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Abstract

The present thesis entitled “Characterizations of Some Radical
Rings and Gamma Rings” is the outcome of the research by me under
the supervision of Dr. A. C. Paul, Professor, Department of
Mathematics, University of Rajshahi. The main emphasis of this
thesis is to find radical rings. In introduction, we introduce the
concepts of the complete thesis.

The thesis is of eight chapters. In the first chapter, we discuss the
preliminaries of the complete thesis. This chapter is the basic concept
of our work. Here we discuss the definitions and some results of
I“rings. We develop some characterizations of p-rings in the second
chapter and in the third chapter, we generalize the p-rings. We define
p-I-ring and prove the analogous properties of p-rings for p-7-rings
in the fourth chapter and the fifth chapter J-I-rings are the
generalizations of p-I-rings. In th‘e sixth chapter, we define the
regular /-rings that are more general than that of S. Kyuno,
N. Nobﬁsawa and B. Smith [14] and we also develop sufficient
conditions for 7-rings to be regular. In the seventh chapter, we define
an abelian regular /-rings and prove that an abelian regular /-ring is
equivalent to “strongly regular” /-rings. We also develop some other
properties. We define unit-regular /-rings in chapter eight and
develop a number of equivalent characterizations and also develop a

lattice theoretic characterization.
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Introduction

The idea of a /-ring as the generalization of a ring was introduced by
N. Nobusawa [16] and obtained analogues of the Wedderburn
Theorem for /-rings with minimum condition on left ideals. W.E.
Barnes [4] improved the idea of N. Nobusawa and gave the definition
of 7-rings which are more general than that of N. Nobusawa [16]. The
notion of /~homomorphism, prime and primary ideals, m-systems, the
radical of an ideal were introduced by him.

The notion of Jacobson radical, nil radical and strongly nilpotent
radical for /-rings were introduced by Coppape and Luh [7] and they
developed some radical properties.

Regular rings were invented and named by von Neumann and he
obtained a necessary and sufficient condition for regular rings. Brown
and McCoy developed the concept of a regular ideal. Warfield,
Bergman, Kaplansky, Auslander and some other Trenounce
mathematicians made deeper studies on regular rings.

The general radical theory for rings had been introduced by A.
Kurosh [11] and S. A. Amitsur[1]. They studied the characterizations
of a general radical. Divinsky [8] studied the general radical theory,
the upper radical and the lower radical. Various kinds of radicals were
studied here and he had also shown that these radicals are equal by
minimum condition. He also characterized special class of rings and

special radicals.



Shoji KYUNO, Nobuo NOBUSAWA and Mi-Soo B. Smith
[14] introduced regular [} -rings and they developed various
properties of regular [y -rings. They obtained a couple of necessary
and sufficient conditions that /[y -rings are regular and then
characterized a commutative regular 7 -rings as a subdirect sum of
gamma fields.

Strongly regular rings were invented and named by Arens and
Kaplansky, while the term “abelian’ came into use later via operator
algebras and Bear rings. Arens and Kaplansky proved that every
strongly regular ring is regular, and that, in a strongly regular ring,
every one-sided ideal is two-sided. Forsythe and McCoy showed that
a regular ring is strongly regular if and only if it has no nonzero
nilpotent elements, and that in a ring with no nonzero nilpotent
elements, all idempotents are central. Most of the basic
characterizations of abelian regular rings have been re-proved in a
number of papers, along with innumerable variations and alternative
characterizations. |

Unit-regular rings were invented by G. Ehrlich [9] and he saw that
this unit-regularity was equivalent to various properties for direct
sums of finitely generated projective modules. K. R. Goodearl [10]
developed a number of equivalent characterizations of the unit-
regularity of a regular ring and also developed a lattice—theoretic
characterization.

In our work, we have obtained the general radical theory for
various type of J-rings. We have studied some of the

characterizations of general radicals for J-7-rings, regular /-rings,



unit-regular /-rings and abelian regular /~rings. In this connection we
have also discussed particular radicals such as Jacobson radicals.

The main body of this thesis is divided into eight chapters.

The first chapter is the fundamental concepts relevant to our
works. Here we have given some basics concepts of /-rings, /-rings
M-modules, radical classes and other concepts that are needed to our
research works.

In the second chapter, we have studied p-rings and developed
some basic properties. We have proved that the class of all p-rings is
a radical class. We have also developed a number of equivalent
characterizations of p-rings.

We have studied J-rings and developed some properties in
chapter three. We have showed that the class of all J-rings is a radical
class. We have also proved that the Jacobson radical of J-ring is zero.

The concepts of p-/~-rings have given in the third chapter. Here we
have proved the analogous properties of p-rings for p-/-rings. We
have proved that the class of all p-/-rings is a radical class. We have
also developed some other properties of this ring.

The purpose of chapter five is to introduce the notion of J-/-
rings and obtain the analogous properties of J-rings for J-/-rings. We
also develop some other properties for J-/-rings.

In chapter six, we have defined a regular /-ring that is more
general than that of S. Kyuno [14]. Here we have developed a few of
their most basic properties. The main emphasis is on developing
sufficient conditions for /-rings to be regular. We also have proved

that the class of all regular /-rings is a radical class.

iii



Chapter seven is one of several in which we have developed the
basic properties of a class of regular /-rings of some “classical” type.
Those considered in the present chapter are somewhat commutative,
in that all idempotents are central, and also closely connected to
division [-rings. Abelian regular /-rings are also known as strongly
regular /-rings, which is, however, a more indirect concept. In that a
nontrivial theorem is required to show that strongly regular /-rings
are actually regular. For this reason, we view abelianness as the more
general property. We have first developed a number of equivalent
characterizations of abelian regular 7-rings before proving that
“abelian regular” is equivalent to “strongly regular”.

The last chapter eight is concerned with unit-regular 7-rings. We
havé developed a number of equivalent characterizations of the unit
regularity of regular 7/-rings, mostly in the form of cancellation
properties, either internal (within the lattice L{Mpy)) or external (for
finitely generated projective M-modules). These cancellation
properties are then used to derive further properties of finitely
generated projective M-modules over unit-regular /-rings. We have
also developed a lattice theoretic characterization of the unit-

regularity of M, namely transitivity of the relation of perspectivity in
the lattice L(2MR)



Chapter-One

Preliminaries

Let M and I be additive abelian groups. If there is a mapping
MxTxM— M satisfying, forall a, b,ceM; a, f, ye I’
(i) (a+b)ac=aac+ bac
(i) a(la+ pb=aab+ afb
(ii)) aoa(b + c)=aab+aac and
(iv) (aab)fe=aa(bp),
then M is called a /=ring. This /~ring is due to Barnes [4].
If the defining conditions for a /-ring are strengthened to
(i) aab is an element of M, aaffis an element of [/
(ii") and (iii’) are same as (ii) and (iii),
(v (aab)fc=a(abflc = aa(bpc)
(v)) aab = 0 for all a, be M implies a=0,
then we have a I-ring in the sense of Nobusawa [16]. This /=ring is

denoted by /'y -ring.

Throughout this thesis we consider the 7-rings due to Barnes.
If A and B are subsets of a /-ring M and 6, @ < I, then we
denote by 46B, the subset of M consisting of all finite sums of the

form }a;a;b;, where a; b;e M and o,;€86.

Ideal of I-rings: A right (left) ideal of a /*ring M is an additive
subgroup / of M such that II'M = {aablacd acl, beM} c I(MIT c
). If I is both a right ideal and a left ideal then we say that 7 is an

ideal, or redundantly, a two-sided ideal of M.
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If 7 and J are both left (respectively right or two-sided) ideals of
M, then I +J = {a+ b | aecl, beJ) is clearly a left (respectively right
or two-sided) ideal, called the sum of / and J. We can say every finite
sum of left (respectively right or two-sided) ideal of a /-ring is also a

left (respectively right or two-sided) ideal.

It is clear that the intersection of any number of left (respectively
right or two-sided) ideal of M is also a left (respectively right or two-

sided) ideal of M.

If A is a left ideal of M, B is a right ideal of M and § is any non

n .
empty subset of M, then the set AI"S = { Y a;ys:| a;€A, yel, s;€S,

i=l
n is a positive integer} is a left ideal of M and S/B is a right ideal of
M. ATI'B is a two-sided ideal of M.

If ae M, then the principal ideal generated by a denoted by (a)

is the intersection of all ideals containing a and is the set of all finite
sum of elements of the form na + xaa + afly + uypauv, where n is an
integer, x, y, u, v are elements of M and a, B, 7, u are elements of /..
This is the smallest ideal generated by a. Let ae M. The smallest right
ideal containing a is called the principal right ideal generated by a is
denoted by la). We similarly define (al and {a), the principal left
and two-sided ideal generated by a respectively. We have Ia) =Za +
al'M, (a l =Za+ Mla,and {a)=Za +alfM + MI'a + Ml'al'M, where
Za = {na: n is an integer}. The smallest left (right) ideal generat'ed by
a is called the principal left (right) ideal and is denoted by {a| (] a)).
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Semiprime ideal: An ideal P of a [tring M is said to be
semiprime if for any ideal Q of M, QI Q < P implies Q c P. A [-ring

M is semiprime if the zero ideal is semiprime.

If A is semiprime ideal and B an ideal of M with B ¢ A, then

(BN'B=(BIBIBI ......... IBNB c A for any positive integer n.

Prime ideal: An ideal P of a -ring M is said to be prime if for
any ideals A and B of M, ATB ¢ P impliesA c P or B < P. A I-ring

M is said to be prime if the zero ideal is prime.

The Descending'Chain Condition (DCC): A I-ring M is said to
have the descending chain condition on left ideals or DCC on left
ideals if every descending sequence of left ideals M 2 L) 2 L, 2
.......... D L,D ....... terminates after a finite number steps, i.e. thefe

exists an integer n suchthat L, =L, + 1 =Lp 42 = ...... .

The Ascending Chain Condition (ACC): A Iring M is said to
have the ascending chain condition on left ideals or ACC on left
ideals if every ascending sequence of left ideals L, c L, C ........ c L,
S verneen terminates after a finite number of steps, i. e. there exists an

integer nsuchthat L, =L, 1=Ln+2 = vecvveveeennn. .

I*homomorphism: If M and M are Friﬁgs andf M o> Misa
group homomorphism with extra property that fayb) = fla)y(b), for
all a, be M and ye I then fis a /-homomorphism.

Quotient I-ring: Let I be an ideal of a /-ring M. If for each a +
I, b + I are in the factor group M/I and each ye I, we define (a + )b

+ 1) =apyh + 1, then M/I is a I'-ring which we call the quotient /~ring
3
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of M with respect to I. The mapping ®: a — (a + ) is a
I“homomorphism of M onto M/I, called the natural

I~homomorphism.

Idempotent element: An element x of a I-ring M is called

idempotent if xyx = x for some ye/.

Nilpotent element: An element x of a [-ring M is called

nilpotent if for every ye I there exists a positive integer n = n(y) such
that (x»)"x = 0 and an ideal 4 of M is called nil if every element of 4

is nilpotent.

Strongly nilpotent element. An element x of a I-ring M is

called strongly nilpotent if there exists a positive integer n such that

(xN"x = 0 and an ideal 4 of M is called strongly nil if every element

of A is strongly nilpotent.

Strongly nilpotent ideal: An ideal I of a I-ring M is called

strongly nilpotent if there exists a positive integer » such that

(A" A = 0. Clearly a strongly nilpotent set is also strongly nil.

Locally nilpotent element. An element x of a /-ring M is called

locally nilpotent if for every finite subset F' ¢ M and finite subset

@ c T, there exists a positive integer n such that (FCD)‘"F = (.

Weakly nilpotent element: An element a of I-ring M is said to
be weakly nilpotent if there exists a non-zero element ye/ and an
integer # > 1 such that (a}f)”"a = 0. A I“ring M is weakly nilpotent
if every element of M is weakly nilpotent.

4
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Orthogonal idempotent elements: Let M be a I'ring. A set of
elements {e;} of M is called orthogonal idempotent if e;ye; = 0 for i # j

and e;ye; = ¢; = 0 for some ye /.

Subdirect Sum: By the direct product (or complete direct sum)
of I-rings M,, r is in some index set I, we mean the set [],o;M, = {f: ]

- U, e /M, l'f(r)eM, all rel}. We give a I-ring structure to [1,;M, by
defining (/+ g)(r) = fir) + g(r) and (/1g)(r) = f(r)yg(r).

Let 7, be the projection of [1,;M, onto M,. A [ring M is said to
be a subdirect sum of /-rings {M,},c,; if there is a monomorphism

®: I > [1,/M, such that M®n, = M, for some rel.

Internal direct sum: Let M be a I-ring and N, and N, be two
left ideals of M such that
()  M=N+Ny= {ni+m | meN,, nmeN,}
(ii) NiNnN,=0

then we say M is the internal direct sum or simply direct sum of N,

and N, and we write M= N, D N,.

Subdirect Product: A I“ring M is said to be a subdirect product
of the family {M,},c; of I-rings if there is a natural projection p;
such that p(M) = M, for every rel.
Sub-directly irreducible: A [-ring M is said to be subdirectly
irreducible if it has no nontrivial representation as a sub direct sum of
any /-ring M.

Clearly, a ring with only one element is subdirectly irreducible.
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A T-ring M has a nontrivial representation as a subdirect sum of
I'rings if and only if there exists in M a set of nonzero ideals with
zero intersection. Thus every representation is trivial if and only if
every set of nonzero ideals has nonzero intersection. Hence, a nonzero
Iring M is sub-directly irreducible if and only if the intersection of

all of its nonzero ideals of M is different from zero.

Right operator ring: Let M be a [“ring and F be a free abelian
group generated by IxM. Then A = {3 n(y;,x;)elF |aeM
i

= Y.may;x; =0} is a subgroup of F. Let K = F/A, the factor group,
i

and denote the coset (, x) + 4 by [y, x]. Then [, x] + [, y] = [a, x +
yland [a, x] + [fB, x] =[a+ B, x] forall a, el
We define a multiplication in K by (X[, x;]N X156, y1) =
i J

2l o, x;By;]). Then K forms a ring. Now we define a composition on
iJj

MxK into M by x(X[a;, x;]) = Y xa;x; for xeM, 3 [a;, x]JeK. Then
i i i

M is a right K-module and we call K the right operator ring of the
I=ring M. Similarly we can define the left operator ring of the /=ring M.

Quasi-regular I-ring: An element x of a />ring M is said to be
right quasi-regular (abbreviated rqr) if for any yerl, there exists

oell,x;eM,i=1,2,3,....., nsuch that xya + > xdx; — Y xymd;x; =0.
j i

I
A T=ring M is called right-quasi regular if every element of M is right-
quasi regular. The class of all right-quasi-regular /~rings is a radical

class. This radical is called Jacobson radical and is denoted by J .

6
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Completely prime ideal in a I'-ring: A completely prime ideal
in a I-ring M is a proper two-sided ideal P such that M/P is an

integral domain (not necessarily commutative).

Division I-ring: A I‘ring M is called division /ring if for
every xe M there exists ye M such that xyy = yx = 1.

I“Field: A commutative division /-ring is called a /-field.

Semi-hereditary: A I'ring M is said to be semi-hereditary if
every finitely generated right ideal of M is projective M-module.

Non-singular I-ring: An ideal I of a /-ring M is called
essential if for every nonzero ideal 4 in M, I n A # 0. Let (M) be the
class of all essential ideals in M and Z,(M) = {xeM | x/T = 0 for some
Ie(p(M)}. M is called a non-singular /ring if Z(M) = 0. For the
case of a classical ring R, we define Z,(R) = {xeR|xI = 0 for some

Ie@(R). Then R is called a non-singular if Z(R) = 0.

m-system: A subset S of a I-ring M is an m-system if § = ® or
if a, beS implies (@)/Ya) N § # . A subset N of M is said to be
n-system in M if N= ® or if aeN implies (a) " N = ©.

Radical Class: A class of rings (/-rings)% is called a radical
class if |
a) 9 is homomorphically closed, i.e. if Re 97 and [ is an ideal
of R, then R/Ie 9.
ii) M is closed under extension, i.e. if R/I and /e .‘H; then

ReN. Here I is an ideal of R.
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iii) fhchclh © oieis -is an ascending chain of

Ji-ideals, then U,/ € 7.

Let 4 be any ring (F—rihg) and let 97 be a radical class. Then there is a
unique largest 97 -ideal R(A) such that A/R(A) has no non-zero
Ji-ideals. This R(A) is called a radical of 4. If R(4) = A, then 4 is
called an f#-radical ring (/-ring). If R(A) = 0, then A is callevd

#-semisimple.

Jacobson radical: Let M be a commutative /-ring with 1. Then
Jacobson radical of the /-ring M is the intersection of all maximal

ideals of M.

M-module: Let M be a [-ring and let (£, +) be an abelian
group. Then E is called a M-module if there exists a /~mapping
(7-composition) from Mx7XE to E sending (m, a, p) tlo map such that

i) (m + m)ap = map + myap

i) malp) +p)=map + map,

i) (mama)fip = mya(mzfip),

for all p, p\, p2€E, m, mi,myeM, a, per".

If in addition, M has an identity 1 and 1yp = p for all peE and some

ye [, then E is called a unital M-module.

Sub module: Let M be a Iring. Let £ be a M-module. Let (Q, +)
be a subgroup of (£, +). We call Q, a sub module of E if mygeQ for
all meM, qgeQ and yer.
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Quotient module: Let Q be submodule of a M-module E. 1f for
eacha + Q, b + Q are in the factor group E/Q = {p + QIpeE} and
each yerl, we define myp + Q) = myp + Q for all meM, peP and
vel,and (p)+ Q) + (p2 + Q) = (p1 + p2) + Q for all p,, p,€P, then
E/Q is a M-module which we call the quotient module of M with

respect to Q.

Irreducible module: An M-module is said to be irreducible if it
has exactly two submodules. These must be itself and 0; the module 0

is not irreducible according to this definition.

Annihilator: Annihilator of a subset § of an M-module E is
defined as
Ann(S) = {acE | ayx =0 for all xe§, yel}.
It is a left ideal of E. If S is submodule of E, then Ann(S) is a two-
sided ideal of E.
If § = E, then Ann(S) = Ann(E)=0
If Ann(E) = 0, then E is called a faithful module.

Indecomposable Submodules: Submodules that are not the
direct sum of two nonzero submodules are known as indecomposable

Submodules.



Chapter - Two

Some Characterizations of p-Rings

In this chapter, we study various properties of p-rings. We

proved a basic theorem like: If R is a ring and / be an ideal of R, then
R is a p-ring if and only if I and R/I are p-rings; if % is a class of all
p-rings, then this theorem shows that 97 is a radical class. We also

develop some other properties of p-rings.

Definition: A ring R is said to be a p-ring if for each x€R there exists

a prime integer p > | with px = 0 such that x? = x.

This p-ring R has no nonzero nilpotent elements; for any a€R,

aP™ is an idempotent element; every ideal is two-sided and R is

commutative.

Lemma 2.01. Let R be a commutative ring. If I is an ideal of R such

that 1 is a p-ring, then ey — y?) = 0 for all yeR and e is an

idempotent of I.

Proof. Let xel and yeR. Then xyel. Since I is a p-ring, x” = x and
(xp)? = xy for some prime p > 1. Now, x”y? = xy implies xy” = xy
implies x(y? —y)=0, so x?7'(y — y?)= 0 and hence, e(y —y?) =0,

where e =x 7 is an idempotent of 1.

Lemma 2.02, Let R be a commutative ring and I an ideal of R. Then

R is a p-ring if and only if R/l and I are both p-rings.
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Proof. Suppose that R is a p-ring. Then, obviously, / is a p-ring. Now,
let xeR/I, then x = r + ] for some reR with rP =r Now, xP=(r +

DP=rP+I=r +1=x.Thus, R/l is a p-ring.

Conversely, let R/I and I be p-rings. Let xeR, then x + IeR/I
and so (x + NP=x + I=xP+]. Thus, x? - xel and since / is a p-ring,

(xP-x)P =xP- x for some prime p > |. Let e/__= (xP-x)?~1. Then

e’ is an idempotent of /. By Lemma 2.01, e (xP - x) = 0 for every

XEN. NOW,U=¢e X"—X)= (X" —X x—x=3c—x =x"—X.
R.Now. 0 =¢' (x” xP-x)P T xP —x) = (xP-x)P =xP

Hence, x”= x. Therefore R isa p-ring. W
. p-ring

Lemma 2.03. Let hc hchc ............ be ascending chain of

ideals which are all p-rings. Then Ul is also a b—ring.

Proof. Let xeuU,l,, then xel, for some a. Since /, is a p-ring, then

x P = x for some prime p > 1. Hence, \U,/, is a p-ring. B

Thus, by Theorem 2.02 and Theorem 2.03, we have the following

theorem:

Theorem 2.04. The class # of all p-rings is a radical class. R

Characterizations ofﬁ-rings

Theorem 2.05. Let R be a ring with 1. Let a, xeR such that a = xP72,

Then the following statements are equivalent:
a) R is a p-ring.
b) Every principal ideal Ra is generated by an idempotent

element e where e =xq = xP~! ,XER.
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Chapter-Two Some Characlerizations of p-Rings

c) For every principal ideal Ra of R, there exists an element

beR such that R = Ra ® Rb.
d) Every principal ideal Ra is a direct summand of R.

Proof. a = b) Let xeR. Then x” = x for some prime p > 1. Let aeR.

and Let a = x”72, Now, the principal ideal Ra is generated by the
element xa which is idempotent; for (xa)(xa) = xxP2xx P2 =

xPxP2 =xq.

2

b = c) Let Ra = Re, where e?= ¢ and a =x”"’, xeR. Since 1 = e +

(1 — &), and if there exists beR such that ae = b(1 - e), then ae = ae?

= bh(l —e)e=0.S0 R=Re ® R(1-e).

¢ = d) Trivial. |

D = a) Let aeR. Then there exists an ideal / of R such that R = Ra &
I. Hence, 1 = xa + b, where bel, so x = xax + bx. Since a = x?72,

bx = x — xaxeRa N I = 0, and therefore x = xax = x”. Hence, R is a

p-ring. A

Theorem 2.06. Let R be a p-ring with 1. Then
1) Every finitely generated ideal is principal.

2) The intersection of any two principal ideals of R is principal.

Proof. 1) 1t is enough to prove that if a, beR, then Ra + Rb is

principal. Since R is a p-ring, by Theorem 2.05, there exist elements

x, yeR witha = xP~? and b =yp"2 for some prime p > 1, such that
the elements e; = xa and e¢; = ya are the idempotent elements of Ra

and Rb respectively and also Ra = Re; and Rb = Re,.
12
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Now, Ra+ Rb = Re, + Re; = Re, + R(e; — eze)) because ae, +
aes = (a; + mey)e; + axe; — exe)). If s = (e; ~ e,e;)P 2 eR, then
(e2 — eze;)s(es — ere)) = (e2 — e2¢1)? = (e; — eze;). Then eé = s(ey —
e2e)) is an idempotent of Rb. Then Re, + Re, = Re; + Reé with eée. =

s(e; — ezep)e; = 0.

Finally, we have, aje, + azeé_ = {a,ey + aleé)(e; + eé - eée.),
ay, byeR. Thus, Re; + Re;’z = R(e, + eé - eé_e,). Therefore Ra + Rb =
R(e, + eé - eée,) is a principal ideal. Thus, Ra + Rb is a principal

ideal.

2) Let Ra and Rb be two principal ideals. Since R is a p-ring by
Theorem 2.05, there exists elements x, yeR with a = xP7? and

b= y"’~2 for some prime p > 1, such that the elements ¢, = xa and
e, = ya are the idempotent elements of Ra and Rb respectively and
also Ra = Re; and Rb = Re,. Hence, R = Re, ® R(1 — e;)=Re, @ R(1-
e,), and

Rey = Anng[(1 — e))R] = {xeR | x(1 — e;)R =0},

Rey = Anng[(1 — e)R] = {xeR | x(1 — ;)R =0}.
Indeed obviously Re; ¢ Anng[(1 — e))R] .

Conversely, if xeR and x(1 — e;) = 0, writing x = a,ey + b|(1 -

e)), a;, byeR, we have

aiey(1 —e)) +by(1 —e)1 —e)=0, and so

bi(1 —e)) =0, hence, x = a,e, eRe,.

13
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Thus, Re; N Re; = Anngf(1 — e)R + (1 — e;)R]. Now, there
exists e;eR such that (1 — ¢ )R + (1 — e2)R = (1 — e3)R, and from
Re; = Anng[(1 — e3)R] we deduce that Re; m Re; = Res. Thus,

Rey N Re;= Ra m Rb is a principal ideal. ®

Theorem 2.07. Let R be a p-ring with unity 1. Then
a) The Jacobson radical J(R) of R is zero.
b} R is a semisimple ring if and only if it is a Noetherian
p—fing. |
c) The centre of R is also a p-ring.
d) The p-ring R without zero divisor is a field.
e) Every ideal of R is nonsingular.
) For any idempotent element e of R, (1 — e)Re = ().
g) If (R))i€l is a family of p-rings, then [1 R; is a p-ring.
h) R is semihereditary.

Proof. a) Let ae J(R). Then Ra < J(R). Since Ra = Re, where e = xa
is an idempotent with a = xP~2 for some prime p > 1, so eeJ(R), it
follows that (I — e) is invertible. So there exists yeR such that
1 =y(1 - e) = y — ye. Hence, ¢ = ye —ye2 = ye — ye = ( and therefore
a=0. Thus, J(R) = 0.

b) First suppose that R is finitely generated. Then every ideal of R is
finitely generated and hence a direct summand. So R is a semisimple

ring.

Conversely, let R be a semisimple ring. Then every principal

ideal of R is a direct summand of R and hence, R is a p-ring (by

14
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Theorem 2.05). Since Jacobson radical J(R) is the largest ideal of R,
and since, in a p-ring, J(R) = 0, so any ascending chain of ideals of R

must be finite. Hence, R is Noetherian.

¢) Since p-ring is abelian, so centre of R is R itself, i.e. C(R) = R.

d) Let aeR with a# 0. Then a?= a for some prime p > 1. Then
aP-~a=0= a(@”! - 1)=0. Sinceaz 0, so a”' =1 = 0 and so

aP 72 is the inverse of a. Since p-ting R is abelian, _-so R is a field.

e) Suppose that x/ =0 for some xeR and J R is an ideal of R. Let Rx

be a principal ideal of R. Then there is an idempotent e such that

Rx = Re.

Now, since Rel = RxI = (, we see that ] ¢ R(1 — e). Then

I N Re = 0, whence Re = 0 and consequently x = 0. Thus, R is

nonsingular.
1) Since Re is a two-sided ideal, so (1 — €)Re = Re — Re? = Re — Re = 0.
g) Proof is obvious.

h) Since a finitely generated ideal of R is a direct summand of R and

so is projective. Hence, R is semihereditary. m

15



Chapter-Three

Some Characterizations of J-Rings

In this chapter, we study various properties of J-rings and
obtain some characterizations of J-rings. We first study the
commutitivity of J-rings. Then we obtain a basic theorem like: If R
is a ring and / be an ideal of R, then R is a J-ring if and only if / and
R/I are both J-rings. If 97 is the class of all J-rings then with the
help of this theorem we prove that #7 is a radical class. We also
obtain a couple of necessary and sufficient conditions that R is a

J-ring. We also establish some other properties.

Definition. A ring R is said to be a J-ring if for each xeR there

exists an integer n = n(x) > | such that x" = x.

Lemma 3.‘01. Let R be a J-ring. Then every right ideal I of R is a
two-sided ideal of R.

Proof. We first observe that R has no nonzero nilpotent elements.

For if x# 0, then x" = x implies that x™ # 0 for all m > 1. Next, let

ael and suppose a” = a for some n > |. Then (a"™)? = a*" =

a"a" % =aa""?=4a""!, s0 a" 'is an idempotent.

Now, let e be an idempotent. Then for any xeR, (xe-—exe)2 =0 =

I
®
e

(ex—exe)?. Thus, xe — exe = ex— exe =0 and so xe

i.e. e commutes with every elements of R.
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Thus, for any reR, ra = ra” = ra" 'a = a" 'ra = ar’, where
r'= a" 2raeR. Since ar’ €l, so does ra and so I is a two-sided

ideal. &

Theorem 3.02. Let R be a J-ring and I an ideal of R. Then R/l and |

are both J-rings.

Proof. Obviously I is a J-ring. Now, let xeR/I, then x = r + I for
some reR with r* =r. Now, x" =(r+ 1)} =r" +1=r+1=x.
Thus, R/I is a J-ring.

Lemma 3.03. Let D be a division ring such that for every xeD,

there exists an integer n(x) > | such that x"®=x ThenDis a field.
Proof. The proof is given in [18, Lemma 7.8.13]

Lemma 3.04. Let R be a J-ring with identity |. Then for x, yeR,

Xy — yx is in the intersection of the maximal ideals of R.

Proof. Every ring has a maximal ideal. Let / be such a maximal
ideal. Then the quotient ring R/I has an identity, and since / is a
maximal right ideal of R, R/I has no maximal ideals other than 0
and R/I. Thus, R/ is a division ring. Since R is a J-ring, R/l is a
J-ring (by Lemma 3.02). Then R/l is commutative (by Lemma 3.03).

From this it follows that xy — yxel, for all x, yeR.

Lemma 3.05. Let R be J-ring with identity 1. Then R is

commutative.

17
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Proof. Suppose x # 0 is in every maximal ideal of R. Then x" = x,

] 1

and x"' is an idempotent, say x""! = e# 0 and e must also be in

every maximal ideal of R. Now, 1 — e can not be in any proper right

ideal of R, for if it were, it would be in a maximal ideal K of R.
Since eeK, 1 = e + (1 — ¢) would be in K and hence, K = R, a
contradiction. Since (1 — e)R# 0 and since (1 — e)R is a.(right)
ideal, it follows that (1 — )R = R, whence (1 — e)r = e for some
reR. Thus, 0 = e(1 — e)r = e, a contradiction. Thus, x can not be in
every maximal ideal in R and the intersection of all the maximal
ideals of R is 0. Thus, by Lemma 3.04, xy — yx€0, x, yeR, that is,

xy =yx, forall x, yeR. |
Theorem 3.06. If R is a J-ring, then R is commutative.

Proof. Let e be an idempotent in R. Then, ex = xe for all xeR. Thus,

eR = Re = T is also a J-ring, but 7" has an identity, namely e. Hence,

by Lemma 3.05, T is commutative. Now, for all x, yeR, xye = xye2
= (xe)(ye) = (ye)(xe) = yxe, that is (xy — yx)e = 0. Since (xy — yx)"
= (xy — yx) for some n > 1, so (xy—-yx)"'l is an idempotent, say e.
Thus, 0 =(xy —yx )e; = (xy — yx)" =xy — yx, that isxy = yx. W

Lemma 3.07. Let R be a commutative ring. Suppose that I is an

ideal of R such that I is a J-ring. Then e(y — ") = 0 for all yeR

and e is an idempotent of I.

18
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Proof. Let xel and yeR. Then xyel. Since I is a J-ring, x" = x.
Also (xv)" = xy for some 7 > 1. Now, x” y" = xy implies xy = x )"
implies x(y" —y) =0, so x" 'y = ") = 0 and hence, e(y — y") =

1

0, whence e = x""' is an idempotent of /. ®

Lemma 3.08. Let R be a commutative ring and I an ideal of R.IfRII

and I are both J-rings, then R is also a J-ring.

Proof. let R/l and I be J-rings. Let xeR, then x + [eR/I and so
(x + D" =x +17=x" + I Thus, x" — xel and since / is a J-ring,
then (x" —x)™ = x" —x for some m> 1. Let e’ = (x” —x)™"!. Then

e’ is an idempotent of I. By Lemma 3.07, e/(x" —x) = 0 for every

x€R Now, 0=e/(x" —x) = (2" —0)" Nx" —x) = (x" —x)" =

x" —x. Hence, x" = x. Therefore R is a J-ring. B

Lemma 3.09. If I, cLchc .......... is an ascending chain of

ideals which are all J-rings, then \U,l, is a J-ring.

Proof. Let xe\,l,, then xel, for some a. Since I, is a J-ring, then

n . .
= x for some n > 1. Hence, U/, is a J-ring. B

Thus, by Lemma 3.02, Lemma 3.08, and Lemma 3.09, we

have the following theorem:

Theorem 3.10. The class of all J-rings is a radical class.

19
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Some characterizations of J-rings

Theorem 3.11. Let R be a ring with 1. Let a, xeR such that

a=x""%. Then the following statements are equivalent.
a) R is a J-ring.
b) Every principal ideal Ra is generated by an idempotent.
c) For every principal ideal Ra of R, there exists an element
beR such that R = Ra ® Rb.
d) Every principal ideal Ra is a direct summand of R.

Proof. @ = b) Let xeR. Then x” = x. Let aeR such that a = 2,

Now, the principal ideal Ra is generated by the element xa which is

—2xxn—2 = 5" xn—2 =

idempotent; for (xa)(xa) = xx" xa.

2 2

b => ¢) Let Ra = Re, where e = e and a = x"°, xeR. Since
=e + (1 - e), and if there exists beR such that ae = b(1 — e), then

ae = ae* =b(1 ~e)e=0.SoR=Re ® R(l - e).
¢ = d) Trivial.

d = a) Let aeR. Then there exists an ideal / of R such that

R =Ra ® I. Hence, 1 = xa + b, where bel, so x = xax + bx. Since
a=x""2, bx =x - xaxeRa n I = 0, and therefore x = xax = x".

Hence, R is a J-ring. B

Theorem 3.12. Let R be a J-ring with 1. Then
1) Every finitely generated ideal is principal.

20
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2) The intersection of any two principal ideals of R is

principal.

Proof. 1) It is enough to prove that if a, beR, then Ra + Rb is
principal. Since R is a J-ring by Theorem 3.11(b), there exists

"=2 and b =" "2 such that the elements

elements x, yeR witha = x
e;= xa and e,= yb are the idempotent elements of Ra and Rb
respectively and also Ra = Re, and Rbh = Rez.'Nljow, Ra+ Rb = Re, +
Re, = Rey + R(ey — e,e;) because aje; + are; = (a) + azez)e, + axe
- eye)). If s = (e; ~ egel)""z &R, then (e; — eres(e; — exe)) = (ey —

e,e))" = (e, — eze;). Then eé = 5(e; — eye;) is an idempotent of Rb.

Then Re; + Re, = Re; + Reé with eée; = s(e; — ezey)e) =0.

Finally, w¢e have, ape; +02€é = (a|e| +a2e£)(e| + 85 - eéel).
Thus, Re, + Reé = R(e; + eé - eé e;). Therefore Ra + Rb = R(e, +

eé — e}’,_ ey). Thus, Ra + Rb is a principal ideal.

2) Let Ra and Rb be two principal ideals. Since R is a J-ring by

n-2

Theorem 3.11(b), there exists elements x, yeR with a = x and

= y"'2 such that the elements e; = xa and e, = yb are the
idempotents of Ra and Rb respectively and also Ra = Re, and
Rb = Re,. Hence, R = Re, ® R(1 — ;) = Re, © R(1 — e;), and
Rey = Anng[(1 — ;)R] = {xeR | x(1 — e))R =0},
Re, = Anng[(1 — e;)R] = {xeR | x(1 — e;)R = 0}.
Indeed obviously Re, < Anng[(1 — e))R].
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Conversely, if xeR and x(1 — e;) = 0, writing x = aje; + bi(1 -
e1), we have |
ajei(l —e))+ by (1 —e))(1 —e;)=0, and so
bi(1 —e)) =0, hence, x = a,e;€Re,.
Thus, Re; N Rey = Anng[(1 — e)R + (1 — e3)R]. Now, there exists
e;€R such that (1 — ¢;))R + (1 — e)R = (1 - e3)R, and from
Rey = Anng[(1 — ;)R] we deduce that Re; ™ Re; = Re;. Thus,

Rey M Re; = Ra M Rb is a principal ideal. ®

Theorem 3.13. Let R be a J-ring with unity 1. Then
a) The Jacobson radical 1(R) of R is zero.
b) R is a semisimple ring if and only if it is a Noetherian
J-ring.
¢) The centre of R is also a J-ring.
d) The J-ring R without zero divisors is a field.
e) Every ideal of R is nonsingular.
f) For any idempotent element e of R, (1 — e)Re = 0.
g) If (R):iel is a family of J-rings then [1 R;is a J-ring.

h) R is semihereditary.

Proof. a) Let aeI(R). Then Ra ¢ J(R). Since Ra = Re where

n=2

e = xa is an idempotent with a = x" °, so eeJ(R). It follows that

(1 = e) is inevitable. So there exists yeR such that 1 = y(1 — ¢) =

y — ye. Hence, e = ye — ye2 = ye — ye = () and therefore a = 0. Thus,
I(R) = 0.

b) First suppose that R is finitely generated. Then every ideal of R
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is finitely generated and hence a direct summand. So R is a semi-

simple ring.

Conversely, let R be a semisimple ring. Then every
principal ideal of R is a direct summand of R and hence R is a
J-ring by Theorem 3.11(d). Since Jacobson radical J(R) is the
largest ideal of R and since in a J-ring, J(R) = 0, so any
ascending chain of ideals of R must be finite. Hence, R is

Noetherian.

¢) Since J-ring is abelian, so centre of R is R itself, i.e. C(R) = R.

d) Let acR witha # 0. Then a” = a for somen > 1. Thena"-a =10

implies a(a"™' = 1)=0. Sincea#0,s0 a” ' =1=0and soa""?% is

the inverse of a. Since R is abelian, so R is a fieid.

e) Suppose that x/ = () for some xeR and / ¢ R is an ideal of R. Let
Rx be a principal ideal of R. Then there is an idempotent ee R such

that Rx = Re. Now, since Rel = RxI = 0, we see that ] < R(1 - e).
Then I N eR = (), whence Re = () and consequently x = 0. Thus, R is

nonsingular.
) Since Re is a two-sided ideal, so (1 — €) Re= Re — Re? =Re—-Re=0.
g) Proof is obvious.

h) Since a finitely generated ideal of R is a direct summand of R

and so is projective. Hence, R is semihereditary. ®
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Chapter-Four
p-I-Rings

The purpose of this chapter is to introduce p-/-rings and a few
of their most basic properties. In this chapter we have proved that
p-I-rings are commutative and also the class of all p-/-rings is a
radical class. We also develop similar properties of p-rings for the

case of p-/-rings.
Example, Let M= ( Zs,+,.)and I"'=(Zs,+ ). Then M is a p-/~ring.

Lemma 4.01. Let M be a p-I'ring. Then every right ideal 7 of M is a
two-sided ideal of M. |

Proof. We first observe that M has no nonzero nilpotent elements. For
ifx# 0, then (x») ”x = x implies that (x»)”x # 0 for some prime p and
some ye /. Next, let ael and suppose (ay)”a = a for some prime p.
Then (@)™ 'a}p@n™a} = {@p"apl@)’ay =
@)P@)™'a = (@n’afap*a = agay)’*a = (ap”a, so

(ap) "' a is an idempotent element.

Next, we show that an idempotent element commutes with

every elements of M. To show this let e be an idempotent element of
M. Then for any xeM, (xye — emxye)(xye — eyxye) = 0 = (epx —
epxye)eyx —eyxye). Thus, xye —emxye = epx —eyxye = 0 and so

xye = ey, i.e., e commutes with every elements of M.
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Now, for any reM and ae/ with (a)Pa = a, rim = rfapPa =

- - - -1 _
ry(@p?™ (apa=(an)? " aprya=(apap? *ayra=apap P rya=
ayr/, where r/ = (ay) p"lr}'aeM. Since a}/r/ el, so does rya and so / is

a two-sided ideal. B

Lemma 4.02. Let M be a p-T-ring and I an ideal of M. Then M/I is

p-I-ring.

Proof. Let xeM/I, then x = m + I for all meM with (mp)Pm = m,
p>1and yel  Now, (xp)"x=(m + Dy} P(m + = {my+ [} P (m + I
={(mp? + NN(m+D=mPPm+T=m+1=x. Thus, M/l is a p-I-

ring. W

Lemma 4.03. Let D be a division p-I-ring of characteristic p # 0 and
let C be the center of D. Suppose that aeD, agC is such

h
that(ay)’ a=a for some h > 0. Then there exists an element xeD

such that x}'a}/x_l % a.

Proof. We define the mapping f: D — D by flx) = xya — ayx for every
x€D. Now, f2(x) = ffix) = fixya — amx) = (xya — ayx)ya — afxya —
ayx) = xyaya —2ayxya + ayayx.

Again, f3(x) = fixyaya - 2apxya + ayayx) = (xyaya - 2ayxya +

ayrax)ya = (xyayaya — 3ayxyaya — 3ayayxya + ayayayx). Thus, a

simple computation yields that
FP(x)=xy(ay)? " a—(ay)? 'ap, where charD = p, a prime.

Continuing we obtain that
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(] k k
7 (x)=xy(ay)” a—(ay)” ayx,
for all £ > 0. Let P denote the prime field of C; since a is algebraic

over P, P(a) must be a finite field having p™ elements, say. Hence
(ay)”" a=a and so
[P )=xy(ay)” —(ay)” am=xp-ap=[f(x).

m
Thus, we see that the function f7 = f.

If reP(a), then f{ryx) = (rx)ya — afryx) = r}(x}'a —~ ayx) = ryfx),
since ¥ commutes with a. If / denotes the identity map on D and #/
denotes the map defined by (r/)(x) = ryx, we have that fo(rl) = (rl)of,

for all reP(a). Since all elements of P(a) satisfy the polynomial

m ’ m
t?" —t, we find that ¢ —t =], pc,(t—r). Since r/ commutes

with £, we have that 0= fpm — f =1l,ep@y(f —r), where (f- rl)(x)
= fix) — ryx. Now, Let r; =0 (one of r’s must be zero), and suppose
for each ri# 0, (f — rnD# 0, all xeD, x# 0. Then
[(f—rDo(f-rl)o...... o(f—rpml)](x)io, for all xeD, x# 0. But

since
0=f7" - f = fo(f = D)o(f = 1] )ou........ o(f -r D),

it follows that f{x) = 0 for all xeD. Thus, 0 = f{x) = xya — ayx, whence
xya = ayx for all xeD. Thus, aeC, contradicting the hypothesis. Thus,
there is a r; # 0, rie P(a) and x # 0 in D such that (f - ri)(x) =0,
i.e. (flx)—riH(x)=0
ie.xya—amx—-rimx=0
i.e.xya —apx=rx
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i.e. x}fa}oc"l — a;oc;oc_' = r;;ocyx"
ie. x}fa}'x”l = ri}rx}'x—l + a}'x}'x" # a, since r; # 0.

This completes the proof. ®

Lemma 4.04. If D is a division [-ring of characteristic p # 0 and

G c D is a finite multiplicative subgroup of D, then G is commutative.

Proof. Let P be the prime field of D and let 4 = {ryyg/rieD and
gi€G}. Clearly 4 is a finite subgroup of D under addition; moreover,
since (G is a group under multiplication, 4 is finite sub-/-ring of D.
Therefore A is a finite division /-ring, hence is commutative. Since

G c A, G is also commutative. B

Lemma 4.05. Let D be a division [-ring such that for every xeD

there exists a prime p such that (xy)” x = x. Then D is commutative.

Proof. Suppose a, beD are such that ¢ = ayp — bya # 0. By hypothesis
(eP™c = ¢ for some prime m > 1. If H(#0)eC, the center of D, then
ryc = rfayph — bya) = (rya)yb — b rya), hence by hypothesis,
{(rye)y} P(rye) =ryc. Let g=(m—-1)(p—-1)+1,m>1,p> 1. Then
g > 1 and q is prime. It follows that (cy)qc = ¢ and {(ryc)y}q(ryc) =
ryc, hence |

{(ric)rre)lrre)y... ... up to g times}(ryc) = ryc

ie. (r7) (c7) (r7e) =rre,

ie. (r}’)q (C}’)q (ew)=rye,

i.e. (ry)qcyr = rje,

i.e. (r;f)qr;’c = ryc,
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e ((r7) r—r}ye=0.
Since D is a division /-ring and ¢ # 0, so (ry)qr = r for every reC,
g > 1 depending on r and y. We know that C is of characteristic p # 0.
Let P be the prime field of C. We claim that if D is not commutative,

we could have chosen our a, b such that notonly isc=ayb - bya+# 0

but, in fact, ¢ is not even in C. If not, all commutators are in C; hence
ceC and C contains afayb) — (ayb)ya = afayb) — afbya) = afayb -
bya) = ayc. This would place aeC contrary to ¢ = ayp — bya# 0.

Thus, we assume that ¢ = ayp — byagC. Since (cp)"c = ¢, c is

algebraic over P hence (cy)”kc=c for some k > 0. Thus, all the
hypothesis of the Lemma 4.03 are satisfied for C. Hence we can find
x€D such that x}fcyx_l = ¢, # ¢, that is xyc = ¢, x # cyx. In particular,
d=xyc—cyx# 0;butdyc =xycyc — cyxyc = cipxye — cye | yx =cpxyc —
cieyx (since ¢ e€C) = cifxye — cpx) = cyd. As a commutator,
(dy)’d = d for some prime t > 1 and dyyd™ = c,. Thus, the

multiplicative subgroup of D generated by ¢ and d is finite. Hence by

Lemma 4.04, the multiplicative subgroup is abelian. This contradicts

cyd # dyc. and proves the lemma. W

Lemma 4.06. Let M be a p-I-ring with identity 1. Then for x, yeM,

xyy — yyx is in the intersection of the maximal ideals of M.

Proof. We know that every ring has a maximal ideal. Let / be such a
maximal ideal. Then the quotient ring M/I has an identity, and since / is a

maximal right ideal of M, M/I has no maximal ideals other than 0 and

M/I. Thus, M/I is a division ring. Since Misa p-T-ring, M/I is a p-I-ring
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(by Lemma 4.02). Then by Lemma 4.05, M/I is commutative. From this it
follows that xpy — yuxel, for all x, ye M. The conclusion of the lemma is

now immediate. W

Lemma 4.07. Let M be p-I-ring with identity 1. Then M is

commutative.

Proof. Suppose x # 0 is in every maximal ideal of M. Then (xy)”x =
x, and (x)?~'x is an idempotent, say (xy)"'x = e+ 0 for all p > 1
and some yel and e must also be in every maximal ideal of M. Now,
1 — e can not be in any proper right ideal of M, for if it were, it would
be in a maximal ideal K of M. Since eeK, 1 = ¢ + (1 — ¢) would be in
K and hence K = M, a contradiction. Since (1 — e)yM # 0 and since
(1 — e)yM is a (right) ideal, it follows that (1 — e)yM = M, whence
(1 — e)yr = e for some reM. Thus, 0 = e{1 — e)» = e, a contradiction.
Thus, x can not be in every maximal ideal in M and the intersection of
all the maximal ideals of M is 0. Thus, by Lemma 4.06, xyy — y»x€0,
x, yeM, that is, xyy = yyx, for all x, ye M. &

Remarks: Since the intersection of all maximal ideals of a
commutative /-ring with 1 is the Jacobson radical, so the Jacobson

radical of p-I*ring with 1 is zero.

Theorem 4.08. If M is a p-I-ring, then M is commutative.

Proof. Let e be an idempotent in M. Then, eyx = xye for all xeM.
Thus, eyM = Mye = T is also a p-I-ring, but T has an identity, namely

e. Hence by Lemma 4.07, T is commutative. Now, for all x, yeM,

xyye = xyreye = (xye)yye) = (yre)Axye) = yyxye, that is (xyy —
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yr)ye = 0. Since {(xpy — yy)y} " (xpy — yyx) = (xpy — yyx) for some

prime p > 1, so {(xp — yyx)y} p-1 (xpy — yyx) is an idempotent, say
e;. Thus,

0=(xpy—ymer={(xpy—yr)y} " (xp - yw) =xpy -y,

that is, xpy = yyx. Hence, M is commutative R

Lemma 4.09. Let M be a commutative I'-ring. Let | be an ideal of M

such that I a p-I-ring. Then eyly — (y) "y} = 0 for all ye M and some

yel and ecl an idempotent.

Proof. Let xel and ye M. Then xyyel. Since [ is a p-I-ring, (x))"x =
x. Also {(x»)y} ” (xyv) = xyy for some prime p and ye I,

Now, {(xp)7} P (xp) = xp,

ie. {Cep)fxm)y. ... up to p times}(xyy) =xpy,

i.e. N (PP Gxpp) = xp, since M is commutative,

i.e. v xpw=xp.

ie. {ON"y-yim=0,

so (x7)""'xply — (¥7) "y} = 0 and hence ey{y — (v/) "y} = 0, where
e=(x»)""xisan idempotent of /. W

Lemma 4.10. Let M be a [-ring and I an ideal of M. Then M is a
p-T-ring if M/l and I are p-T-rings.

Proof. Let M/I and I be p-I-rings. Let xe M, then x + /e M/I and so
{(x+ Dy} P (x+ 1) =x+ I for some prime p and ye[.
ie.(xy+DP(x+1D) =x+1,

ie. {xp? + NN(x+N=x+1,
30



Chapter-Four p-T-Rings

Le.(x)Px+I=x+1I

Thus, (xp) P x — xel. Since I is a p-Iring, {(x)?x - x)y} " {(xp)Px -
x} = (xy)Px — x for some prime m. Let ¢’ = {(x) P x = x)y} " {(x) " x
—x}. Then e’ is an idempotent of I. By Lemma 4.09, 'y {(xy)Px — x}

= 0 for every xeM. Now, 0 = e/]/{(x}f)px - x} = {xpPx -

AN HEN " x = 2} (e Px = x} = {GDPx - P " {(xP) Px - x} =

(x))’x —x. Hence (xy)”x = x. Therefore M is a p-I-ring. W

Lemmadl. If )L ch clh € ............. is an ascending chain of

ideals which are all p-I-rings, then \U,l, is a p-T-rings.

Proof. Let xeU,l,, then xel, for some a. Since I, is a p-/~ring, then

(xp) x = x for some prime p and ye I Hence U,/,isap-I-ring. ®

Thus, by Lemma 4.02, Lemma 4.10 and Lemma 4.11, we have

the following theorem:
Theorem 4.12. The class of all p-I-rings is a radical class.

Some Characterizations of p-/-rings

Theorem 4.13. Let M be a ring with 1. Let a, xeM such that

a=(xy? ~2x. Then the following statements are equivalent:
a) Mis ap-T-ring.
b) Every principal ideal Mya is generated by an idempotent.
¢) For every principal ideal Mya of M, there exists an element
beM such that M= Mya © Ryb.

d) Every principal ideal Mya is a direct summand of M.
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Proof. a = b) Let xeM. Then (xy)”x = x for some prime p and yer.
Let aeM such that a = (xy) P=2x. Now, the principal ideal Mya is

generated by the element xya which is idempotent; for (xya)y(xya) =

xAEN P I A MNP 2 x) = e Pxfxp) P ix = xya.

b = c) Let Mya = Mye, where eye = e and a = (x)?"%x, xe M. Since
| =e+ (1 - e), and if there exists be M such that aye = b1 - e), then
aye=ayeye=by 1 —e)ye=0.80 M= My © M| - ).

¢ = d) Trivial.

d = a) Let aeM. Then there exists an ideal / of M such that
M= Mya ® I. Hence | = xya + b, where bel, so x = xyayx + byx.
Since a = (xp) P2y, byx = x — xyapxeMya n ] = 0, and therefore

x=xy{(xy) "2 x}3x = (x») "x. Hence M is a p-Iring.

Theorem 4.14. Let M be a p-I-ring with 1. Then
1) Every finitely generated ideal is principal.
2) The intersection of any two principal ideals of M is

principal.

Proof. 1) It is enough to prove that if a, beM, then Mya + Myb is
principal. Since M is a p-/-ring, there exists elements x, ye M with
a=(xy) P2y and b = 6%%) p_zy such that the elements e; = xya and
e, = yyb are the idempotent elements of Mya and Myb respectively and
also Mya = Mye, and Myb = Mye, by Theorem 4.13(b). Now, Mya +
Myb = Mye, + Mye, = Mye; + My(e2 — eyye)) because a ye; + ayye, =
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(a1 + ayper)ye; + aae; — eryey). If s = {(e; ~— exyer)y) p*2(e2 -
ey yey)eM, then

(e2 — expe)) s ez — exyey) = {(e2 — exye))y} P (e — erye)) = (€2 — exyey).
Then eé = s e, — eye) is an idempotent of Myb. Then Mye, + Mye, =

Mye; + Myeé with eé_ ye, = sKey — eyye;)ye, = 0.

Finally, we have, a e, + azyeé = (a,ye; + aﬂeé)}(e, + eé -
eé_ye,), a;, bjeM. Thus, Mye, + Myeé = Mpe, + eé - eéye,).

Therefore Mya + Myb = M e, + eé - eéye]). Thus, Mya + Myb is a

principal ideal.

2) Let Mya and Myb be two principal ideals. Since M is a p-/+-ring,

there exists elements x, ye M with a = (xy) P-2xand b= §%%) p"zy such
that the elements e, = xja and e, = yyb are the idempotents of Mya
and Myb respectively and also Mya = Mye, and Myb = Mye; by
Theorem 4.13(b). Hence M= Mye, @ MX1 — e)) = Mye, ® ML — e3),
and

Mye, = Anny[(1 — e))yM] = {xe M | x(1 — e})yM = 0},

Mye; = Anny[(1 — ex)yM] = {xeM | x(1 — ex)yM = 0).
Indeed obviously Mye, ¢ Anny[(1 — e)yM].

Conversely, if xe M and x{(1 — ;) = 0, writing x = a,ye; + b, {1 -

ey), a), byeM, we have

ajye; 1 —e))+biy(1 —e;)y(l —e)=0, andso

b/l —e) =0, hence x = aq,ye,€ Mye,.
Thus, Mye, " Mye, = Anny[(1 — e)yM + (1 — e;)yM]. Now, there

exists e;e M such that (1 — e )yM+ (1 — e;)yM = (1 - e3)yM, and from
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Mye;y = Anny[(1 — e3)yM] we deduce that Mye, N Mye, = Mye;. Thus,
Myey N Myey= Mya N Myb is a principal ideal. B

Theorem 4.15. Let M be a p-I-ring with unfty 1. Then
a) The Jacobson radical I(M) of M is zero.
b) M is a semisimple ring if and only if it is a Noetherian
p-T-ring.
¢) The centre of M is also a p-T-ring.
d) The p-T-ring M without zero divisors is a field.
e) Every ideal of M is nonsingular.
f) For any idempotent element e of M, (1 — e)yMye = (.
g) If (M)el is a family of p-T-rings then |1 M; is a p-T-ring.
h) M is semihereditary.

Proof. a) Let aecJ(M). Then Mya < IJ(M). Since Mya = Mye, where
e = xya is an idempotent with a = (x%) P=2x. so ec J(M). 1t follows
that (1 — e) is inevitable. So there exists yeM such that | = y(1 —¢e) =
y — yye. Hence e = yye — yyeye = yye — yye = 0 and therefore a = 0.
Thus, J(M) = 0.

b) First suppose that M is finitely generated. Then every ideal of M is
finitely generated and hence a direct summand. So M is a semi-

simple.

Conversely, let M be a semisimple ring. Then every principal
ideal of M is a direct summand of M and hence M is a p-I-ring by
Theorem 4.13(d). Since Jacobson radical J(M) is the largest ideal of
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M and since in a p-/~ring, J(M) = 0, so any ascending chain of ideals

of M must be finite. Hence M is Noetherian.

¢) Since p-I-ring is abelian, so centre of M is M itself, i.e. C(M) = M.

d) Let aeM with a# 0. Then (ay)”a = a for some prime p. Then
(@apPa-a=0=ap{(ap’'a-1}=0.Sincea#0,s0 (ap)?'a-1
= 0 and so (ay) P~24 is the inverse of a. Since p-T-ring M is abelian,

so M is a field.

e) Suppose that xyI = 0 for some xeM and I ¢ M is an ideal of M. Let
Myx be a principal ideal of M. Then there is an idempotent ee M such
that M = Mpye. Now, since Myeyl = Myl = 0, we see that
I < MX1 — e). Then I N eyM = 0, whence Mye = 0 and consequently

x = 0. Thus, M is nonsingular.

/) Since Mye is a two-sided ideal, so (1 — e)yMye = Mye — Myeye =
Mye — Mye = 0.

g) Proof is obvious.

h) Since a finitely generated ideal of M is a direct summand of M and

so is projective. Hence M is semihereditary. ®
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Chapter - Five
J-I-Rings

The purpose of this chapter is to introduce J-/~rings and a few
of their most basic properties. In this chapter we have proved that
J-I-rings are commutative and also the class of all J-Itrings is a
radical class. We also develop some characterizations of J-/-rings,

which are analogues to the properties of J-rings.

Definition: A I-ring M is said to be a J-I-ring if for every xeM,

there exists ye I'such that (xy)"x = x for some n = n(x, y) > 1.
Example. Let M= ( Zg,+,.)and "= ( Zs, + ). Then M is a J-I-ring.

Lemma 5.01. Let M be a J-I-ring. Then every right ideal I of M is a
two-sided ideal of M.

Proof. We first observe that M has no nonzero nilpotent elements. For
if x# 0, then (x»)"x = x implies that (x»)™ x # 0 for all m > | and some
yel.

Next, let ae/ and suppose (ay)"a = a for some inleger n > 1.

Then
{an™ayrian ™ ay = ((an™ api{(@p" ' a) = (@p)"(ap)" ' a
=(an)"axan " *a =aKay) " *a=(ap)"q,

so (ap)"'a is an idempotent element.

Next, we show that an idempotent element commutes with

every elements of M. To show this let e be an idempotent element of
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M. Then for any xeM, (xye — emxye)xye — epxye) = 0 = (epx —
eyxye) ey — eyxye). Thus, xye — epxye = ex — epxye = 0 and so
xye = eyx.

Now, for any re M and ael with (ay)"a = q,

rra=rfap"a=rhap)" " (apa=(ap)" " ayya
!/ /
= (a)ap)" 2apm = aa)" 'rya = ap, where r =
(ay)""ryaeM. Since ap €l, so does rya and so [ is a two-sided

ideal. B

Lemma 5.02. Let M be a J-I-ring and I an ideal of M. Then M/l is
J-T-ring.

Proof. Let xe M/I, then x = m + I for all meM with (mp)"m=m, n> 1 and
yelZ Now, (xp)"x = {(m+ Dy}"(m + [y = {my+ I} "(m + 1) = {(mp)" +
N(m+D=mp"m+I1=m+1=x Thus, M/ isaJ-I-ring. ®

Lemma 5.03. Let D be a division J-I-ring of characteristic p # 0 and
let C be the center of D. Suppose that acD, a¢C is such that

(a}/)/{'a =a for some h > 0. Then, there exists an element xe D such that
x}fa}/x_l #a.

Proof. We define the mapping f/* D — D by fix) = xya — ayx for every
xeD. Now, fz(x) = ffix) = flxya — apx) = (xya — ax)ya — af(xya —
ayx) =xyaya — 2ayxya + ayayx.

Again, f3(x) = flxyaya — 2ayxya + ayayx) = (xyaya — 2ayxya +

ayayp)ya = (xyayaya — 3ayxyaya — 3ayayxya + ayayayx). Thus, a
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simple computation yields that f7(x)=xy(ay)’a-(ay)” am, where
charD = p, a prime.
. h k k
Continuing we obtain that f7 (x)=xy(ay)’ a-(ay)’ ayx,
for all £ > 0. Let P denote the prime /-field of C; since a is algebraic

over P, P(a) must be a finite field having p™ elements, say. Hence

(ay)"’m a=a and so

[P @ =xp(ay)’ —(ay)” ap=xm-am= f(x).
Thus, we see that the function fpm = f.

If reP(a), then flrmx) = (rxyya — afrx) = rxya — apx) = ryf(x),
since r commutes with a. If / denotes the identity map on D and r/

denotes the map defined by (r/)(x) = ryx, we have that fo(rl) = (rof

for all xe P P(a). Since all elements of P(a)satisfy the polynomial

m

m
t? —t, we find that (¥ -1t= Hrep(a)(t—r). Since rf

commutes with £, we have that 0= f7" — f = [1,c (o) (f —#), where

(f — rD(x) = fix) — ryx. Now, Let r, = 0 (one of r’s must be zero), and
suppose for each r;# 0, (f — r)# 0, all xeD, x# 0. Then
[(f—rDo(f—rl)o .cccovevnnenn.n. o(f—rp,,, D](x) = 0, for all xeD,

x# 0. But since 0 = fP" = fo(f — rol)o(f — raDo(f = ral)o ........
........... o(f—rp,,,]), it follows that f{x) = 0 for ali xeD. Thus,
0 = flx) = xya — ayx, whence xya = ayx for all xeD. Thus, aeC,

contradicting the hypdthesis. Thus, there isa r; #0, rieP(a) and x # 0
in D such that
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(f—' ri[)(x) = Oa
ie. (fix)—riH(x)=0
ie.xya—-apxx—rix=0

i.e.xya —ap=rm

1 l

e xyam ™ —apm ™t = ryx”

i.e. .x;'a;fx"‘ = r;yx;’x—l + a;'x}/x“] # a, since r; £ 0.
This completes the proof. ®

Lemma 5.04. If D is a division I'-ring of characteristic p # 0 and

G c D is a finite multiplicative subgroup of D, then G is commutative.

Proaf. let P be the prime field of D and let 4 = {r;yg/r;eD and g;eG}.
Clearly 4 is a finite subgroup of D under addition; moreover, since G
is a group under multiplication, 4 is finite sub-7-ring of D. Therefore
A is a finite division 7=ring, hence is commutative. Since G c 4, G is

also commutative. B

Lemma 5.05. Let D be a division I-ring such that for every xeD

there exists an integer n = n(x, ¥) > 1 such that (xy)"x = x. Then D is

commultative.

Proof. Suppose a, beD are such that ¢ = ayb — bya # 0. By hypothesis

(cp)™c = ¢ for some m > 1. If r(# 0)eC, the center of D, then

ryc r{ayb — bya) = (rya)yb — bHrya), hence by hypothesis,

{(rre)"(rre) =ryc. Letg=(m—-1)(n-1)+1,m>1,n> 1. Then

g > 1. It follows that (c¢y)? ¢ = ¢ and {(ryc)y} ? (ryc) = ryc, hence
{(rrc)frye)rye)y ... ... up to q times}(ryc) =ryc

ie. rN (e (rye) =rr,
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ie. (r?(en?(em)=rr,
i.e. (rNfepw=rype,
i.e. rrye=ry,
Le. {(rn?r—rixc=0.
Since D is a division /-ring and ¢ # 0, so (r»)?r = r for every reC,

g > 1 depending on r and . We know that C is of characteristic p # 0.
Let P be the prime field of C.

We claim that if D is not commutative, we cou'ld have chosen
our a, b such that not only is ¢ = ayb — bya # 0 but, in fact, ¢ is not
even in C. If not, all commutators are in C; hence ceC and C contains
apayb) — (ayb)ya = ay(ayb) — axbya) = afayb — bya) = ayc. This

would place aeC contrary to ¢ = ayb — bya # 0. Thus, we assume that

c = ay - byaeC. Since (¢p)"c = ¢, ¢ is algebraic over P hence
(cy)’}c = ¢ for some k& > 0. Thus, all the hypothesis of the Lemma 5.03

are satisfied for C. Hence we can find x€D such that x}’c;oc_l =c¢1# ¢,
that is xyc = ¢;x # ¢)x. In particular, d = xyc — cyx # 0; but dyc =
xyeye — cpxye = cppxye — cyepx = ciypxye — cyyeyx (since ¢;eC) =
cifxyec ~ cyx) = ¢, yd. As a commutator, (dy)'d = d for some ¢t > 1 and
dycyd = c,. Thus, the multiplicative subgroup of D generated by ¢ and
d is finite. Hence by Lemma 5.04, the multiplicative subgroup is

abelian. This contradicts cyd # dyc and proves the lemma. W

Lemma 5.06. Let M be a J-I-ring with identity 1. Then for x, yeM,

Xy — yyx is in the intersection of the maximal ideals of M
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Proof. Every ring has a maximal ideal. Let J be such a maximal ideal.
Then the quotient ring M/I has an identity, and since / is a maximal
right ideal of M, M/I has no maximal ideals other than 0 and M/I,
Thus, M/I is a division ring. Since M is a J-I-ring, M/I is a J-I*ring
(by Lemma 5.02). Then by Lemma 5.05, M/l is commutative. From
this it follows that xpy — yx el for all x, ye M. The conclusion of the

lemma is now immediate. &

Lemma 5.07. Let M be J-T'ring with identity 1. Then M is

commutative.

Proof. Suppose x # 0 is in every maximal ideal of M. Then (x»)"x =
x, and (xy)"'lx is an idempotent, say (xy)""x =e# 0 forall n> 1 and
some ye/ and e must also be in every maximal ideal of M. Now, | — e
can not be in any proper right ideal of M, for if it were, it would be in
a maximal ideal K of M. Since e€K, 1 = e + (1 — ) would be in K and
hence K = M, a contradiction. Since (1 — e¢)yM # 0 and since (1 — e)yM
is a (right) ideal, it follows that (1 — e)yM = M, whence (1 —e)yr =e
for some reM. Thus, 0 = e (1 — e)r = e, a contradiction. Thus, x can
not be in every maximal ideal in M and the intersection of all the
maximal ideals of M is 0. Thus, by Lemma 5.06, xyy — ymxe0,
x, yeM, that is, xpy = yyx for all x,yeM. [ |

Theorem 5.08. [f M is a J-I-ring, then M is commutative.

Proof. Let e be an idempotent in M. Then, eyx = xye for all xeM.
Thus, eyM = Mye = T is also a J-/*ring, but T has an identity, namely

e. Hence by Lemma 5.07, T is commutative. Now, for all x, yeM,
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xpyre = xpyere = (xpe)y(yyre) = (yye)fxye) = ypxye, that is (x3y —
yr)ye = 0. Since (xpy — yp)y} "(xpy — yyx) = (xpy — yyx) for some
integer n > 1, so {(xp — y)y} " (xpy — ypx) is an idempotent, say
ei. Thus, 0 = (xpy — yw)e) = {(xpy —yp)y} "(xpy — ypx) = xpp — ym,
that is, xyy = yyx. &

Lemma 5.09. Let M be a commutative [-ring. Let I be an ideal of M

such that I a J-T-ring. Then eyly — (y»)"y} = 0 for all ye M and some

yel and e is an idempotent of I.

Proof. Let xel and ye M. Then xpyel. Since I is a J-I-ring, (x»)"x =
x. Also {(x»)y} "(xp) = xpy for some n > land yer.

Now, {(xm)r} " (xp) = xp,

ie. {ep)xp)y. ... .. up to n times}(xy) = xpy,

i.e. )" (x) " (xp) = xpy, since M is commutative,

i.e. 9 "xpy =xw.

ie. {vn)y-yim=0,

so (x)" ' xp{y - (v)"y} =0 and hence eyly - (v7)"y} =0, where

e= (xy)”—lx is an idempotent of /. ®

Lemma 5.10. Let M be a I-ring and I an ideal of M. Then M is a
J-T-ring if M/l and I are J-T*-rings.

Proof. Let M/I and I be J-Irings. Let xeM, then x + /e M/I and so
{x+Dy}"(x+=x+1for some n>1 and ye/.

e (xy+DN"(x+N =x+1,
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e {xp" +I}(x+DN=x+1,

ie.(x"x+I=x+1

Thus, (xp)"x — xel. Since I is a J-I=ring, {(x»)"x - x)1} " {(xp)"x — x}
= (xy)"x — x for some m > 1. Let e/ = {(x))"x = )} " {(x))"x — x}.
Then e/ is an idempotent of /. By Lemma 5.08, e/}/{(x}')"x -x}=0
for every xe M. Now, 0 = e/ AG) ™x —x} = {xN " x—x)1 " {(xp)"x
=x} ) x - x} = {(x)"x = x)p} " {(xp)"x — x} = (xp)"x — x). Hence
(x»)"x = x. Therefore M is a J-/~ring. W |

LemmaSA1.Ifichcls ¢ - - --- - is an ascending chain of

ideals which are all J-TI“rings, then Ul is a J-T-rings.

Proof. Let xe\U,l,, then xel, for some «. Since I, is a J-I*ring, then

(xp)"x = x for some n > | and ye I Hence U,l,isaJ-Tring. W

Thus, by Lemma 5.02, Lemma 5.10 and Lemma 5.11, we have the

following theorem:
Theorem 5.12. The class of all J-I*rings is a radical class.

Some characterizations of J-/~-rings.

Theorem 5.13. Let M be a Iring with 1. Let a, xeM such that

a=(xy) "2y Then the following statements are equivalent:
a}) Mis a J-T-ring. |
b) Every principal ideal Mya is generated by an idempotent.
c) For every principal ideal Mya of M, there exists an element
beM such that M= Mya © Myb.

d) Every principal ideal Mya is a direct summand of M.
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Proof. a) = b) Let xeM. Then (xp)"x = x for some n > land yer.
Let aeM such that a = (x3)" 2x. Now, the principal ideal Mya is

generated by the element xya which is idempotent; for,

(xra)Axpa) = xp{(x0)" > x} Hxnxn) "2 x} = () "xfx) "2 x = x7a.

b) = c) Let Mya = Mye, where eye = e and a = (x3) " %x, xe M. Since
1 =e+ (1 - e), and if there exists be M such that aye = b1l — e), then
aye =ayeye =byl-e)ye=0.So M= Mye ® MK| - e).

c) = d) Trivial.

d) = a) Let aeM. Then there exists an ideal / of M such that
M = Mya ® I. Hence | = xya + b, where bel, so x = xyayx + byx.
Since a = (xy)"—zx, byx = x - xyapxeMya n I = 0, and therefore

x=xy{(xy)""2x} = (x)"x. Hence M is a J-I*ring. W

Theorem 5.14. Let M be a J-I-ring with 1. Then
1) Every finitely generated ideal is principal.
2) The intersection of any two principal ideals of M is

principal.

Proof. 1) It is enough to prove that if a, beM, then Mya + Myd is
principal. Since M is a J-I-ring, there exists elements x, ye M with
a=(xp)" %x and b = (y%)" 2y such that the elements e; = xya and
e; = yyb are the idempotent elements of Mya and Myb respectively
and also Mya = Mye, and Myb = Mye, by Theorem 5.13(b). Now,
Mya + Myb = Mye, + Mye, = Mye, + MK e, — e ye;) because a;ye, +

ayyes = (a) + ayyer)ye) + ayfe; — expe). If s = {(e; — expey)y} "2 (e -
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eryei)eM, then (e; — expen)sie; — expe)) = {(e2 ~ exre))y} (2 —
eye1) = (ez — e ey). Then eé = s es — eyye;) is an idempotent of Myb.

Then Mye, + Mye, = Mye, + M;/eé with eé yer = sKex — exve)ye; = 0.

Finally, we have, ajye, + ayye) = (aiye) + aryeh)fe + e -
) ver). Thus, Mye, + Mye) = I _ el
ey ye1). Thus, Mye, + Mye; = Mye| + e; — 5 ye;). Therefore Mya +

Myb = Mxne, + eé - eé rey). Thus, Mya+ Myb is a principal ideal.

2) Let Mya and Myb be two principal ideals. Since M is a J-I-ring by
Theorem 5.13(b), there exists elements x, ye M with a = (x) "2y and

b = (y;’)"_zy such that the elements e; = xya and e, = yyb are the
idempotents of Mya and Myb respectively and also Mya = Mye, and
Myb = Mye,. Hence M = Mye, @ MA1 — e)) = Mye; & MK 1 — e;), and
Mye, = Anny[(1 — e))yM] = {xeM | x(1 — e )yM = 0},
Mye, = Anny[(1 — ex)yM] = {xeM | x 1 — e))yM = 0}.
Indeed obviously Mye; < Annyf(1 — e\ )yM].

Conversely, ifxeM.and xH1 — e)) =0, writing x = a;ye; + by(1
— ), we have, aqyye| (1 — e)) + byl — e;)){1 — ¢;) = 0, and so
b1 —e)) =0, hence x=a,ye e Mye,.
Thus, Mye; N Mye; = Anny[(1 — e)yM + (1 — e;)yM]. Now, there
exists e;e M such that (1 — e))yM + (1 — e;)yM = (1 — e3)yM, and from
Mye; = Anny[(1 — e3)yM] we deduce that Mye, N Mye, = Mye;. Thus,
Mye, " Mye;= Mya m Myb is a principal ideal. ®

Theorem 5.15. Let M be a J-T-ring with unity 1. Then

a) The Jacobson radical J(M) of M is zero.
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b) M is a semi-simple ring if and only if it is a Noetherian
J-Iring.

¢) The centre of M is also a J-I*ring.

d) The J-I-ring M without zero-divisor is a field.

e) Every ideal of M is non-singular.

f) For any idempotent element e of M, (1 —e)yMye = 0.

g If (M));el is a family of J-I-rings then [1 M, is a J-Iring.

h) M is semi-hereditary.

Proof. a) Let acJ(M). Then Mya < I(M). Since Mya = Mye, where
e = xya is an idempotent with a = (x) =25 50 ec J(M). It follows that
(I — e) is invertible. So there exists ye M such that 1 = y(1 — e) =

y — yye. Hence e = yye — yyeye = yye — yye = 0 and therefore a = 0.
Thus, J(M) = 0.

b) First suppose that M is finitely genefated. Then every ideal of M is
finitely generated and hence a direct summand. So M is a semi-
simple.

Conversely, let M be a semi-simple ring. Then every principal
ideal of M is a direct summand of M and hence M is a J-/*ring by
Theorem 5.13(d). Since Jacobson radical J(M) is the largest ideal of
M and since in a J-I-ring, J(M) = 0, so any ascending chain of ideals

of M must be finite. Hence M is Noetherian.

¢) Since J-/-ring is abelian, so centre of M is M itself, i.e. C(M)= M.

d) Let aeM with a# 0. Then (ap)"a = a for some n > 1. Then
(@ap”"a-a=0= ay{(a}f)"”'a ~1}=0.Sincea#0,s0 (ap)"'a~I
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= ( and so (ay)""za is the inverse of a. Since J-7-ring M is abelian,
so M is a field.

e) Suppose that xy/ = () for some xeM and I ¢ M is an ideal of M. Let
Myx be a principal ideal of M. Then there is an idempotent ee M such
that Myx = Mye. Now, since Myeyl = Myxyl = (0, we see that | ¢ MK(1
— e). Then I N eyM = 0, whence Mye = 0 and consequently x = 0.

Thus, M is non-singular.

f) Since Mye is a two-sided ideal, so (1 — e)yMye = Mye — Myeye =
Mye —Mye = 0.

g) Proof is obvious.

h) Since a finitely generated ideal of M is a direct summand of M and

so is projective. Hence M is semi-hereditary. ®
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Chapter-Six

Regular Gamma Rings

S. Kyuno, N. Nobusawa and B. Smith [14] defined a certain
type of regular gamma rings and they developed their various
properties. In this chapter, we have defined another type of regular
gamma rings that are more significant and more general than that of S.
Kyuno [14]. The main emphasis is on developing sufficient conditions
for gamma rings to be regular. In 6.07 and 6.27, we derive the most
fundamental and widely used properties of regular gamma rings,
namely the large supply of idempotents of regular gamma rings, and
the large supply of direct summands of projective modules over

regular gamma rings.

Definition. Let M be a I-ring. An element aeM is said to be regular

in M if there exists y, pel’ and xeM such that a = auxya. A I'-ring M

is said to be regular if all of its elements are regular.

Lemma 6.01. If a is regular in M, then [a, y} is regular in L, where L

is the left operator ring in M.

Proof. Since a is regular in M, a = apxya for some y, yel and xeM.
This implies that au = auxyay, and hence [a, 4] = [a, pllx, yla, 4l

for some ue I Therefore [a, 4] is regularin L. W

Lemma 6.02. If a is regular in M, then [y, a] is regular in R, where R

is the right operator ring in M.
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Proof. Since a is regular in M, g = apxya for some y, yel"and xeM.
This implies that ya = yapxya, and hence [y, a] = [y, allu, x1ly , 4]

for some ye I Therefore [y, aj isregularin R. ®

Lemma 6.03. If a,ceM, a—- cis regular in M and c is in auMya, then

a is regular.

Proof. Since a — c is regular, there exists 4, ye 'and xe M such that
a-c=(a-c)xfa--c)
= gy - cpcya - apmeye + ey
This implies that a = agocya — cpcya — apxye + cuxye + ¢
Since ceauMya, then there exists ye M such that ¢ = auyya. Therefore

a = auxya — apyyauxya — auxyauyya + apyyapxyayyya + apyya,
so that

a=apx — yyajx — xyapy + yyauxyauy +y)ya
= a,wc/ ya, where x! = (x — yyaux — xyauy + yyauxyauy +yyeM.

Therefore a is regularin M. &

Definition. Let 1 be an ideal of a I-ring M. If every element of I is

regular, then I is regular.

Lemma 6.04. If M is a regular I-ring and J is a two-sided ideal of M,
then MlJ is regular.

Proof. Let aeM/J. Then a= a + J, aeM. Since M is regular, there
exists y, yeI” and xeM such that a = agoeya. Now, amwya = (a+J)
wey (a+tJy=auxatJ=a+ J = a. Therefore M/J is regular. B
Lemma 6.05. If M/l and I are regular I'-rings, then M is regular.
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Proof. Since M/ is regular for any aeM,a+1=(a+ Nuxya+1)=
a‘wcya + I for some y, rel’and xe M. This implies that a — auxyael.

Since 7 is. regular and ApxyacauMya, then by Lemma 6.03, a is
regular. This implies that M is regular. W

Lemma 6.06. Let I, c I, c I; < ... be the ascending chain of

regular ideals. Then U [ a IS regular.

Proof: 1t is obvious. m

From the Lemma 6.04, Lemma 6.05 and Lemma 6.06, we have

the following:
Theorem 6.07. The class of all regular Irings is a radical class.

Theorem 6.08(a). Let M be a I-ring with unity. Then the Sfollowing

statements are equivalent:
i) M is aregular I'-ring.
ii)  Every principal left ideal MIa is generated by an
idempotent.
iii) For every principal left ideal Ml a of M, there exists be M
such that M= MIa ® MIb.
iv)  Every principal left ideal MI'a is a direct summand of M.

Proof. (i) = (i) Given ae M. Then there exists 4, ye/ and xeM such

that a = auxya. Then MTa is generated by xya which is an idempotent

element, for (xya)u(xya) = xKapxya) = xya.

(ii) = (iii) Let Mya = Mye for some yel, where e = epe. Since
=e+ (1 —-e), Myl = Mpe + MH1 — e) for some yel. Therefore
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M= .

Mye + MX1 - e). This Implies that M = Mle + MIT1 — e). If
a, be M such that ape = bu(1 - e) for some uerl then aue = apeye =
bu(l - e)ye = bu(1ye - eye) = bp(e — )= bud = 0. Hence M= MIe @

MIT1 - e). This gives M= MIu & MI"b with b= (1 - e).
(#i)) = iv) It is trivial.

(v) = () Let aeM. Then there exists an ideal I of M such that
M= MTIa® I Hence | = xyaq + b, where xeM, bel, so that a = aul =
ap(xya + b) = apxya + aub. This implies aub = a - agxya. Since
apbeMlanI= 0, then a - auxya=0and so a = apxya. Hence M is a
regular /-ring. ®

Theorem 6.08(b). Let M be a [I-ring with unity. The following
Statements are equivalent:
i) M is a regular -ring.
i)  Every principal right ideal al'M is generated by an
idempotent. |

iii)  For every principal right ideal al'M of M, there exists
beM such that M= al M ® bI'M.
iv) Every principal right ideal al' M is a direct summand of M.

Proof. The proof is similar to the proof of Theorem 6.08(a). B
Theorem 6.09. If M is regular, then every finitely generated left
(right) ideal is principal.

Proof. (i) Let a, beM. We have to prove that then MIa + MIb is
principal. Since M is regular, every principal ideal is generated by
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some i o |
e idempotents of M, So it Is enough to prove that Mye, + Mue; is

principal (with e)& e, idempotents) and y, uerl.

Now, Mye, + Mue,= Mye, + Mu(e; — ey ye)), for

aiye; + ayue; = (a, + @pter)ye + aru(e; — eyye).

Il there exisls an element xe M such that (e, - ey70))ExXe; ~ erye)) =
(e2 — expe)) for some &, Ser, then xXe; — ez}’el) = eé is an

idempotent of MIb and so Mye, + Myue, = Mye, + Myue)y with

ez)’el = xqe; — expe)ye
=x&erye; — exye yey)
=x&eyye| ~ ezye))=0.
Finally, Mye; + M,ue;/z = MH{e, + eé - e,yeé), because a;ye; +

aypte) = (aiyer + appie) ey + e — eiyeh) for some el

Similarly, we can prove that every finitely right ideal is principal. ®

Theorem 6.10. Let M be a regular -ring. Then the intersection of any

two principal left (right) ideals of M is principal.

Proof. l£ is enough to prove that if a, beM then MIa N M/ID is

-principal. To prove this we choose e) = xya and e; = ydb, where

x, yeM and y, del are such that a = auxya and b = buydb. Then e -

and éz are idempotents and Mya = Mye,, Mb = Moée,. '

Hence M= Mye, ® My(l — ) = Mde, ® Mn(1- e,), and
M, = Annyl(1 = e)uM] = (xeM [ (1 — e)uM = 0},
Mey = Anny(1 — e2)nM] = {xeM | x&X1 — e2)iM = 0},
for some 3, &, nel"

Indeed obviously Mye; c_;'AnnM[(l — e )uM] .
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Conversely, if xe ps and x|

~ 1) =0, writing x = _
e;), we have 1) =0, writing x = a, pe, + byp(1

el —e) + biu(l
and b (1

- el).u(l - €|) = 07
= €1)=0, hence x = a e e Mue,.

Thus M =
rer N Mée, = Anny{(1 - e)yM + (1 ~ e,)0M], as one may

cheek easily. Now, there exists e3€M such that (1 — e )yM + (1-

€2) M = (1 — e3)EM for some geland from Mées = Annyl(1 — e;)EM],
we deduce that Mye, N Mde, = Mée,.

Similarly, al'M N bI'M is a principal ideal. ®

Theorem 6.11. The Jacobson radical I(M) of a regular [-ring M is

equal to zero.

Proof. Let ae J(M). Then MI'a ¢ J(M). Since Mya is generated by an
idempotent element e, Mya = Mye, and thus from eeJ(M) it follows
that (1 — e) is invertible. So there exists xe M such that

=xH1 —e)=xyl—xye=x—xye.
Hence e = lye = (x —xye)ye =xye —xyeye = xye — Xye = 0.
Therefore, a = 0. Hence Jacobson radical of a regular I-ring M is

equal to zero. W
Theorem 6.12. The centre of a regular [-ring M is also regular.

Proof. Let acC(M) (center of M). Let xeM and ye/"be such that

a=axya.
Now, a = apyxya= apu(xya) = (xya)ua = xfapa).

Also a = auxya=(aux)ya= a;(agx) = (aya)px.
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S0, apx = ayapx, or @ = aapx) = afayauxux) = aaypcpapx) =
apfayxpo)ua. Now, ajoce C(M) because if ye M then

(@m)py = p)ua = (cp)u(ayayx = xpypayape = (xpypa)pa =
Mxypax) = appefyic)ya = apxyapypx) = aypux = yKapr).

Also ayxice C(M) because

(apx)yy = (ap)ulxpy) = xp)ulap) = xppap = xyapypx =
(@)pyr) = ym)ular) = yAxpay) = yfxux)ya = yyapxux) =
yAayxpx).

Hence the centre of M is a regular /~ring. ®

Theorem 6.13. Every regular Iring without zero divisors is a skew

Ifield.

Proof. LetaeM, a+ 0. Let xeM and u, yeI” be such that a = quxya.
Then ag(xya— 1) =0, (agx — 1)ya = 0, and hence xpa =1, apx =1 for
some u, yel and so a is invertible. Hence M is a skew /- field. ®

Theorem 6.14. [f M is a regular I'-ring whose only nilpotent element

is zero, then

i) Every idempotent element of M is in the centre.

ii) If aeM, a # 0, then there exists beM, ye I such that ayb
=bya=f isidempotentand ayf=fra=a

jii)  MIa=alM for all aeM; hence every left (or right) ideal

is a two-sided.

Proof. (i) Let ee M be idempotent. Let aeM be an arbitrary element
and assume that zero is the only nilpotent element of M.
Since [(1 — e)payelul(l - e)uare]

= (1 paye — epaye)u(1 paye - epaye)
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= (aye ~ epaye)u(aye - epaye)
~ dyepaye —ayepeuaye — epayepaye + epaye e uaye
~ ayelaye — ayeuaye — euayepuaye + euayeaye
=(
and
leyau(l - e)uleyau(l - e))]
= leyapl — eyape)(eyapl - eyape))
= eyapeya — eyaleueya — eyayeyaue + eyapeeyaye
= eyaueya — eyayeya — eyaueyaue + eyaueyaue
= 0 for some u, yer.
Since the only nilpotent element is zero, so we have
0=(1—-e)uaye= luaye — euaye = aye — euaye,
and 0 =eyau(l — e) = eyaul — eyape = eya — eyaype.
Hence, aye = euaye = eya and so e is in the centre of M.
(ii) Let M be a regular I“ring having 0 as the only nilpotent element.
Given aeM, a# 0, let xeM be such that auxya = a for some u, yer.

Then e = aux, e'=x6a are idempotents elements of M; so e and e/
belong to the centre, and f= eye'l is an idempotent. |
It follows that auxxda = (awx)Kxda) = eye’ .

Also (xuxya)da = [xu(xya)lda = [(xpa)ux]da = [x{aux)]oa =
[(azo)x]6a = (ao) (xJa) = eye’ .

Moreover, ayf = ayeye/= e,ua}'e/ = a;txpaye/= aye/= ayxda = a
and fua = ey pa = eya,ue/= eyauxda =eya = apxya = a.
Thus a,uf=fua = a.
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(iii)) Given yeM h = . /=
YeM, we have yua = (yua)yeye = efyupa)ye’
/.

(app)Uypa)ye' = a,wC}y,ua}’e/ , and so there exists ze M such that yua =

ayz. This shows that Mya ¢ ayM. The converse can be proved in a

similar way.
Hence, since every left ideal J is the sum of the principal left ideals

generated by its elements, J is also a right ideal and vice versa. W

Corollary 6.15. Let M be a regular I'ring. Then
(i)  All one-sided ideals in M are idempotent.
(ii)  All two-sided ideals in M are semiprime.
(iii) The Jacobson radical of M is zero.
(iv) M is right and left semihereditary.
(v) M is right and left nonsingular,

Proof. (i) Let J be a right ideal of M. Since M is regular, for each aeJ,
a = auxya for some u, yefl, and xe M. Consequently, a = auxya
eJIMIJ and JIMIJ < JI'J. That is J ¢ JIJ. Also JIJ < J. Hence
J=JIJ.

(if) Let I be two-sided ideal of M. If 4 is a two-sided ideal of M such that
ATlA c I, then we have to show that A c 1. Now, by (i) A=ATA c I.

(iif) Suppose that ee M is right quasi regular. Then e = ejxue for some
,u,. yel and xeM. Let R be a right operator ring of M. Then there exist
reMsuch that [y, elor=r+[u el -1 elr=0.
It follows that [u,e]=[y,elo0

=[u,elo([u,elor)

=([u,elolu.el)or
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=[u,elor=0
Thus e = epxpe = eyx[u , e] =em0=0.
Recall that 3(M) = {ee M| <e> is right quasi regular}. Since e = 0,
<e>=0and so I(M) = 0.

Note that in Theorem 6.11, this was proved by another method.

(7v) According to Theorem 6.08(a), every finitely generated one-sided

ideal of M is a direct summand of M and so is projective.

(v) Suppose that x3J = 0 for some xeM and some J < M with
JeP(M), where (M) be the class of all essential ideals in M. There is
an idempotent e€ M such that Mue = Mux and since MueyJ = MuxyJ =
0, we see that J < (1 —e)uM. Then J N euM = 0 whence euM = 0, and

so x = 0. Thus M is nonsingular. B

Subdirect sum. By the direct product (or complete direct sum) of
I rings M,, r is in some index set I, we mean the set [1,e /M, = {f> I -)
U,E,M,|f(r)eM, all rel}. We give a ring structure to [l.;M, by
defining (f + g)(r) =f(r) + g(r) and (fg)(r) = Ar)g(r).

Let 7, be the projection of [1,c;M,onto M,. A I-ring M is said to
be a subdirect sum of I'-rings {M,}.c1 if there is a monomorphism

@: M = 1, M, such that MDm, = M, for each rel.
Theorem 6.16. Any finite subdirect sum of regular I-rings is regular.

Proof. Tt suffices to show that a subdirect sum of two regular /-rings
is regular. Suppose that M has two ideals J and K such that Jn K = 0,

Now, (J + K)/J is an ideal of M/J. Since (J + K)/J = K/(J n K) and
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since KI(J N K) is regular, then (J + K)/J is regular. Since (J + K)/J

and J are regular, then J + K is regular. Thus any finite subdirect sum

of regular Irings is regular. m

Sub-directly irreducible. A I-ring M is said to be a sub-directly

irreducible if the intersection of all of its nonzero ideals is not zero.

Theorem 6.17. In a regular Iring M with no non-zero weakly

nilpotent elements, every idempotent elements commutes with every

elements of M.

Proof. Let ede = e, oerl’ Let xeM. If e = 0, then edx = xde. Suppose
e# 0. Then 6 # 0.
Now, (edk — edrde)Xedx ~ ebede)
= (edxde —edxde)([0,x]-[F, xbe])
= 0.
Therefore (edx — e)Xedx — e) = 0; and hence edxdedx — ededx — edx e
+ ede =0, or, edx — edx — edxde + ede = 0. This implies eXe — xde) =
0. Since e # 0, therefore e — xde = 0 and hence e = xde.
Again, (edxde — ebx)Xedxde — edx)
= (efxde — edxde)X[0,xoe] —[0,x]) =0
Therefore, (e — edx)Xe —edx) =0
or ede — edxde — ededx + edxoedx =0
orede —edxde —edx —edx =0
or (e — edx)oe = 0.
0, therefore e — edx = 0 and hence e = edx. Therefore,

Since e #
edx = xde. Hence every idempotent elements commutes with every

elements of M. B
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Theorem 6.18. A non-zero subdirectly irreducible regular I'-ring with

no nonzero weakly nilpotent elements is a division Iring.

Proof. Theorem 6.18 shows that for any xeM, xd = edx, where
e=ede. LetaeM, a+# 0. Let us consider two ideals adM and 4 = {x -
a§M| x€M} whose intersection is zero. M is subdirectly reducible, so
adM =0 or A= 0. But aéM# 0, hence 4 = 0, and thus adx = x. So that
we can write xde = edx = x. This means that [e , §] and [§, ] are the
strong left and right unties respectively. Now, we have ayx = x = xya
for a, xe M and so aye = e = eya, whence (ade)ye = e = e {eda), so that

aXeye) = e = (eye)de. Therefore M is a division [-1ing. W

Lemma 6.19. If x, yeM, ¥, ;zefandx/= x —xuyyx, and ifx/=a./,uayx/

for some ae M, then x = xubyx for some beM.

Proof. We have, x = x|+ XUy yx
= x’payx/ + xuyyx
= (x —xpyp)papx — xpyyx) + xpyyx
= xia — aypy — yyppa + yyxuap py + y)
= xubyx
where, b =a —ayuy —yyxua + yyxuaycpy + yeM. B

Lemma 6.20. Let J c K be two-sided ideals in a I-ring M, then K is
regular if and only if K/J and J are both regular.

Proof. If K is regular, then obviously K/J is regular. Given xeJ,

xuyyx = x for some g, yel and yek. Then z = ydx{&y is an element of
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J, 8, el and xpzyx = XHyoxéyyx = x&yyx = x. Hence J is a regular
I-ring.

Conversely, assume that K/J and J are both regular. Given
x€K, it follows from the regularity of K/J that x — xzyyxeJ for some
yekK. Consequently, x — xuyyx = (x — xpypc)uzx — xpyyx) for some
zeJ so that, x — xpyp = xpzx — xEwuwm — xuwppzx +
XHY XUz X [y px.

Therefore x = xuyyx +xp(z — 2y py — yycpz + yycpz yxpy) ye
=xpu(y tz-zycpy - ypouz + y ez py) px
= XWX,

forsomew=y+z—zmuyy—ymuz + ypuzpxuyek.
Therefore K is regular. W

In particular, we can say that every two-sided ideal in a regular
Iring is regular. On the other hand, if J is two-sided ideal in a /-ring
M such that M/J and J are both regular, then M is regular. This method .

of checking regularity is quite useful when constructing examples.

Subdirect product. A Iring M is said to be a subdirect product of the
family {M}icr of T-rings if there is a natural projection

p; ;e M; — M;such that p(M) =M, for each iel.

Proposition 6.21. Any finite sub-direct product of regular I-rings is

regular.

Proof. 1t suffices to consider the case of a /-ring M that is a sub-direct

product of two regular I-rings. Then M has two-sided ideals J and K

such that J n K = 0 and M/J and M/K are both regular. Since J is
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1somorphic to the two-sided ideal (J + K)/J in the regular I-ring M/K,

then from Lemma 6.20, we have, J is regular. So that M/J is regular

and hence M is regular. m

Note that a sub-direct product of infinitely many regular

[-rings, such as Z (set of integers), need not be regular.

Proposition 6.22. Let M be a Iring, and set T= {xeM|MI'x MT"is a
regular ideal}. Then

a) T is a regular two-sided ideal of M,

b) T contains all regular two-sided ideals of M,

c) MIT has no non-zero regular two-sided ideals.

Proof. a) Given x, yeT, we see that MIYIM and (MIxIM +
MIYIM)/IMTIyI'M are both regular, whence from Lemma 6.20,
MIxI'M + MIyI'M is regular. Thus (MI'xI'M + MIyvIM) < T for all

x, yeT. Hence T is two-sided ideal. It is clear that T is regular.
b) 1t is obvious and c) follows from Lemma 6.20. &

In order to show that the /~-ring of all mxn matrices over a
regular /<ring is regular, we proceed via the following lemma, which

is useful in other case as well.

Lemma 6.23: Let ey, €5, e, . . .. ., en be orthogonal idempotents in a
[ring M such that e, + e; + ez + e te,=1. Then M is regular

if and only if for each xeeuMye;, there exists yee,uMye; such that

Xyyx = X, M, }/GI_:
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Proof. First we assume that M is regular and let xee;uMye;. Then

X =xUyyx for some yEM, NOW, x#(e[wyel)yx = X ez ye;yx =XUYpX =

x, since yee;uMye; .

Conversely, assume that for any xee;uMye;, there exists
ye€euMye; such that xuyyx = x. We proceed by induction on ». Since
the case = 1 is trivial we begin with the case »n = 2. First consider
an element xe M such that e,uxye, = 0. There are elements xee,uMre,
and zee,uMye, such that
(erpxye))yfe xye,) = eypxye, and
(expixyer) uzeatixyer) = eyprxyes, then
xp(y + 2)px = (e\pxyer + expxye, + eypyer) iy + z)Aepuxye) + eypmxye,

+ ey yer) |
= e xye Ly ye [ ye, + ey ye, py ye, L yey +

eyxyer iz yes fixye, t exfIx yey iz yer ix ye,
=epxye, t expxye; + erpox{y + z)px ey

As a result, we see that the element x'=x- xu(y + z)yx lies in
ey uMye;. Then x/,uwn:/= x for some weeuMye,, whence xuvyx = x

for some ve M.

Now, consider a general element xe M, and choose an element

yee,uMye; such that (ejuxyer)uyfeipixye) = epxye; Since
yee,uMye,, we see that ejuxpyuxye; = ejjxyes, whence e ju(x —

xyux)ye; = 0. By the case above there exists an element zeM such
that (x — Xy px) Uz AX — XLYFX) = X — XHY KX, hence xuwyx = x for some

we M. Therefore, M is regular.
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Finally, let n > 2, and assume that the lemma holds for n — I

orthogonal idempotents. Setting f=e,+ .. ... ... + ¢, and g=eitet

. + e,, we thus know that JuMyf and guMyg are regular.
Consider any element xee uMyf. There exists yee,uMye, such that
(xdex) yUxdey) = x8ey, so that (x — xuyyx)Se; = 0. Then x — JC,U,V}.Oc
€guMyg, whence (x — xuyp)uznx — xpymx) = x — xuyyx for some
zeguMyg. As a result, xuwyx = x for some weM. Hence we obtain

fuwye efuMye; such that xu(fuwye)x = x, likewise, for any
x€fuMye, there is some tee,uMyf such that xutyx = x.
Applying the case n = 2 to the orthogonal idempotents e, and f, we

conclude that M is regular. Therefore the induction works. W

Lemma 6.24. A non-zero regular I'-ring M is indecomposable (as a

I-ring) if and only if its centre is a I-field.

Proof. Assume that M is indecomposable. Let S denote the centre of

M and iet x be an element of S. Then by Theorem 6.12, xuyyx = x for

some yes.

Now, xuyxdy = xdy, i .e., xdy is a non-zero central idempotent in

M. Since M is indecomposable, xdy = 1. Therefore, S is a /-field.

In particular, this lemma shows that the centre of any prime

regular /-ring is a /-field. W

Definition: E is a projective left M-module when the following

property holds: if f: M — N is any epimorphism, and g: E - N a

homomorphism, there exils a homomorphism h: E — M such that

g = foh.
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Definition: Let E be an M-module. Then M is a free module whenever
it has a basis. Thus every element of E can be written in one and only

one way in the formx= X, s a.s (where a,e M).

Example. i) The zero module is free with empty basis.
i) Every I*ring M is a free left (right) M-module; the set

consisting only the unit elements is a basis.

Theorem 6.25. If E is finitely generated projective module over a

regular I'-ring M, then End\(E) is a regular Iring.

Proof. According to Lemma 6.23, euM,(M)ye is regular for any n and
any idempotent ec M, (M). B

Theorem 6.26. If E is a projective right module over a regular I-ring M,

then all finitely generated submodules of E are direct summand of E.

Proof. Let E be a submodule of a free right M-module F. Given any
finitely generated submodule B ¢ E, we infer that F has a finitely
generated free direct summand G which contains B. It suffices to

prove that B is a direct summand of G, for then B is a direct summand

of F and hence also of E.

Choose a positive integer n such that B can be generated by n
elements, and embed G in a finitely generated free right M-module H

which has a basis with at least n elements. Then there exists
feEnd\(H) such that fyH = B. According to Theorem 6.25, End\(H) is
regular, hence there exists geEndy(H) _such that fugyf = f,

consequently, fyg is an idempotent endomorphism of A such that
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JugyH = fYH = B, whence B is a direct summand of H. Therefore, B is

a direct summand of G.

Theorem 6.27. A Iring M is regular if and only if all right (left)
M-modules are flat.

Proof. First assume that M is regular. Let £ be any free right
M-module, and let K be any submodule of E. If F is any finitely
generated submodule of K, then F is a direct summand of E by
Theorem 6.26, whence E/F is projective. Now, E/K is the direct limit
of the module E/F, where F ranges over all finitely generated
submodules of K. Thus E/K is a direct limit of projective modules,

whence E/K is flat.

Conversely, assume that all right M-modules are flat. Given
x €M, the flatness of M/xyM implies that the natural map (M/xyM) ®
Mux — M/(xyM) must be injective, i.e., the map Mux/xuMux —
M/(xyM) is injective. Thus Mux m xyM = xuMyx, and, consequently,
xexuMyx. Therefore, M is regular. &

Lemma 6.28. For a commutative I-ring M, the following conditions
are equivalent:
a) M is regular.
b) My is a I'- field for all maximal ideals M of M.
¢) M has no non-zero nilpotent elements and all prime ideals of
M are maximal.

d) All simple M-modules are injective.
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Proof. (a) = (d) Let M’ be a maximal ideal of M, let J be an ideal of
M, and let £ J — M/M be a non-zero homomorphism. Then
MADMAD=MnJ
Now, M nJ=(M nH(M ~JycIM c kerf c J.
Hence J & M. Consequently, x + y =1 for some xeM and yeJ, and
we set w = f(y)e M/M.
Given any aeJ, we have
x+y)a=lm=a
= xyatyya=a
= a —yya=xypaeMIJ c ketf, whence fla — yya) =0
- =>fla)-fyyra)=0
= fla) = flyya) = Ay)yfla) = wifla).
Therefore, fextends to a map M — M/M .

(d) = (c) We first claim that if M is any maximal ideal of M, then
xexI'M forall xeM. if not, then x/M/xI'M # 0 for some xeM'. Then
M/M = xI'M/xI'M. Hence there exist an epimorphism f: x/'M — MIM.
Now, f extends to amap g: M —> MIM, and so fixI'M) < g(M) =0,
which is false. Thus the claim holds. |

Suppose that xyx = 0 for some non-zero xe M. The annihilator
J = {meM|myp = 0} is a proper ideal and so is contained in a
maximal ideal M. Since xeJ c M, we have xexuM by the claim
above. Then x = xyy for some yeM and (1 - y)px=1px—ypx=x—ym
=0,=>(l -yeJc M, which is impossible. Thus M cannot have any

nonzero nilpotent elements.
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Now, let P be a prime ideal of M, and let M’ be a maximal ideal which
contains P. Given any xe M, we have xexIM and SO
xy(1 —y)=xyl = XYy =x —xyy = 0 for some yeM .

Since 1 - yg M, we also have 1 ~ y#P, whence xeP. Thus M = P. So
that P is maximal.

(c) = (b) Since there are no prime ideals of M properly contained in

M, we have seen that MM,/ is the only prime ideal of M,/, whence
MM,/ is nil. Given x/se M'ITM,/, we thus have (x/s)" = o for some

n, hence tyx” = 0 for some teM — M. Then ()" =0 and so tjx = 0,
whence MM,/ = 0. So that M,/ is a I'-field.

(b) = (a) Let E be any M-module. For any maximal ideal M of M, it
follows from (b) that E,/ is flat M;/-module, and consequently E is a

flat M-module. According to Theorem 6.27, M is regular. B

Theorem 6.29. A I-ring M is regular if and only if
a) M is semiprime.
b) The union of any chain of semiprime ideals of M Iis
semiprime.

c) M/P is regular for all prime ideals P of M.

Proof. If M is regular then obviously (c) holds. In view of Corollary 6.15
(i1), all two-sided ideals of M are semiprime, whence (a) and (5) hold.
Conversely, assume that (a), (b), (¢) hold. If M is not regular,
then there is some elements xeM such that xgxuMyx. Now, note that
0 ideal is a semiprime ideal of M such that xgxuMyx + 0. From, (b)

we see that there is a semiprime ideal J in M which is maximal with

respect to the property xexuMyx +J.
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Now, M/J is not regular, hence by (¢), J is not prime. Thus there
exist two-sided ideals 4 and B which properly contain J, such that
AIB c J. Now, set K = {meM|mrIB cJtand L= {meM|KIMc J}.
As J is semiprime, K and L are also semiprime. Since (KN L)JIKnN
Lyc KILc J,wehave KN L c J. Clearly A — K and B c L, hence K
and L properly contain J.

Because of the maximality of J, there exist elements y, zeM
such that x —xuyxeK and x — xpzyxel.
Now, x —xp(y + z - yyxpz)yx = (x —xuypx) — (x — xpypx)pzpeek.
= (x —xpzyx) — xpyUx — xpzyx)eL.
We see that xexuMm»x + (K n L) € xuMy + J which is a

contradiction. Therefore M must be regular. &

Corollary 6.30. A I" -ring M is regular if and only if all two-sided
ideals of M are idempotent and MIP is regular for all prime ideals P
of M.

Definition. A completely prime ideal in a I'-ring M is a proper two
sided ideals P such that M/P is an integral domain (not necessarily

commutative).

Lemma 6.31. If M is a I-ring with no nonzero nilpotent elements, then

every minimal prime ideal of M is completely prime.

Proof: We first claim that if aj, a3, a3, - . a,eM and a\ya; asy;

vt oo oes Yoy =0 for some Yy, Y2, Y35 o+ e oo oo j'neﬂ then the product
of a;ya; with { # j in any order is zero. To prove this, it suffices to
show that if xuaybdy = 0 in M for some p, del, then xubyady = 0.

This is clear if x =y =1, then
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xpaybdy =0
= lpaypdl =0
=>ayp=0

and so (bya)(bya) = bayb)ya=0, whence bya =0 = xubyady = 0.
In case x = 1, then (aph)oy =0

= y&ayb) =0
= yXaybya) =0
= aybyady =0

= byaybyady =0
= (bya)y(byra)dy =0
= (bra)py&bya) =0
= (bya)py&Xbya)dy =0
= byady = 0.

For the general case,
xpaybdy) =0
= aypdyux =0
= (byady)ux =10
= xp(byad) =0

This establishes the claim.v

Now, let P be any minimal prime ideal of M. Recall that on
m-system in M is a nonempty subset X such that 0g.X and whenever
x, yeX, there exists neM such that xpyeX. Then M — P is an
m-system and we may choose a maximal m-system X o M~ P. If Q is
two-sided ideal of M, maximal among all two-sided ideals disjoint

from X, then Q is prime. Since Q is disjoint from M — P, we have

0 g P and thus Q = P, by minimality of P.
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As aresult, P is disjoint from X, whence X = M — P. Thus M — P
is maximal m-system.

Set Y = {x|y|x272x373 ......... VX I X1y X2, X3y cevnnennns , Xn€M - P and
Vis 725 Payevennn smel}. If 0eV, then XINX2)2X3 3. .. %X, = 0 for some
Xi€M — P and y, », ,...,7,€I". There exists my, my, ms,

and Hs My ..., ,Uner such that Xy 2ol enneeenns

My ... ... ... twmy) = 0 for some del, we see from the claim above
that x)yim txapomafly oo cee von it it Xt Vot Mt n1Xn = O Which is
impossible. Thus 0g¢ Y. Hence Y is an m-system. Clearly, M — P ¢ Y.
Hence by maximality of M — P, we obtain M — P = Y. Therefore M — P

is multiplicatively closed. So that M/P is an integral domain. ®

Theorem 6.32. Let M be a [-ring with no nonzero nilpotent elements.
Then M is regular if and only if MIP is regular for all completely
prime ideals P of M.

Proof. Assume that M/P is regular for all completely prime ideals. If
P is minimal prime ideal of M, then is completely prime by Lemma

6.31. Hence M/P is an integral domain and so is a division /-ring.

Consequently, we see that M/Q is a division I-ring for every
prime ideal Q of M. Since every semiprime ideal of M is an
intersection of prime ideals, we infer that the set of semiprime ideals

of M coincides with the set of those two-sided ideals J such that M/J

has no nonzero nilpotent elements.

As a result, we see that the union of chain of semiprime ideals

of M must be semiprime. Therefore M is regular.
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In this chapter, we have developed the basic properties of a
class of regular I-rings of some “classical” type. Abelian regular
Irings are also known as strongly regular I-rings, which is, however,
a more indirect concept. In that a nontrivial theorem is required to

show that strongly regular Irings are actually regular. For this
reason, we view abelianness as the more general property. We first
develop a number of equivalent characterizations of abelian regular
I-rings before proving that “abelian regular” is equivalent to
“strongly regular”. We also develop a lattice theoretic

characterization of the abelian regular /-rings.

Definition: A regular I'-ring M is abelian provided all idempotents

in M are central.

Obviously, any commutative regular 7ring is regular, as is any

direct product of division /-rings.

Lemma 7.01. If e is idempotent in a semiprime I-ring M, then the

following conditions are equivalent:
(a)e is central.

(b) e commutes with every idempotent in M.
(c)eyMis a two-sided ideal of M.

(d) Mye is a two-sided ideal of M.

(e) (1 — e)yMye = 0, for some yel.

(H eyMAK1 —e)=0.
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Proof. (a) = (¢) is trivial.

(e) = (a) Since (I = e)yMye = 0, we see that Mye < eyM, whence
eyM is a left ideal of M. Then eyMHX1 — e) is a left ideal of M such
that feyMK(1 — e)]{eyMK1 - €) = 0, hence eyMK1 — e) = 0. Given
reM, we have eury1 — e) = 0 as well as (1 ~ e)prue = 0, whence

eur = eurye = eyrue = rue. Therefore e is central.
(a) < (d) © (f) by symmetry.
(a) = (b) a priori.

(b) = (e) Given any xe(l ~ e)yMye, we see that e + x is idempotent,
hence eu(e + x) = (e + x)ue, i.e. eue + ex = eue + xpe, i.e. eux =

xpe. Thus e commutes with x, sothatx =xe =ex=0. =

Theorem 7.02. For regular I'ring M, the following conditions are
equivalent:

(a)M is abelian.

(b)M/P is a division [-ring for all prime ideals P of M.

(c) M has no nonzero nilpotent elements.

(d)All right (left) ideal of M are two-sided.

(e) Every nonzero right (left) ideal of M contains a nonzero central

idempotent.

Proof. (a) = (b) Since all the idempotents in the prime [=-ring M/P
come from idempotents in M, they are all central and hence we see

that 0 and 1 are the only idempotents in M/P. As a result, x{M/P) =
(M/P)yx = M/P, for any nonZero xeM/P and for some yel. Whence

M/P is a division /=ring.
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(b) = (c) Since M is semiprime, it follows from (b) that M is

tsomorphic to a subdirect product of division /rings, whence M has

no nonzero nilpotent elements.

(c) = (a) IfeeM is an idempotent, then every element of (1 — e)yMye

is nilpotent, whence (1 — ¢)yMye = 0. By Lemma 7.01, e is central.

(a) = (d) Each principal of M is generated by a central idempotent

and so is two-sided, whence all right ideals of M are two-sided.

(d) = (a) by Lemma 7.01.

(@) = (e) is clear.

(e) = (a) Let eeM be an idempotent, and let J be the right ideal of M
generated by those central idempotents of M which lie in eyM. Note
that J is a two-sided ideal. In view of (e), we se that J £ eyM, whence
e M/J) is singular. Given any xeM, we have xyJ/ £ J £ eyM and so
(1 — e)yxyeyM is homomorphic image of e {M/J) and so is singular.
Inasmuch as M, is nonsingular, we obtain (1 — e)pxyeyM = 0.

Therefore (1 — e)yMye = 0, hence e is central, by Lemma 7.01. =

Proposition 7.03. Let J be a two-sided ideal in a regular Iring M,
and let fi, f2, ...... be a finite or countably infinite sequence of

orthogonal idempotents in M/J. Then there exist orthogonal

idempotents €1, €3y vevevv vnnen eM such that en = f,, for all n.

Proof. The proof is similar to the proof of [10, Proposition 2.18] =
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Theorem 1.04. Let M be a regular I-ring, and let N be the sum of all
ideals of the form MyeyMxA1 — e)yM, where e is any idempotent in M.
Then N equals to the sub I-ring (without identity) of M generated by

the nilpotent elements, and MIN is abelian. Also N is contained in the

| subring of M generated by the idempotents.

Proof. Given any idempotent fe M/N there exists an idempotent eeM such
that e = f. Inasmuch as eyMK1 — e)yN, we obtain fHUMINYK1 — f) = 0,
whence fis central (by Lemma 7.01). Thus, M/N is abelian.
Let S denote the sub /-ring (without identity) of M generated by the
nilpotent elements. According to Theorem 7.02, M/N has no nonzero
nilpotent elements, whence S < N. Given any idempotent e M, every
element of eyMY1 — e) and (1 — e)yMye is nilpotent, hence we see
that eyMU1 — e)yM = [eyMU 1 — M)Al — e)yMye] + eyMA1 -
e)yMA1 — e) c S and, similarly, (1 — e)¥Mye c S. Consequently,
MyeyMA1 — e)yM = eyMyeyMA1 — e)yM + (1 — e)yMyeyM(1 — e)yM
c eyMy(1 — e)yM + (1 — e)yMyeyM c S
Therefore N = S. |
Finally, let T denote the sub [-ring of M generated by the
idempotents. I1f ¢ is an idempotent in M and xeeyM(1 - e), thene + x
is an idempotent as well. Then e and e + x both lie in T, whence xeT.
Thus eyMA1 — ) c T, and, likewise (I - e)yMye c T. Proceeding as
above, we conclude that MyeyMK1 —e)yM c T. Therefore Nc 7. ®

Proposition 7.05. If A and B are projective right [~modules over a
regular I-ring R, then the following conditions are equivalent:
(a) Homy(A, B) # 0.
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(b) Hom (B, A) # 0.
(c) There exist nonzero sub Imodules A' < A and B'< B(which

can be chosen to be cyclic if necessary) such that A'= B

Proof. The proof is similar to the proof of [10, proposition 2.21] ®

Theorem 7.06. Let A be a finitely generated projective right I-module
over a regular I-ring M, and set T = End\(A). Then the following

conditions are equivalent:
(a) T is abelian.
(b) Isomorphic sub I'-modules of A are equal.
(c) If B is any sub I-modules of A such that 2B< A, then B = 0.
(d) If B and C are any sub Imodules of A such that B n C = 0,
then Homy(B, C) =0
(e) L(A) is distributive.

Proof. Obviously T is regular.

(a) = (b) Let B and C be isomorphic /~modules of 4. Given xeB,
there exists ye C such that xyM = yyM. There exist idempotents e, fe T
such that eyd = xyM and fyA = yyM [by Theorem 6.08]. Since
eyA = fyA, there exist elements xee)T% and tefyTye such that syz = e
and ¢y = f. Now, e and fare central in 7, whence

e=sp=syn=frn=[fre=tpr=trr=tx=f,
and, consequently, xyM = eyd = fyA = yyM < C. Thus, B < C, and, by

symmetry, C < B.

(b) = (c) is clear.
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() > (d) If Hom(B, C) # 0, then by Proposition 7.05, there exit
nonzero sub /“modules B < B and ¢ < C such that B = C. But then
2B< B® C < A4, whlch contradicts (c).

(d) = (a) For any idempotent ec T, we have (1 — e)yTye = Homy(e)T,
(1 —e)yT) =0 by (c). According to the Lemma 7.01, e must be central.

(a) = (e) Let B, C, DeL(A), and choose idempotents b, ¢, deT such
that by4 = B, cy4d = C and dy4 = D. Since T is abelian, b, ¢, d are
central in T. In particular, ¢yd = dyc, hence we compute that e = ¢ + d
— cyd is an idempotent. Clearly ey < C + D, Observing that ey = ¢
and eyd = d, we see that ey4 = C + D. Consequently,
BN (C+D)=bydneyd=byeyd < bycyAd + bydyA
=BNC)y+(Bn D).

The reverse induction is automatic.

(e) = (a) For any idempotents e, fe T, we have

eyA=eyA N [fyA+ (1 =) yA] = [eyd O fyA] + [eyA 0 (1 - f yA]
by (e). As a result, freyd = eyd N fyA < eyA, whence fre = eyfe.
Likewise, fU{1 — e) = (1 — e)yfA1 — e), from which we obtain eyf {1 -
e) = 0 and then ey = eyfye = fre. Thus, all idempotents in T commutes

with each other. By Lemma 7.01, all idempotents in T are central. m

Definition: A I'-ring M is said to be strongly regular if for each xe M

there exits ye M such that (xp)’y = x, for some yel”

As the following theorem shows, this condition is left-right

symmetric, and strongly regular /-rings are in fact regular.
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Theorem 7.07. A Iring M is strongly regular if and only if it is

abelian regular.

Proof. First assume that M is abelian regular, Given any xeM, there
exists ye M such that xyymx = x. Since xpy is idempotent and, thus, is

central in M, it follows that x = (xpp)3x = (xpxp)y =(x7)’y. Hence M is

strongly regular,

Conversely, assume that M is strongly regular. Obviou'sly an
element xe M can satisfy (xy)*x = 0 only if x = 0, from which we infer

that M has no nonzero nilpotent element. In particular, it follows that

M is semiprime [ring.

Next consider any prime ideal P of M, and note that M/P is
strongly regular. If x, ye M/P are nonzero, then yyx # 0 for some
reM/P and so {(yyrx)y} (vyryx) = 0, whence xpy # 0. Thus, M/P is a
domain. Given any nonzero seM/P, we have (st = s for some
teM/P and so s syt — 1) = 0, whence sy = 1. Thus M/P is actually a

division /-ring.

At this point, we could use Theorem 6.32 to conclude that M is
regular. However, regularity is easy enough in this case to prove

directly, as follows.

Now, let xe M and choose an element ye M such that (xy)zy = x.

Given any prime ideal P of M, we have (;}’)2;=J_C in the division

Iring M/P, from which we infer that xuyyx=x, so that
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xpyyx —xeP. Then xuyyx — x belongs to the intersection of all prime

ideals of M, which is zero because M is semiprime. Thus xzyyx = x.

Therefore M is regular, Since there are no nonzero nilpotent -

elements in M, Theorem 7.02 shows that M is abelian.m

Proposition 7.08. Every inverse limit of abelian regular I-rings is an

abelian regular.

Proof. We first claim that any abelian regular /~ring must satisfy the

following property: (*) For each xeM, there is a unique yeM such

that xyysx = x and yyxpuy = y.

First, there is some zeM such that xyzux = x. Setting y = zyxyz, we
cheek that xpyux = x and yyxuy = y. Then xypy and yyx are idempotents
in M and so are central, whence xyy = x{(yp@xuy) = (xp)Uxwy) =

(y){yux) = yAxyypx) = yyx. Now, we consider any we M such that
xywux = x and wyxuw = w. As above, xyw = wyx is central, hence

xyw = (xpypx)yw = (xpp)plxyw) = (xpw)plxyy) = (xpwpex)yy = xpy, and
consequently, |

w = wixpw = wAxpy) = wAyLx) =y xpw) = yUxpy) = y.

Thus y is unique, proving (*).

It is clear (*) is preserved by unique limits. Thus, if M is an inverse

limit of abelian regular 7rings M;, we see that M is regular.

Inasmuch as » embeds in M;, we conclude that all idempotents

in M are central.
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Theorem 7.09. If J is an ideal in an abelian regular I'-ring M, then

Endy{(Jy) is an abelian regular I-ring, and End\(Jy) = End\(J))

Proof. The set X = {xyM | xeJ, yel} is a directed family of right
ideals of M whose union is J. Since M is abelian, each xyMeX is
generated by a central idempotent, and so is a fully invariant sub
I-module of any right ideal which contains it. Thus, we obtain
restriction maps End\((yyM)y) — Endy{(xyM),) whenever
xyM < yyM in X, and we infer that the inverse limit of this system of

endomorphism rings and restriction maps is isomorphic to Endy{Jy).

Given any xyMeX, we have xyM = eyM for some central
idempotent ee M, whence xyM is an abelian regular /-subring (with

unit e) of M, and, as a ring xyM is naturally isomorphic (via left

multiplication) to Endy((xyM)s). Consequently, we infer that limX =

Endy{Jy) as rings. Since xyM is an abelian regular [~ring, Theorem

7.08 now says that Endy{Jy) is an abelian regular /=-ring.

Proceeding as above, we see that X = {Mux | xeJ}, that each
MpyxeX is an abelian regular /*ring which is naturally isomorphic (via

right multiplication) to Endy{(u(Mlx)), and that limX'= Endy(s/) as
rings. Therefore Endy(yJ) = Endi(Jy).

Theorem 7.10. Let M be an abelian regular I'-ring, and let Q be the
maximal right quotient Iring of M. Then Q is abelian, and Q is also

the maximal left quotient I-ring of M.
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Proof. We claim that any idempotent eeM is central in 0. Given
xe(), we have xy/ < M for some J <e My. For all reJ, note that
e commutes with xyr as well as r, whence ey = xyrye = xyeyr. Thus

(eyx —xye)y = 0 and eyx = xye, proving the claim.

Now, if K is any nonzero right ideal of Q, then K n M # 0 and
50 K'M M contains a nonzero idempotent, which must be central in O
by the claim above. Thus, every nonzero right ideal of O contains a

nonzero central idempotent, whence Theorem 7.02 shows that Q is

abelian.

Given any nonzero element i€ Q there exists re M such that xyr
# 0 and xyre M. Now, ryM = eyM for some idempotent e M, and e is
central in Q. Then epxxyM = xyeyM = xyryM, whence eyx # O and
epeM. Thus, yM <, 40, so that Q is a left quotient /=ring of M.

As a result, O is a sub 7=-ring of the maximal left quotient />

ring P of M. By symmetry, P is a right quotient /-ring of M, hence we

conclude from the maximality of Qthat @ =P. ®

Corollary 7.11. Let M be an abelian regular I'-ring. Then M is right
. self-injective if and only if M is self-injective.

Proof. If M is right self-injective, then M is its own maximal right

quotient /ring. By Theorem 7.10, M is also its own maximal left

quotient /*ring, whence M is left self-injective.m

Theorem 7.12. Let M — S be a regular I-ring such that M contains

all the idempotents of S. Then
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(a) S has a two-sided ideal N such that N < M and the I'-rings MIN
and SIN are abelian.

(b) The rule o(J) = JS defines a lattice isomorphisme: L(My) —
L(Ss). For all KeL(Ss), we have ¢~'(K)=K A M.

(c) The rule y(J) = J N M defines a lattice isomorphism y: Ly(S)
—> Ly(K). For all Ke L(M), we have l/I_I(K) = K§ = SK.

Proof. (a) Let N be the sum of all ideals of the form SyeySH1 — )85,
where e is any idempotent in S. According to Theorem 7.04, N is
contained in the sub /—ring of S generated by the idempotents. Hence

N c M. Also Theorem 7.04 says that S/N is abelian as well.

(b) Obviously ¢ is a monotone map of L(M),) into L(Ss). Given any
K € L(Sy), there is an idempotent eeS such that exS = K. Since ee M by
assumption, we see that K N M = eyMe L(My,) and that oK N M) =K.
Thus, the rule AK) = K N M defines a monotone map & L(Ss) —
L(M),) such that @ is the identity map on L(Ss). Given any JeL(My),
we have, J = fyM for some idempotent fe M, whence 0p(J) = fyS " M
= J. Thus, 8¢ is the identity map on L(M,,). Therefore @ and 0 are

inverse order-isomorphisms, hence, also, lattice isomorphism.
(c) Obviously  is a monotone map of Ly(S) into Ly(M).

We next show that KI'S = STK for any Kel,(M). Given xeK,
there is an idempotent e€K such that eyM = xyM, and we note that
elSyx < eyS =xyS < KIS. Since (1 — e)ySye < N < M, we have (1 -
e)ylSy < (1 - e)ySyeyM < MyeyM < K, and, consequently, Syx =
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eflSyx + (1 — e)ySyx c KIS. Thus, STK ¢ KT5S. By symmetry, KI'S ¢
STK, so that KI'S = STK.

In particular, it follows that KISeLy(S). Now, the rule MK) =
KIS defines a monotone map A: Ly(M) — Ly(S).Given KeL,(M) and
xeKIS N M, we infer that xeeyS for some idempotent ecK, whence
x = epxeK. Thus, yA(K) = KIS N M = K, so that pA is the identity
map on Ly(M).

Given JeLy(S) and yeJ we have yefys for some idempotent fe.J.
Since fe M by hypothesis, we obtain y = fyye(J N M)T'S. Thus, Ay (J)
= (J N M)§ = J, so that A is the identity map on Lx(S). Therefore
and A are inverse order-isomorphisms, hence, also lattice

isomorphisms. H
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This chapter is concerned with unit-regular /-rings, which is
equivalent to various cancellation properties for direct sums of finitely
generated projective modules. We have developed a number of
equivalent characterizations of the unit regularity of regular /=rings,
mostly in the form of cancellation properties, either internal (within the
lattice L(Mp)) or external(for finitely generated projective M-modules).
These cancellation properties are then used to derive further properties
of finitely generated projective modules over unit-regular /~rings. We
also develop a lattice theoretic characterization of the unit-regularity of
M, namely transitivity of the relation of perspectivity in the lattice

L(2Mp)

Definition: A I'ring M is said to be a unit-regular I'-ring provided
that, for each xe M, there is a unit (i.e., an invariable element) ue M
such that xpuyx = x for some u, yel. For Example, any direct product

of division I'-rings is a unit-regular I-ring.

Note that the class of unit-regular 7/-rings is closed under .

homomorphic images, direct products, and direct limits.

Theorem 8.01. The Jacobson radical of a unit-regular I-ring M is
equal to zero.

Proof. Let ae J(M)(Jacobson radical). Then MIa c J(M). Since Mya is

generated by an idempotent element e (by Theorem 6.08(a)(ii)), Mya =
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Mpye, and thus, from ee J(M) it follows that (1 — e) is invertable. So
there exists xe M such that

=xU 1l -e) =xyl-xye =x - xye.
Hence, e = lye = (x — xye)ye =Xye—-xyeye =xye —xye =0,

Therefore, a = 0. Hence, Jacobson radical of a regular /-ring M is zero. W
Theorem 8.02. The centre of a unit-regular Iring M is regular.

Proof. Let ae C(M) (center of M). Then there is a unit ue M such that
apuya = a for some yu, yel. _

Now, a = auuya = ap{uya) = (uya) ua = ufaua).
Also a = apuya = (auu) ya = afapuu) = (aya) yu.
So, auu = ayapupu, or a = afauu) = af(ayauu) uu) = af(apmpa)yu) =
apfappu)ua. Now, auue C(M) because if ye M then
(apu)yy = (up)pa = (up)u(aya)uu = upypayapu = (upypay)ua =
ap(upypays) = apupypu)ya = apuyarypu) = appu = yapm).
Also ayupuue C(M) because
(@) = (ap)(uyy) = (up)lay) = upypap = uyapyuu =
(ap)(yyu) = (yyr)u(ay) = ylupayp) = yKupu)ya = yyafupu) =
y Kayupu).

Hence, the centre of M is a regular /=ring. &

Theorem 8.03. Every unit-regular Iring without zero divisors is a

skew I'-field.

Proof. Let aeM, a# 0. Then there is a unit ueM such that auuya = a

for some u, yel. Then auuya - 1) =0 and (auu — 1)ya =0, and
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Hence, upa = I, agu = 1 for some g, ye€l" and so a is invariable.

Hence, M is a skew Ifield. m

Theorem 8.04. If M is a unit-regular I-ring whose only nilpotent

element is zero, then
i) Every idempotent element of M is in the centre.
i) IfaeM, a# 0, then there exists be M, ye I" such that ayb =
bya = f is idempotent and ayf = fya = a.
iiif  MIla=alM for all ac M, Hence, every left (or right) ideal
is a two sided ideal.

Proof. i) Let ee M be idempotent. Let ae M be an arbitrary element and
assume that zero is the only nilpotent element of M.
Since [(1 —e)uaye]ul(l — e)uaye]
= (1paye — epaye) (1 paye — epaye)
= (aye — euaye)(aye — epaye)
= ayepaye — ayepepaye — epayepaye + euayepepaye
= ayepaye — ayeplaye — eyayepaye + euayepaye
=0
and
[eyap(1 — e)luleraifl — e)]
= [eyaul — eyape)(eyaul — eyaue)]
= eyaueya — eyaplefleya — eyajleyaje + eyapepeyae
= eyaueya ~ eyajieya — eyapeyape + eyape yaje
= ( for some y, yel.
Since the nilpotent element is zero, SO we have

0= (1 —e)uaye=1uaye—euaye = aye — euaye,
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and 0=eyau(l —e) = eyaul — eyaue = eya - eyape.

Hence, aye = epaye = eya and so e is in the centre of M.

ii) Let M be a regular Iring having 0 as the only nilpotent element.

Given aeM, a# 0. Then there is a unit ueM such that auuya = a for

some 4, yel'. Then e = auu, & = uda are idempotent elements of M; so

e and ¢ belong to the centre, and /= eye’ is an idempotent.

It follows that auuyuda = (auu) (uda) = eye.

Also (upupa)sa = [up(upa)lda = [(wpa)pulda = [upapu)lda

[(apu)yu]da = (apm) (uda) = eye. |
Moreover, auf = aueye’ = epaye’ = auupaye’ = aye' = ayuda = a,

and fua = eye'ua = eyaue' = eyauuda = eya = auuya = a.
Thus, ayf = fua = a.

iii) Given yeM, we have yua = yu(ayeye') = (yua)yeye' = e yua)ye =
(auu)yua)ye = auuyyuaye’. So, there exists ze M such that yua =
ayz. This shows that Mya ¢ ayM. The converse is proved in a similar
way. |

Hence, since every left ideal J is the sum of the principal left ideals

generated by its elements, J is also a right ideal and vice versa. B

The following fact is needed for the proof of Theorem 8.05.

Fact 1. [3, Theorem 2). Suppose ld(M) C C(M) and let xeM. If x is

regular, then x is unit regular.

Theorem 8.05. If M is a unit-regular [-ring whose only nilpotent

element is zero, then C(M) is unit-regular.
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Proof. Since C(M) of M is regular (Theorem 8.02), then for any

xeC(M), x is regular and since ld(M) < C(M), so by the Theorem 8.04 -
and by the Fact 1, x is unit-regular. m |

Definitions: Let A be finitely generated projective module over a
regular I-ring M. We use L(A) to denote the set of all finitely
generated submodules of A, partially ordered by inclusion. We also use
L(My) to denote the set of all principal right ideals of M. The partially

ordered sets L(A) are actually a lattice.

Theorem 8.06. Suppose that A is a right M-module and T = End\{A) is
a regular I ring. Then the following conditions are equivalent:
(a) T is a unit-regular [-ring.
(b)If A=A, ® B,= A, ®B; with A, = A,, then B, = B,.
(c) ker x = coker x for all xeT.
(d)If e, feT are idempotents such that eI T=fIT, then (1 —e)I T =
(1 =HIT.

Proof. (a) = (b) Define xeT so that x/B; = 0 and x restricts to an
isomorphism of 4, onto 4,. There exists a unit ueT such that xzupx = x.
Inasmuch as xz(uyx — 1) = 0, we see that 4 <upxl4 + (ker x) = ul'4; +
B,. In addition, since xuu = 1 on xTA = A,, we see that uld, N B, = 0,

so that A = ul'A, + B,. Since u is an automorphism of 4, we also have 4

= ul A, ® ulB,, whence By = ulB, = B,.

(b) = (c) There exists a unit yeT such that xuyyx = x. Since xuy and

yyx are idempotents, we se¢ that A = yyxlA ® (ker x) = xI'A & (1 -
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xpy)lA. Observing that x restricts to an isomorphism of yyx/4 onto
x4, we concludg from (b) that ker x = (1 - xuy)l4 = coker x.

(¢) => (a) Given xeT, there exists a unit ye T such that xpyyx = x, and
we note as above, that 4 = yyx/4 @ (ker x) = x74 ® (1 - xuy)I4. By
(c), ker x = coker x = (1 - xuy)A. Also, x restricts to an isomorphism
of yyxI'A onto xI'A. Define ueT so that u restricts to x ' : x/ A4 —> ypx I A

and u restricts to an isomorphism of (1 — xxy)I'4 onto ker x. Then u is

a unit in T such that xyuyx = x.
(a) < (d) is just the equivalence (a) <> (b) applied to the case 4 = Tr. ®

Corollary 8.07. Let M be a unit-regular I-ring, and let ¢ : L(Mg) —
L(Mp) be the lattice isomorphism defined by the rule ¢(J) = {xeM/xI'J
= 0}. Let J, Ke L(MR). Then

(a) J = K if and only if o(J) = (K).

(b) J< K if and only if (K) < @(J).

Proof. Choose idempotents e, fe M such that e/M =J and fTM = K.
Note that ¢(J) = MIT1 - e) and o(K) = MIT{1 - f).

(a) If J = K, then there exists elements xee/ M/} and yefIMle such
that xyy = e and yyx = f, yel". Then MI'e = MIf; hence, Theorem 8.06

says that MI{1 — e) = MI{1 — ). The converse is identical.

(h) If J < K, then there exist elements xeelMI} and yefIMIe such
that xyy = e, whence MIe< MIJ. Then Mif= MIe ® 4 for some 4;

hence, MIe ® MIT1 —e) = (Mle ® A) ® MIT1 - f). By Theorem 8.06,
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MITl —e) = 4 @ MII - §), so that MITI - /S MIT1 - e). The

converse is identical. m

Corollary 8.08. Let A be a finitely generated projective right module
over a regular I-ring M, and set T = Endy(4). Then T is unit-regular
I'-ring if and only if the following condition holds:

(*) If Ay, A2€L(A) such that A| = A,, then there exists BeL(A) such
that A=A, ® B=A4, ® B.

Proof. Clearly T is regular [ring. .
First assume that (*) holds. If 4 = 4, ® B, = A, ® B, with 4, = 4,,
then, by (*), there exists BeL{4) such that 4 = 4, ® B= A4, ® B,

whence B) = B = B,. Hence, by Theorem 8.06, T is unit-regular.

Conversely, assume that T is unit-regular /ring. Given 4, 4,
elL(A) with 4, = A,, choose decompositions 4, = (4, N A,) ® C, and
Ay=(A41 N A) ® C,, and 4 = (A, + A,) ® D. Observing that 4 = (D &
A) @ C,and A = (D @ Ay) ® C, with D ® A, = D @A, we say, by
Theorem 8.06 that there exits an isomorphism f: C; — Cj. Setting C =
{x + fix) | xeC,}, we infer that 4, + Ay = 4, @ C= 4, ® C, whence A=
A, ® (C ® D)= A, ® (C ® D). Therefore (*) holds. =

Theorem 8.09. Let A, © ......... @ A,= B, ®......... @B, be finitely
generated projective modules over a unit-regular I'ring. Then there
exit decompositions A; = Ai @D ........ ® Ay for i = 1,......, n such that
A © ... ... @D A, =B fori=1,...... , K.

Proof. The proof is similar to the proof of [10, Theorem 2.8]. &
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Theorem 8.10. Let M be a regular Iring. Then M is unit-regular
I=ring if and only if A® B=A4 ® C implies B = C, for all finitely
generated projective right M-modules A, B, C.

Proof. 1t is clear from Theorem 8.06 that this cancellation property

implies unit-regularity.

Conversely, assume that M is unit-regular, and let 4, B, C be
finitely generated projective right M-modules such that A ® B= A @ C.
Now, 4 is a direct summand of nMy for some positive integer n,
whence nMz @ B = nMp @ C. By induction, it suffices to prove the

casen=1.

Assume that M @ B = My @ C. Then by the Theorem 8.09, there
exist decompositions My = M; ® M, and B = B, @ B, such that M; ® B,
= Mpand M, ® B, = C. Inasmuch as M, @ B, = Mp = M, © M,, we
obtain B, = M, from Theorem 8.06, whence andB=B, ® B, = M, ® B,

=C. 1

Defination: Let L be a lattice with a least element 0 and greatest
element 1. Two elements x, yeL are said to be perspective (in L)

provided they have a common element, i.e., an element zeL such that

xAz =yaz=0and xvz=yvz= 1.

Note that the principal ideals J and K in a regular /ring M are
perspective in the lattice L(Mg) if and only if there is some HeL(Mpg)
for which MyJ ® H =K @ H. Consequently, we see from Theorem 8.09

that M is unit-regular if and only if isomorphism implies perspectivity

in L(MR).
90



Chapter-Eight
apter-Eig Unit-Regular I'-Rings

Proposition 8.11. Let A4 be q finitely generated projective modules over
regular Iring, and let B, CeL(A). Then B and C are perspective in
L(A) if and only if BI(B " C) = C/B N C).

Proof: Choose decompositions B = B’ @ (B C)and C=C @ (B N
C). If B and C are perspective, then 4 =B ® D =C @ D for some D. In

this case, we have 4 = B @ [(B N C)®Dl=C®[BnC) D),
whence B = C'.

Conversely, assume that there exists an isomorphism £ B — C’
Setting D = {x + f{x)|xeB'}, we inferthat B+ C=B® D= C @ D.
Since 4 = (B + C) @ E for some E, we conclude that A = B® (D @ E)
= (C ® (D @ E). Therefore B and C are perspective. B

Corollary 8.12. Let A be a finitely generated projective modules over a
unit-regular I'ring, and let B, CeL(A). Then B and C are perspective
in L(A) if and only if B = C. Consequently, perspectivity is transitive in
L(A).

Proof. In view of Theorem 8.10, we have B/(B n C) = C/(B n C) if and
onlyifB=C. B

Theorem 8.13. A regular I-ring is unit-regular [-ring if and if
perspectivity is transitivity in L(2Mp).

Proof. If M is unit-regular [-ring, then Corollary 8.12 shows that
perspectivity is transitive in L(2Mp).

assume that perspectivity is transitive in L(2My), and let
— NI'M. Define A, B,

Conversely,

e, fe M be idempotents such that (1 — e)/M = (I
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Cel2l(My) by setting 4 = {(x, »)e2My|xeerMy and B = {(x, ¥)
€2Mg|yeermy, while C = {{(x, y)e2M,| XefIM}. Since ANA A B) =
M/eI'M = B/(A N B), we see by Theorem 8.10 that A and B are
perspective in L(2Mpy). Observing that BIBNC)y=( -HIM=(1 -
e)IM = C/(B n C), we also see from Theorem 8.10 that B and C are
perspective. By transitivity, 4 and C are perspective, whence Theorem

8.11 shows that /(4 N C) = C/(4 N C).

Observe that A4 N C) = e/ M(eI'M N fTM) and C/(A N C) =
JTMl(elM N fT'M), we conclude that e/M = fI'M. Therefore M is a
unit-regular /-ring. |
Defination: A [-ring M is said to be stable range | provided that

whenever alM + bI'M = M, there exists yeM and yel such that

a + byy is a unit.

Proposition 8.14. A regular [-ring M has stable range 1 if and only if
it is unit-regular.

Proof. First assume that M has a stable range 1. Given any aeM, there
exists xe M and g, ye I such that auxya = a. Now, al'M + (1— apx)I'M
= M, hence, there exists ye M such that a + (1 — azx)yy is a unit. Then
there is a unit ueM for which [a + (1 — apx)}du = 1 for some der;

whence
a=awcya=awca+ (1 —awx)yy}ouya = apxyaduya = aduya.

Therefore M is unit-regular.

Conversely, assume that M is unit-regular, and let alf'M -+ bI'M =

M. Now, biM = (@M nbIM)®J for some J, and alM ®© J = M),.
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In addition, My = K ® L, where K = {reM | ayr = 0}. Since L = aI'M,
we see from Theorem 3.06 that K = J; hence, there exists ce M such

that ¢/L = 0 and left multiplication by c induces an isomorphism of K

onto J. Note that c/M = J < bI'M, whence ¢ = byy for some ye M.

Now, left multiplication by a induces an isomorphism of L onto
al'M, while left multiplication by ¢ induces an isomorphism of K onto
J. Inasmuch as alK = c/L = 0, it follows that left multiplication by a +

c induces an isomorphism of L ® K = M), onto afR ® J = M,,.

Thereforea + byy=a +cisaunitin M. &

Lemma 8.15. If M is a unit-regular I-ring and J is a two-sided ideal of
M, then M/J is unit-regular.

Proof. Let aeM/J. Then a =a + J, aeM. Since M is regular, there
exists 4, ye I and unit #eM such that a = aguya. Now, a,uuyz =(a +
Nuuha+ N=auuya+J=a+J= a. Therefore M/J is regular. B

Proposition 8.16. Let J be a two-sided ideal of a unit-regular I-ring
M, and let A, ......... , A, be finitely generated projective right

M-modules such that the modules A/AJ are pairwise isomorphic. Then

there exist decompositions A; = B; ® C; for each i such that the modules

B; are pairwise isomorphic and each C;= CiJ.

Proof. The proof is similar to the proof of [10, Theorem 2.19]. A
Lemma 8.17 Let J be a two-sided ideal in a regular I-ring M. Then M
is unit-regular if and only if

(a) M/J is unit-regular.
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(b)If e and f are idempotents in J such that (1 —e)I'M = (1 - f)I'M,
then eI M = fTM.

Proof. If M is unit-regular, then (a) is clear by Lemma 8.15 and (b)
follows from Theorem 8.05.

Conversely, assume that (@) and (b) hold. Given idempotents g, he M
such that g/M = AhI'M, we have §1"(M/J) = h(M/J)and so
(1 —E)F(M/J) = (1- Z)I"(M/J), by (a). According to Proposition 8.16,
there exist decompositions (1 —g)/M=G, ® G, and (1 -WIM=H, D H,
such that G, = H,, while G, = G,IJ and H, = H,IJ. There exist idempotents
e, feM such that elM = G,, and (1 — e)TM = gI'M ® G,, While fiM = H,
and (1 — )TM=hIM® H,. Then e, feJ and (1 — e)/M = (1 — )T M; hence,
el'M = fT'M by (b), and consequently, (1 —g)IM = (1 — h)I'M. Therefore M
is unit-regular (by Theorem 8.06). ®

Lemma 8.18. Let J be a two-sided ideal in a unit-regular I'-ring S and let

M be a subring of S that contains J. If M/J is unit-regular, then so is M.

Proof. Since J and M/J is regular, so is M. If e and f are idempotents in
J such that (1 — e)/M = (1 — /)IM, then (1 - &)/ = (1 — /)1, and
consequently, e/S = fIS. Since e, feJ and e/ M = elS and fTM = fI5,
whence el M = fI'M. Therefore M is unit-regular, by Lemma 8.17. &

Lemma 8.19. Let [, c I, c I; C - - - - be the ascending chain of unit-

regular I~ ideals. Then Ugly is unit-regular.

Proof. It is obvious. W
From the Lemma 8.15, Lemma 8.17, Lemma 8.18 and Lemma 8.19,

we get the following theorem:

Theorem 8.18. The class of all unit-regular I'-rings is a radical class.
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List of Special Symbols

R - Ring

I'v - Gamma rings in the sense of Nobusawa
M - Gamma ring

1  — Radical class

Z  — Setofintegers

Z, — Residue class modulo m

C(M) — Centre of M
J(R) — Jacobson radical of a ring R
Anny — Annihilator of M
L(A) — Setofall ﬁnitély generated submodules of A4, partially
ordered by inclusion.
' — Inverse function
fog — Composite functions of fand g
i.e. — thatis
— Capital gamma

— Product of

I

IT

) ~ Summation of
@ — Direct sum
W — Union

~ — Intersection
oc — Infinity

-] _  Strictly superset of



D - Superset of

c - Strictly subset of
C - Subsetof

€ - Belongs to

€ - Notbelongs to

® - Empty set

mn

- Isomorphic to
<> - ldeal generated by

ID(M) - Set of all idempotent elements of M
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Pecumen J Section
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