 

F(r) = 4JZr 2(-~aT3 dT) 
3K dr 

(2.2) 

1 1 1 
==--+-. 
K Kem K,,c 

(2.3) 

R.ajshahi University Libru, 
Documenlliitiun Section 
Document No .. . J).--:; •• 2-..1. 4 5' 
Date ... ·\rH0~-o.i;: ....... _ 
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Here K cm is the radiative absorption coefficient and K he = 
1

3

6 
aT3 I 17 is the 

conductive absorption coefficient where a is the Stefan-Boltzmann constant and 

17 is the thermal conductivity of the gas. 

In a protoplanet, the source of energy being gravitational, some energy will be 

released due to its slow contraction. Half of this released energy is used to raise 

the internal temperature and the other half goes through radiation. However, the 

system is in a steady state, so no heat will go into raising the temperature. 

Therefore, all energy released will be available for energy flux. lf we consider a 

spherical surface of radius r inside a protoplanet of radius R, the amount of 

energy available as the heat flux through the sphere of radius r is given by 

F(r) = _ dE(r), 
dt 

whereE(r) is the total energy of the system of radius r. 

Now, 

) 
1 GM2(r) . d" d . h . E(r = - 11,---, as 1s 1scusse m t e next section, 

r 

where 'J... is a constant of order unity whose value depends on the internal structure 

of the system, G the universal gravitational constant and M (r) is the mass inside 

radius r. 

Therefore, 

F(r) = ,i GM: (r) dr' 
r dt 

since M (r) remains constant during contraction. 

or 
1 

GM 2 (r) dr dR 
F (r) = II, 

2 
- • 

r dR dt 

For uniform contraction, 

dR 
- = µ, a constant 
dt 

(2.4) 

(2.5) 
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and dr r 
-=-
dR R (2.6) 

Therefore, with the help of the equations (2.5) and (2.6), from equation (2.4), we 

have 

GM 2 (r) r 
F(r) = A/l 

2 r R 

C GM 2 (r) = - --- , where ?i,p = C . 
R r 

(2.7) 

Here C is an unknown constant. We shall consider this constant as a free 

parameter. 

From equations (2.2) and (2. 7), we get 

__ 16_ CJT3 _d_T = _C_. _G_M_2_(,_-) 

3K dr 4nR r 3 
• 

Substituting for 
1 

from equation (2.3), we get 
K 

Substituting for K1,c, we have 

(
16CJT'

1
(r) JdT(r) GM 2 (r) ---+17 --=-C---. 

3K dr 4nRr 3 
cm 

(2.8) 

Now, K cm = nK at (Erika 1997), where 11 is the number of particles per unit 

volume and Kat is the absorption cross section of each particle. It is found that 

Kat is roughly equal to 2 x 10-24 cm2 (Erika 1997). With this value K cm becomes 

2 X 10-24 p(r) 
Kem::::: H , 

where H is the mass of a hydrogen atom. 
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Substituting this value of Kem in equation (2.8), we have the conductive-radiative 

flux in the form 

( 
8CJ"H T

3
(r) +lJJdT(r) = _ _S_ GM

2
(r). 

3xl0-24 p(r) dr 41rR ,- 3 <2-9) 

The structure of a protoplanet in its quasi-static equilibrium state is then given by 

the following set of equations: 

The equation of hydrostatic equilibrium, 

dP(r) GM(r) 
--=--p(r). 

dr r 2 

The equation of conservation of mass, 

dM(r) 
--= 4nr 2 p(r). 

dr 

The equation of convective heat flux, 

dT = (l _ _!_J T dP . 
dr y P dr 

The equation of conductive-radiative heat flux, 

The gas law, 

p =_!_IJlT . 
pH 

(2.10) 

. (2.11) 

(2.12) 

(2.13) 

(2.14) 

ln the above equations T(r), P(r) and p(r) give the temperature, pressure and 

the density respectively at distance r from the centre of the protoplanet. 

Boundary conditions 

Considering a sphere of infinitesimal radius r at the centre, we find that 
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smce we may treat p sensibly constant 111 this sphere. Hence as r ➔ 0, 

M(r) ➔ 0. 

It is also clear that M(r) = M at the surface, i.e., at r = R. 

In addition, we may derive suitable conditions for pressure and temperature of a 

protoplanet at its surface. The protoplanets having cold origin must have low 

surface temperature. In the first approximation we assume that the surface 

temperature is zero. So the approximate boundary conditions are 

with 

T = 0 , P = 0 at r = R, 

M(r)=M 

M(r) =M 

at r= R 

at r = 0. 

2. Integration of the equations 

It is evident that the equations of structure can not be integrated analytically. 

Therefore, we must rely on numerical method. However, integration can not be 

started right from the surface. This complication arises from the fact that at the 

boundary vanishing denominators occur in the basic differential equations (2.10), 

(2.11 ), (2.12) and (2.13). Therefore, one has to develop the solution at the 

boundary, use the development to compute the solution at point little distance 

from the boundary, and start at this point step-by-step integration procedure. 

Transformation 

Let us replace the physical variables P(r), T(r), M(r) and r by the non 

dimensional variables p, t, q and x respectively with the help of the following 

transformations (Schwarzschild 1946): 

GM 2 

P(r)=--p 
4JrR4 

' 



and 

T(r) = ;tHGM t' 
kR 

M(t)=qM 

r =xR. 

Here the symbol µ represents the mean molecular weight given by 

µ = 3 · 1 ' 
2X +-Y +-z 

4 2 
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where X, Y and Z denoting the abundances by weight of hydrogen, helium and 

the heavy elements respectively. For standard solar composition µ::::: .6 . 

Then from equation (2.10), we get 

GM 2 1 dp _ G qM M p 
4nR4 R dx - - x 2R 2 4nR3 t' 

since from equation (2.14), 

or 

or 

P(r)- M p 
4nR3 t 

GM 2 dp GM 2 pq 
4nR5 dx = - 4nR5 tx2 

dp pq 
-=--2. 
dx tx 

From equation (2.11), we get 

or 
dq px2 

-= -
dx t 

Again from (2. I 2), 

µHGM 1 dt = (i -_!_) ;JfGM 4nR
4 

GM
2 _!_ dp 

kR R dx y kR GM 2 4nR4 R d"' 

(2.15) 

(2.16) 
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or dt = (i -.!.J.!_ dp . 
dx y p dt 

(2.17) 

Substituting for dp from (2.15), we have 
dx 

or 

dt _ ( I J t pq 
dt - - l- y p tx 2 

dt = -(i -.!.J!L . 
dx y x 2 

(2.18) 

Also from (2.13), we get 

or 

or 

or 

or 

where 

and 

{ 
8aH (pHGM)

3

13 +7 
p __!!!_} pHGM dt = -C GM

3 
pc/ 

3xl0-24 kR 7 t41rR3 kR 2 dt ·16n 2 R7 tx3 

8aH pHGM 13 + 7 
p __!!!_ pH dt _ -C M 2 

pc/ 

{ ( )
3 } 

3 x 10-24 kR l t 41rR3 k dt - . I 67r 2 R 5 tx3 

dt 2 

(at4 + /Jp)-· = -Cy P~ , 
dx x 

(2.19) 

80"H pHGM 
( )

3 

a= 3xl0-24 kR ' 

Inserting the parameters involved, namely, CJ"= 5.6686 x lo--~ erg cm -2 deg 4 sec, 

H = 1.67352 x 10-24 gm, R = 3 x 1012 cm, p = .6, G = 6.675 x 10-s dyne cm 
2 

gm-
2

, 
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M = 2 x 1030 gm, 17 = 1.2684 x 104 erg cm-1 s-1 K-1 and k = 1.38062 x 10-16 erg 

molecule-1 K -i, we get 

and 

s x 5.6686 x 10-s x I.67352 x 10-24 

a= X 
3 X 10-24 

(
.6 X 1.67352 X 10-24 X 6.675 X 10-8 X 2 X J 030 

]
3 

1.38062 X 10-16 
X 3 X 1012 

/3= 2xl0
30

xl.2684xl0
4 =7.4768 x 10_5 

4x3.14159x(3xl012 )3 

r= (2 x l030 )2x1.38062xJO-l6 

16 X (3.14159)2 X (3 X 1012 )5 X.6 X 1.67352 X Jo-·24 

= 1.4333 X 104
. 

To summarise, the non-dimensional equations of structure are given by 

dp pq 
-=--2' 
dx tx . 

dq px2 

-=-
d'( t 

dt = -(l _ _!_] !!_ 
dx y x2 

and 
4 dt C pq2 

(at +/Jp)-=- r-3. 
d'C X 

The boundary conditions being 

with 

{ = 0 , p = 0 at X = 1, 

q = 1 at x = 1 

at X = 0 

(2.20) 

(2.21) 

(2.22) 

(2.23) 



i} Solution for the convective case 

For this case we have to solve the equations (2.20), (2.21) and (2.22). 

For mono atomic gas y = 5/3, then equation (2.22) reduces to 

dt 2 q 
dt =-57· 

If we introduce the variable c; = ..!_ - 1, then 
X 

or 

or 

dp = dp de; 
dt de; dx 

dp dp l 
dx = - de; 7 

dp = -(c; + l)2 dp . 
d'C de; 

Hence from equation (2. 15), we get 

or 

Similarly from (2.16) and (2.17), we get 

dq p 
-=--"---
di; t(l + c;)4 

and 
dt 2 
-=-q . 
di; 5 

Near the surface q ~ 1, then from (2.27), we have 

dt 2 
-=-
di; 5 

Integrating (2 .28), we have 
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(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 



2 t = _;:. +d 
5'=> , 

where d is an integrating constant. 

When <; = 0 , then t = 0 and hence d = O . 

2 
Therefore, near the surface t ~ - ~ . 

5 

From (2.25) and (2.28), we get 

or 

Integrating (2.29), we get 

5 

p = et 2 , 

20 

(2.29) 

where e is the constant for integration. We will consider this constant as a free 

parameter. 

We solve the equations (2.25), (2.26) and (2.27) with the help of the 4th order 

5 

Runge-Kutta method using the boundary conditions given by p = et 2 
, q = I and 

t = .4~ . ln general it is found that these equations hold good accuracy from the 

surface inwards for some values of ~ near to zero. 

If we put ~ = __L__, we have 
l- y 

dp dp d~ 
-= - -
dy d<; dy 

or 
dp dp 1 
dy - d~ (l-y)2 



or 

Hence from equation (2.25), we have 

(l-y)2 dp = pq 
dy t 

or dp - pq 
dy - t(l- y)2 . 

Similarly from (2.26) and (2.27), we get 

dq p(I- y)2 
-=--'-----'--'--

and 

respective! y. 

dy t 

dt 

dy 

4q 

(1- y)2 
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(2.30) 

(2.31) 

(2.32) 

Equations (2.30), (2.31) and (2.32) give the equations of structure in the 

convective equilibrium in the new variable y . It is evident that as ~ ➔ 0, y ➔ 0 . 

Therefore, the forms of the variables near the surface are p = ( .4y )
5 

e , 
1- y 

t = .4y and q::::: 1 . 
l-y 

If we start the integration inwards from a point very near to the surface, say, 

y = . 0 I , then at that point 

t=(.4y) =4.0404 x l0-3
, 

I - JI y =,01 

With these boundary conditions equations (2.30), (2.31) and (2.32) can be 

integrated step by step inwards for given value of e . But e is not known. 
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Borrowing the idea from Osterbrock (1953) we have considered a number of trial 

values of e, namely, e = 45, 45.2, 45.4, 45.7 and 46. For these values of e we 

have solved equations (2.30), (2.31) and (2.32) numerically by the 4th order 

Runge-Kutta method. 

Now, ~ = ..!_ -1 = _L_. This gives x = 1- y. 
X y-l 

That means x can be calculated for given y . Therefore, solutions of equations 

(2.30), (2.31) and (2.32) for different y can easily be converted to solutions for 

different x. Some of these calculations for mass distribution are shown in the 

figure 2.1 . 

O" 

en en 
(1J 

9.00E-02 ·· 

7.00E-02 

5.00E-02 

E 3.00E-02 -

1.00E-02 
I 

0'/ ---/---·~--- e = 45.4 --- -- ' . :-=. 7 ==:~ :✓---~-~--.-----, 
m··-·o:os· 0.1 0.1s 0.2 0.2s o.3 

-1.00E-02 ..I 

distance, x 

e = 45 S eries1 

.e. =352 Series2 

.e. =: 4~Series3 

e-=45;7 Series4 

-€ = 46- Series5 

Fig. 2.1: Mass distribution in a protoplanet for different values of e. 
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The correct value of e will be for which the central boundary condition, q = 0 at 

r = 0 is satisfied. From the diagram the correct value of e is found to be 45.4. 

The result of our calculation, i.e., the distribution of thermodynamic variables for 

different values of x for e = 45.4 is shown in table 2.1. 

Table 2.1 

The distribution of temperature, mass, density and pressure in a protoplanet for 

e = 45.4 

Non Non Non Non 
dimensional dimensional dimensional dimensional 

distance pressure mass temperature 
X p q t 

.99 0 I .0040 

.9 .0188 3.86x 10-1 .0443 

.8 .0135 9.25x 10-1 .0976 

.7 .4625 8.09x 10-1 .1597 

.6 I. I 3 84 6.47x 10-• .2289 

.5 2.2778 4.6lxl0-1 .3021 

.4 3.8981 2.81 X 10-I .3746 

.3 5.8448 l.36x 10-• .4404 

.2 7.7747 4.51 X 10-2 .4937 

. l 9.2576 6.58 X 10-3 .5294 

.01 10.8939 6.57x 10-4 .5650 

.001 25 .9424 6.50x 10-4 .7998 

ii) Solution for t/ze conductive-radiative case 

For this case we have to solve the equations (2.15), (2.16) and (2.19). 

Introducing the same variable ~ = _!_ _ l in equations (2.15) and (2.16), we have 
X 

dp pq 
-=-
d~ I 

(2.33) 



dq p 
-=----
d~ t(l +~)4 

respectively that we have already derived. 

Similarly from (2.19), we get 

!!.!__ = Cy pq (1 + ~). 
d~ at 4 + /Jp 
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(2.34) 

(2.35) 

To obtain starting values for our variables for integrations from surface inwards, 

we assume a series solution satisfying the boundary conditions, which are valid 

for small values of 4 in the following form: 

and 

p = <;'' (ao + a1~ + a242 + .. . )' 

q = I 

{ = ~v(Co +Cl~ +C2~2 + ... ). 

Using (2.36), (2.37) and (2.38) in (2.33), we have 

(2.36) 

(2.37) 

(2.38) 

{a
0
u~"-1 +a1(u+l)~" +a2(u+2)~u+l + ........ .... ...... }x 

~v(co +c1~+c242 + .. ...... )=<;''(ao + a1~+a2~2 + .... ... ) 

or 

i;v-l~" {a
0
u + a1 (u + 1)4 + a2 (u + 2)~2 + ..... .. .... .... ... }x 

(co + c1~ + C2~2 + .. .. ... . ) = ~" (cro + a1~ + a2~2 + ....... ) 

To exist a solution, 

v=l 

and then, 

or uc0 =I. 

Therefore, from (2.38) with the help of (2.39), we get 

t =co~+ ci42 + c2i;3 + .. . 

Again using (2.36), (2.37) and (2.41) in (2.35), we get 

(2.39) 

(2.40) 

(2.41) 
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{a(c0<; + c1<;
2 + c2 <; 3 + ... )4 + /3<;" (a0 +al+ a 2<; 2 + ... )} x 

(c0 + 2cl + ... ) = Cy(I + <;)<;" (a0 + a1<; + a 2<; 2 + .. . ) 

a(c0<; + c1<; 2 + .. .)4 (c0 + 2c1<; + ... ) 
or = Cy(l + <;)<;" (ao +al+ a2e + ... ) 

- /3<;'' (a0 +a,<;+ a 2 <; 2 + .. . )(c0 + 2cl + ... ) 

To exist a solution, 

ll = 4, 

etc. 

From (2.40) and (2.42), we get 

From (2.43), we get 

1 
C0 = - = .25. 

4 

ac5 

a = o 
o Cy-co/J. 

The series (2.36) and (2.38) are convergent for small values of<;. 

Therefore considering only first term, we have 

where 

p = a0 <; 4
, and t = .25<;, 

8.5759xl03 x(.25)5 
a =-----------

0 1.4333xl04C- .25x7.4768xl0-5 

8.5759xl03 x (.25)5 

~-------
l.4333xl04C 

5.84309x 10-4 
=-----

c 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

We will solve equations (2.33), (2.34) and (2.35) with the help of the 4th order 

Runge-Kutta method using the boundary conditions given by p = a0<; 4
, q = 1 and 

t = .25<; . In general it is found that these equations hold good accuracy from the 

surface inwards for some values of<; near to zero. 



P . J: y . 
uttmg ~ = -- 111 (2.33) and (2.34), we get 

y-1 

dp pq 
-=---
dy t(l-y) 2

' 

and 
dq p(I- y)2 
-=----
dy t 

respectively that we have already shown in (2.30). 

Similarly from (2.35), we get 

dt = C ypq2 
dy (1- y)3(at4 + {Jp). 
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(2.46) 

(2.47) 

(2.48) 

We have solved equations (2.46), (2.47) and (2.48) by the 4th order Runge-Kutta 

method to obtain the distribution of p, q and t. Since the values of ~ are very 

close to zero, so the values of y will be very close to zero. lfwe take y = .01, then 

at that point 

I= (.25yJ = .25 x .01 = 2.5253 x I0-3, 
1- y y =.oi 1-.01 

1 
d 5.84309xl0-4

( .01 )
4 

6.084xl0-12 

q = an p = C l - .0 I = C 

But c(= dR) is not known. The initial value of the radius is R = 3 x 1012 cm and 
dt 

the present age of the planetary system is about 4.5 billion years. If we assume 

that a protoplanet takes about billion years to reach its present state, then C ~ 10--4 . 

We consider a number of trial values of C around l 0-4
. The correct value of C 

will be for which the extra boundary condition, i.e., q ➔ 0 as r ➔ 0 is satisfied. 

The values we have adapted are C =3.6xl0-4
, 3.65x I0-4

, 3.9xl0--4 . We have 

solved equations (2.46), (2.47) and (2.48) for these values of C numerically again 

by the 4th order Runge-Kutta method from the same starting point y = .0 l inwards 
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for the distribution of masses. Eliminating y in terms of x we have obtained the 

solutions of the equations (2.46), (2.47) and (2.48) for those values of C. The 

results are shown graphically in figure 2.2. 

3.OOE-O1 

2.5OE-O1 

2.OOE-O1 

c- 1.5OE-O1 
U) 
U) 
ns 
E 1.OOE-O1 -

5.OOE-O2 

O.O0E+00-

-O.1 

-5.OOE-O2 

c=.000365 

I · - - -- - ----, 

c=.00039 S . 
1 -- enes 

c=.000365 
--Series2 

c=.00036 
· · · · · Series3 J 
-- ·-- - I 

0.1 0.3 

distance,x 
. - - - - ---··------

Fig. 2.2: mass distribution in protoplanet when it is 

in conductive-radiative equilibrium. 
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It is found that the correct value of C is 3. 65 x 10-4
. The result of our calculation, 

i.e., the distribution of thermodynamic variables for different values of x for 

C = 3.65 x 10-4 is shown in table 2 .2. 

Table 2.2 

The distribution of temperature, mass, density and pressure in a protoplanet for 

C=3.65xl0-4 

Non Non Non Non 
dimensional dimensional dimensional dimensional 

distance pressure mass temperature 
X p q t 
.9 .0002 9.99810-1 .0281 

.8 .0057 9.927x 10-1 .0639 

.7 .0459 9.852x 10-1 . I 104 

.6 .2418 9.513xl0-I .1719 

.5 1.0334 8.770x 10-1 .2537 

.4 3.9078 7.408 X 10-I .3607 

.3 13.4780 5.296x 10-1 .4938 

.2 41.5973 2.680x 10-1 .6382 

.1 103. 7624 5.492x 10-2 .7440 

.01 167.9955 7.678x 10-4 .7661 

3. Summary and discussion 

Following stellar evolutionary code we have determined the structure of a 

protoplanet of given mass and radius by numerical method under approximate 

zero boundary conditions. The protoplanet has been assumed to be a sphere of 

solar composition, which is in a steady state of quasi-static equilibrium. It is also 

assumed that the only source of energy in a protoplanet is gravitational. Regarding 

the heat transference of heat inside the protoplanet we have considered two cases 

of interest, the convective case and the conductive-radiative case. For the 
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convective case the structure is found to be dependent on a parameter e . 

However, the best solution satisfying the boundary conditions at both the centre 

and the surface is obtained for e = 45.4 . This value of e is similar to the value of 

E obtained by Osterbrock (1953) in determining structure of a convective star. 

For the conductive-radiative case the solution depends on the rate of contraction. 

The correct solution satisfying the boundary conditions at both ends is obtained 

for C = 3.65 x 10-4 which implies a contraction time of about three billion years. 

This is much in excess of the Helmholtz-Kelvin contraction time ( e.g., 

Schwarzschild, 1958) for the Sun. This is expected because the protoplanet has 

been assumed in a quasi-static state. However, in both cases the system possesses 

unique solution. The distribution of the thermodynamic variables in both cases is 

quite reasonable. 
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Chapter-3 

Structure of a protoplanet: Polytropic method 

1. Polytropes 

A quasi-statical change in which the specific heat remains constant is called a 

polytropic change. Thus a polytropic change with specific heat c is characterized 

by the relation ( e.g., Menzel et al. 1963) 

dQ 
-=c . 
dT 

(3.1) 

When c = 0 , dQ = 0, we have adiabatic change and when c = co , dQ = co, we 
dT dT 

have isothermal change. Thus a polytropic change is intermediate between an 

adiabatic change and an isothermal change. 

From the 1st law of thermodynamics, we have 

dQ =dU +PdV, (3.2) 

where dU and dV are the changes in internal energy and in volume of a gas 

respectively, P is the pressure and dQ is the amount of heat added. 

Equation (3 .2) can be written as 

dQ = dU dT+PdV. 
dT 

But for a perfect gas, we have 

PV=IJlT, 

where ITT is the molar gas constant. 

(3.3) 

(3.4) 
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Also, dU 
-=c dT v· 

(3.5) 

Hence from equation (3 .3) with the help of equations (3 .4) and (3 .5), we have 

But 

Therefore, 

For a polytropic change, we have 

dQ =cdT. 

Substituting the value of dQ from equation (3.7) in equation (3.6), we have 

or 

or 

or 

)T
dV 

cdT = c dT + (c - cv -
V p V 

dT + c P - CV dV = O 

T CV -c V 

C -C 
where n = v is called the polytropic index. 

cP -cv 

Taking logarithm on both sides of equation (3 .4), we get 

logP + logV = log T + log 91. 

Taking differentials on both sides, we get 

dP dV dT 
-+-=-
p V T 

(3.6) 

(3.7) 

(3.8) 



or dP dV l dV . 
-+-=---, usmg(3.8) 
p V ll V 

or dP l dV 
-+(I+-)-=0 . 
P n V 

In terms of density the above equation can be written as 

Integrating, we get 

1+.!.. 
p = Kp n' 

where K is called polytropic constant. 

This gives the density distribution in a polytrope. 

2. Lane-Emden equation 
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We assume that a star is in hydrostatic equilibrium under its own gravitation. 

Consider the equilibrium of an infinitesimal cylinder of mass 8111, of unit cross­

section and thickness Sr, placed with its base normal to the radius vector at 

distance r from the centre. The difference of pressure Sp, acting on either face of 

the cylinder, is balanced by the inward gravitational attraction of the mass M(r) 

interior to r , so that 

or 

GM(r)pdr 
dP=----

1· 2 

dP GM(r)p(r) 
-= -
dr ,. 2 

where G is the universal gravitational constant. 

This is the hydrostatic equation. 

Furthermore, if p(r) is the density at any distance r from the centre, then 

(3.9) 



r 

M(r) = f 4m- 2 p(r)dr 
0 

or dM(r) = 4nr2 p(r)dr . 

Equation (3 . 9) can be written as 

or 

. or 

or 

r2 dP 
--=-GM(r) 
p dr 

,.2 dP , 
--d = -G f 4m- 2 pdr, using (3.10) 
p r o 

d r 2 dP 2 -d (--) = -4nGr p , using (3 .1 I) 
r p dr 

I d r 2 dP 
--(--) =-4nGp(r) . 
r 2 dr p dr 

This is the fundamental equation of equilibrium. 

Now for a complete polytrope, 

where Pc is the central density. 

From the polytropic law, 

or 

or 

or 

1+.!.. 
P=Kp n 

I 

P K l+- g11+I 
= Pc 11 

dP K 1+.!..(l )B" d0 - = p n +n - . 
dr c dr 
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(3.10) 

(3 .11) 

(3 .12) 

· (3.13) 

(3.14) 

(3 .15) 

(3 . I 6) 

Now from equation (3 .12) with the help of equations (3 .13) and (3 .16), we get 



I d r 2 
1+

1 d0 
-2 -d (--Kpc -;;(I+n)0" -·) =-4nGp 0" 
r r Pc0" dr C 

or . l I J · n+ 1 K -;;+i ( ) Pc _I !.!___(r 2 d0) = _4nGp 0" 
. Pc r 2 dr dr c 

or 
[

(n+l)K .!._r] I d ( ·2 d0)_ 011 p II -- f - --
4nG c r 2 dr dr · 

Ifwe define r =a;, where 

I 

-[(n+l)K .!._1]2 a - --'-------'--- p II 

4nG C > 

then from equation (3 .17), we have 

or 

This is Lane-Emden equation of index 11. 

From (3.13), we have 

0=1 at ;=0 (centre). 

We rewrite equation (3.19) in the following form: 

We find that 

d0 
-= 0 at~= 0 . d; 
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(3.17) 

(3 .18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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Thus under the boundary conditions (3 .20) and (3 .22), the differential equation 

(3 .19) will posses a unique solution. This solution is denoted by 0 n and is given 

by (e.g., Chandrasekhar 1939) 

0 =1-.!..1=2+__!:_.1=4_ 
n · 6 ':, 120 ':, ··· ' (3 .23) 

which satisfies both the boundary conditions at ,; = 0 . 

3. Physical characteristic of a polytrope 

i) Radius: The radius of a polytrope is given by 

I 

[
(n+l)K]2 1-n R= --- p 2n.1= 4nG C ':,J, 

(3.24) 

where /;1 is the first zero of 0 n. On the basis of numerical integration of (3 .19) 

we can say that when O < n < 5, 0 n monotonically decreases as I; increases and 

attains the zero value for a finite value 41 of 4. In these cases the model has a 

finite radius. When n ~ 5, 0
11 

attains zero value only when 4 ➔ oo, so that these 

polytropes have infinite radius. Evidently these polytropes, having infinite 

extension, do not represent any stars. Therefore we shall consider the values of n 

lying between O and 5. 

ii) Mass: The mass M (4) within the radius r = a4 1s given by 

~ C . 

M(I;) = f 4m·2,air = 41ra3 Pc f ,;10"d4 as p = Pc0" 
0 0 

or 

or (3.25) 
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or 

or . [(n+l)K]½ 3-n[ d0] M=4~ 
4
nG Pc~ -c; 2 

de; _ ,using(3.18). 
~-{1 

(3.26) 

iv) Central condensation: The mean density p(c;) within c; is given by 

(3.27) 

Substituting forM(c;) from (3.25), we get 

- 3 d0 
p(c;)=- c;Pc de;· (3 .28) 

Therefore, the central condensation, which is the ratio of central density to mean 

density 

or 

where 

or 

p 

a,,= 

3M 
P -a -­

c - "4nR3 . 

(3.29) 

(3.30) 

v) The central pressure: From the polytropic law the central pressure is given 

by 



I p -K l+­c - Pc n · 
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(3.31) 

Eliminating Pc between equations (3 .24) and (3.26), we get the mass-radius 

relation as 

(3.32) 

where 

Substituting K from (3.32) and Pc from (3.30) in (3.31), we have 

or (3.33) 

where (3.34) 

vi) The central temperature: One of the equations governmg the hydrostatic 

equilibrium is 

P = }!__ pT (no radiation pressure). 
pH 

From (3.35) and (3.14), we get 

If µ is constant throughout the model, the central temperature is given by 

(3 .35) 

(3.36) 
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(3.37) 

Substituting K from (3.31) in (3.37), we can write 

T' = pH pc 
c k, Pc. 

(3.38) 

Using (3 .30) and (3.33) in (3.38), we get 

(3 .39) 

where 
4rcp.H bn 

en=-- . 
3k an 

(3.40) 

4. Application to protoplanets 

Model equations 

We consider a protoplanet whose mass and radius, as suggested by several authors 

( e.g., McCrea 1960, McCrea and Williams 1965), are given by M = 2 x 1030 gm 

and R = 3 x 1012 cm respectively. We assume that the protoplanet is in a state of 

quasi-static equilibrium in which ideal gas laws hold. We also assume that the 

polytropic law gives the density distribution in the protoplanet. The structure of 

the protoplanet is then given by the following set of equations: 

i) The equation of hydrostatic equilibrium, 

dPr GMr 
-= - -

2
-p,.. 

dr r 
(3 .4 I) 

ii) The equation of conservation of mass, 

dM 
__ r = 41tr2p,. 

dr 
(3.42) 



iii) The equation of state, 

91 
P=-pT r r r · µ 

iv) The equation of polytropic law, 

p = K l+lln 
r Pr · 

40 

(3.43) 

(3 .44) 

Here G is the universal gravitational constant, 91 the gas constant, µ the mean 
-

molecular weight, K the polytropic constant and 11 is the polytropic index while 

P,, T, and p, give the pressure, the temperature and the density at distance r 

from the center. M, denotes the mass inside radius r . We now have four 

equations in four unknowns. We can solve these equations by using the central 

boundary conditions: 

P = pc, p = pc, T = Tc and M, = 0 at r = 0 , where 

3M 
Pc= an 4;rR3 ' (3.45) 

(3 .46) 

and (3.47) 

the values of the constants an and bn being available in the table (e.g., 

Chandrasekhar 1939). The values of en are obtained by using equation (3 .40). 

Calculation and results 

If we introduce the dimensionless variables 

-( p )1/n 0- -
Pc 

(3.48) 



and r 
X=­

R ' 

then from equation (3 .17), we get 

or _I .!!__(x2 d0) _ _ R
2 

0,, 
x 2 dx dx - (n + l)K .!.._1 

4nG Pc" 

or 

where 41 is the Lane - Emden radius and is given by 

R 
41 = I' 

[
(n + l)K ;;-i ] 2 

4nG Pc 

Again for a complete polytrope 

From equations (3.14) and (3 .52), we get 

or 

From equations (3.36) and (3 .37), we get 

41 

(3.49) 

(3 .50) 

(3 .51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 
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Therefore, from equations (3 .13), (3.54) and (3.55), we have 

(3.56) 

That means 0 straightway determines the distribution of p, P and T. So we have 

to find 0 by solving (3 .50) for the distribution of p, P and T . Necessary 

boundary conditions for solving (3 .50) are 

d0 · 
0 = l , - = 0 at x = 0 . 

dx 

Equation (3 .50) as such cannot be integrated analytically for all values of n . 

Resort has to be taken to numerical technique. But because of the singularity at 

x = 0 the integration cannot be started right form the center. However, near the 

singular point, the equation has a series solution of the form (from equation 

(3.23): 

2J:2 J:4 4 

0 = 1-~+ '7<:,1 X -
6 120 ... , (3.57) 

which converges for small x . With the help of this equation we can now start the 

integration for a given value of n, from a point, very close to the center. 

3 
We take n = - . Then ~1 = 3.65375. 

2 

Therefore, using the equation (3 .40), we get 

4x3 .14159 x.6xl.67352xl0-24 .77014 

3xl.38062xl0-16 5.99071 

= 3.9164 X 10-9
. 

Also with the prescribed values of M and R we find from equations (3 .45), 

(3.46) and (3.47), 

=5.9907x 3x2xl03o 
p C 4 X 3 .1415 9 X (3 X IO 12 )3 

= 1.05939 X 10-7
, 
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p =_
77O14

x 6.675xl0-8 x(2xlO30 )
2 

c (3 X 1012 )4 
= 2538.6096 

and 
t . = 3.9164 X 10-9 X 6.675 X 10-8 X 2 X 1030 

C 3 X 1012 

= 174.2798 

in c.g.s. units respectively. For some values of n, i;1, e
11

, Pc, Pc and Tc are 

shown in table 3 .1. 

Table 3.1 

Some important quantities for the polytrope for some values of the polytropic 

index n 

n t;l en Pc pc Tc 

.5 2.7528 3.1717x 10-9 3.2469x 10-s 630.1249 141.1407 

l 3.14159 3.6364X 10-Y 5.8178x 10-s 1294.4523 161.8198 

1.5 3.65375 3.9164x 10-9 l.0594x 10-1 2538.6096 174.2798 

3 6.89685 6.2133 X 10-9 9.5816x 10-1 36426.2496 276.4919 

Now, at some x = 10-5 (say) the equation (3.57) gives 

00 = 1- 2.22498 x 10-10 =. 99999 and 

( ao) =- 10-
5 

x (J.G5375)
2 

= -4.44996x 10-5 neglecting 
d< o 3 ' 

x3 and higher powers of x . 

With these values as our initial conditions, we have solved equation (3.50) 

numerically by the fourth order Runge-Kutta method to determine 0 and dB for 
dx 

different x. These are given in table 3.2. 



Table-3.2 

Some important quantities for the polytrope for some values of x of the 

polytropic index 11 = 1.5 

X 0 d0 2 d0 
- -x -
dx dx 

. 1 .9780 -.4362 .0044 

.2 .9144 . -.8218 .0329 

.3 .8166 -1.1166 .1005 

.4 .6449 .. }_2988 .2078 

.5 .5607 -1.3661 .3415 

.6 .4250 -I.3333 .4800 

.7 .2966 -1.2258 .6006 

.8 . 1814 -1.0731 .6868 

.9 .0825 -.9035 .7318 
1 0 -.7421 .7421 
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The corresponding values of p, P and T have also been calculated from 

equation (3.56). There remains the problem of determining the mass distribution. 

Now with the help of (3.48) and (3.49), equation (3.42) becomes 

dM(x) = 4nx2 R3p 0" 
dx c 

X 

or M(x) = 4;rR3 p,f x 20"dx (3 .58) 
0 

or M(x)=-4TrR 3 Pcf ~~(x2 deyix, using (3,511) 
0 

i;
1 

dx dx 
(3.59) 

or M(x) = 4;rR
3 

Pc (-x2 d0) . 
<;12 dx 

(3.60) 

Inserting the parameters involved, we get 
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M(x)= 4 x 3.14159 x (3 x lO
12

)
3 

xl.O5939 x l0-
7 

(- x2 d0) 
(3.65375)2 dx 

d0 
. = 2.69247 x 1030 (-x2 

-) • 
· dx 

(3 .61) 

I . d0 ti fi nsertrng - rom the table (3.2) we have calculated M(x) for different x rom 
d"" 

the relation (3.61 ). Table 3 .3 gives the structure of a polytropic protoplanet for 

3 
n=- . 

2 

Table 3.3 

The distribution of temperature, mass, density and pressure of a protoplanet of 

polytropic index n = 1.5 

Non Temperature Mass Density Pressure 
dimensional 

distance 
0.1 170.4456 1.18 X 1028 l.O25 x 10-01 2401.0051 

0.2 159.3614 8.85 x lO28 9.264 x 10-08 2029.9593 

0.3 142.3169 2.7l x lO29 7.818 X 10-os 1529.9584 

0.4 112.3930 5.6Ox 1029 6. 137 x 10-os 1021.8664 

0.5 97.7187 9.20x 1029 4.448 x I o-oH 597.6960 

0.6 74.0689 1.29x lO30 2.935 x 10-os 298.9647 

0.7 51.6914 1.62x 1030 1. 711 X 10-os 121.5928 

0.8 31.6144 l.85 X 1030 8.183 X 10-09 35.5658 

0.9 14.3781 1. 97x 1030 2.5 J l X l0 -09 4.9648 

1 0 2.OOx 1030 4.98 x 10-14 0 

However, the appropriate value of 11 for a protoplanet is not known. We have 

therefore, run the program for some different values of n, namely n = 0.5, n = 1, 

n = 2. and n = 3. These results are shown graphically in the diagrams 3.1-3.4. 
2 
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5. Discussion 

We have determined the distribution of the thermodynamic variables in a 

protoplanet by polytropic method assuming that the protoplanet is a polytrope of 

index n = .5, I, 2_ and 3. It is found that for all n the system possesses unique 
2 

solution. However for n = 3 the protoplanet is found to be highly centrally 

condensed as is expected. In this case the protoplanet has a large envelope, most 

of the mass being concentrated in a small volume near the centre. This is a highly 

unlikely situation. Because if the protoplanets formed out of the solar nebula 

much before segregation of heavy elements on to the rotation plane might occur, 

then the protoplanets could not become so much centrally condensed unless they 

have contracted to planetary dimensions. But this is contrary to our hypothesis. On 

the other hand if shock wave is the trigger for fragmentation of the nebula then the 

initial protoplanets are likely be convective. For convection n = 2_. It is seen from 
2 

the diagrams that, for n = 2_, the protoplanet has a small envelope, and the 
2 

distribution of the thermodynamic variables is quite reasonable. This is so for 

n = l also while for n = 0.5, the distributions are flatter almost like a constant 

density model .It is therefore reasonable to conclude that the protoplanets having 

density distribution given by n = I and n = 2_ are closer to reality. The structures 
2 

of such protoplanets have been shown in the diagrams. 



49 

6. References 

Chandrasekhar, S., 1939. An introduction to the study of Stellar Structure, The 

University of Chicago Press. 

McCrea, W. H., 1960. Proc. Roy. Soc., A, 256,245. 

Mccrea, W. H. and Williams, I. P., 1965. Proc. Roy. Soc., A, 287, 143. 

Menzel, D. M; Bhatnagar, P. L. and Sen, H. S., 1963. Stellar Interiors, Chapman 

and Hall Ltd., London. 



50 

Chapter-4 

Segregation of heavy elements in a protoplanet 

1. Introduction 

Any known raw material that could have featured in the formation of the planetary 

system must have had a similar chemical composition to that of the Sun or to 

normal interstellar material. The formation of the Ea1th and other terrestrial 

planets therefore requires the removal of the greater part of the hydrogen and 

helium from some body. There are two obvious alternatives, either the segregation 

of the material can occur prior to the agglomeration into protoplanets ( e.g., 

Mizuno I 980, Pollack 1984, Pollack et al.1996) or the agglomeration can occur 

first followed by a segregation process which now occurs in a body that has 

roughly the dimensions of a major planet (e.g., Boss 2000, 20001, 20002, 20003, 

Nelson et al. 2000, Rich et al. 2003). According to this model, the protoplanetary 

disk becomes gravitationally unstable. In the first instance segregation occurs 

before agglomeration into protoplanets usually through the dust grains settling 

onto the plane of the nebula, which then accumulate into protoplanets in this 

plane. The obvious differences in composition between the planets occurs 

primarily as the consequence of a temperature gradient away from the Sun 

allowing only the non-volative material to aggregate near to the Sun, but allowing 

the gases to aggregate further out. In the second type of theory these two 

processes of segregation and accumulation occur in the reverse order. Large 

protoplanets composed of both gas and dust and formed first, if necessary from an 

accumulation of the captured discrete objects. Segregation followed by the 

removal of the gaseous component is therefore necessary in order to produce an 

object similar to the terrestrial plants. Advocates of this type of theory point out 

that this leads to one very satisfactory point, it allows all the protoplanets to be 
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identical to one another before segregation occurs, therefore requiring only one 

type of mechanism for forming protoplanets. The obvious mechanism for 

segregation is that the dust grains present in the protoplanets, being heavier than 

the gas, will settle towards the centre of the protoplanet under the gravitational 

field of the protoplanet. This segregation process was first investigated by McCrea 

and Williams (1965) who concluded that normal interstellar dust grains could not 

possibly settle to the centre in the time available for such a process. They showed 

however that if grains adhered together on collision then the segregation timescale 

became reasonably short. This process was also investigated, using numerical 

techniques, by Williams and Crampin (1971) who concluded that the segregation 

time found by McCrea and Williams were essentially correct. For simplicity, both 

McCrea and Williams and Williams and Crampin assumed that the density 

remained constant throughout the protoplanet. This is a considerable assumption 

since virtually every known astronomical object is centrally condensed, this being 

necessary in order to have hydrostatic support. Further, the three main effects 

which influence the segregation rate, namely the gravitational field, the resistance 

to the motion of the grain, and the rate of growth of the grain, are all functions of 

the density. lt is therefore far from clear that results obtained by either of the two 

previous investigation give anything approximating to the correct answer for the 

segregation time in a real globe. Williams and Handbury (1974) analyzed the 

segregation problem for a centrally condensed protoplanet. They conclude that the 

time fall of a grain differ only by a numerical factor of order unity from that of 

McCrea and Williams (1965). It is, therefore, clear that in some way the increased 

resistance is compensated by the increased gravitational field. Williams and 

Handbury, however, considered an arbitrary chosen density model for central 

condensation of the globe without any physics behind that. In this thesis we intend 

to investigate the same problem without going into any density model. In chapter-

2 we have calculated the distribution of mass and density in the interior of a 

protoplanet. Using these calculated values of mass and density we attempt to 

determine the time of fall of a grain in a protoplanet. 
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2. The model used 

We consider a spherical globe of material of mass M and radius R. The globe in 

reality is a protoplanet which either develops directly into a planet similar to 

Jupiter or in which segregation takes place and in which only the core develops 

into a tenestrial planet. The globe consists mainly of hydrogen and helium but 

with a proportion 1 by weight of heavy elements, mostly in the form of grains. 

Let a grain stait moving from rest at the surface towards the centre through the 

ambient gas. The gas offers resistance to the motion of the grains. Then the 

equation of motion of the grain at depth x below the surface is given by the 

simple form 

- m - =-----F d ( dx) GM(x)mg 
dt g dt (R - x) 2 ,es' 

(4. I) 

where mg is the mass of the grain, G the gravitational constant, R the radius of 

the protoplanet, Fr,s the resistive force and M (x) is the mass interior to a radius 

R - x (i.e., at depth x ). 

Different expressions for F,e, exist in the literateur for different cases. If the grain 

is small, then the resistance is given by expression found in Baines and Williams 

(1965) as 

= i1rpWr2 d'< Fre., g ' 3 dt 
(4.2) 

where p is the density of the gas in the protoplanet, W the mean thermal velocity 

and rg is the radius of the grain. 

lf the grain is larger, then the resistance is given by the usual Stokes's formula 

where 17 is the coefficient of kinematic viscosity. 

In our calculation we assume two cases of interest: 

(4.3) 
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i) the grain mass is constant and 

ii) the grain mass is variable due to accretion. 

Expressions (i) and (ii) will be considered for F in the respective cases. In res 

numerical work we shall adopt the values J = 10-2
, M = 2 x 1030 gm (total mass 

of a protoplanet) and R = 3 x 1012 cm. 

Calculation of segregation time 

i) grain mass constant 

For normal interstellar grains the radius is small, being of the order of ~ I o-s cm. 

Hence if the grain mass is constant, the equation ( 4.2) is applicable. The equation 

of motion (4.1) then reduces to 

d 2 x GM(x)mg 4 2 dx 
111 --=------1rpWr -

g dt 2 (R-x) 2 3 g dt. 
(4.4) 

Both experiment and solutions of simpler equations of motion tell us that in 

general any body reaches a velocity close to its terminal velocity quickly and then 

proceeds to travel at such a velocity. We shall assume that this is the case for the 

falling grain under discussion. With this simplification, the equation of motion 

(4.4) becomes 

or 
d'C 

dt 

3GM(x)mg 

The mass of the grain mg is given by 

4 3 
mg= 3m·gpg, 

(4.5) 

(4.6) 
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where p 8 is the mass density of the grain, which is assumed to be constant 

throughout. 

Again, the mean thermal velocity W is given by 

W = ✓8kT 
nH' 

(4.7) 

where H is the mass of a hydrogen atom, T the temperature and k the 

Boltzmann constant. 

Substituting 1118 from (4.6) and W from (4.7) in equation (4.5), we get 

or 
dx 

dt 

J0fi)GM(x)r
8

pg 

.J(8kT)p(R-x)2 
• 

We introduce the dimensionless variables defined by 

and 

T(x) = pHGM 0 
kR ' 

GM 2 

P(x)=--4 p, 
4n-R 

M(x)=qM, 

(4.8) 

where the symbol µ represents mean molecular weight of the standard 

composition. 

From the equation of state of an ideal gas, we have 

pP 
p = iHT. 



In terms of dimensionless variables this becomes 

or 

GM 2 

_µ ~p 
P- iH µHGM 

--0 
kR 

M p 
p = --- as k = 91H 

4nR3 0 ' . 

Then from equation (4.8), we get 

R di; .J(rcH)G x qM x rgpg 
--= ----=====----=--,:c__ __ _ 
10

7 
dr ✓ tHGM M .J(8k) x I- 0 x-p x(R-Rl;) 2 

kR 4JrR3 0 

or di;= 101 r ✓2ir'GR q,fi§ 
dr _ gPg µM p(l-1;)2 

or 
di; qJg 
-=a 
dr p(l-1;)2 , 

where 1 ✓2ir'GR a= 10 rgpg µM . 

From (4.6), we get 

3 3mg 
rg ---

4npg 

or r = 3 g 

3mg 
4,rpg. 

With mg = 2 x 10-13 gm and pg = 1 gm cm -3 from (4.11), we get 

3 X 2 X 10-13 

rg = 3 = 3.6278 x 10-5 cm. 
' 4,rpg 
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(4.9) 

( 4.10) 

(4.11) 

With the prescribed values of M and R with G = 6.675 x 1 o-s dyne cm 2 gm -2 

and r = 3.6278 x 10-5 cm, we get from (4.10) 
g 



a=l07 x3 .6278x10-5 xlx 

2x(3 .14159)3 x6.675 x l0-8 x3xl012 

.6x2xl030 

= 1. 167 X 10-9 
. 

With these values the equation (4.9) becomes 

or 

di; = 1.167 X 10-9 qJe 
dr p(l-1;)2 

dr = --- p(I-1;)
2 

di; 
J. 167 X 10-9 qle . . 
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The time of fall of a grain of constant mass from the surface to the centre is given 

by 

I 

r = f F(l;,p,q,0')<11;, (4.12) 
0 

where F(J: 0) - 1 p(l -1;)2 
?,p,q, - l.167 x l0-9 q✓t (4.13) 

p , q and 0 being functions of I; . 

The integral, as such, can not be evaluated analytically. Resort has to be taken to 

numerical techniques. Again, because of the singularity the integration can not be 

started right from the surface. However, from a point very near to the surface the 

integration can easily be started. This is possible because p and 0 admit series 

solutions near the point I;= 0, as mentioned before. To integrate ( 4.12) 

numerically we had to know F(I;, p, q, 0) at each step. ln chapter 2 we have 

calculated the values of p, q and 0 for different values of I; for two different 

cases of interest, namely, (i) the protoplanet is in convective equilibrium and (ii) 

the protoplanet is in conductive- radiative equilibrium. For the convective case 

with the calculated values of p, q and 0 at different I; we have calculated 

F (l;,p,q,0) at these I; ~s. All these data are shown in table 4.1. 



57 

Table 4.1: The values of p, q, 0 and F(,;) for different values of,; 

in the convective model 

,; p q 0 F(,;, p, q, 0) 

0.01 0 1.00E+00 0.004 0.00E+00 
0.02 0 1.00E+00 0.008 0.00E+00 
0.03 0.001 9.99E-01 0.012 7.37E+06 

0.039 0.002 9.99E-01 0.016 1.25E+07 
0.049 0.003 9.98E-01 0.021 1.61E+07 
0.059 0.004 9.96E-01 0.025 1.93E+07 
0.069 0.007 9.95E-01 0.03 3.02E+07 
0.079 0.009 9.93E-01 0.034 3.57E+07 
0.088 0.013 9.90E-01 0.039 4.74E+07 
0.098 0.017 9.87E-01 0.043 5.79E+07 
0.108 0.022 9.84E-01 0.048 6.96E+07 
0.118 0.028 9.80E-01 0.053 8.27E+07 
0.128 0.035 9.76E-01 0.058 9.70E+07 
0.137 0.044 9.71 E-01 0.063 1.15E+08 
0.147 0.053 9.66E-01 0.068 1.31E+08 
0.157 0.064 9.60E-01 0.074 1.49E+08 
0.167 0.076 9.53E-01 0.079 1.69E+08 
0.177 0.09 9.47E-01 0.084 1.90E+08 
0.186 0.106 9.39E-01 0.09 2.14E+08 
0.196 0.123 9.31 E-01 0.095 2.37E+08 
0.206 0.142 9.23E-01 0.101 2.62E+08 
0.216 0.163 9.14E-01 0.107 2.87E+08 
0.226 0.187 9.05E-01 0.1 13 3.16E+08 
0.235 0.212 8.95E-01 0.119 3.44E+08 
0.245 0.24 8.84E-01 0.125 3.75E+08 
0.255 0.271 8.73E-01 0.131 4.08E+08 
0.265 0.304 8.62E-01 0.137 4.41 E+08 
0.275 0.34 8.50E-01 0.143 4.76E+08 
0.284 0.379 8.37E-01 0.15 5.14E+08 
0.294 0.421 8.24E-01 0.156 5.52E+08 
0.304 0.466 8.11 E-01 0.163 5.91E+08 
0.314 0.515 7.97E-01 0.169 6.34E+08 
0.324 0.567 7.83E-01 0.176 6.76E+08 
0.333 0.623 7.68E-01 0.183 7.23E+08 
0.343 0.683 7.53E-01 0.19 7.70E+08 
0.353 0.747 7.38E-01 0.196 8.20E+08 
0.363 0.814 7.22E-01 0.203 8.70E+08 
0.373 0.886 7.06E-01 0.21 9.23E+08 
0.382 0.962 6.89E-01 0.217 9.81E+08 
0.392 1.043 6.73E-01 0.225 1.03E+09 
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~ p q 0 F(~,p,q,0) 

0.402 1.128 6.56E-01 0.232 1.09E+09 
0.412 1.218 6.39E-01 0.239 1.16E+09 
0.422 1.313 6.21 E-01 0.246 1.22E+09 
0.431 1.412 6.04E-01 0.253 1.29E+09 
0.441 1.517 5.86E-01 0.261 1.36E+09 
0.451 1.626 5.68E-01 0.268 1.43E+09 
0.461 1.741 5.50E-01 0.276 1.50E+09 
0.471 1.86 5.32E-01 0.283 1.58E+09 
0.48 1.985 5.14E-01 0.29 1.66E+09 
0.49 2.115 4.96E-01 0.298 1.74E+09 
0.5 2.251 4.78E-01 0.305 1.83E+09 

0.51 2.392 4.60E-01 0.313 1.91 E+09 
0.52 2.537 4.42E-01 0.32 2.00E+09 

0.529 2.689 4.24E-01 0.328 2.11 E+09 
0.539 2.845 4.06E-01 0.335 2.20E+09 
0.549 3.007 3.89E-01 0.343 2.30E+09 
0.559 3.173 3.71 E-01 0.35 2.41 E+09 
0.569 3.345 3.54E-01 0.358 2.51 E+09 
0.578 3.522 3.37E-01 0.365 2.64E+09 
0.588 3.704 3.21 E-01 0.373 2.75E+09 
0.598 3.89 3.04E-01 0.38 2.87E+09 
0.608 4.081 2.88E-01 0.388 3.00E+09 
0.618 4.277 2.72E-01 0.395 3.13E+09 
0.627 4.477 2.57E-01 0.402 3.28E+09 
0.637 4.681 2.42E-01 0.409 3.42E+09 
0.647 4.889 2.28E-01 0.417 3.55E+09 
0.657 5.101 2.14E-01 0.424 3.69E+09 
0.667 5.317 2.00E-01 0.431 3.85E+09 
0.676 5.536 1.87E-01 0.438 4.02E+09 
0.686 5.758 1.74E-01 0.445 4.19E+09 
0.696 5.984 1.62E-01 0.452 4.35E+09 
0.706 6.213 1.50E-01 0.458 4.53E+09 
0.716 6.444 1.39E-01 0.465 4.70E+09 
0.725 6.678 1.28E-01 0.472 4.92E+09 
0.735 6.915 1.18E-01 0.478 5.10E+09 
0.745 7.154 1.08E-01 0.485 5.30E+09 
0.755 7.395 9.89E-02 0.492 5.48E+09 
0.765 7.639 9.03E-02 0.498 5.67E+09 
0.774 7.885 8.23E-02 0.504 5.91 E+09 
0.784 8.134 7.47E-02 0.511 6.09E+09 
0.794 8.386 6.77E-02 0.517 6.26E+09 
0.804 8.642 6.12E-02 0.523 6.43E+09 
0.814 8.902 5.53E-02 0.529 6.56E+09 
0.823 9.167 4.98E-02 0.536 6.75E+09 
0.833 9.438 4.48E-02 0.542 6.84E+09 
0.843 9.717 4.03E-02 0.548 6.88E+09 
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~ p q 0 F(~,p,q,0) 

0.853 10.007 3.62E-02 0.555 6.87E+09 
0.863 10.309 3.26E-02 0.561 6.79E+09 
0.872 10.63 2.94E-02 0.568 6.74E+09 
0.882 10.974 2.66E-02 0.576 6.49E+09 
0.892 11.351 2.42E-02 0.583 6.14E+09 
0.902 11.772 2.22E-02 0.592 5.67E+09 
0.912 12.255 2.05E-02 0.602 5.11 E+09 
0 .921 12.829 1.91 E-02 0.613 4.59E+09 
0.931 13.541 1.79E-02 0.626 3.90E+09 
0.941 14.47 1.70E-02 0.643 3 .17E+09 
0.951 15.77 1.64E-02 0.665 2.43E+09 
0.961 17.773 1.59E-02 0.698 1.74E+09 
0.97 21.331 1.56E-02 0.751 1.22E+09 
0.98 29.469 1.54E-02 0.855 7.09E+08 
0.99 63.197 1.53E-02 1.161 3.28E+08 

In our prev10us estimation we have taken i; = .01 as the starting point and 

integrated the equations of structure down to the point ; = .99. Because of 

singularity we have excluded the points i; = 0 and i; = 1 . In the present case we 

also take the same step length within the same limit. Equation ( 4. 12) then 

becomes 

.99 

-r = J F(i;,p,q,0yii;, ( 4.14) 
.01 

Now by Simpson's one- third rule 

Xn h J ydx = 3[(yo + Yn) + 4(yl + Y3 + .. .y,,_I) + 2(y2 + Y4 + , .. y n-1 )], 
.To 

where the step length h = x,. - Xo , n the number of divisions, Yo the value of y 
n 

at x
0

, y
1 

the value of y at x0 + h, y 2 the value of y at x0 + 2h, etc. 

ln our calculation 

-r= h[(F.01 +F_99)~4x(F.02 +Fo39 ... ... .. +F_9K)+], 
3 2 x (F03 + F_049 + ... .. ......... + F97 
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l h · X -X 
w 1ere IS the step length defined by h = n ° , where xn = .99, x

0 
= .01 and 

n 

loo d h h 
.99- .0I 3 • 

n = an ence = 
100 

= 9.8 x 10- . Takmg F(~, p, q, 0) from table 4.1 

and h = 9.8 x 10-3
, we have 

or 

9.8 X 10-3 

-r = ---x [(0+3 .28 x 108
) + 

3 

4 x (O+l.25 x l07 + .. .. +7.09 x l08
) 

+2 x (7.37 x l06 +1.61 x l07 + .. .. +l.00 x l09
)] 

-r= 
9

.
3

x l0-
3 

(3 .28 x l08 +4.78 x l0 11 +2.38 x l0 11
) 

3 

= 9-3 xl0-
3 

x7.16328 x l0 11 

3 

=2.34xl09
• 

Since -r is units of IO 7 , this is, therefore, the time required to fall to the centre 

t = 2.34 X 109 
X IO 7 

= 2.34 x I 016 seconds 

~ 2.34 x 109 years. 

In the conductive-radiative case using the same step length we find as in chapter 2 

the values of p, q and 0 and hence of F(~,p,q,0) at different ~ . All these 

values are given in table 4.2. 



Table 4.2: The values of p, q, 0 and F(c;) for different values of c; 
in the conductive-radiative model 

c; p q 0 F(c;, p, q, 0) 

.01 2.00E-08 1.00E+00 .003 3.07+02 
0.02 2E-07 1.00E+00 0.0051 2.30E+03 
0.03 1.2E-06 1.00E+00 0.0074 1.12E+04 
0.04 3.9E-06 1.00E+00 0.01 3.08E+04 
0.05 1.02E-05 1.00E+00 0.0127 7.00E+04 
0.06 2.22E-05 1.00E+00 0.0154 1.35E+05 
0.07 4.31 E-05 1.00E+00 0.0183 2.36E+05 
0.08 0.000077 1.00E+00 0.0212 3.84E+05 
0.09 0.000129 1.00E+00 0.0241 5.89E+05 
0.1 0.000205 1.00E+00 0.0272 8.64E+05 

0.11 0.000314 1.00E+00 0.0303 1.22E+06 
0.12 0.000464 1.00E+00 0.0335 1.68E+06 
0.13 0.000667 1.00E+00 0.0367 2.26E+06 
0.14 0.000937 9.99E-01 0.0401 2.97E+06 
0.15 0.001288 9.99E-01 0.0435 3.83E+06 
0.16 0.001741 9.99E-01 0.047 4.86E+06 
0.17 0.002317 9.99E-01 0.0506 6.09E+06 
0.18 0.003042 9.98E-01 0.0543 7.53E+06 
0.19 0.003945 9.98E-01 0.0581 9.22E+06 
0.2 0.005061 9.98E-01 0.062 1.12E+07 

0.21 0.006431 9.97E-01 0.0659 1.34E+07 
0.22 0.0081 9.96E-01 0.07 1.60E+07 
0.23 0.010123 9.96E-01 0.0742 1.90E+07 
0.24 0.012559 9.95E-01 0.0785 2.23E+07 
0.25 0.01548 9.94E-01 0.083 2.61E+07 
0.26 0.018966 9.93E-01 0.0875 3.03E+07 
0.26 0.023109 9.91 E-01 0.0922 3.60E+07 
0.27 0.028015 9.90E-01 0.097 4.15E+07 
0.28 0.033804 9.88E-01 0.1019 4.76E+07 
0.29 0.040613 9.87E-01 0.107 5.44E+07 
0.3 0.048597 9.85E-01 0.1122 6.19E+07 

0.31 0.057936 9.83E-01 0.1175 7.02E+07 
0.32 0.068829 9.80E-01 0.123 7.93E+07 
0.33 0.081508 9.77E-01 0.1287 8.94E+07 
0.34 0.096231 9.75E-01 0.1345 1.00E+08 
0.35 0.113295 9.71 E-01 0.1405 1.13E+08 
0.36 0.133034 9.68E-01 0.1466 1.26E+08 
0.37 0.155826 9.64E-01 0.1529 1.41 E+08 
0.38 0.182102 9.60E-01 0.1594 1.56E+08 
0.39 0.212345 9.56E-01 0.1661 1.74E+08 

61 



62 

~ p q 0 F(~,p,q,0) 

0.4 0.247105 9.51 E-01 0.173 1.93E+08 
0.41 0.287001 9.46E-01 0.1801 2.13E+08 
0.42 0.332733 9.40E-01 0.1873 2.36E+08 
0.43 0.385091 9.34E-01 0.1948 2.60E+08 
0.44 0.444966 9.28E-01 0.2025 2.86E+08 
0.45 0.513361 9.21 E-01 0.2104 3.15E+08 
0.46 0.591408 9.13E-01 0.2185 3.46E+08 
0.47 0.680379 9.05E-01 0.2269 3.80E+08 
0.48 0.781708 8.97E-01 0.2355 4.16E+08 
0.49 0.897005 8.88E-01 0.2443 4.56E+08 
0.5 1.028079 8.78E-01 0.2534 4.98E+08 

0.51 1.176962 8.68E-01 0.2627 5.45E+08 
0.52 1.345934 8.57E-01 0.2723 5.94E+08 
0.53 1.53755 8.45E-01 0.2821 6.48E+08 
0.54 1.75467 8.33E-01 0.2922 7.06E+08 
0.55 2.000498 8.20E-01 0.3025 7.70E+08 
0.56 2.27861 8.07E-01 0.3131 8.37E+08 
0.57 2.593003 7.93E-01 0.324 9.11E+08 
0.58 2.948134 7.78E-01 0.3351 9.90E+08 
0.59 3.348963 7.62E-01 0.3465 1.08E+09 
0.6 3.801011 7.45E-01 0.3582 1.17E+09 

0.61 4.310407 7.28E-01 0.3701 1.27E+09 
0.62 4.883944 7.10E-01 0.3823 1.38E+09 
0.63 5.529139 6.92E-01 0.3948 1.49E+09 
0.64 6.254291 6.72E-01 0.4075 1.62E+09 
0.65 7.068542 6.52E-01 0.4204 1.76E+09 
0.66 7.981935 6.31 E-01 0.4336 1.90E+09 
0.67 9.005472 6.10E-01 0.447 2.06E+09 
0.68 10.15117 5.87E-01 0.4607 2.23E+09 
0.69 11.43209 5.64E-01 0.4745 2.42E+09 
0.7 12.8624 5.41E-01 0.4884 2.63E+09 

0.71 14.45736 5.17E-01 0.5026 2.84E+09 
0.72 16.23334 4.92E-01 0.5168 3.08E+09 
0.73 18.20776 4.67E-01 0.5312 3.34E+09 
0.74 20.39906 4.41 E-01 0.5456 3.63E+09 
0.75 22.82655 4.16E-01 0.56 3.93E+09 
0.75 25.51025 3.89E-01 0.5745 4.63E+09 
0.76 28.47064 3.63E-01 0.5888 5.04E+09 
0.77 31.72831 3.37E-01 0.6031 5.50E+09 
0.78 35.30356 3.11E-01 0.6172 6.00E+09 
0.79 39.21579 2.85E-01 0.631 6.55E+09 
0.8 43.4828 2.59E-01 0.6446 7.16E+09 

0.81 48.11995 2.34E-01 0.6578 7.85E+09 
0.82 53.13906 2.09E-01 0.6705 8.61E+09 
0.83 58.54718 1.86E-01 0.6827 9.46E+09 
0.84 64.34514 1.63E-01 0.6944 1.04E+10 
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~ p q 0 F(~,p,q,0) 

0.85 70.52585 1.41 E-01 0.7053 1.15E+10 
0.86 77.07253 1.20E-01 0.7155 1.27E+10 
0.87 83.95674 1.01 E-01 0.7249 1.41E+10 
0.88 91.1365 8.33E-02 0.7334 1.58E+10 
0.89 98.5545 6.72E-02 0.7409 1.77E+10 
0.9 106.1369 5.29E-02 0.7474 1.99E+10 
0.91 113.7932 4.04E-02 0.7529 2.25E+10 
0.92 121.4173 2.98E-02 0.7574 2.57E+10 
0.93 128.8925 2.10E-02 0.761 2.96E+10 
0.94 136.101 1.40E-02 0.7636 3.42E+10 
0.95 142.9456 8.79E-03 0.7656 3.98E+10 
0.96 149.3979 5.11E-03 0.7669 4.58E+10 
0.97 155.6336 2.78E-03 0.7679 4.93E+10 
0.98 162.5544 1.53E-03 0.7686 4.15E+10 
0.99 175.5677 1.04E-03 0.7702 1.64E+10 

With these values of F(i;, p, q, 0) from the table 4.2 we can calculate the falling 

time by integrating equation (4.14) again by Simpson' s one-third rule. Proceeding 

in the usual manner we have the falling time to be given by 

or 

or 

9.8 X 10-3 

-r= 
3 

[(fo, +f99 )+4 x (Fo2 +Fo39 · ....... +f98 ) + 

2 x (.fo3 +f049 + .... ... ..... .. +f91)] 

-r= 9·8 x 10-
3 

x [(3.O7 x lO2 +l.64 x lO10 
3 

+4 x (2.3O x lO3 +3 .O8 x lO4 + .... +4.15xl010 ) 

+2 x (l.12 x l0 4 +7 x l04 + .. .. +4.93 x lO10)] 

-r= 9·8 x l0-
3 

(1.64 x I0'0 +l.O3 x l012 +4.84 x IO") 
3 

= 9.S x l0-
3 

xl.53O4 x lO12 

3 

= 4 . 9993 X } 0 9 
• 

Therefore, the estimated time is 

t = 4.9993 x 1O9 x 1O7 

= 4.9993 x 1016 seconds 

Rl 4.9x 109 years. 
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This gives the time required to fall from the surface to the centre of the 

protoplanet, which is in conductive-radiative equilibrium state. 

ii) grain mass variable 

When the grain mass is variable then the equation of motion (4. l) takes the form 

d 2 x dx dm
8 

GM(x)m
8 111 -+---=-----F 

g di 2 d{ d{ ( R - X )2 re.r • 
(4.15) 

If the grain is growing by accretion, soon it will reach a size where the resistance 

to the motion given by Stokes' formula (4.3) will be applicable. 

Then the equation of motion ( 4.15) becomes 

d 2 x dx dm
8 

GM(x)m
8 

dx 
m --+---=-----6m7r -

8 dt 2 dt dt (R-x) 2 8 dt. 
( 4.16) 

Again with the assumption that for most of the time the grain moves with terminal 

velocity the equation of motion ( 4 .16) becomes 

dx dm GM(x)m
8 

dx 
---

8 =-----6mr 
dt dt ( R - X) 2 

g dt . 
(4.17) 

Now, the mass of the grower grain at any time t is given by 

( 4.18) 

where p
8 

is the density of the grain, which is assumed to be constant throughout. 

Substituting 111
8 

from equation ( 4.18) in equation ( 4.17), we get 

or 
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or (4.19) 

The falling grain is postulated to accrete all other grains that collide with it. lf we 

assume that the travel speed of the grain is greater than the mean thermal speed of 

the grains, then the appropriate equation giving the rate of growth of the grain has 

been found by Baines and Williams ( 1965) as 

where /4 is the proportion by weight of the grains adhering to the growing grain. 

or 
drg dr 
dt = /Jp dt' 

where /3=-3:__ 
4pg 

The radius of the growing grain is given by 

X 

rg = r0 + /3 f pdx , 
.01 

where r0 is the initial radius of the grain. 

dr 
Substituting - 8 from (4.20) in equation (4.19), we get 

dt 

dx dx 4Gp
8 

M(x)r
8 _ 617 dx 

4Pg/JP dt dt =-3-(R-x)2 rg dt 

(dx)' 4Gpg M(x)rg 617 dr 
or 4pg/3P dt = ---

3 (R-x)2 rg dt' 

where rg is given by ( 4.22). 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

Let us replace the physical variables x, t and M(x) by the non dimensional 

variables i;, -r and q respectively with the help of the following transformations 



and 

M(x)=qM, 

X = c;R 

where Rg is the non dimensional radius of the grain and is given by 

~M 
R =l+/Jf--Pdc;. 

g 4nr R3 0 
.01 0 

Then equation (4.23) with p = M 
3 

p becomes 
41rR 0 

or 

or p(dc;)
2 

4xl0
14

nG qRs 
0 dr = 3/JR (1-1;)2 

or 

where 
4 x 1014 nG 

A= 3/JR 

and 

Equation (4.25) can also be written as 

6xl07 m7R2 1 de; 
------

/JpgM R
8 

dr 
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(4.24) 

(4.25) 

(4.26) 

(4.27) 



or 

or 

or 

p 
2--

0 

Taking ,1, = 10-2 and pg = 1 gm cm -3
, we have from (4.21) 

/3 = J0-
2 

= 2.5 X 10-3 • 

4 X 1 

With the prescribed values of M and R we have from (4.26) 

A= 4xl014 x3.14159x6.675xl0-8 

3x2.5xl0-3 x3xl012 

= 3.728 X 10-3. 

67 

With 17 = 5.0886 x 10-5 dyne sec cm -3, where 17 is taken at 100° K, we have from 

(4.27) 

6xl07 x3.14159x5.0886x10-5 x(3xl012 )2 
B=--------:-----:-:--'--------'-

2.5xl0-3 xlx2xl030 

= 17.2652. 

Since A and B are positive, and di; can never be negative, so we take 
dr 
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(4.28) 

It can be shown that for O < i; <I, the right hand side of ( 4.28) is always positive. 

Equation (4.28) can be written as 

or 

R3 
0 B 2 +4A 8 pq - B0 

di; 
= 

(l-i;)2 0 
dr 2R

8
p 

or 

B0[ I 4A R; pq ] 

di; 
+ B2 (1- i;)2 0 - l 

--
dr 2R

8
p 

Inserting the values of A and B in equation (4.29), we get 

Thus the time of fall of the grain from the surface to the centre is given by 

where 

.99 

r= f G(i;,p,q,0)di;, 
.01 

G(i;,p,q,0) = [ 
17.26520 

{
1 + 5.0026 x 10-5 R~ pq}-1J . 

(1 - i;)2 t 

(4.29) 

(4.30) 

(4.31) 

Here again this integral can be evaluated for both the convective and conductive­

radiative cases. In the convective case, G(i;, p, q, 0) have been calculated at 

different depth using the corresponding values of p, q and 0 from chapter 2. 

These values together with the calculated values of the non-dimensional radius of 

the grain R
8 

are shown in table 4.3. 
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Table 4.3: The values of p, q , 0, Rg a.nd G(i;) for different values of i; 

in the convective model 

i; Rg G(i;,p,q,0) i; Rg G(i;,p,q,0) 

0.01 1 20619.72 0.51 1.000002 10983.28 
0.02 1 20205.27 0.52 1.000002 10968.86 
0.03 1 19814.85 0.529 1.000002 11009.81 

0.039 1 19448.87 0.539 1.000002 11014.96 
0.049 1 19065.3 0.549 1.000002 11003.06 
0.059 1 18703.95 0.559 1.000002 11031 .04 
0.069 1 18326.95 0.569 1.000002 11042.5 
0.079 1 17971.49 0.578 1.000002 11120.23 
0.088 1 17675.4 0.588 1.000002 11127.85 
0.098 1 17342.48 0.598 1.000002 11186.73 
0.108 1 17011 .8 0.608 1.000003 11228.11 
0.118 1 16700.42 0.618 1.000003 11289.83 
0.128 1 16390.8 0.627 1.000003 11392.43 
0.137 1 16136.9 0.637 1.000003 11458.62 
0.147 1 15846.72 0.647 1.000003 11501.42 
0.157 1 15574.11 0.657 1.000003 11569.48 
0.167 1 15318.53 0.667 1.000003 11668.09 
0.177 1 15047.72 0.676 1.000003 11813.85 
0.186 1 14845.86 0.686 1.000004 11924.9 
0.196 1 14607.83 0.696 1.000004 12005.46 
0.206 1 14370.23 0.706 1.000004 12126.96 
0.216 1 14148.54 0.716 1.000004 12211.6 
0.226 1 13927.09 0.725 1.000004 12433.87 
0.235 1 13757.14 0.735 1.000004 12524.56 
0.245 1 13566.61 0.745 1.000004 12670.99 
0.255 1 13376.11 0.755 1.000005 12772.95 
0.265 1 13185.62 0.765 1.000005 12870.78 
0.275 1 13010.44 0.774 1.000005 13060.95 
0.284 1 12886.56 0.784 1.000005 13144.56 
0.294 1 12726.84 0.794 1.000005 13191 .89 
0.304 1 12567.19 0.804 1.000005 13210.66 
0.314 1 12423.17 0.814 1.000005 13166.42 
0.324 1 12279.38 0.823 1.000006 13239.94 
0.333 1 12188.14 0.833 1.000006 13101.71 
0.343 1 12061.04 0.843 1.000006 12872.81 
0.353 1.000001 11934.49 0.853 1.000006 12563.55 
0.363 1.000001 11824.86 0.863 1.000006 12117.68 
0.373 1.000001 11716.21 0.872 1.000007 11729.47 
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~ Rg G(~,p,q,0) ~ Rg G(~,p,q,0) 
l 

0.382 1.000001 11663.18 0.882 1.000007 11018.05 0.392 1.000001 11557.23 0.892 1.000007 10145.61 0.402 1.000001 11469.99 0.902 1.000007 9107.051 
0.412 1.000001 11384.69 0.912 1.000007 7953.107 
0.422 1.000001 11319.69 0.921 1.000008 6880.279 
0.431 1.000001 11278.75 0.931 1.000008 5601 .861 
0.441 1.000001 11220.24 0.941 1.000009 4314.305 
0.451 1.000001 11165.43 0.951 1.000009 3086.817 
0.461 1.000001 11114.68 0.961 1.00001 2019.794 
0.471 1.000001 11068.41 0.97 1.000011 1221 .838 
0.48 1.000001 11069.6 0.98 1.000014 556.1725 
0.49 1.000001 11034.43 0.99 1.000022 151 .6861 
0.5 1.000001 11005.43 

With these values of G(~,p,q,0) from the table 4.3 and with the same step length 

we can calculate the falling time by integrating equation ( 4.30) again by 

Simpson's one-third rule. Now by Simpson's one- third rule 

or 

or 

h r(G_OJ + G_99 ) + J 
-r= 3 4 x (G.02 +G_o39 .. , ..... +G9s)+ 

2 X (G.03 + G.049 + ... .. ...... ... + G,97 

-r= 9·
8

xl0-
3 

x[(20619.72+151.6861)+ 
3 

4 X (20205 .27 + 19448.87 + .... + 556.1725) 

+ 2x (19814.85 + 19065.3 + ... . + 1221.838)] 

-r= 
9

·
8

x l0-
3 

(20771.4061+24698+1211238) 
3 

= 9 ·8 x l0-
3 

x3.6959xl06 

3 

= 1.2073 X 104
• 

Therefore, the estimated time is 

{ = 1.2073 X 104 
X 107 



= 1.2073x1011 seconds 

,:,: 1.2 x 104 years. 
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In the conductive-radiative case using the same step length we find the values of 

P, q and 0 and hence of G(4, p, q, 0) at different 4. All these values are given 

in table 4.4. 

Table 4.4: The values of p, q, 0, Rg and G(4) for different values of 4 

in the conductive-radiative model 

4 Rg G(4,p,q,0: 4 Rg G(4,p,q,0) 

0.01 1 4539.03 0.51 1.000001 1281 .746 
0.02 1 4447.795 0.52 1.000001 1245.646 
0.03 1 4357.487 0.529 1.000001 1215.725 

0.039 1 · 4277.001 0.539 1.000001 1181 .604 
0.049 1 4188.453 0.549 1.000001 1148.727 
0.059 1 4100.831 0.559 1.000002 1116.777 
0.069 1 4014.135 0.569 1.000002 1085.867 
0.079 1 3928.758 0.578 1.000002 1061.128 
0.088 1 3852.35 0.588 1.000002 1032.338 
0.098 1 3768.332 0.598 1.000003 1004.525 
0.108 1 8554.982 0.608 1.000003 977.8032 
0.118 1 6433.957 0.618 1.000003 952.0313 
0.128 1 3522.893 0.627 1.000004 932.324 
0.137 1 3451.239 0.637 1.000004 908.5827 
0.147 1 3372.395 0.647 1.000004 885.9344 
0.157 1 3294.447 0.657 1.000005 864.1235 
0.167 1 3217.717 0.667 1.000005 843.4524 
0.177 1 3141.869 0.676 1.000006 828.9173 
0.186 1 3074.761 0.686 1.000007 810.4143 
0.196 1 3001.183 0.696 1.000007 792.7785 
0.206 1 2928.753 0.706 1.000008 776.226 
0.216 1 2857.167 0.716 1.000009 760.8604 
0.226 1 2786.984 0.725 1.00001 751.9312 
0.235 1 2724.739 0.735 1.000011 738.7788 
0.245 1 2656.641 0.745 1.000012 726.9345 
0.255 1 2589.602 0.755 1.000013 716.0613 
0.265 1 2523.856 0.765 1.000015 706.7526 
0.275 1 2459.123 0.774 1.000016 704.7111 
0.284 1 2402.09 0.784 1.000018 698.2657 
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~ Rg G(~,p,q,0: ~ Rg G(~,p,q,0) 

0.294 1 2339.726 0.794 1.00002 693.373 
0.304 1 2278.305 0.804 1.000022 690.2424 
0.314 1 2218.267 0.814 1.000024 688.8824 
0.324 1 2159.345 0.823 1.000026 697.079 
0.333 1 2107.827 0.833 1.000029 700.7937 
0.343 1 2051.189 0.843 1.000031 706.9047 
0.353 1 1995.782 0.853 1.000034 715.9604 
0.363 1 1941.367 0.863 1.000037 728.682 · 
0.373 1 1888.313 0.872 1.000041 757.1105 
0.382 1 1842.335 0.882 1.000044 780.5391 
0.392 1 1791.414 0.892 1.000048 810.2084 
0.402 1 1741 .729 0.902 1.000051 847.5837 
0.412 1 1693.235 0.912 1.000055 894.7639 
0.422 1 1646.066 0.921 1.000059 978.3426 
0.431 1 1605.465 0.931 1.000063 1057.559 
0.441 1 1560.406 0.941 1.000067 1155.869 
0.451 1 . 1516.374 0.951 1.000071 1270.266 
0.461 1 1473.66 0.961 1.000075 1380.373 
0.471 1.000001 1432.054 0.97 1.000079 1493.679 
0.48 1.000001 1396.882 0.98 1.000084 1199.438 
0.49 1.000001 1357.323 0.99 1.000091 445.2047 
0.5 1.000001 1319.059 

With these values of G(~, p, q, 0) from the table 4.4 we can calculate the falling 

time by integrating equation (4.30) again by Simpson's one-third rule. By 

Simpson's one-third rule :,-: 

or 

or 

h [CG.01 + G.99) + ] 
-r = 3 4 X CG.02 + G.039 ....... . + G,98) + 

2x(G_o3 +G_049 + ... ......... .. +G.97 

9.8 X 10-3 

'f = ---X [(4539.03 + 445.2047) + 
3 

4 X ( 4447.795 + 4188.453 + .... + 1199.438) 

+ 2 X ( 4357.487 + 4100.453 + .. .. + 1493.679)] 

-r= 9·
8

x l0-
3 

(4984.2347+373845 .3+185645.9) 
3 
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= 
9.8x10-3 

3 
x5.6447xl05 

= 1.8439 X 103 . 

Therefore, the estimated time is 

t = l.8439x103 x107 

= 1.8439 x 1010 seconds 

~ 1.8 x 103 years. 

3. Summary and conclusion 

We have investigated the segregation time for falling grains inside a protoplanet. 

This is important in forming terrestrial planets from a set of gaseous protoplanets. 

We have calculated the time for two possible cases of interest, namely, (i) the 

mass of the grain remains constant during falling, and (ii) the grain mass increases 

due to its adherence with other grains. In our calculations we have not assumed 

any density model for solving the problem. We have, rather, determined the 

density distribution, and hence the mass distribution inside the protoplanet and 

calculated the time of fall by solving the equation of motion of grain falling under 

gravity. It is found that for the constant mass model the time of fall of a grain from 

the surface to the centre is quite long, being of the order of 109 years for, whether 

the protoplanet is in convective equilibrium or in conductive-radiative 

equilibrium. However, if the grain grows in size by accreting more grains that the 

time of fall is reasonably short in both cases of convective and conductive­

radiative. This time is of the order of a few thousand years. lt should be noted that 

McCrea and Williams (1965) arrived at similar conclusion by assuming the 

protoplanet to be of uniform density. Their calculated time in this case of variable 

grain mass is of the order of 103 years. In reality the grains are likely to adhere to 

each other and grow in size. We therefore conclude that a solid core in a 

protoplanet could form in a reasonable short period of time on astronomical time 

scale due to gravitational settling. Removal of gaseous envelopes from such 

protoplanets might prod_uce terrestrial type planets. 
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Chapter-5 

Orbital evolution of protoplanets with mass loss 

1. Introduction 

One known feature of the solar system is the planetary distance. The distances are 

approximately given by the Titius-Bode law, i.e., r = 0.4 + 0.3 x 2 n, where 

n = - ex: for Mercury, 0 for Venus, 1 for the Earth 2 for Mars, 4 for Jupiter, 5 

for Saturn, q for Uranus, 7 for Neptune and 8 for Pluto, and r is in units of 1013 

cm. Observed distances of the planets do not differ much from the Titius-Bode 

values. One noticeable feature is that the distance of the outer planets increases 

with decreasing mass while for the inner planets, smaller the mass, closer is it to 

the Sun. As far as we know there exists no physical explanation for this 

distribution of planetary distances. In this thesis we attempt to investigate the 

problem within the context of the protoplanetary model of planetary formation. In 

a protoplanetary model mass loss is the mechanism responsible for the variations . 

of the planets that we observe today ( e.g., McCrea and Williams 1965, Williams 

and Handbury 1974, Williams and Crampin 1971, Bhattacharjee and Williams 

1978, Dennison and Williams ~977). ln this investigation we address ourselves to 

the question, ' can mass loss from a set of identical protoplanets account for the 

observed distribution of the planetary distance?' 

2. The rate of mass loss 

Mass loss in a protoplanet is a complex problem. It can occur as a consequence of 

many effects, such as solar heating, solar wind bombardment, tidal effects, energy 

released in core formation etc. No explicit expression for the rate of mass loss 
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from a protoplanet is available in the literateur. Bhattacharjee and Williams 

(1979) and Bhattacharjee (1983) estimated a mass loss rate from the kinetic theory 

approach in explaining the distribution of spin angular momentum of the planets 

and have shown that the amount of angular momentum taken away by the mass 

lost from a set of identical protoplanets is in excellent accord with observation. ln 

our calculation we adopt this mass loss rate. 

For a nonrotating atmosphere whose molecules each of mass m0 , obey a 

Maxwellian velocity distribution related to a temperature T, the probability that a 

molecule has a velocity component in the range u0 to u0 + du0 in a prescribed 

direction is 

where /3 = ~ k being Boltzmann's constant. 
2kT' 

Then the mass escaping through an area da- in time dt is given by 

fJJ w0 exp(-/J(u; + v; + w;))du0 dv0 d111
0 dsdt, 

w0 ~o,ui+vi+wi~v; 

where n is the number of surface molecules and u0 , v0 , w0 are the components 

of velocity in three mutually perpendicular directions. w0 being in the outward 

normal direction and vE the escape velocity. For a rotating atmosphere where ds 

has a velocity V the rate of mass loss in a fixed frame is given by (e.g., 

Bhattacharjee 1983) 
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where u , v and w are now the velocity components in the frame fixed in space. 

For mass loss to occur /Jv! <I. Evaluation of the integral in (5 .1) under this 

condition gives (Bhattacharjee 1980) 

dm 2 -=-nR p W dt .,· ' (5.2) 

where W is the mean thermal velocity of the surface molecules. Ignoring any 

small variation in the temperature and density of the surface molecules, and 

eliminating R in terms of m we have from (5 .2) 

dm ~ 
-=-cm 3 

dt ' (5 .3) 

where c is an unknown constant. If we assume that a protoplanet took about a 

million years to lose most of its mass then c is found to be~ 10-3 • c can be taken 

as a free parameter. However, since we are interested in determining the effect of 

mass loss on the protoplanetary orbits, exact value of c is not needed. We take the 

mass loss rate as 

2 

dm 10-3 "i -=- 111 • 
dt 

3. Equation of motion and its solution 

i) Two body problem: 

(5.4) 

Let M be the mass of the Sun with centre at the origin and 111 denote the mass e 

of a protoplanet at any time which moves in the gravitational field of the Sun 

suffering mass loss. We assume that both the Sun and protoplanets spherical and 

that mass loss is spherically symmetric so that this mass can always be considered 

concentrated at the centre. So Newton's theory is applicable. Since m <<Me, m 

can be considered to move about the centre of the Sun. lf r be the distance of the 
-> 
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protoplanet at any time t relative to the Sun, then the equation of motion is given 

by 

d · GmM 
-(mr)=- 9 r 
dt ➔ r3 ➔' 

where G is the gravitational constant. 

Equation (5.5) can be written as 

.. · · GmM 
mr+rm=- er . 
➔ ➔ ,.3 - > 

(5.5) 

(5.6) 

If the coordinates of m be ( x, y), then the equation ( 5. 6) can be written m 

component form as 

where 

or 

Now, 

or 

d 2 x dm d1e GmM0 x 
m--+--=----

dt2 dt dt r 3 

d 2 y dm dy GmM0 y 
m--+--=----

dt 2 di dt r 3 

d 2 x 1 dm dx GM9 x 
--+---=-----:---
dl2 m dt di r3 

d 2y 1 dm d1e GMeY 
--+--- = - ---
dl2 m dt dt r 3 

dm = _10- 3 m½ . 
dt 

n, 2/ 

-1 o-3 t = f m 7 3 dm ' 
mo 

where m
0 

the initial mass of the protoplanet. 

-10-3 t = 3[m½]m 
"'o 

or 

or 
I/ 1/ 1 - 3 

m13 =m/3 --x lO t . 
3 

(5.7) 



If we take m0 = 1030 gm, then 

or 

Therefore, 

or 

or 

or 

1 dm 10-3 ,n½ 
--=-------
"' dt (10" - 1~-, ,J 
1 dm 10-3 ( 10-3 J2 

--=-------x 1010 ---t 
m dt ( l 0-3 J3 

3 
1010 ---t 

3 

1 dm 
--=------
m dt 

10
10 10-3 

-~-/ 
3 

1 dm 3 
--=-----
m dt 3xl013 -t . 

Sb .. ldmfi . ( )'( u st1tutmg -- rom equation 5.8 m 5.7), we get 
m dt 

d 2x 
3 

dr 
GM8 x dt = 

dt 2 3 X 1013 
- / (x2 + y2)½ 

3dy 
d2y GMeY dt 
dt2 - 3 x l013 -t (x2 + y2)½ 
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(5.8) 

(5.9) 

To determine the orbit we have to solve (5.9) with known initial conditions. It 

should be noted that to avoid tidal disruption a protoplanet must have formed 

outside the Roche limit defined by 

I 

(apJ 3 

R = Re Pe ' 



80 

where Ra and Pa are the radius and density of the Sun and . a a dimensionless 

parameter whose numerical values lie between 1 and 3 ( e.g., Williams 1977). 

With appropriate values of the parameters this distance is R = 4.34 x I 0 13 cm. So 

the initial distance of the protoplanet must be> 4.34 x I 0 13 cm. As initial conditions 

we take 

x = 1014 cm 
' 

y = o, 

x=O, 

y = l.2 x 106 cm/sec. 

where the initial angular velocity m0 has been taken arbitrarily as 

1. 6789 x I o-s sec - i which is less than the present day angular velocity of Mars. 

Now, we replace the variables x, y and t by the dimensionless variables X , Y 

and -r respectively by the following set of relations: 

(5.10) 

where -r bas been measured in units of thousand years. 

Then (5.9) becomes 
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or 

d 2 X 3 dX GM8 X --= 
dr2 3000-r dr 3 

or 
1022(X2 +Y2)2 

d 2Y 3 dY GM8 Y 
= 

dr2 3000-r dr 3 

1022(X2 + y2)2 

Introducing the parameters involved, we get 

d 2X 3 dX 6.675 X 10-s X 1.989 XI 033 X 
= 

dr2 3000-r dr 3 

1022(X2 +Y2)2 

d 2Y 3 dY 6.675 X 10-8 
X 1. 989 X 1033 f 

= 
dr2 3000-r dr 3 

1022 (X2 + y2) 2 

d 2 X 3 dX 13276.575X 
= 

dr2 3000-r dr 3 

(X2 +Y2)2 

d 2Y 3 dY 13276.575Y 
(5.11) 

---
dr2 3000-r dr 3 

(X2 + y2)2 

To solve the equations in (5.1 I), we break these equations into the four equations 

as follows: 

dX 
-=u, 
d-c 

dY 
-=v 
dr ' 

(5.12) 

(5.13) 



du 3u --
d-r 3000-, 

and dv 3v 
-= 
d, 3000-, 

The initial conditions now reduce to 

at , = 0 , 

X=l, 

Y=O, 

u = X = 0, 

v=Y=l20 
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13276.525 
3x (5.14) 

(X2 + y2)2 

13276.525 
3 y. (5.15) 

(X2 + y2)2 

(5.16) 

We have solved equations (5.12), (5.13), (5.14) and (5.15) using (5.16) by the 4th 

order Runge-Kutta method. The solution is shown in figure 5.1. It is immediately 

evident from the figure that as mass loss proceeds the orbital distance increases. 



1.5 . y 

0.5 

. --- - · -0-- ·-·--- -· ---·---·, -·--·. 

-1.5 -0.5 -O_g_, 0.5 

-1.5 

Fig. 5.1: Orbital distance of a protoplanet as it loses mass in a two body system 

A is the initial position of the protoplanet, Sis the position of the Sun 
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ii) Three body problem: 

The effect of mass loss in a two body problem is to push the planets outward. This 

is not in conformity with the observed distributions of the planetary distances in 

the inner part of the solar system. The dynamics of the solar system is, of course, a 

complicated many body problem. However, since all the protoplanets suffered 

mass loss excepting Jupiter the dynamics can be treated as a three body problem. 

Let M 0 be the mass of the Sun and M J the mass of Jupiter which revolves about 

y 

m (x, y) 

Fig. 5.2: Motion of a protoplanet with mass loss 

in the field of the Sun and Jupiter. 

. h t t angular velocity co . Let a third body of smaller mass m' the Sun wit cons an 

h. h ffi ss loss moves in a mutual gravitational field of the Sun and say, w 1c su ers ma , 
. tl t the motion of the body is in the same plane as that of 

Jupiter. We also assume 1a . . 
. l b"t f the body can be determined by usmg the Lagrangian Jupiter. Then t 1e or 1 o 

. . th coordinates of m be (x,y) with respect to a fixed 
techmque. Let at any tune e 
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frame of reference with origin at the centre of the Sun, and (xt>y
1
) be the 

coordinates of Jupiter. If a is the constant distance between M 
9 

and M J, then 

Then the kinetic energy T is given by 

I . 2 2 

T=-m(x+y) 
2 

and the mutual potential energy V is given by (e.g., Blanco et al 1961) 

where 

and 

We know that Lagrangian is given by 

Substituting for rand V from (5 .18) and (5.19) respectively, we get 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

1 . 2 . 2 (M em MJm M eMJ) (5.22) 
L=-m(x +y )+G --+--+ · 

2 ,.1 r2 a 

Now, Lagrange's equations of motions are given by 

(5.23) 
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:i[;: )-: ~ 0 
and 

(5.24) 

Now, from (5.22), we get 

oL 
-=mx 
ax (5.25) 

and 

or 

or . (5.26) 

Similarly, 

oL 
- . =my (5.27) 
f}y 

and (5.28) 

Now using (5.25) and (5.26) in equation (5.23), we get 

d · {Mx M(x-x)} - · (mx)+Gm ~+ J 
2 

1 =O 
dt r1 r2 

or 

or (5.29) 



Similarly, using (5.27) and (5.28) in equatio; (5.24), we get 

Now using the mass loss rate (5.4), i.e., 

d111 2/ 
- = -10-3m13 
dt 

we have I dm 3 X 10-3 

where m0 is the initial mass of the body. 

Sb .. ldm.c:. . ( )"() u st1tut111g -- 1rom equation 5.31 111 5.29 , we get 
m dt 

or 

Similarly, substituting J__ dm from equation (5.3 I) in (5.30), we get 
m dt 

Now, using (5 .20) and (5.21) in (5.32), we get 

dx 
d2x 

3 
dt [M9 x MAx-acosOJt)l - - ----'--'---:-- - G -- +---=:........:.....-3 ___ , 

2 I ,,. 3 /" dt - 'I 2 
3 X 103 mt - f 
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(5.30) 

(5 .3 I) 

(5.32) 

(5.33) 

(5.34) 
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where 

(5.35) 

and 
r2 ::: {ex- acoswt)2 + (y-asin wt)2 i. (5.36) 

Similarly, using (5.20) and (5.21) in (5.33), we get 

(5.37) 

Case (i) : The body is within M 
9 

and M J 

When the protoplanet is an interior one we consider the following initial 

conditions: 

x == 5 x 10
13 

cm, ~ == 0 at t = 0. 

y=l.5 x l06 cm/sec att=O . 

Now we replace the variables x, y and t by the non dimensional variables X, 

Y and r by the relations given below: 

x = 5x 10
13 X} 

y = 5x 1013 Y . 

1=1010 -r 

Then from equation (5 .34), we get 
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or 

1020 MJ {X - a cos(IO10 cvr)} 
-G---~------~5~x~lO[13:_~ _ _:__:_ ____ _ 

l.25xlO41 ({X- a (IO10 2 a )f 
5xlO13 cos cvr)} +{Y- 5xlO13 sin(IO1ocv,)}2 

or 
Gm2 a 

l.25x1O21 {X - 5x1O13 cos(IO1ocv,)} 
(5.38) 

({X - a 13 cos(IO10 cvr)}2 +{Y - a sin(1Owcvr)}2)¾ 
5xlO 5x1O13 

Similarly, from (5.37), we get 

Gm2 ' { a . 1o _ _ ....:;__2-1 Y - 13 sm(l O cvr)} 
1.25 x 10 5 x I 0 

(5 .39) 

3 

( {X - a 13 cos(IO10 cvr)}2 ~{Y- a 13 sin(IO10 cvr)}2
)

2 

5x1O 5xlO 

Now M J = 1.8994 x 1030 gm and a= 7.7791 x 1013 cm. The mean orbital velocity 

of Jupiter is v = 1.3 06 x I 06 cm sec -i . Therefore the mean angular velocity of 
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Jupiter IS w=~= l.3O6xlO6 
_ _

8 
_1 a 7_7791 x 1013 -l.6789xlO sec . Now taking 

Me = 1.989 x 10
33 

gm and 1110 = 1030 gm, we get 

I 1 
-7 - -

3xlO mg =3xl0-7 x(IO 30 ) 3 =3000, 

a 7.7791xlO13 

5 X 10'3 = 5 XI 013 = 1.5558 

It is to be noted that m0 has been taken as 1030 < M J so that it does not disturbed 

the motion of M J • 

Now from equation (5.38), we get 

3
dX 

d
2 
X d-r ------

d-r2 3000- -r 

_ 6.675 X 10-
8 

X 1.989 X 10
33 r X l 

1021 3 
l.25x (X2+Y2)2 

- 6.675 X 10-8 
X 1.8994 X 1030 P, 

1.25 X 1021 

where 
(X -1.5558 cos q) 

p = 3 

(CX -1.5558cosq)2 + (Y -1.5558sin q)2 )2 

with q=1O10 w-r =167.89-r. 

1.062 IX 105 X 3
dX 

d-r -----

or 

3 
d-r

2 
3000--r (X2 +Y2)2 (5.40) 

1O1.42796{X - l.5558cos(l67.89-r)} 
3 • 

- ({X - l.5558 cos(167.89-r)}2 + {Y -1.5558sin(l67.89-r)}2 )2 

Similarly, from equation (5.39), we get 



3
dY 

d-r 
d-r2 - 3000 - -r 3 

(X2+Y2)2 

101 .42796{Y -l.5558sin(l67.89-r)} 

({X -l.5558cos(167.89-r)}2 +{Y -l.5558sin(l67.89-r)}2 )i. 
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(5.41) 

To solve the equations (5.40) and (5.41), we break these equations into the four 

equations as follows: 

dX 
- -=u d-r , (5.42) 

dY 
-=v, 
d-r (5.43) 

du 3u 1.0621 x 105 X 

d-r 3000- T (X2 + y2)¾ 

101.42796{X -l.5558cos(l67.89-r)} 
- 3 

({X -1.5558 cos(l 67.89-r)} 2 + {Y -1.5558 sin(l 67.89-r)} 2 }2 

(5.44) 

and 

dv 3v 1.0621xl05 Y 
-- 3 

dr 3000- r (X2 + y2)2 ) 
(5.45 

101 .42796{Y -1.5558sin(167.89-r)} 
3 

- ({X - l.5558cos(167.89-r)}2 + {Y - l.5558sin(l67.89-r)}2 )2 

with conditions 

r=O 

X=l 

Y=O 

u=X=O 

V = f = 300 

(5.46) 
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We have solved equations (5.42), (5.43), (5.44) and (5.45) using (5.46) with the 

help of the 4
th 

order Runge-Kutta method. The solution is shown in figure 5.2. The 

diagram clearly shows that the protoplanet spirals in as it loses mass. 

y 
03 

-03 

. 1 d' of an interior protoplanet as it loses mass Fig. 5.3: Orb1ta 1stance 

d t A is the interior position of the protoplanet in a three bo Y sys em · 

and S is the position of the Sun. 



Case (ii): The body is an exterior protoplanet 

In this case the initial conditions are taken as: 

x = 10
14 

cm, x = 0 at t = O 

y = o, y = 1.1x106 cm/sec at t = 0 . 
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Now we replace the variables x, y and t by the non dimensional variables X, 

Y and r by the relations given below 

Then from equation (5.34), we get 

1014 d 2 X 

or 
{X __ a_cos(I010 wr)} 

GM 1014 
- __ J ------~~----------:i-3 

1022 )-
({x - ____::_ cos(l 010 wr)} 2 + {Y - --;-sin(l 010 wr)} 2 2 

1014 10 

Inserting the parameters involved, we get 
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d
2

X 3 d){ l ] =----=d::....:-r:__ ___ 6.675xl0-8 xl.989xlO33 X 
d-r2 I n 

3 10-7(1030)3 10 3 X - 'f (X2 + y2) 2 (5.47) 

6.675 x 1 o-s x 1.8994 x 1030 

1022 p, 

where 
{X 7.7791 X 1013 

p = - . 1014 cosq} 

(
{X 7.7791 X 10

13 
2 7.7791 X 1013 . ]% 

- 1014 cosq} + {Y - 1614 sm q}2 

= {X -.77791cosq} 

({X - .77791 cosq}2 + {Y - .77791sin q}2 )f ' 

where q=1O10 (i)-r =1010 xl.6789xl0-8 =167.89 

Therefore, from equation ( 5 .4 7), we get 

3
dX 

di-____ .:..:...,:__ 

dr2 3OOO--r 

1.3277xlO4X 
3 

(X2 +Y2)2 

12.6785{X -.77791cos(l67.89-r)} 

({X - .77791cos(l67.89-r)}2 + {Y - .7779lsin(167.89-r)} 2 )f. 

Similarly from equation (5 .37), we get 

1.3277xlO4Y 
3 

(X2 +Y2)2 

l 2.6785{Y- . 77791 sin(l 67.89-r)} 
3 • 

({X - .77791 cos(l 67 .89-r)} 2 + {Y - .77791 sin(l 67.89-r)} 2 )2 

(5.48) 

(5.49) 

To solve the equations (5.48) and (5.49), we break these equations into the four 

equations as follows: 



dX 
-=u 
dr ' 

dY 
-=v 
dr ' 

du 3u l.3277xl0 4 X 
=---

dr 646.33 -r 3 

(X2 +Y2)2 

12.6785{X -.77791cos(l67.89r)} 

({X - .77791cos(l67.89r)} 2 + {Y - .77791sin(167.89r)}2 
)~ 

and 

dv 3v l.3277xl04 Y 
=---

dr 646.33 - r 3 

(X2 +Y2)2 

12.6785{Y-.77791sin(167.89r)} 

({X - .77791 cos(167.89r)}2 + {Y - .7779lsin(167.89r)} 2 )i. 
With conditions 

r=O 

X=I 

Y=O 

u=X=O 

v=Y=llO 

95 

(5.50) 

(5.5 I) 

(5.52) 

(5.53) 

(5.54) 

We have solved equations (5.50), (5.5 I), (5.52) and (5.53) using conditions (5.54) 

with the help of the 4th order Runge-Kutta method. The solution is shown in figure 

5.4. 
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y ------------ - - - - - -- - - ------ - -----------, 

0.8 

0.2 

- --0-- - ----

-0.5 

-0.8 
~-------- --- --------- -- ----- -------- . • •· · ------------- ---~ 

Fig. 5.4: Orbital distance of an outer protoplanet as it loses mass in 

a three body system. A is the initial position of the protoplanet and 

S the position of the Sun. 
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It is evident from the diagram that the protoplanet is pushed outward as it loses 

mass. Figures 5.2 and 5.3 clearly indicate that the orbital distance of a 

protoplanet losing mass is in qualitative agreement with observation, the orbit 

. being always elliptical. 

Comparison with observation 

With our calculated data we obtain a plot of log(aphelion distance) against log 

(mass) in fig. 5.5. 

cu 15 
() 
C 
ro 
1n 14.5 

C 
0 

(1) 

14 

-§.13.5-
ro ---g1 13 -- - - ... -.. , .... · 

'2J 28 

DocM-·25 

3) 

fig. 5.5: The predicted mass distance relation 

31 
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It is found that the distance-mass relation is given by the form 

(5.55) 

When D is the distance, M is the mass . 

a = -.25 for outer planets 

= +.23 for the inner planets. 

If DJ and M J are the values of the parame.ters for Jupiter, then from (5.55) we 
have 

(5.56) 

It is now easy to calculate the distance of a planet for any known value of M In 

the table below 5.1 we compare the theoretically predicted distances with the 

observed distances of the present day planets. 

Table 5.1 

Comparison of the predicted distance with observation 

Planets Mercury Venus Earth Mars Jupiter Sntum Urnnus Neptune Pluto 

Mass (gm) 2.99 4.78 5.98 6.42 1.90 5.69 8.69 1.03 1.02 

X 1026 
X 1027 

X 1027 
X 1026 

X 1030 X 1029 X} 028 
X 1029 

X 1027 

Predicted 1.08 2.05 2.16 1.29 7.78 I.IO 1.76 1.68 5.35 

distance ( cm) 
X 1013 

X 1013 
X 1013 X 1013 X 1013 

X 1014 xl014 X 1014 xl014 

Observed 7.07 1.08 1.52 2.48 7.78 1.5 3 4.52 7.39 

distance ( cm) 
X 1012 

X 1013 
X 1013 

X 1013 
X 1013 

X 1014 
X 1014 

X 1014 
X 1014 

4. Conclusion 

We have investigated the effect of mass loss on the protoplanetary orbits. ln a two 

body problem the orbital distance is found to increase as a result of mass loss. 
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However, in a three body problem wit~ the Sun, Jupiter and the protoplanet under 

consideration, all being in the same plane; there is found a clear division in the 

effect of mass loss on protoplanetary orbits. For the interior protoplanets (i.e., 

within the Sun and Jupiter) mass loss decreases the orbital distance whereas for 

the outer protoplanets the orbital distances are found to increase as mass loss 

proceeds. The mass-distance relation is found to be given by a power law form .. 
()..-<e. 

The predicted distances of the present day planets with known masses ~ found to 
A 

be in good agreement with the observed distances. We, therefore, conclude that 

mass loss from a set of identical protoplane,ls can explain the distribution of 

planetary distances as observed today. 
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