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Abstract

In order to find the approximate numerical solution to a system of nonlinear
equations as well as an integral and a differential operator equations, Newton’s
algorithm is widely used. L. V. Kantorovich [1948] and Moore [1977] studied the
existence and uniqueness of solution to the system of nonlinear equations and their
error bounds. M. Urabe [1965] also studied the existence and uniqueness of the
solution to nonlinear operator equations (mainly differential operator equations).
Kantorovich and Urabe’s methods are two variants of Newton’s method in some
sense. We study the existence and uniqueness of solutions to the nonlinear systems
and their error bounds. Our results will be stated in a theorem that ensures the best
possible generalized error bound that is different from that given by Kantorovich
and Moore.

We also develop a technique that may be applied to find an approximate
numerical solution to an algebraic as well as to a system of nonlinear equations
both in real and interval number systems.

Finally, we have treated the error estimation for the quasiperiodic solution

to the Van der pol type differential operator equation based on Urabe’s theorem.
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Introduction and Literature survey

Let us consider the function f:R" — R", where f 1is Frechet
differentiable and consider the equation
f(x)=0 (1)
In case where R" =R, the Newton’s iterative method for solving
approximately, the equation (1) is given by

nbl =% _f(x") ’
b))

X

n=0,1,2,3,-- (2)

where x,1s an initial guess.

Newton first applied his iterative method (2) in 1669 for solving a
cubic equation (i.e., where f(x) is a cubic function of x). The procedure
was systematically discussed in print by J. Raphson as early as 1690.
" Therefore, the method is sometimes referred to as the Newton-Raphson
method.

The Newton method has a long history, with contributions by Cauchy,
Runge, Faber and Blutel among others. The theorem of Fine in 1916 seems
to be the first in »—dimensional space which, under conditions given for an

initial approximate solution, asserts the existence of a solution of f(x)=0 to



which the iterates in the Newton method converge. In the same year, Bennett
(1916) proved a convergence and existence theorem in more general spaces.
The “method of linearization” is often referred [Kantorovich L. B &
Akilov G. P. (1964)] to in the literature as Newton’s method for systems of
nonlinear equations. It is a natural generalization of Newton’s method for a
single equation and in fact, can be extended to equations in infinite-
dimensional (function) spaces. The first such generalization was done in the
context of nonlinear operator equations in Banach spaces by Kantorovich in
1948. This generalization is often called the Newton-Kantorovich method.
Another important generalization was given by J. Moser (1961), for the case
of operators acting on a continuous scale of Banach spaces with properties

similar to the properties of Sobolev spaces. The above generalizations also

provide useful tools in the study of the solution of nonlinear differential and
integral equations.

Our study in chapter 2, has been based on the fundamental theorem of
Kantorovich (1948) that generalizes the Newton’s method in the context of
nonlinear operator equations in Banach space. Kantorovich, in his theorem
in fact, used the boundedness of the second derivative of F [Rall L.

B.(1969)] in place of the assumption that F' is Lipschitzan; Fenyo 1. (1954)



first made the latter modification. Kantorovich error estimate was weaker,
the present ones (which are sharp) were given by Dennis J. (1969).

With the hypotheses made by Kantorovich, in his fundamental
theorem, we will be able to give a best possible error bound for Newton’s
algorithm. Qur result will be given by a theorem from which we can
conclude a special result by a corollary. We can fit our result by an example.

Let f:Dc R" - R" be continuously differentiable in the open domain
D. Let us assume that both of f and ' also have continuous inclusion
monotonic interval extensions F and F' defined on interval vectors
contained in D. The interval version of Newton’s algorithm to solve (1) is
given by

XE = 3 ® ~ N (x®)
with the interval Newton function
N(X)=m(X)-V f(m(X)) 3)
[ m(X) =mid point of the closed interval X ]
and where ¥ is an interval matrix containing [ f'(x)]”" for all xe X. The
Newton’s function N(X) can also be given as
KX)=y-Y f(N+H{I-YF (X)X -y) “4)

Using the function given by (4), we will be able to generate the convergent



nested intervals X©@ o XW5x®5x® 5. SXW o . That converges

to an interval X (say), which contains the solution of equation (1). We also
be able to give a bound for the interval X*. Our findings can be applied to
the algebraic and transcendental equations as well as to the system of
nonlinear equations to compute numerical solutions.

Lastly, we study the nonlinear differential operator equations with
quasi-periodic forcing term. A specific numerical error bound [Mitsui T.
1977] has been generalized for the quasi-periodic solution to Van der Pol
type equations:

dzx_
dt?

22(1-x* )%u:Z(ak cos 9, t+b,sind, t).

k=1



Chapter-1

Mathematical Preliminaries

In this chapter we discuss some basic properties (such as continuity,
uniform continuity, convergence, uniform convergence, boundedness etc) of
sequence, function, operator in real Banach space.

1.1 Metric Space. Let R be the set of real numbers and p(x,y) be a
function defined on the set Rx R of all order pairs (x,y) of members of R.
The concepts of real convergent sequences and continuous functions from R

to R and most of their properties depend only on the following three

conditions.

(i) px,y)=0ifand onlyif x=y,

(i)  p@x,»)=p(y,x) and

(ii1)  p(x )< p(x,2) + p(2,) .-

The function p(x,y) is called a metric on R.

The set R together with the metric p is called a metric space denoted by

(R,p).



The members of R are called “point” and the function p(x,y) is called the
distance from the point x and y.

Different choices of metric give rise to different metric spaces.

For example, the metric space R consisting of all real numbers with the
metric p(x,y)=|x—y| is different from the space consisting of all real
numbers with the metric

2|x-y|

i =Py P}

The space R" of all n-dimensional real vectors of the form

x=(x,%,,%,,-++,x,) 18 a metric space with any of the matrices.

pl(x’y)=2|xi - |
=1

L
2

pz(xa}’)z{Z(xi "y,')z}
=1
Po(x,y)=max |x; —y; |
Definition 1.1.1. Let (£, p) be a metric space. A sequence {x,} of elements
x, in E “converges to x” if for all ¢>0, there exists an n,e N (set of

n

positive integers) such that for n2n,, p (x,,x) <¢.



Let (E,p,) and (F,p,) be two metric spaces. A function f:E—>F is
called “continuous” if for every sequence {x,} of elements x, in E
converging to x the sequence {f(x,)} convergesto f(x) in F.

Proposition 1.1.1. Let f be a function from E to F, and let xe£. The

following Properties are equivalent:

Property-1

(i)  For every sequence {x,} converging to x, f(x,) converges to f(x).

(ii) For all £>0, there exist n(e,x)=n such that if p,(x,y)<n, then
pPe(f(x), f(¥))=<e.

(iii) For every neighborhood vel(f(x)) of f(x) there exists a
neighborhood Ue¥(x) of x such that f(U)cV.

(iv) For every neighborhood veV (f(x)), f™'(v) =V (x) is a neighborhood
of x.

Definition 1.1.2. If a mapping f from E to F satisfies the above equivalent
conditions, we say that “f is continuous at x.” We say that “f is
continuous on E,” if f is continuous at each point x of E.

The notion of continuous function is “local” in the sense that it is a notion

defined at each point x of E. Hence property-1 (ii) the radius n =7(s,x) of



the ball of number x depends on ¢ and on x. This remark leads us to
introduce the notion of uniform continuity.

Definition 1.1.3. A function f from a metric space £ to a metric space F
is said to be “uniformly continuous” if for all £>0, there exist n =7(¢)
depending on ¢ and independent of x such that p.(f(x),f(y))<e when
Pr (X, y)<17.

Proposition 1.1.2.

(a) Every uniformly continuous function is continuous.

(b) Every uniformly continuous function maps Cauchy sequences onto

Cauchy sequences.
Proposition 1.1.3. If £ is a metric space and if 4c£ is nonempty, the
function x — p(x, 4) is uniformly continuous from E to R.

Proof. The proposition is a consequence of the inequality:

lp(x,4)-p(y,A)|<p(x,y).

This suggests the introduction of the following definition.

Definition 1.1.4. We say that a function f from a metric space E to a
metric space F is “Lipschitz” if there exists a constant 1 >0 such that

pr (f(X), f())SApg(x,y) forall x,yeE.

We say that a function f isa “contraction” if in addition, 4 <1.



For example, the function x — p(x,4) is Lipschitz with A=1. We remark
from this definition that the following proposition holds.
Proposition 1.1.4. Every Lipschitz function is uniformly continuous.

Definition 1.1.5. Let {x,} be a sequence of elements x, in E. If x,
converges to x, thus for all ¢>0, there exists an »n, >N such that for all
n,m = n,, then it can easily be shown that p(x,,x,)<¢.

The advantage of Definition 1.1.5 over Definition 1.1.1 is that the
limit x does not appear in it. If the condition in the above definition is
sufficient for convergence, it would allow us to know that the sequence is
convergent without needing to know its limit.

Take the case where E=0, and consider the sequence 0.1, 0.101,
0.101001, 0.1010010001,........ This sequence satisfies Definition 1.1.5 but
does not converge in Q. However, Definition 1.1.5 is always sufficient for
the convergence if E=R.

This leads us to introduce the following fundamental definition.
Definition 1.1.6. Let (E, p) be a metric space. We say that a sequence {x,}
is a “Cauchy sequence” if it satisfies condition of Definition 1.1.5. We shall

say that E is a “complete (metric) space” if every Cauchy sequence is

convergent.



1.2 Ball in metric space. Consider a metric space (E,p). The “open ball
with center x and radius ¢ is the set
B(x,&)= { ye E suchthat p (x,y)< e},

and the “closed ball with center x and radius £ is the set

l_i(x,e) = { yeE suchthat p (x,y)< 5}.
If 4 and B are two sets, the “distance from 4 to B” is the number

p(4,B)=inf inf p(x,y),
xed yeB
and we get p(x,B)=p({x},B)=in£p(x,y).
ye

The “diameter of 4” is the finite or infinite number

6(A)=sup supp(x,y),

xeAd yed

and we say that a “set 4 is bounded” if 4 is nonempty and §(4) <.
Here we given an example:
In the case of the metric space (R,|x|), the balls B(x,e)and B(x,£)are the
intervals (x-¢,x+¢) and [x—¢&,x+¢].
We now discuss some basic concepts of vector and matrix norms

without which the error estimation for the solutions to operator equations in

Banach space is impossible.

10



1.3 Norms of Vector and Matrix. Let us consider the linear space (or
vector space) X over the field F, whose elements (vectors) denoted by
x’y’ z ’... 8

Inner product. Let x, y,z be any three vectors in X . The inner product of

two vectors x and y in X defined by (x,y) is a scalar satisfying the
following axioms:

l. (x,x)>0; (x,x)=0 ifand only if x=0 (positive definitions)

2. (x,»)=(», x) (symmetric property)

3. (@x+ By, z)=a(x,z) + B(y,z) (linearity), where a, SeF.

The inner product space is a vector space satisfying the above inner product
axioms.

Let X =R", and x =(x,,x,,x,,+,x,)eR", then the inner product (x,x) is given

2).

by (r,0) = (x| +|xy[ 4ot

X

n

By the norm |.| of a vector x of X, we mean a function
| x| : X —{z:0<t<w} such that

Lo flx+ x|l x|+ %" |

2. |ax|=lelllx]

3. |lx||=0 if and only if x=0.

" Rajshahi University Library
Documentatijon Section
Document No..2.5.2.3.4)



1.4 Example of Norms and Normed spaces:
(a) Let U =R*:then the usual norm defined on R® is ||x||=(x12 +x,° +x32)}§ for

x=(x,,x,,x,;). The extension to R" is obvious.

(b) The quantity ||.||, defined by ||x]|p=|izn:|x,. lp]p, (1< p <) 1S a norm on

R". If we let p - o then the quantity ||.||, defined on R" by || x ||, =max]| x; |

is also anorm on R".

(c) Let U=L,(a,b) with 1< p <« [the space of measurable functions u(x)

defined on domain (a,b) whose Lebesgue integral L b)lu(x) |” dx 1s finite]:

the L, —norm is defined by

lull, =| {lua P éx]?, weL,(a,b)
(d) The space L, (a,b) of bounded measurable functions is a normed space,
with norm ||.||, defined by | u|, =sup|u(x)|, the supremum being taken over
all subsets of (a, b) with non-zero measure.
1.5 Equivalence of norms. Two norms ||| and ||-||' on a linear space X are
called equivalent if there are two constants 4, , 4,>0 such that
AN xl<lx|' <A, ||x]| for each xeX. These inequalities imply that equivalent

norms have the same convergent sequences.

12



1.6 Normed linear space. A linear space X with a norm ||-|| defined on it is
called a normed linear space.

Let us denote by ¥™" the vector space of all matrices of order mxn over the

field F.
Definition 1.6.1. Let 4 be an element of ¥™". We call a real-valued function

|.]l defined on all square matrices in ¥™", a matrix norm of 4 on V™ and
denoted by || 4| if and only if the following axioms are satisfied:

(1) | 420 and || 4||=0 if and only if 4=0

(2) |a 4|=|alll 4| for any scalar « in F

(3) 4+ Bl 4] +] B

(@) I14Bi<1 41l B

where B is another element in V"™,

There are numerous ways by which matrix norms can be formed .

The following are matrix norms on ¥™

@ 1 41,=Y.|a;| (sum of all elements)
(b) ” A “1 =m12_1XZ| a; |

(©) | All=max 3"}, |

1

d) 4 ||e=(Z| a, |2J2 (Buclidean norm),
ij

13



where 4=, |
1.7 Convergence of a sequence in a normed space. A sequence {«,} in a
subset U of a normed space is convergent if there is a ueU for which, given
any £>0, anumber N can be found such that

llu, —u|<e forall n>N (1.1)
Suppose we know that a sequence {«,(x)} of continuous functions converges to
a limit for each xeQcR". This implies the following: if we fix x, then the
sequence of real numbers «, (x) (n=1,2,------) converges to a real number u(x),
say. In other words, for every £> 0 there exists a number N such that

lu, (x) —u(x)|<&, whenever n>N (1.2)
Of course N will depend on x and on the number e. If we now move to
another value of x the statement (1.2) may not be true for some N, a situation
which is obviously not desirable. This leads to the following definition of
convergence:
Definition 1.7.1. A sequence { «,} of functions defined on an open subset Q of
R" converges pointwise to x(x) if for £>0 there exists a number N depending

on x and ¢ such that (1.2) holds. If N does not depend on the value of x, then

u, converges uniformly to » on Q and we write lim u, =« (uniformly).

H—r0

14



Consider a sequence {x,} of functions which belong to the normed space
C [a,b] with the norm

|ull,= sup|u(x)|, x€[a,b].
Suppose that this sequence is convergent in the sup-norm, that is, given any

£>0 it is possible to find a number N such that
I, —ull, =sup | u,(x) —u(x)|<& (1.3)
whenever n>N , for xe[a,b] then (1.3) implies that
|, (x)—u(x)|< sup |u, (x) —u(x)|<e&.
From which we say that convergence in the sup-norm implies uniform
convergence.
Conversely, suppose that {«,} is uniformly convergent sequence, so that (1.2)
holds. Then ¢ is an upper bound for |u, (x) —u(x)|, for any xe[a,b].
But this implies that
llu, —ul|, < sup |u, (x)—u(x)|<e for n>N, xe[a,b]
or alternatively,

lim sup|u, (x) ~u(x)] 1= 0.

That is, uniform convergence implies convergence in the sup-norm. This useful

result can be stated (without proof) in the following theorem.

15



Theorem 1.7.1. A sequence of functions {u,}, where u, eC(Q) and Q is a

bounded subset of R", converges uniformly if and only if

lim[ sup|u, (x) —u(x)|]=0 for xeQ.

L,-Convergence. Consider the normed space L,(Q) with the usual L,-norm

||u||=[j]u|” dep with 1<p<w. The Definition 1.7.1 says that a sequence
Q ,

fu,}cL,(Q) converges in the Ly-norm to an element zeZ,(Q) if for any given

£>0 it is possible to find a number N such that ||u, —u|, <& whenever n>N,

Q

or [ﬂu" (x)—u(x)l”}p <& whenever n>N,
or  lim fju,(x)-u(x)I” dx=0.
Q

This type of convergence is referred to as L,-Convergence, and the case p=2 it
is referred to as convergence in the mean. It is important to note that while
uniform convergence implies L,-Convergence, the converse is not true.

1.8 Linear operator. Suppose we are given two linear spaces X and Y over
the same scalar field F. An operator is a mapping P which map X into ¥ over
the same field F such that for each x € X there is a uniquely defined P(x)eY.
The mapping P is said to be linear if it satisfy two conditions:

(1) X, =y, , X, >y, implies x, +x, =y, +y,

16



(i) x-—y implies ax—>a.y
where x,,x,eX, y,,y,e¥ and a eF.
1.9 Non-linear operator. An operator P from a linear space X into a linear
space Y is said to be non-linear if it is not a linear operator from X into Y. A
simple non-linear operator is one that gives, for all xe X, P(x) = y,, where y, is
a fixed, nonzero elements.
1.10 Inverse operator. Let P be an operator defined on a vector subspace of
X . An operator 4 defined on the ranges of P, R(P) is called the inverse of P
if

PAx=x for all xeR(P) and

APx=x for all xeD(P), domain of P.
Theorem 1.10.1. If an operator has an inverse then it is unique.
Theorem 1.10.2. If 4 is a linear mapping from X into ¥, then 4™ exists if
and only if 4x=0 implies x=0.
1.11 Banach Lemma. Suppose L is a bounded linear operator in X, L™ exists

if and only if there is a bounded linear operator M in X such that M~ exists,

and |M-L|<

1
Faai

If L7 exists, then
-1

=Y -M'Ly'M

n=0

17



and

-1 -1
” L—l “S ” M |_I‘l S ”_jlw ” .
=1-M7L| 1= M| M-Ll

Definition 1.11.1. The real number field R is itself a one-dimensional vector
space over itself. Then any mapping of (X,Y)—(F,F), where X is a normed

space, is called a functional. If the mapping is linear, it is called linear

functional.

Bounded operators. The concept of a bounded operator is closely connected

with that of a continuous operator, Let U and ¥ be two normed spaces and let
T:U -V be a linear operator: We say that T is bounded if it is possible to find a
number K >0 such that
|Tu|<K || forall uel.

For all bounded linear operators T,
ITul <|TI x|, where |\T|=sup{]||Zu|/||ul, u#0}. We have the following
theorem connecting the boundedness and continuity of operators:
Theorem 1.11.1. A linear operator 7 from a normed space U to a normed
space ¥ is continuous if and only if it is bdunded.

An important class of normed linear space which is named after Stefen

Banach (1892-1945), plays an important rule in the existence of the limit x™ of

18



an infinite sequence {x,} of elements of normed linear space X . Consider the

sequence {x,} of rational numbers defined by
1
X =1, x, =§(xm—a+_): Him1y e v (1.4)

There is no rational number x”which can be the limit of this sequence.

(with || x 1= ]).

However, if (1.4) generates a sequence {x,} in R, it has a limit x" which is the
solution of the nonlinear equation x*=2.

Consequently, the space of real numbers has a property with respect to limits
which the set of rational number does not. This property is defined precisely in
the more abstract setting in a normed linear space by the following fundamental
definition.

Definition 1.11.2. (Cauchy or fundamental sequenc) A sequence {x,} of
elements of a normed linear space is called a Cauchy sequence if for every £>0
there exist a number A such that ||x, —x, |[<¢ forall m,n>A4.

Theorem 1.11.2. The following conditions are equivalent

(a) {=x,}isaCauchy sequence
(b) lx, -x, |>0 as n—>w , for every pair of increasing sequences of positive

integers { p,} and { ¢, }

19



(c) Ix,. -x, -0 as n—o, for every increasing sequence of positive
integers {p, }.

From the above theorem it is evident that every convergence sequence is a

Cauchy sequence. But the converse is not true. For, let D([0,1]) be the space of

polynomials on [0,1] with || p||=1£ﬁ)](| p(x)|.

Define

2

P, (x) =1+x+%+......+£_

- for n=1,2,----
n!

Then { p,} is a Cauchy sequence, but it does not converge in D([0,1]) because
its limit is not a polynomial.
We state the following important theorem without proof:

Theorem 1.11.3. If {x,}is a Cauchy sequence in a normed linear space, then

the sequence of norms { |x, ||} converges.

Definition 1.11.3. A normed linear space X is said to be complete if every

Cauchy sequence of X converges to a limit which is an element of X .

Theorem1.11.4. Let (£, |-|) be a normed space. The function p defined by
p(x,y)=lx=yl

is a distance on E satisfying the following conditions:

(1) p (x+z,y+2)=p(x,y) (invariance by translation ).

20



(i)  p(2x,29)=IA1p (%)

According to theorem 1.11.3, every normed space is a metric space . The
structure of a normed space combining the structures of a vector space and of a
metric space, has a large role both in mathematical theory and in applications.
Complete normed space , in particular , play a very important role.

Definition 1.11.4. A complete normed linear space is called a Banach space.
Theorem 1.11.5. A Euclidean space R becomes a normed linear space when

equipped with the norm

l|x|l=y(x,x) , (x€R)
1.12 Balls in normed linear space. Let X be a normed linear space. The open

and closed balls in X with center x,eX and radius r can be defined
respectively by the subsets
B(xy,7) = {x:x eX and | x-x,|< r}
and
E?(xo,r) = {x xeX and | x—x,|< r}.
Example. In the case of R", consider the balls
B, (x,€) ={ yeR" such that | x-y||, <8}.
In the case where n=2,x=0, ¢=1, the balls B,(0,]) with center 0 and radius 1

are defined by

21



B,(0)={y=(y,,y,) suchthat|y, |+| y,|<1}

B,(0)={ y=(,,,) such that| y, |*+| y,[*<1 }

B, O0)={ y=(y,y,) suchthat sup(|, |,| »,)<1}
A subset of a normed linear space X is said to be bounded if it is contained in
the same ball of finite radius.
1.13 Gateaux and Frechet derivatives. Suppose Xand Y be two Banach
spaces over the field F, consider the operator T:X — Y with domain D, = X .
Suppose x is a fixed point of X . The operator T:X — Y is said to be Gateaux

differentiable at x if there exists a continuous linear operator L such that

tim TG =T® _ o120

i—0 t

for every he X , where t—0 in F. The operator L is called the Gateaux
derivative of 7 at x, and its value at 4 is denoted by

A(h) = dT(x,h)
The notation dT(x,4) or T'(x)A is also used.
Let x be a fixed point in a Banach space X . A continuous linear operator
A:X 7Y is called the Frechet derivative of the operator T:X —»7Y at x if

T(x+h)-T(x)=Ah+e(x,h).

provided lim lgGm _ 0
w0 || k]

22



or , equivalently

lim ” T(x,h)—T(X)—Ah ” =0
w4

The Frechet derivative at x is usually denoted by 7'(x) or dT(x). We will now

state a theorem that relates these two types of derivatives :

Theorem 1.13.1. If a mapping has the Frechet derivative at a point x, then it

has Gateaux derivative at that point and both derivatives are equal.
Corollary: If the Frechet derivative exists, it is unique.

Example. If f:R? > R defined by

x3y .
fy)={zisy TrF0mdr=h

0if x=y=0.
It is easy to check that s is Gatecux differentiable at 0, and the Gatecux

derivative at that point is 0. On the other hand, since

fo_ 11 1
[l (x, %) || (x* +x%) \/x2+x4 Z\H+x2 2

as x —> 0,

f is not Frechet differentiable at (0,0).

The above example suggests the following theorem:
Theorem 1.13.2. The existence of Frechet derivative implies the Gatecux

derivative but the converse is generally false.
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Chapter-2

On Convergence and error bound of Newton’s algorithm

2.1 Introduction. In this chapter we first introduce the Newton’s method in
real Euclidean and Banach spaces. We also discuss the famous theorem of
Kantorovich and its error bound. We finally state and prove our theorem that
concerns a new error bound. We will justify the practical applicability of our
theorem fitting the error bound by an example.

2.2 Newton’s Method in Re;.al Euclidean Space. Let 4 be an open setin R,
let 7:4—> R be a Frechet differentiable function and consider the equation

f(x)=0. If x, is a point of 4 near to a root of this equation, then a first
approximation be the linear equation

S o)+ [0 Nx = %) =0
and this has the solution

x=x, =[x f(x) 2.1)
provided that the inverse [f(x,)] " exists. Continuing in this manner, starting

from the initial approximation x,, we obtain points x,,x,,x, -+ , given by

Xpsl = X, —[f'(x")]'tf(x") ) n =0,1,2’3 ------ (22)
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x,,, being defined so long as x,x,,x;-:- x, € A; in effect, the x, are

n+l

successive approximations for the equation
x=x=[/'()]" f().
It is intuitive that if we start from a point x,for which f(x,) is sufficiently

small, and f’does not vary too much near x,, then the recurrence relation

(2.2) will define a sequence {x,} that converges to a root x~ of the equation

f(x)=0.

0 X X2 X1 Xo X

(Fig-1)

This is particularly transparent in the case of a real-valued function f

of a real variable, because the formula (2.2) becomes

S (x,)

T )

so that x .. is the abscissa of the point where the tangent to the graph of f at

n+l

x, meets the x-axis. This case was first considered by Newton and the
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sequence {x,} given by (2.2) is usually known as Newton sequence for the
equation f(x)=0.
An alternative possibility is to consider the recurrence relation
Xy =%, =[G f(x,), #=0,1,2,3, (2.3)
which defines successive approximations for the solution of the equation
x=x=[f"x)" f(0).
The successive approximations using the algorithm (2.3) is known as

modifieds Newton method.

2.3 Newton’s method in Banach spaces. Let X and Y be (real or complex)
Banach spaces, and F be an operator (linear or nonlinear) from X into Y
which is twice differentiable in a suitable domain. Starting with an
approximate solution x, of
F(x)=0 (2.4)
we consider the sequence defined by
Xp =%, ~[F'(x)"F(x,), n=0123"" (2.5)
Kantorovich first proposed to solve the functional equation (2.4) and was able
to give theorems concerning the existence, convergence and uniqueness of
solution of the equation (2.4). He also gave the error bound for the solution.

His two fundamental theorems, the first one guarantees the existence and
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convergence and the second one guarantees the uniqueness of the solution, are
given here. Let us denote by S(x,, p) the open ball

xeX:|x—x,|I<p}-
Theorem 2.3.1. (Kantorovich; existence and convergence). Suppose the

following conditions are satisfied:

(1) F'(x,) maps X onto Yand has an inverse [F'(x,)]™ (i.e. one-to-one) for
which [[[F'(x,)]" |< B
(2)  x, is an approximate solution of F(x) =0 such that
ILF"(xo)) ™ F (%) || <7, (or equivalently, [|x, —x, <7 );
(3)  F is twice differentiable in the open ball U,(x,,,), and in this ball
| F'(x) < &

where « is a constant and
po = —~T=21)C)

and for constants B, x ,7, satisfying

Then F(x) =0 has a solution x" in the closed ball U, (x,,p,) and the successive

approximations defined by (2.5) converge to x".
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Further

1

@)y 2.6)

L]
Il x, =% [I<

Here we can make remark that %, >0 holds always , since 4, =0 if and only

if B=0 (impossible for bounded of F'(x,)) or n=0 ( then x, is already a

solution ). We also see that the restriction on #, Vviz. 0<hs%, gives

1<(1—Jl—2h)(%)52. Thus condition (3) of the theorem 2.3.1 holds if

| F"(x) || Sk in Uy(xy,27).

2.3.1 Numerical example of Kantorovich theorem. Here we consider the
third polynomial equation F(x)=x’-3x+3=0. This equation has only one
real root x"=a =-2.103803402...... Let x, =-2.11 be the approximate solution.
Then we have F(x,)=-0.06 , F'(x,)=10.35 and F"(x,)=-12.66.

We can calculate.
IF (x)]™ |1=|1—01§ |=0.096618357<0.09662 =B,

~0.06
|LF" (x0T Fxy) 1= g |= 00057971 <.0.00580 = 7

and

| F"(x,) [|=] ~12.66 |<12.67 .

Now we have h = Bnk = 0.09662x0.00580x12.67 = 0.00710021732.
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Thus the solution x"=-2.103803402..... is the only one real root of the above
polynomial equation. By the Newton’s algorithm,

x, =y~ 0) 9104202899
F'(x,)

SO, ||x, —x*||=]|2.104202899 + 2.103803402 | =0.000399497, and from the
inequality (2.6), 2—}_—1(211)2"-117 becomes 0.01160. Then [|x, —x*[| <0.01160 is an

improvement of the approximation.

The local uniqueness of the solution x* depends on the bound holding in a
larger sphere (or ball):

Theorem 2.3.2. ( Kantorovich ; uniqueness ) Let the condition (1) to (4) of

the theorem 2.3.1 hold with || F"(x) <« in the open ball U,(x,,0). where
o= (1+\/1—2h)(%).

Then the x of theorem 2.3.1 is the unique solution of F(x)=0 in the same
ball. Kantorovich in his theorem 2.3.1 used the boundness of the second
derivative of the operator. Fenyo I. (1954) first make the assumption of the
condition of Lipschitian of F’ and gave the modified Kantorovich theorem
2.3.1 as:

Theorem 2.3.3. (Kantorovich; modified) Let F:X—»Y, X, Y Banach
spaces, be Frechet differentiable function for xe U, an open convex set in X.

[Ortega (1968) and Tapia(1971)]
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Let [F'(x,)]" €[¥ - X] atsome x, €U, and
(M) IF'x) I B,
) IF' GO F(x) 1 <7,

GVIFE-FWI<Kllx=yll, x,yeU,
for constants B, K, n satisfying & =BKnp s% and
4 U,cU,where

Uy = {x il x-x, I A -VT-20)CD)

then the successive approximations (2.5) of Newton’s algorithm are defined
for all n, x eU,, n=0,123--, and converge to x" eU, , which satisfies

F(x")=0.

Further, I

— — 2"
x —x, |ts%[1—-12—"2ﬂ-, n=0,1,2,3," 2.7

An example of f is now shown which demonstrates that no stronger

claim than the Kantorovich theorem can be made for existence and

convergence. In this generality, then, no better theorem can be given.
Let f(x)= le-xz —x+h and x, =0, We have f'(x,)=-1and f"(x,)=1. Here,
we let B= K =1, n =h (given), the conditions of the theorem are satisfied.

The roots of f are 1++1-2h ifhs%.
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The smaller root
¥ = (=20 =5 (-2,
The other root is
%(lh/'l—_ﬁ)n
and is just excluded from the region. Presumably, Kantorovich (1948)

obtained his theorem by comparison with the Newton series for %xz —-x+h,

for comparison with the Newton series for x* —a.

Under the same conditions as for theorem 2.3.3, it can be shown that if

T, =[F'(x,)]" and & <% the successive approximation given by the following

theorem converge and is known as modified Newton’s method.

Theorem 2.3.4. (Modified Newton’s method) Under the same conditions as
in theorem 2.3.3, if & <%, the iterations x,,, = x, —[,F(x,) where Iy =[F'(x,)]"
are defined for all », and for any x, e U, converge to aroot x e U,.

Further, F(x)=0 has a unique root in U,.

Also

I, —x"||< 2(%) [=VI=2A]™, n=123-
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2.4 Newton-like or Quasi-Newton method. For a real function f of a real
variable x, if we try to find an approximate root of f(x)=0 by the sequence
of approximations

Xy =%, =[a,]7 f(x,), n=012,500r,
where {a,} is a sequence of real numbers, then the algorithm above is the

simplest form of the Newton-like or Quasi-Newton method.

2.5 Illustration of the applicability of Newton’s method to nonlinear

operator equation:

Let we consider the Hammerstein equation
5() + [ks,£)f (s, x(s))ds = 0 (2.8)
0

on the space C[0,1]. We suppose that f e C*([0,1]xR) and k e C([0,1]x[0,1]).

If we define F:C[0,1]=C[0,1] by
Fx)(0) = x(t)+ [k(s,0) f(s,x(s))ds,

then our problem is to find a root of F. If x,eC[0]1] is an initial

approximation, then for any y e C[0,1],

[F' (e )y)0) = y(O) + [ (s, f3 (s, %0 () y(s)dls
= (1 = kO )y(t):

where k, is the linear integral operator on C[0,1] defined by
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B e i

T L G ———

(ko)) = [ K(s,0) £ (5, %0 (D) ¥(s)ds.

We suppose that 1+k, is invertible and || (1+k,)" [|<&. For a given & >0, let
ks =sup{lk(s, 1) f{(s,u)|: 5,1€[0,1], | u—x,(s)|<6}.
Then k; serves as a Lipschitz constant for F' on the set
S, ={xeC[0]1]:]| x—x, ||< 5}
If |F(x)|<p,then
1TF" (e )] F(x6) 1=l L+ ko)™ Fx) < Bp
Therefore, if h=b%k;p <% and & > (bk,)", then
{xeclon:| x-x, <t} 8,,
and the following theorem guarantees that the functions x, given by

x,, =x,+y , where the functions y, are solutions of the linear integral

n+l

equations

90+ [ (s, 0 £, %, (), (s)ds = =, = [ k(.0 (s, %, (5D,

converge to a solution of (2.8). Cherles W. Groetsch (1980) has discussed the

additional applications of Newton’s method.
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Theorem 2.5.1. Suppose that C is an open convex subset of a Banach space
X and that Yis a Banach space. Let F:C—Y be differentiable on Cand
satisfy.

| F'x)=F' OISkl x=yl

for x,yeC. Assume that for some x,eC,G,=[F'(x,)]" exists and that

and

n(l-~1-2h)
A

1G, lcb and | G,F(x,)|<n, where h=bnks%. Set ¢ =

suppose that

S= {x e X x—x, ||St'}_<; C
Then the Newton’s sequence (2.5) is defined, lies in S and converges to a root
x of F.

Moreover,

15—, < n(1-1-2h)*
’ (h2")

Let X and ¥ be Banach spaces and D° is an open convex subset of X .

Also let F:D°—Yy be Frechet differentiable on D° with
| F'(x)-F'(x")|€A| x—x'| for x,x'e D°.
Let S(x,7) denotes the open ball x| x' = x|< r} and S(x,r) denotes its closure.

Let x,eD’ be such that [F'(x)]":¥Y > X exists, ||[F'(x)]I"lI<x,

[F'(x,)]" Fx) |1<8, h=2xA6 <1 and S(x,tH)cD’, ¢ =%(l—\/1-h)5.
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Then
1. The Newton sequence {x,} exists and x, e S(x,t")c D° for n20
2. x" =limx, exists, x*e S(x,,/*)c D and F(x*)=0.

3. x* is the only solution of F(x)=0 in the set S(x,,t)nD° |,
2 . . .
=;(1+\/1—h)5, if <1 ,and in S(x,,t") if A =1.

With the above assumptions and Kantorovich hypotheses, Gragg W.B. and
Tapia R.A. (1974) were able to give the following best possible lower and

upper bounds for error:

. 41-n 6%
5 =, I 5 =%
h 1-6°
and
2k 25N gyt 5 <07 15, =, |
1+40%
It f——
(1+6%)’
where
P S Ll P
1++1-h

In particular, the bounds for =1 are
[ %" —x, €27 1% =X |
and

2(NZ =D %, =%, 11 %" =2, 1<) %, =%,

35



holds for all £<1.

In our study, we are trying to give a new best possible error bound

constructing a strictly monotonic function that generalizes the numerical

bound given in Rall L.B. (1974).

The hypotheses (1), (2) and (4) of theorem 2.3.3 guarantee the existence
and convergence of the sequence {x,} obtained by using theorem 2.3.1 for the
functional equation F(x) =0 to x" e U, such that F(x") =0.

The Kantorovich hypotheses are

() I[F'(x")]"|<B" (some constant ) and the open ball

i) Up=fx:]a-x <

1 . . 1
(B'K)} c U that satisfy (1), (2) and (3) with 7 < < and

(4) of theorem 2.3.3.

Rall (1974) had discussed the error bound of the unique soluﬁon of
Newton’s algorithm using Kantorovich hypotheses, where he considered the
open ball

U, = (x| x-x" < @-+2)/2B'K)}
Here, we show that the bound (z—ﬁ)/(ZB‘K) is a special case of our

. 7% .
generalized bound given by ((6)~r(©))/r(0)B'K), where ) =- }9 % is

; . . 1
a monotone increasing function on (0,5] :
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For the graphs of the increasing monotone function r(0) on the interval (Oﬂ

see fig.1 and fig.2.

We now state and prove our theorem:

Theorem 2.5.2. If x" be a simple zero of F,
IIF)I™ < B°

and

Uso=f{x:|lx-x"|<

)
(B'K)

and if the hypotheses (i) and (ii) of Kantorovich theorem are satisfied at each
x, e U’, where
= {xllx=x" 1< (O - rOY (O B K.
2

Then 7 is given by

Proof. For x,eU’

r(@) —+/r(0) r(B) Jr(6) - 1/r( * where 5" _—K';_

r(0)B'K r(9)—1—.- K
Kx

,/r(@)) x
no) . Jr®

x,=x —(1-
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| F'(20) = F'G) 1<K [y - [ < K ) 0= Y0

r(0)
<o -r@)or)
<[I[F')1 )

So that [F'(x,)]™ exists and by the Banach lemma (sec: 1.11)

]

B JroK: Y I
"I BKmor ] ( ] ] 2| [F G 2.9)

Using the fundamental theorem of calculus, we have
F(x')=F(x,) = f F'(xy +2 (x" = x,))(x" = x,)dt.
= F'(x,)(x" —x,)+ f[F'(xo +1(x" = x,)) = F'(x)](x" — x, )dt
As F(x') =0,
=[F' ()] F o) = (x" = %) + [F'(x,)]™ of[F (o +2(x" = 20)) = F'(x)](x" = x, )t
Thus
ILF" (o)1 Fxg) || {HBK %"~ x| jf dt} [EXEAE

From which (2.9) may be used to get

et LY L Y VI o LT ST
1-B'K || x" —x, | V@)

It follows that from x, e U

K’ TK%( ~7m)x
V() @
The following corollary of our theorem is the theorem of Rall(1974):

——( ©)-1).

hBK[
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Corollary. If x is a simple zero of F,
PGl 1< B

and
. 1
U. ={x:||x-x < —}tcU
B'K

then the hypotheses (i) and (ii) of Kantorovich theorem are satisfied at each

x, € U" ,where

U {x lx—x" ||<(Sup(r(?)~ Sup(r(]e))/(Sllp(r(?)B K)=(2-~2)/(2B K)}

0e{0,2

By the following example, we justify the physical applicability of our

theorem.

Example. Consider the quadratic operator
F(x)= %K(xz ~x"), where X > 0.
Therefore,

U' = {x N x=x"||< (r =) /(rB'K)} where r is a positive real number.

We have = \/—— —r Jr

’ _(1——) "and for
rBK  r-K
xo=x‘—(1—£)X'='j_;sWhereB.=—];—"
B Jr K"J 2 FGT I,
T1C B'K| x,-x II r
and
s L2 Ll PPN (Gl - ST ST
1-B'K || x,—x | z
From which
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1q-1
h=BKn=_z(_l_rl=(§_§)_

With this value =2, the b -
iy st 9} est possible error bound found from our theorem is

40



1.9+

1.8

13}

1.2

1.1F

1

1
0

0.5
0.45
0.4
0.35
0.3
0.25
0.2

0.15

0.1}

0.05F

0.05

0.

0156 02 025 03 035

0.4

045 05

1.1

1
0
Figure 1. Graph of r(0)
h=h(r)
1.!2 1j3 1:4 115 1.I6 1:7

r

Figure 2. Graph of h(r)

41

1.8

1.9




Chapter-3

Interval Number System and Some Fixed Point Theorems.

3.1 Introduction. Many approaches exist for treating the subject of errors in
applied mathematics of which we mention the perturbation approach.
Suppose we are given an operator equation.

(L+eL)x(e) =7 (3.1)
Using perturbation technique we seek solution of (3.1) in the form

X(E) =Xy +EX, +E X, Hrvrreeees (3.2)
To solve (3.1) recursively for x,,x,,----- etc, many problems arise
(1) What guarantees the above expression of x(¢) as a power series in £?

(ii) What if ¢ is big ? Convergence criteria must be investigated.
(iii) What if ¢ itself is unknown. In tolerance problem for instance, only an
upper and lower bound for ¢ are all what is given.

A subject, which answers the above questions, has appeared as an
independent discipline in the mid-sixties, called interval analysis with the
pioneering work of Moore (1966) together with the research carried out by his

co-workers.
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Here we discuss some concepts relating to interval number systems.
3.2 Interval number system. Let the field of real numbers be denoted by R
and the numbers of R by lowercases latter a,b,c,--- ,x,y,z. A subset of Rof
the form

I=[a,,a,)={t:a,<t<a,, a,,a,eR}
is called a closed real interval or an interval.
Let the set of all closed real intervals be denoted by J(R) and the members of
S(R) by-Il’Iz, ...... .
It is seen that the real numbers x € R may be considered as the special numbers
[x,x] from R and this type of intervals are called degenerate intervals.
Two intervals 7, =[a,,a,] and 1, =[5,,b,] are called equal if a, =5, and a, =b,.
The width of an interval [a, b] is given by W([a,b])=b-a and its magnitude
by

|[a,5]|1=max(lal,| 5]).

Let *e{+,—,e,/}be a binary operation on the set of real numbers R. If
I,,I,e3(R) then I *1I,={r=axb:acl, bel,} defines a binary operations on
3(R).
We now generalize the arithmetic of real numbers with the above binary

operations on elements of J(R).
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Let I, =[a,b] and I, =[c, d ] be two intervals then the operations of addition,
subtraction, multiplication and division of 7, and 7, are defined by
I, + I, =[a,b]+[c,d]=[a +¢,b+d],
[a,6]-[c,d]=[a-d,b-¢],
I, *I, =[a,b]* [c,d] =[min(ac, ad, bc, bd),max(ac, ad, be, bd)],

and

I]/Izz[a’b] [c,d]=[a’b]*|:%’%] , where 0¢Jc,d].

Interval addition and interval multiplication are both associative and
commutative but the distributive law does not hold for interval arithmetic.

For example,

[1, 2] ([1,21-1,21)=[1,2] ([-1,11) = [-2.2]
whereas
[1,2][1,2]-[1,2][1,2] = [1,4]-[1,4] =[-3,3]
For the intervals 7,J,K the law I-(J+K)cI-J+I-K 1is referred to as

subdistributivity of interval arithmetic.

Interval arithmetic is inclusion monotonic. That is, for the intervals 7,/,K and

L the following hold:
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I+JcK+L
I-JcK-L
IJ c KL

= K/ (is0eL).
Let f(x,,x,,=+,x,) be a real rational function of the variables x,,x,,,x
where each x, occur only once then the corresponding interval extension
F(X,, X, X,) computes the actual range of values of f for x, belonging to
the intervals X,.
Definition 3.2.1. The distance betwéen two intervals 7, =[a,b] and I, =[c, d ]
is defined by p(1,,1,) = max{|a-c|,|b-4d }.
It is easy to show that the map p introduces a metric in J(R), since p has the
properties
p(,,1,)20,
and p(I,1,)=0 = I,=1I,,
p,,1,)< p(,,1,)+ p(I,,1,) (triangle inequality).
We now state two important theorems:
Theorem 3.2.1. The metric space (3(R), p) with the metric of Definition 3.2.1

is a complete metric space.

(This means that every Cauchy sequence of intervals converges to an interval.)
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Theorem 3.2.2. Every sequence of intervals {I 8 }‘";::o for which

is valid, converges to the interval 1 =ﬂ:=ol @

Let (M ,p) be a metric space with the metric defined by p: M xM —> R,
then an interval valued function f:M — 3(R) on M is continuous at x, e M if
and only if for every ¢ >0 thatisa § >0 such that for all x,e M, p(x,x,) <6
= p(f(x),f(x,))<e, and f is uniformly continuous in M if and only if for
every ¢>0 thereisa & >0 such that for all x,,x, eM , p(x,,x,) <&
= p(f(x).f(n)<e.

3.2.1 Linear Interval Equation. It is often desirable in a variety of
applications to obtain a solution to the linear system Ax =5 in which 4 and &
are both affected by uncertainties. In that case we are concerned with
determining the tolerance in each component x;, of the solution x knowing the
tolerance inherent in each element a; or b,.

This type of problem can be solved by characterizing the equation in the
interval version:

A x=b'

where 4’ and »' are an interval matrix and an interval vector respectively
having upper and lower bounds, thatis 4' =[4, 4], b' =[b,b] .
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By solving for x, we mean to solve the equation

Ax=b

in which 4 and b ranges respectively over 4’ and

B’ (,_45,45}1 and bsbsé).

An Ae A' and beb' are usually written in the more practical form
A°—AASAL A +A A4, b —Ab<bL b® +Ab

A+A b+b

in which 4°= and »° == A4 and Ab are the uncertainties

(maximum errors) in 4 and b, i.e.

Aq=2-4 and Ab=u)-.
2 2

We assume that the matrix 4 contained in 4’ is nonsingular. Then solving the
equation

A x=b'
means that we are able to determine an interval solution x', one of the smallest
width, enclosing all possible values of the vector xeR" satisfying 4x=5 when
4 and b assume all possible combination inside 4’ and &'. In other words, we
seek an exact hull to the set X = {x: dv=b, de 4’ ,beb'}.
The answer to this problem was first supplied by Oettli and Prager (1964) who

gave full characterization of the set X by stating the following:
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Theorem 3.2.3. Any solution x to be linear equations Ax=5b, when Ae A

and beb' satisfies

H
c c
2.a5%; b

J=1

where a; and b denote respectively mean values of ¢, and b, , Ag; and Ab,
their range of uncertainties. The vertical bars stand for absolute values.
The proof follows from the perturbed problem
(4°+54)x=b°+5b

in which the errors 64 and §b scan the range of uncertainties A4 and Ab ;
that 1s

SAde[-A4,A4], 6Sbe[-Ab,Ab).
And by writing the above equation in the form

Ax-b"=—5 Ax+5b

we notice that the right-hand side does not lie outside the interval
[-AA4| x| -Ab , Ad| x| +Ab] so does the left-hand side, i.e. that

—A A~ Ab<Ax-b° SAA|r|+AD
which is the Oettli-Prager criterion.

Although here we prove necessity only, the Oettli and Prager theorem implies

the converse of the above statement too.
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For, let the above inequality hold, then A“x—b“:D(AA|x|+Ab) where D is
diagonal and d, e [-1,1], i.e. the existence of
ded' (A=A"-DAAS, S=sgm(x)) and beb'(b=b°+DAb) hold with Ax=b.
Example: For the equations (Hansen (1969))

[2,3]x +[0,1]x, =[0,120]

[1,2]x +[2,3]x, =[60, 240]

one has

i ool ol
Thus |£, +4x, ~60 < 4z, | + |, | + 60
and

[2x, +5x, ~150| < x| + L|x,| + 90

define the set X completely. They read in the first quadrant

2x,<120 3%, +x,20

x, +2x, <240 2x,+3x,260
by letting |x |=x and |x,|==x, To seek X in the second quadrant, we set
bt|=-x,, |x;]=x, and so on. And although X is convex in any one quadrant, i.e.

composed of union of convex sets, it could be generally non-convex.

The figure below demonstrates the various regions of the set X'
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(-120,240)

(0,120)

% (60,90)

(-12,24) (0,20) —_

(30,0) \ %i
(90,-60)

Since the interval solution x' is the narrowest interval containing X, one has

from the above figure
x' =([-120,90][-60,240] )
which is the exact bound for x .

3.2.2 Interval version of Newton’s method:

Mean value theorem. We now state the mean-value theorem in interval

numbers, which is very important to study the convergence of Newton’s

method. Let us consider f be a real valued function with a continuous

derivative f* on any interval [a,5]. If S is a bounded real rational function
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defined on [a,b] then the mean- value theorem states that for any x,yela.b],
JO) =)+ f(x+8(y—x))(y—*)
for some 8 [o,1]. If /' is the united extension of f*, then it can be concluded
that
S e f+f @+(y=-0[0,1)(y~x)
Let F® be an interval-valued function F®:¢,—¢ defined for X =4 such that
F®(X)> f'(X), then we also have
FM e f@+FY (x+(y-x[0,11)(y-x)
and also, for X <[0,1]1n 4,
X fE)+FP (x+ (X -x)[0,1])(X - )
From the mean value theorem for the bounded real valued function f on [a,b]
which has continuous derivative /' on [a,b], we can write for any x,ye[a,b]:
[ =fM+ [ +0E=-x-);

where 6 e[o,1]. If x is not a zero of fand f'has a constant signon [a,b], then

1
= : 3.3
e = (3)

Thus y is a fixed point of the function on the right-hand side of (3.3) if and

only if it is a zero of f.

Suppose that F' is a rational interval extension of f’:f'(X)cF'(X) and
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() =F"([a,b]).
For Xcla,b], and m(X)= the midpoint of X, we define the interval function
N (N for ‘Newton’) by

1
~F'(X)

N(X)=m(X)+[ Jf(m(X)). (3.4)

Approximating 6 by 0 in (3.3) gives rise to Newton’s method for
approximating roots by iteration of the function on the right-hand side of (3.3).
The equation (3.4) can be used in a similar fashion to provide an “interval
version” of Newton’s method, namely by choosing X, and defining the
sequence of intervals X, X, ,--- with

Xm=N(X,)nX,
3.3 Fixed Point Theorems. If F is an operator that maps the Banach space X
into itself, then any x e X such that

x=F(x) (3.5)
is called a fixed point of the operator F .
For example, the operator F(x)=x* in the space R of real numbers has the
fixed points x=0 and x=1.

The linear operator
F(x)=x(0)+ [ x()at (3.6)

in C[0,1] has any function x = x(s) of the form
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x(s)=ce’, 0<s<l, (3.7)
as a fixed point, where cis a real constant.

The method for finding a fixed point of an equation f(x)=0, is an
jteration method. This method is based on the principle of finding a sequence
{x,}, each element of which successively approximates a root x of the
equation f(x)=0 in some interval [a,b]. So, there is a deep rooted connection
between the study of fixed point theorems and Newton’s method of iteration.

The iteration process x,,, = f(x,) leads to a solution of the equation
x=f(x), where f maps the real line into itself if the mapping f(x) is

contractive. The Newton’s algorithm

f(x)

X —

J S xn Y
f(x,)
for finding the real roots of the algebraic and transcendental equations f(x)=0

is also an iterative process.

Let us consider the mapping

Gy

Y= G

of the real line into itself, where ;J:,L(x—))- is continuous on a closed interval [a,b]
X

and differentiable on the open interval (a,b). If x, and x, are any two points of
(a,b] which map into y, and y,, thus
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o B =, _{f(xl) _ f(xz)}
f8) 1)

(1 —x) L)
{f ©OF

where ¢ lies between x, and x,. Hence if

WACTAE)
{f( )Y

on [a,b], the mapping is a contraction mapping of [a,b] onto a closed interval

|<x<1

of the real line. Hence we can conclude from theorem (3.3.1) stated below that

if there is a point x, € (a,b) such that |}{(( 0)) |<& |1-«|, the mapping has a
0

unique fixed point a e (x,~8,x,+6 )n[a,b] and that Newton’s sequence {x, }
converges to a.

Here we will present some important theorems relating to the fixed point
iteration method:
3.3.1 Contraction mapping principle. A map F:(X,p,)— (¥, p,)of metric
spaces that satisfies p,(F(x),F(2)) < L'p,(x,2) for some fixed constant L' and
x,ze X, is called Lipschitzian; the smallest such L' is called the Lipschitz

constant L(F) of F. If L(F)<l, the map F is called contractive with

contraction constant L(F); if L(F)=1, the map F is said to be non-expansive.
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The equation (3.5) suggests a technique for finding a fixed point. If we know a
value x, of x such that F(x,)does not differ greatly from x,, it is natural to
regard
x, = F(x,) (3.8)
as a possible improvement over x,, and to generate the sequence {x,} of
successive approximations to a fixed point x of F by the relationship
Xy =GR )5 n=0,1,2,- (3.9)

Note that if F is a linear mapping defined on a normed linear space,
then F is a contraction if and only if || F||<1. It is also worth pointing out that
a contraction may have at most one fixed point. Indeed, if x and y are both
fixed points of the contraction F,

p(x,y) = p(F(x), F(»)) <Lp(x,y) < p(% ¥),
which is a contraction.

The following result is the basic theorem on contractive mappings,
called the Contractive Mapping Principle (also called the Banach - Caccioppoli
theorem) that guarantees the existence of a unique fixed point of an operator
F
Theorem 3.3.1. Suppose C is a closed subset of a complete metric space

(X,p) and F:C — C is a contraction with contraction constant L. Then F has
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a unique fixed point x" € C and if x, is any point of C and {x,} is defined by
(3.9), than x, —x" as m -« and the error bound

P, x ) S L (1= L) p(%,,x,)
is valid. The Banach principle has a useful local version that involves an open
ball B in a complete metric space ¥ and a contractive map of B into ¥ which
does not displace the center of the ball too far:
Corollary. Let (Y,p) be complete and B=B(y,,r)={y|p(y.y,)<r}. Let
F:B—Y be contractive with constant a <1. If p(F(»,),y,) <(1-a)r then F
has a fixed point.
We give the application of the contractive mapping principle: Consider the

initial value problem
dy
- = &), ¥(%5) = Yo (3.10)

The following theorem guarantees the existence and uniqueness of the solution

to the initial value problem (3.10).

Theorem 3.3.2. Suppose f is continuous on a closed rectangle
R={(x,y):a$x$b,c$ysd}

containing the point (x,,y,) in its interior and satisfies a Lipschitz condition

| fCp) - f(E ) ISM |y =y, | DR
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Then for 7 >0 sufficiently small there is a unique solution g(x) to the initial

value problem (3.10) defined on [x, - h,x, + A].

Cluster point. Let £ be a metric space with metric p. Let {x,} be a sequence
in E. We say that “x is a cluster point” of the sequence {x,} if one of the
following three equivalent conditions is satisfied

(i) x is the limit point of a subsequence {x, { of the sequence {x,}, .

(ii) for all £>0 and =, there exists m>n such that p(x,x,)<¢,

(ii) for all », x belongs to the closure of the set say, 4, ={x,}, mzn.

n

Compact sets. We say that a subset K of E is “compact” if every infinite

sequence {x,} of elements x, of K has at least one cluster point belonging to
K.

We now state, without proof, the Brouwer fixed point theorem, which is the
origin of most of the theorems of nonlinear analysis.

Theorem 3.3.3. Let E be a compact convex subset of R". Every continuous
mapping f from E to itself has a fixed point.

Theorem 3.3.4. (Schauder’s fixed point theorem.) Every convex compact

subspace of a Banach space is a fixed point space.

57



Chapter-4

Solution to System of Nonlinear Equations

4.1 Introduction. In the previous chapter, we have used a method for
solving a system of linear equations in interval number system. Here, we
study an existence and uniqueness theorem of solution to nonlinear system.
Our theorem will be applied to find approximate numerical solution to an
algebraic as well as to a nonlinear system.

Let f:DcR"—R" be continuously differentiable in the open
domain D. With these assumptions Urabe's theorem guarantees the
existence and uniqueness of solution of the nonlinear system

f(x)=0. (4.1)

With further assumptions that both of fand f' have continuous, inclusion

monotonic interval extension F and F' defined on interval vectors contained
in D,

Let ¥be a nonsingular real matrix and let X =(X,,X,,X,-X,) be

contained in D where X,,X,,X,, X, are closed bounded real intervals.
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Suppose that we are given » nonlinear equations in » variables whose

vector form is given by (4.1).
An interval version of Newton's method to solve (4.1) is given by

XU = x® ~N(X D)
with the interval Newton operator

N(X)=m(X)-Vf(m(X)
where ¥ is an interval matrix containing [ f'(x)]" for allx e X .
Another form of interval version of Newton's method which does not require
the inversion of an interval matrix is given by Krawczyk R. (1969).
Define

K(X)=y-1(y)+{I-YF'(x)}{x -y)

where y is a point chosen from X, and Y is an arbitrary nonsingular real

matrix.

The mid point of [q,b] is given by m([a,b]) = g+ .

For the interval vector X =(X,,X,, X, X,) we define

| X |=max | X |

and

W(X) = maxw(X,) , m(X)=(n(X),m(X),m(Xy)--om(X,).

For an interval matrix 4 =(a,) where g, are interval vector, we define
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| 4l max Y| 4

J=l

i |

and m(A4) as the real matrix with component m(4;).

We now state and prove two essential lemmas.

Lemma 4.1.1. If P(x)=x-¥(x) maps X into itself, then f(x)=0 has a
solution in X .

Proof. The continuity of P follows from that of  .Since P maps the convex,
compact set X into itself, P has a fixed point in X by the Brouwer's fixed
point theorem. From the non-singularity of ¥, a fixed point of P is a
solution of f(x) =0 and the lemma is proved. Q.E.D

Lemma 4.1.2. If 4 is an interval matrix and X is an interval vector, then
wlA(X —m(X )< 4] w(X).

Proof. Let X and Z be intervals. From w(Z(X -m(X))=|Z|w(X) and

w(X +Z)=w(X)+w(Z) it follows that

w(A4(X —m(X )))=max ZlAJ (x - m(X))J

i

:max[iw(fa.,.(x-m(x)))]

I f=1

=m‘axi| 4; |W(Xj)

j=
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Since
W(X)= mjf_iXW(Xj) > W(Xj),

we have
w4 (X -m(x))) < (m‘jaxgl 4, |] w(X)=| 4] w(x). QE.D

Theorem 4.1.1. [Moore R. E. (1977)] Suppose a region (interval vector)

X© apoint y?in X, and a real matrix Y have been found such that
(i) K(x®)c x©. Then, there is a solution x in Xto the system f(x)=0.
Consider the algorithm
XD o x® ~ g (x®), k=0,1,2,3,

with

K(X(’")= o _ Y("’f(y“")+ {] _ Y“"F’(X(’" )} (X"‘) _y® ),
where y®¥and Y®, k=1,2,3,--- o , are chosen as follows:

y® = m(X®)y,

y® _ Y, an approximationto[mF'(X“)]™ if | I-YF'(X®™)|gr.,,
- Y%V otherwise

with r = 1- Y(k)F:(X(k)) Il k=0,1,2,3

If the condition

(ii) r, <1 is satisfied, then there is a unique solution x to f(x)=0 in X®and

the following hold:
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() xe XPc X*N for k=1,2,3,+---
(b) w(X¥®) < rokw(X(o)) ;
Thus, {X*} is a nested sequence of regions containing and converging at

least linearly to the unique solution x in X©®.

Proof. From the definition of P in Lemma 4.1.1, we have

P(x) = x— ¥/ (x)
=y =Y +x=y=Y(f(x) - f()

forall x in X.

Now, using the mean- value theorem.

F09=10+ 3 -5,
U ey
we have
fx)-f()eF'(X)x-y) forall x,yin X.
Hence we have
x-y=Y(F () - fO))ex=y=YF'(X)(x-y) € ([ - YF' ()X - ).
Thus we have
P(x) e y=Y (0 +{-YF'(X)}(X -)),
thatis P(x) e K(X) forall x in X.
Since k(x®)c x©®, P maps X into itself; and by Lemma 4.1.1, f(x)=0

has a solution in X©.

If f(x)=0 for x inX, then x=P(x) is also In K(X).
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Since X® = X% AK(X*"), the solution x in X is also in X* for all

k=0,1,2,3,"" which proves (a).

It remains to show that the inequality (b) holds. From the definition of

the algorithm, we have W(X(""'))S W(K(X(k))) .
But we have

WEED))=wly® -r® f5®) + [-YOF (XA D —y™D)),

where
y® =m(X®) and Y® =[m (F'QX*))".
Since
w(y®)=0, w(r@7(y*)=0,
we have

w(K(X®))=wiI ~YOF' (X P)(xX® - y®) < rw(x®) from Lemma
4.1.2.
Hence we have
w(k(x®))<r wx®).
Thus we obtain

w(X("))S w(K X%y <, w(X”“” )S Yy w(K(X‘*”')))
<t h WX (k=2)y

k=3
SF B2 s W(X( ))
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Since {r,} is non-increasing by constructive, we have w(x®)<nrf w(X 2
which proves (b).
Remark. Note that the choice Y*® = y%- leads to

r = I=-Y* PR (X®y|<r,, = T-Y*VF'(X* )] because of the
inclusion monotonicity of F’. That is, since

X(k) — X(’f-l) ﬂK(X(H))g X(k—l),

it follows that F'(X®)cF'(x*") and so that sequence {r}is non-
increasing.
Theorem 4.1.2. [Urabe (1965)] Let F(x) be a continuously differentiable
function on the domain D cR". Let x®e D and suppose J(x”) be regular.
Also suppose that the following three conditions are satisfied for a positive
number & and a non-negative x (0<« <1).

(i) Q, ={xeR" | x-xs6}c D,
(i) 1 -IGE™) - Fe),
(i) M <,

-k

where

IFG) s 1T E)IsM.
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Suppose x € Q;be the unique solution of the equation F(x)=0and J(x')is

regular.

Then the error estimation

- Mr % &
| x@ - x"||I< o s satisfied.

4.2 Numerical Example for algebraic equation. Let us consider the third
degree polynomial equation f(x)=x*-3x+3=0. This equation has only one
real root x  =a =-2.103803402....... Let x®=-2.11 be the approximate
solution.

We use the theorem 4.1.2 and also assume that z = x. Then we get

1 1

r=| F(z)||=0.06, || [J(2)]" lI= = = 0.096618...... < 0.0967 = M .
IHE) I > 1717 (1= F,(Z)II T

(i) In the closed domain  ©; ={x e R;[| x—x© ||<6},
x+z=(x-z)+2z leads to|x+z[<2|z|+d
and
||J(x)—J(z)[|=3|x+z|lx—z|s(6|z|+36)8

S0,
(i) if (6]z|+38)8 < E‘;— (x e 0, )is satisfied.

SO, k>(6|z|+38)5M =(12.66 +38)5x0.0967 =12242225 + 0.290182,

bl

(i) But M <5 is satisfied if 8> 5(1- ) 2 Mr =0.0967x 0.06 = 0.005802.
1-x
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As the closed domain Q, ={xeR:[|x~x(°’||sa} is the 5-neighborhood of
z=x® =-2.11. If we choose §=0.10, then

Q, ={xeR:|x—(-2.11)|<0.10}=[- 2.21, —=2.01]c D=[-3,-2].
Therefore x >1.224222(0.10) + 0.2901(0.10)* = 0.1253232.
So, if we choose x =0.13, then all the conditions of Urabe’s theorem are
satisfied. In the closed domain Q,, then x* = ¢=-2.103803402... is the unique
solution of f(x)=0.

The error estimation gives

Mr _0.0967x0.06
1-x  1-0.13

|z-x"|Ig =0.0066...... < 0.007 (say)

ie. —211-0.007<x" <-2.11+0.007.
Let X© =[-2.117,-2.103].
We shall try to apply Moore's theorem in this interval.
PO =m(X@)=-2.110
Horner's Method: |
1) »k]=aq,, k=0,1,2,>-n  (n=3)

(2)  forj=0,1,2,- ,b[0] =g, (k] =V (K] + 6Pk -1y,

(B)  bOMml=f(), bOn-1=f').

From the Table-1 we get
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F@)y=-0.064 , £'(y”)=10.356
and also
YO =[f' (] =0.09656.
[Note: For the first iteration § =0.007, k =0.10327857 <0.10328.]
From the Table-2 we get

F'(X9)=[10.267,10.446]

As

K (X“”): y© _ Y‘°’f(y‘°’ )+ {I _ Y“”F'(X("))}(X“” _ym))

=[-2.104 ,-2.103]c X =[-2.117 ,-2.103],

On the other hand

7, = I-YOF'(X?)| =/ [-0.0087,0.0087] | = 0.0087 <1.
Next:
We have

XO =KX X® =K(X")=[-2.104,-2.103]
Then
y® = m(X")=-2.1035

and

F'(X™)=[10.2678,10.2806]

From the Table-3 we get

f(y®)=0.0031, f'(y*)=10.2741
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and also

YO =[f(y")]" =0.09733.
[ Note: For the second iteration &=0.0031, x =0.04322580 <0.04333.]

From the Table-4 we get

F'(X™)=[10.2678,10.2806]

As
K(X('))= y0 —Y“’f(y“’)+ {I_Y(I)FI(X(I))} (X“) —y(‘))
=[-2.104 ,-2.103]c X =[-2.104,-2.103]
than
X =K(XM)AXxV=x®,
and
X =X® = x®=.........is satisfied.
On the other hand

7 =|| I-YOF'(X®)||=]| [-0.00062,0.0007] ||= 0.0007 <r, <1 .

Remark. The satisfied interval has the same upper and lower limit
~2103811. But this is not a valid number because the actual value is

2.103803402- - and the interval X',X?, converges to the interval

X =[2.104,2.103] that contains the unique real root —2.103803402---.
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Table-1

Calculate /() & f'(»®) by Horner's method :

k=0 k=1 k=2 k=3
R 1 0 3 3
pOk-1]y -2.110 4.452 -3.064
k] 1 -2.110 1.452 -0.064
B0 ~1]y -2.110 8.904
bV[k] 1 -4.220 10.356
Table-2
Calculate F'(X) by Horner's method :
k=0 k=1 k=2 k=3
b | [L1] 0 [-3.-3] [3,3]
bO[k -1]y [-2.117,-2.103] [4.422,4.482] [-3.138,-2.990]
5] | [L1] | [-2.117,-2.103] | [1.422,1.482] | [-0.138,0.010]
bk -1]y [-2.117,-2.103] [8.845,8.964]
b | [1L,1] | [-4.234,-4.206] | [10.267,10.446]
L

69




Table-3

el

Calculate f(y) & f'(y™) by Horer's method:

k=0 k=1 k=2 k=3
b [k] 1 0 3 3
Ok -1]y -2.1035 4.4247 -2.9968
b0 [k] 1 -2.1035 1.4247 0.0032
Bk ~1y -2.1035 8.8494
b [k] 1 -4.2070 10.2741
Table-4
Calculate F'(X®) by Horer's method:
k=0 k=1 k=2 k=3
O] | [L1] 0 [-3.-3] [3,3]
b0k —1]y [-2.104,-2.103] | [4.4226,4.4269] | [-3.0022,-2.9917]
bO[k] [1,1] | [-2.104,-2.103] | [1 4226,1.4269] | [-0.0022,0.0083]
bOTk —1]y [-2.104,-2.103] [8.8452,8.8537]
bO[k] [1,1] | [-4.208,-4.206] [10.2678,10.2806]
.
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4.3 Numerical Computations for a system of nonlinear

equations:

We consider the system of nonlinear equations

f;('xhxg):xlz +x22 -1=0

fz(xl,xz) = xlz —X, ={)
here

x' =(0.7861513377 , 0.618033988)

be the exact solution .
Let z = y° =(.80,.62) be the approximate solution.

The Jacobian matrix for the system is given by

2 2
f '(x)=( i x2)=J(x).
2x, -1
- Sy [ 2080 25062 _ 16 124)
2%0.80 -1 16 -1

Application of Urabe’s theorem:

r=11 f(2)]|=0.0244

and
-1

6 124
1@ =1 (16 _1] | =0.892857142<0.90 = M (say).

In the closed domain Qs = {x eR | x-z|s 5}
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- —0.80
Let lx-zl,ss = (275 <5 = |7 <8,
2 =2 x, —0.62

i.e., |x,—0.80|+|x,~ 0.62|<5.

Again 196 -T@1, = [2’“' 2"2] - [2" oo 2 0'62J I

2x, -1) (2x080 -1

2(x, —0.80) 2(x, -0.62)
= [2(;:, ~0.80) 0 ] e

where ||.||, = sum of all entries.

Therefore

I J(x)=J(2) |, =4]x, —0.80|+2|x, —-0.62|< 4| x, —0.80| +4 | x, — 0.62 |
=4{|x -0.80|+|x,-0.62|}<45

But L 5 is satisfied if &>8(1-x)=Mr=0.90x0.0244 =0.02196 and

1-x
Kk 24%0.905 =3.65 .
If we choose 6 =0.10, then

Q, ={|x-z|<6 }={|x~2]<010}=[0.70,0.90]x[0.52, 0.72]=D
and all the conditions of Urabe’s theorem are satisfied.

In the closed domain ,, x =(0.7861513377,0.618033988)is the unique

solution of f(x)=0.

The error estimation gives

Mr _ 0.90x0.0244

= =0.0343125<0.035(sa
1-x 1-0.36 ( Y)

lz=x"lI<
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i,e 0.80-0.035<x, <0.80+0.035 = x =[0.765,0.835]
and
0.62-0.035 < x, <0.62+0.035 = x, =[0.585, 0.655]

We now to check whether there is a solution in the region

oo _([0:765,0835)
[0.585 , 0.655]

At the same time we may obtain improved error bounds.

We compute that
f)= (og (2);4)
and
£ = (:2 o )
And also
roge-(25481 17120

For ¥, we take the following approximation to [f (62)

©) O = 0.279017857 0.345982142

Y® =[SO =| 446428571 —0.446428571
Using rounded interval arithmetic, we compute that for Krawczyk
transformation
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O = ,(®
K(X7)=y ‘Y(O)(f(yw))+{I—Y‘D’F’(X“”)}(X‘“’—y“”),

K(x oy ((0784,07881) g,
[0.615,0.621]) <

We have for 7,

ro = I-YOF (X®)|=0.9462

Now for X©, we have

X0 K(xOyx© =[10784 0.788]
[0.615,0.621])°

Again we can find

Now we can compute that

—0.00028

My —
AL )_[— 0.000204

1.572 1.236
) and f'(y‘“){L572 0 _1]]

and

[1.568,1.576] [1.23,1.242]
o0y —
Filx )_[[1.568,1.576] [-1,-1] ]

Also we have

Y(l) =[fl(y(l)]_l _ 0.284 0.352
0.447 —0.447

We using rounded interval arithmetic for K(X ™y, we compute that for

Krawczyk transformation
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K(XD)y =0 _ Y(l)(f(y(l))+ { _yWgr (X(l))} XO 0y,

Kxoy (1078607861 _
[0.618,0.618] )<

then
X® 2 KXy xO =([0.786,0.786 ]J'
[0.618,0.618 ]
Therefore
X9 o x5 x® s satisfied.
For r,

7 =l I - YO F(X ) |l=0.006766.

In this example, we find 7, =0.09462 <1, r, =0.006766 <1.

As W) = “{[o 784, 0.788] ]
[0.615, 0.621]

and
[0.765, 0.835]
X0y = =0.07,
Y w{[0.585,0.655]
it is seen that
W(X(k)) < rokw(X(O)) .
Hence we can conclude that both the conditions of theorem 4.1.1 are

satisfied. Here we also conclude that the degenerate intervals [ 0.786,0.786 ]

and [0.618,0.618] indicate that the approximate values of x and x,are

correct to three decimal places.
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Chapter-5

Solution to Nonlinear Differential Operator Equation

5.1 Introduction. In the previous chapter, we have applied Urabe's theorem
(1965) to approximate the exact solution of algebraic as well as of nonlinear
system of equations in interval number system. Basically, Urabe gave his
theorem while studding the quasiperiodic differential operator equations for
approximating numerical solutions using Galerkin's method. Galerkin's
method produces system of equations that needs Newton's method to solve.
We here study the error bound for approximating the exact quasiperiodic
solution to Van der Pol type equations.

Here, It is to be noted that Mitsui T. (1977) gave an error estimation for the
quasiperiodic solution of van der Pol type equation while studying
Galerkin's procedure. In this chapter, we estimate a new error bound that we
claim to be more general compared to that given by Mitsui.

Firstly, we have an attempt to discuss the existence and uniqueness of
quasiperiodic solution to Van der Pol type equations.

Let us consider the following Van der Pol type equation

dzx_zl(l_xl)idf.,.x:i(ak cos9,¢ + b, sin 8,) (5.1)
dt

iy k=1
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with quasi-periodic forcing term,
Now we need to introduce some basic notations and terminologies.
5.2 Almost Periodic and Quasi-periodic Functions:
Let d denotes some positive integer and R the set of real numbers.
Definition 5.2.1. A function f(r)e C(R;R?) is said to be quasi-periodic with
periods @,,®,,+, @, if there exists some continuous periodic function
F AR/ ,u,) e C(R™,R") such that

f@ef(t,t,---,t) forallteRr, (5.2)

and f,(u,,u,, -+,u,) 18 periodic with periods o, in which «, (i=1,2,---,m).

We assume here that o,,,,----,e, are all positive and also the reciprocals
of w,,@,,-,mw, are rationally linearly independent. In fact, assume o, is
rationally linearly dependent on w,”,@,”,++,@, ", that is
m-1 i
Cor;l =) 40

where qa, .3 for &, ,¢, >0 and k=1,2,---,m~1 are all integers. Here if we
Gk

take w, in place of ¢, (k =1,2,+-,m—1) then we assume

= m_lbk—a‘i—-. (5'3)

1
/7 k

Now consider the following function
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.fl(ui a“z "“’um—l) =.f0(u1 ,uz ’.”’um—l ,Cl)m fbk u—kJ (5'4)
- Wy

which is periodic with periods w, in each u, (i=1,2,---,m-1) and

f;(t,t,"',f)=f0 (tat:""t)a

m-1 m

because we have

m-1 =
u, +w <= -l
k k _ k
a, -_5 bk P =w,, E bk a)—'+60m E bk
k=1 k k=1

k=1 k

Definition 5.2.2. A function f(¢) is said to be almost periodic if, from any
sequence {a'}c R, we can extract subsequence {a,} such that { f(t+,)} is
uniformly convergent.

Note that an almost periodic function f is bounded on R.

We show here a basic fact that a quasi-periodic function f is almost
periodic.

Lemma 5.2.1. If a function f(f) is quasi-periodic with periods
®,,0,, o, then f(¢) is almost periodic.

Proof. If 1 is quasi-periodic with periods o,,®,,"---,®, , then there exists a

continuous function f,(,, g *s4n) which is periodic with periods o, in
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eaCh u; (i=1,2,"',m) SUCh that f(t) =f0(t’t,...,t). Then from any Sequence
{a/}c R, We can extract a subsequence {an‘"} such that {a,,(” (moda),)}

converges to a,”.

In the same way, we can extract subsequence
{ anm}c{an‘”} such that {a,‘(z) (modmz)} converges to a,’. Continuing this
process, we obtain subsequence {anm}c{a “nl such that {a,® (modw, )}

n

converges to ¢, for k=1,2,--,m. So if we select subsequence
{a,)={e,"}<la, ],
then {a,} satisfies
},i_f,l;f(f+a,,)=,{i31;fo(t+an,---,t¥a")
=’11i_l;1:f0(t+a”“),---,t+a"(’"))

= fo(t+a,, t+a, ™)
uniformly.
This shows that £ is almost periodic.
Definition 5.2.3. A subset Sc R is called relatively dense if there exists a

positive number L such that

[a,a+L]mS¢¢ forall aeR. (5.5)

The number L is called the inclusion length.
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pefinition 5.2.4. For any bounded function f and & >0, we define

T(f,&) ={z;|f(t+7)- f(t)|< &} forall reRr. (5.6)
T(f,e) is called the ¢ - translation set of 1.
Lemma 5.2.2. For any almost periodic function f(s) and any real number

o, there exists
;1% .
a(f,0)=711_{£10FJf(t)e' d. (5.7)

Proof. Note first that it is enough to show the existence of a(£,0). In fact,
because e~ f(f) is almost periodic and a(f,o)=a(e™ f,0), we obtain the
existence of a(f,o) for any o from the existence of a(f,0).

In order to prove the existence of a(f,0), let M be a bound for | /| and

T(f,€) be the ¢ - translation set of 1. If £>0 is given, let £ be the inclusion

16M¢
&

. Then we have

length for 7(f ,%) and A4 areal number so that 4>

1 ma 1 1 (kDA

—_ Ndt=) — t)dt .

L[ poae=3— [0
Now it is easy to see

(™ f@yar = [ pesmyar

k+1)A—

= [ f@ar+ [(Fa+a- @)+ [ fesnas [ paroa
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If
re T[f,%]ﬁ(kfl,kA+£’)
then we have the estimate

| f:“”f dt— [ r@yde [s%& 2M

and consequently,

1 14 1 2MY{
IHJ: f(t)dt—sz(t)dt|s§+—A—<%. (5.8)

Now if T is a real number, there is a unique » so that nA<T < (n+1)4 and

thus from the following

ol 1
lim | = N =
lim | = [ @ di——[" a0
we have
1 1 pm £
= [ rwa— [ rwdri<g (5.9)
if T>T, for some 7, where T, depends on M.

Now if 7,,7,>T, and n,,n, are chosen so that nA<T,<(m +1)4 for

i=1,2 then from (5.8) and (5.9)

1 2 1 @ 1 4
‘Ti. [ 7 __le_ [ roa<z [ roa-—["ro

+|;1-1;I [ rwa-= [ ]
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1 »
+|fo(t)dt~ﬁf f(t)dt |

1

+|
n,A

1,4 1 .
[” r@ar T [ r@ar|<e
so the limit value
a(f,o)= ?12% f f@)e™ dr

exists and the lemma is thus proved.

Further there is a countable set > of real numbers, which is called the set
of exponents of f, such that a(f,0)=0if o g} .

This is shown from Bessel’s types inequality
Y 2
Ylalf.o)<a(l fI7,0)
n=|

for any finite set of distinct real numbers o,,0,,0;,",0y.

Definition 5.2.4. For an almost periodic function s, the module of f,
Mod(f), is defined to be the smallest additive group of real numbers that
contains the set > for which a(f,0)#0 ifoe) .

5.3 Linear Differential Operators. Let x be a d — dimensional vector and

A(t) a dxd square matrix. Then define the differential operator L as follows
Lo =F a0 (5.10)
dt
Let @(7) be the fundamental matrix of the linear homogeneous equation
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Lx=0 (5.11)
satisfying the initial condition ®(0)=E, where E is the dxd unit matrix.
Here we call @(f) the fundamental matrix of the linear homogeneous

equation (5.11) and @ () satisfies the following matrix differential equation

20 - 4090, (5.12)

Definition 5.3.1. We say that the differential equation (5.11) has bounded
growth on R if, for some fixed %> 0, there exists a constant C =1 such that
every solution x = x(#) of (5.11) satisfies

| x(t) < C|x(s)| for s,te R and s<t<s+h. (5.13)
It is easy to see that (5.11) has bounded growth if and only if there exist real
constants K,o such that its fundamental matrix @(¢) satisfies

| D) D' (s) |<Ke™ ™ for 25
Moreover, (5.11) has bounded growth if its coefficient matrix 4(s) is

bounded. In fact, from Gronwall’s inequality, we have
| (1) ™ (5) < exp| [| 4G | du.
If (5.13) holds only for s,z R*, then we say that (5.11) has bounded growth

on R* where R* denotes the interval [0,0).
Definition 5.3.2. A linear differential operator (5.10) is said to be quasi-
periodic if 4(r)is a quasi-periodic matrix.
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Analogously we use the following definition.
Definition 5.3.3. A linear differential operator (5.10) is said to be almost
periodic if A4(z)is almost periodic.
We have the following definitions about an almost periodic (or a quasi-
periodic) operator.
Definition 5.3.4. An almost periodic operator L is said to be regular if for
any almost periodic function f(¢), the equation
Lx= f(t) (IH)

has at least one solution bounded for all e R.
Definition 5.3.5. A quasi-periodic operator is said to be regular if it is
regular as an almost periodic operator.
5.4 Conditions for bounded solutions. Here we assume that all functions
considered are continuous on R. Let us consider a linear homogeneous
differential equation

Lx=0 (5.14)

with the operator L given by

1x=F_ a0 (5.15)
dt
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First we need some basic definitions and lemmas. We say that (5.14)
satisfies the exponential dichotomy on R if there exist a projection P and
positive constants C,o such that
| D) PO (s) [Ce™ ™ for s<¢, (5.16)
| D) (E-P)D™(s)|cCe*™ for t<3s, (5.17)
where @(7) is the fundamental matrix of the linear homogeneous equation
(5.14) with ®(0)=E. If (5.16) holds only for 0<s<¢ and (5.17) only for
0<s <t then we say that (5.14) satisfies the exponential dichotomy on R*.
Then we have the following.
Lemma 5.4.1. Suppose (5.14) has bounded growth R*. Then the
inhomogeneous equation Lx = f(¢) has at least on bounded solution for every
f bounded on R*if and only if (5.14) satisfies exponential dichotomy on
R*.
Note that the similar state for R~ =(—o,0] also holds.
Lemma 5.4.2. The inhomogeneous differential equation Lx= f(t) has at
least one solution bounded on R for every bounded f(z) if and only if the
following three conditions are satisfied.
- f(#) has at least one solution bounded on R* for

(i)  The equation Lx

every f(f) bounded on R".
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(i) The equation Lx= f(¢) has at least one solution bounded on R~ for

every f(¢) bounded on R,

(iii)y Every solution of the homogeneous equation Zx=0 is the sum of a
solution which is bounded on R* and a solution which is bounded on
R™.

5.5 Regular Differential operators. By the results in the previous

subsections, we can show some useful results in this subsection. First let L

be almost periodic then we have the following propositions.

Proposition 5.5.1. A linear differential operator L is regular if and only if

there is a d xd square matrix P such that

i) P=P,
() || Q@ PP (s)||< Ce for t2s
(i) | DE(E-P)DP'(s)|<Ce " for t<s

where C and o are positive numbers and @(t) is the fundamental matrix of
(5.14).

For quasi-periodic L, we have the following.

Proposition 5.5.2. If a quasi-periodic operator L with periods ;,@,, -,

defined by (5.15) is regular, then for any quasi-periodic function f(r) with
periods w,,w,, ,o, the differential equation (5.14) possesses a unique

quasi-periodic solution x = x(?) with the same periods given by
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x(O)= [ G(t.5)f(s)ds, (5.18)
where

G(t,s):{ O(t)pd7'(s) fort=s, (5.19)
— D) (E-p)D'(s) for t<s. '

G(t,s) is called a Green function for L, and satisfies the inequality

| G(t,5) [|< Ce (5.20)
5.6 Generalized Exponential Dichotomy. We slightly extend the
conditions in proposition 5.5.1 as follows. Consider a linear differential
operator L in (5.15) and let ®() be the fundamental matrix of Lx=0
satisfying the condition ®(0) = E as before.

The linear homogeneous equation Zx=0 is called to satisfy a
generalized exponential dichotomy if there exist a dxd projection P,

positive constant o, ,o, and nonnegative functions C,(t,5),C, (¢,s) such that
() [ QPO ()| C, (t,5)e ™ for t2s,
() [ OO)(E-P)D'(s)|| C, (t,5)e " for t<s,
(iv) the integral

[ cnends+ [Cat,5)emds (5.21)
is bounded on R by a positive aumber M . Then we have the following

propositions.
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proposition 5.6.1. Let L be a linear differential operator. Given in (5.15)

and A(r)a quasi-periodic dxd matrix with periods w,,,,"+, @, . SUppose
that the equation Lx =0 satisfies the generalized exponential dichotomy.

Then for any quasi-periodic function f(r) with periods @,,@,, - ®, the
inhomogeneous equation (IH) has a unique quasi-periodic solution x(r) with

the same periods given by

x(t)= [ G(t,5) f(s)ds (5.22)
where
G(t,s)={ QPO (s) fortzs,
—~O)(E-P)D ' (s) for t<s.

Moreover, the solution x(¢) satisfies the relation

[ xl<M] £ (5.23)
The study is based on the following theorem:
Theorem 5.6.1. [Mitsui T. (1977)]

Given a nonlinear differential equation

= _x@,%) (5.24)
dt

where x and X (¢, x) are vectors and X (z,x) is quasi-periodic in ¢ with

periods w,,@,, -, and is continuously differentiable with respect to x

and x belongs to a region D of the x-—space.
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Suppose that there is a quasi-periodic function x,(r) with periods

0,0, "> @, such that

dx, (£) (5.25)

xO(t) € D:
I - X[t x, )]s’

Cdt
for all ¢. Further suppose that there are a positive number &, a nonnegative
number x<1 and a quasi-periodic matrix A(r) with periods w,,@,, - 0,
such that

(i)  the linear differential equation operator L define by

dy
Fpet _
y=—— A0y (5.26)

where A(¢) is quasi-periodic matrix ,

D; = {x;|| x—x,()||£6 for some t}c D,
i) wt,x) - 4@ |I< EKZ whenever || x - x,(t) ||< 8, (5.27)

where w(t,s) is the Jacobian matrix of X(z,x) with respect to x and

=% (5.28)
o

b

where C and o are positive numbers such that Green function G(¢,s) for L

satisfies

I G(t,s)|<Ce™"" (5.29)
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Then the given equation (5.24) possesses a solution x = %(r) quasi-periodic in

; with periods o,,@,,---- ,@, such that

[ENOEF{GYES (5.30)

Mr
1_

for all ¢. For the solution X(¢), a quasi-periodic differential operator L

defined by

=2 -y1s01y.
is regular as an almost periodic differential operator. Furthermore, to the
equation (5.24) there is no other quasi-periodic solution belonging to D,
besides x =X(z).
5.7 Quasi-periodic solution to second order differential equation with
constant coefficients.

Consider the second order differential equation.

d*x
dt?

+2y%x-+.92x=acos91t+bsin.92t (5.31)
t

where ¢ and 8. (i=1,2) are all positive numbers such that 9>0, 0<|u|< 9

5 W, : - 2
and a)k=?9—” (k=1,2). It is clear that EL is irrational.

& 2

We intend to get quasi-periodic solutions with periods w, and @, for the

equation (5.24). The equation (5.31) written as the vector form
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dx
——Ax =(t

where

x:(x] (0 : 0
y)’ -9 -2u) Pl = acos 9t +bsin 9yt

dx

and Y

Let L be the operator defined by

Lx = -d—f—A)_c
dt

The fundamental metric ¢(¢) of
Lx=0
can be given by

cosGt+£sin6t lsintS’t
2] @

p(t)=e* = 2
——sin@t cos@t—ﬁsinGt
o 7]

where

0=+ -’
Here we introduce the ¢, — norm ||-|| of vectors and matrices.
From (5.35) we then have an estimation to ¢(¢) as follows:

| (1) 1< Ce™

where

91

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)



C= g—;—lmax(l, 9).

Depending on the sign of x, we have two cases.

Case ()

If 0<pu<3 holds, we can take E as the matrix P in proposition 5.5.1,

and the Green function for the operator L is given by

3 g(t—s) fortzs,

Gles) _{ 0 fort<s,

( J7 1.

cosO (¢ —s)+=sinf(t —s) —sin@(t —s)

_ et , & ¢ fortzs,
‘T —%sin@(t—s) cosH(t—s)—%sinH(t—s)

| 0 fort<s.

(5.38)
Case (II)

If 0> u>—9 holds, we can take 0 as the matrix P in Proposition 5.5.1

and the Green function for the operator L is given by

0 fortzs,

Glhsy= {— g(t—s) fort<s,

0 fortzs.

1.
- cosB(t—s)+—‘g—sinc9(t—s) Esmﬂ(t—s)

- 1 — g H=9) , fort<s,

—iSillg(I—S) COSg(t—S)—“‘liSing(t—S)
)2 7

\

(5.39)
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In both cases, L is regular as the quasi-periodic differential operator with
periods @, and ,. From (5.18), quasi-periodic solution for (5.32) is given
by

x(0)= [ _g(t-5)p(s)ds (5.40)

for x>0 . Substituting (5.38) into (5.40) and integrating , we have

a
(92 -9°) +4 4> 9’

() = [(92 ~9%)cos 9, t+2u8, sinSlt]

b .
¥ (F-87) 14’8 [(92 ~-9,%)cos 3, t+2u,sing, t]. (5.41)
2 2

For p<0, the result coincides with (5.41). With above considerations, we
have

Proposition 5.7.1. If 0<|u|< 9, the operator L defined by (5.33) is regular
as the quasi-periodic differential operator with periods @, and o,, and its
Green function is given by (5.38) (for p> o) or (5.39) (for p<o). The
unique quasi-periodic solution of equation (5.32) (or (5.31)) with periods o,
and o, is given by (5.41).

5.8 Van der Pol Type Equation. Consider a Van dar Pol type equation

with two frequencies quasi-periodic forcing term in the following form:

Atz 2 (1_xz)%xt_+x=acos.91t+bsin.92t, (5.42)

___2._

dt
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. : o 2n i g :
where A is a positive parameter, 9, === | g, =28 ond QL3¢ rational.
Pi @, o,

- [ 0 1 0
troducing x=( ), A(A =( , =
h y ) -1 2% o) acos$9, t+bsin9, )’

0 i
7(x) :{_ -~ y] , the equation (5.42) can be rewritten as

%:A(k)fﬂp(z‘)-b?\.n(f). (5:43)

Let L(A) be the differential operator depending on 4 such that

L(A)z =5‘C‘;—j—A(1)z. (5.44)

We apply Proposition 5.7.1 to the case u=-4, 9=1. Then we have that
L(A) 1s regular as a quasi-periodic operator and that the Green Function for

L(4) is given by

0 fortzs.
A . 1.
f(t—s)——sinf(t-s —sin8(t - s)
G(t:)={__scs cos@(t—s) 55 (t-5) ) ) fort <s,
—-é—sin@(t—S) cosB(t—s)+Esim9(t—s)
(5.45)
where 9=+1— 2 . Therefore, the Green function G, (¢,s) satisfies
1G @) ls5e™ [1=s] (5.46)
and quasi-periodic solution of the nonlinear equation
L(Aw=9(0) (5.47)
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is given by w=a,(t,A) =[x0(t’l)J

o t,A))’

where

a
(1 9% +422 9?

%, (1,4) = {1-87)cos8,1-22.8,5in 9, 1}

b

" 92)+4/1232{(1-322)2cosgzt—zwzsinszt}, (5.48)
My 2

a&‘ 2 :
t,A)= —(1-8 )sin& t—219 cos 3 ¢
A= (1-97)sin g, 1-24, cos 8, 1}

b9,
+
(1-9,)2+42* 9,°

{~a-9,)sin8,1-219,cos8, 1}

2

and tan f= —2—}%—, we can write (5.48) as
2

Introducing tana=- Lo

asin( 4 t+a) N bsin(9,t + )

X (£,4)= - T (5.49)
(-9 +a29F f1-97y+an 97}
Then, by differentiating (5.49), we have
Yo (£, 4)= a8 cos( 4 t+a) N b3, cos(9,t + 1) (5.50)

{(1—312)2+4ﬂ,2 .9,2}% {(1_322 )2 +422 922}% ’

For all ¢, from (5.49) and (5.50) we obtain

%, (£,2) | LI 5] .
(-9 +a2972F {1-97y +an 9,2f

jal _,_Ib]

< 2 2
=871 11-8,7]
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and

a8, 1515,

Iyo(t’l)ls .
11-87| |1-8,]

Defining the constant X by

szax{ al , Bl lald |b|922J
|1_‘91 | |1_'92| ll_'gll |1—:92|

we get
%0 (8, A) | [ yo(t,4) 1<K (5.51)
for all + and 0<A<1. Using estimate (5.51), we can estimate the residual

function for w,(t,1) as follows

I

dw(;lftt, A’) _ A(t)a)g (t,/l} - (D(t) - ﬂ,ﬂ(wo (t, /1)) “

= =An(a, (2, ) |

0
=z||[_2x zyju

<A[=2]1% I ol

<2iK*K

=2iK>
Accordingly we can choose

r=2iK° (5.52)

Let D, = {x:| x|l<2K}, D'=|J{x:]| -0, (s, < K}.

teR
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It is clear that w,(t,4) € D, forany ¢ and D' c D, .

Let us denote the Jacobian matrix of the right-hand side of (5.43) with

respect to x by w(x,4). Then we have the inequality

0 1 0 1
llw(x,ﬂ)"A(’”||"||(_4m_1 —22x2+2zljh[—1 21)”

(0 0
gy o

<4A|x| y|+24|x
22| x[(2]y|+|x])
<24.2K (2.2K +2K)
=4 AK(6K)
=24 K>,
for x e D'. The inequality (5.46) yields

2.2 4

M= = .
A2 a1-2

In order to apply the theorem 5.6.1 to the present case, we have to cheek
with the inequalities (5.27). The question is “Is it possible to take a

nonnegative number « <1 satisfying the both of inequalities

/ 2
2AK? <2 14"’1 K, (5.53)
4 ik <(1-x)K (5.54)

AN1-2
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under the assumption 0 <A <1?”

Answer is affirmative, if, when the inequality

o[ L [T

522-27) 8\ 3

, Where 0 <A<l (5.55)

holds, because we have

_‘_1____“.244,({2 =__4_.24,1.i vi-4 ____1_,
AN1- 22 AN1- 2 64| 3py 2n
, (5.56)
_ 4 ko 8 1 V-2 1
aN1-2 J1-22 64( 3y 247

So, we can choose such a nonnegative number k<1 such that both the
inequalities (5.55) and (5.56) may hold.
Summing up the considerations, we have the following

Proposition 5.8.1. If 0< A<l holds, and if the constant

S b| 3
Koma| lal_, 1l _ lal%_ 1 ]
=871 11-9,7 1197 ' [1-9,7]

satisfies the inequality

f 2
k<L Y124 where 0<7<1
8 3n
then the equation (5.42) possesses a quasi-periodic solution x=%(r) with

periods », and w, such that

15 = x, (¢, M) [[<K forall ¢ .

Here, it is our error bound.
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