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SYNOPSIS

The thesis is an exposition of use of Fox derivatives for solution of topological and
group theoretic problems. Our own contribution is in the latter arca. Developed by
Fox, free differential calculus emerged as a powerful tool for the solution of
topological problems. In addition to reviewing application of this tool in various
mathematical situations, (i) we have applied it to provide new proofs of a few very
important results in combinatorial group theory, (ii) solved the conjugacy problem
for torsion-free polycyclic-by-finite groups and torsion-free groups with single
defining relations and (iii) determined homology and cohomology of a few classes

of groups.

In the first chapter the free differential calculus of Fox has been introduced and its
application to classification of topological spaces, has been briefly described. In
this context, Lens spaces, knots, links and braids have been defined and use of
Alexander polynomials in their classification described A few useful terms in
combinatorial group theory have been defined and a number of fundamental

results stated.

The second chapter describes Birman's work on the relationship of the Jacobians
with automorphisms of free groups. This has been used to determinc the

automorphism group of a free group of rank 2.

The third chapter providés a new proof of Freiheitssatz, a fundamental thecorem in
the theory of single relator groups. This was first proved by Magnus who used it to
solve the word problem for such groups. Many proofs (some of them geometric)

of his theorem and its generalisations have so far been given by eminent



mathematicians, viz. Lyndon, Schupp, Burns, etc. We proved this theorem using

Fox derivatives following Majumdar's ideas.

In the fourth chapter a new proof of Lyndon's famous Identity Theorem has been
given. We have also determined the roots of words of the form x"....x,™ thereby
generalising a result of Steinberg. The Identity theorem has been used by Lyndon
and Huebschmann to compute cohomology of important classes of groups.
Determination of foots is algorithmic in nature and in a sense complementary to

solution of word problems, the nature of the latter being existential.

Chapter five deals with the solution of conjugacy problem for torsion-free

polycyclic-by-finite groups and torsion-free groups with a single relation.

In Chapter six, we have constructed free resolutions for a few classes of groups
using Majumdar-Akhter techenique of extending Lyndon's partial resolution. The
classes of groups considered by us are finite the dihedral groups, the fundamental

group of union of » Tori Tj,......., T, such that T, T, is a single point, the quasi-

cyclic group, the unpermuted braid group and the 3-dimensional Heisenberg group

H,. The homology and in most cases cohomology also have been calculated from

these resolutions.
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CHAPTER - 1

ALGEBRAIC AND TOPOLOGICAL BACKGROUND
OF FOX DERIVATIVES

1.1 Introduction

In this chapter necessary terminology has been introduced, useful ideas described and
important results stated in several areas, viz., Free Differential Calculus, Topolgy, Knot
Theory, Combinatorial Group Theory and The Theory of Riemann Surfaces. S ome of
those have been diectly applied in our work while the others are needed to describe the
broad perspective of our problems and the method of their solution.

1.2. Free Differential Calculus and Fox Derivatives

The free differential calculus was developed by R. H. Fox ([32], [33], [34] in connection
with his analysis of the ideas regarding Alexander’s polynomial. His objective was to solve
the topological classification of the 3-dimensiomal Lens spaces by a scheme involving a
generalisation of Alexander polynomial. This he succeeded by showing that Reideimster’s
combinatorial classification [94] of the Lens spaces is also the topological classification.
The free differential calculus has been being used in the study of knots ( [3], [4], [8], [16],
[37], [38], [87], [90], [92], [94],{100] ) and also in connection with group theoretic problems
including determination of homology and cohomology of groups ever since its development
(see for example, Fox [32], (33], ..., [37], Lyndon [68], Gruenberg [50], Majumdar ( [72],
(73], [74], 75}, [76], (77], [78], [79] ) Birman [14], Balanchfield [17], Majumdar - Akhter (

(80], [81], [82] ).

The derivatives of the free diffrential calculus will be called Foz derivatives. Here we shall
briefly describe these works and define the necessary algebraic and topological concepts.
For definitions, figures and notation we shall mostly follow Moran [91], Crowell and Fox
[25], W.S. Massey [87], Hocking and Young [58], Griffiths [43], Hilton and Wylie [57].

We start with some importnt definitions and results about free groups and presentation
of groups. We follow Magnus, Karras, and Solitar [85] and Lyndon and Schupp [71].



Free Groups

Let X be a subset of a free group F, then F is a free group with basis X if every function
@ from X into a group H can be extented uniquely onto a homomnorphim @ from F into
H. All bases for a given free group F' have same cardinal, the rank of F.

A group P is projective provided the following holds : if G and H are any group and -y
is a homomorphism from G onto H and 7 a homomorphism from P into H, then there is
a homomorphism ¢ from P into G such that Yo =T.

A homomorphism p from a group G onto a subgroup S of G is called a retraction and S
is called a retract of G if p? = p.

Theorem 1.1 ([71],p. 2).

The projectives groups are precisely retracts of free groups.

Corollary 1.2 ([71], p.2).

The projective groups are precisely the free groups.

We now give an explicite construction of free groups and thereby establish the existence
of free groups. Let X be a nonempty set and Y be a set disjoint from X and in 1-1
correspondence with X. If y corresponds with z, we write y = ™! and z = y~! and
called z, y are inverse of each other. We also write Y = X!, X = Y~! Let S be
XUY = XUX™L Now the elements of S are called letters.

A finite sequence (a;, as, - -a,), n > 0 of letters is called a word and is denoted by w. We
also write a; for (a;) and ajay---a,for(ajaz---a,). If n = 0 we write w = 1. It is the
empty word. Let W be the set of all words. Define a multiplication in W as follows:

Ifw, =a,---a, and ws = by -+ by, then wyws = a;-+-anb;---by,. W,lthen_liecon“iels 'a
semigroup with the identity 1. If w = a;---an , we define w™! = a;; Crap. wTis
called the inverse of w. Two words w; and w, are called equivalent and write w; ~ ws 1lf
wq is obtained from w; by inserting or deleting a finite number o.f V\-’Ol'd-s of the form c%a‘ .
Clearly ~ is an equivalence relation on w which preserves multxphcam(?n andvm\iersmris.
The quotient semi-group F' = %’— is clearly a group. F'is a frelze group with basis X‘ = {a: ]
z € X}, where Z denotes the equivalence class of x under.w in W. E/Ve shall often identify
a word with its equivalence class. Thus we shall often write z for Z.

: i ity has a unique presentation as a reduced word
Each element of F' other than the.ldentlty h que pr et iy
w = 5,8, -+ 5, in which two successive letters s;s;4, form an inverse pair z;z;7" or 27 'z;. n
is called the length of w and is denoted by |w | .

1

A reduced word w is called cyclically reduced if s; # s7° and if there is no cancellation



in forming the product z = u; - -u,, we write z = Up- - Un. A subset T of F is called

symmetrised if all all elements of T are cyclically reduced and, for each ¢ € T, all cyclically
reduced conjugates of both ¢ and ¢! also belong to T.

Theorem 1.3 ([71] p.16).
Every subgropup of a free group is free.
Theorem 1.4 ([71] p.2).

A group generated by a set of its n elements (n finite or infinite)is a quotient of factor
group of rank n.

Thus, every group G can be written as G = %, where F' is a free group and R is a normal
subgroup of F'. Let G be a group and S be a non-empty subset of G. The rformal closure
N[S] of S is the intersection of all those normal subgroup of G which contains S. The
normal closure IVc[S] consists of all finite products of the conjugates of the elements of

S and the inverse in G. If S = {z1, 32, -+ ,z,}, N,[S) is also called a normal closure of
I1,T2," " ,Tnp.

If F' is generated by a finite of elements , say z,, 23, -+ ,z, and R is the normal closure of
finite number of elements, say ri, 73, -+ ,7, of F, then G is said to be finitely prensented.

We often express the above presentation of G either by

<ZTy "y Tm I Tly"t yTqh >

or, by
generatos : L1, Tm
relation : Tl "y Th o«

It is cleaer that in the above situation an element w € F belong to R if and only if

w= (witrfw,) - - (wy'riw,), for some non negative integer u, where wy € F, e, = *1
1 u

fu=0 w=1.

An element of R too is called a relator. The fundamental groups of topological spaces
are often obtained in terms of presentations with the help of van Kampen’s Theorem ]

in algebric topology. Conversely any finitely presented group is a fundamental group of
4-manifold (see Massey [80] p.143). The fundamental group of compact 2-manifold is a
group with single-relator. Hence this class of groups has been subjected to vigorus study

by various mathematicians.

For a group G = % with a presentation, M Dehn [26] posed three fundamental dicision

problems.



[. Word problem

To decide in a finite number of steps , whether two elements w, and w, represent
the same elements in G. When it is possible G is said to have solvable word problem.

II. Conjugacy problem

To decide a finite number of steps, if w, and wy represents the conjugate element
in G. G has the solvable conjugacy problem when the answere is in the affirmative.

III. Isomorphism problem.

To decide in a finite number of steps whether two groups with given finite presen-
tations are isomorphic.

Dehn [26] solved all this presentatins for cannonical presentations of fundamental groups
of 2-manifolds. For a group with a single defining relation the word problem was solved
by Magnus [83]. There are finitely presented groups with unsolvable word problem. (see
Britton [18], G.Higman [56], Rotman [100] ). Also, there are groups with solveable word
problem but unsolvable conjugacy problem (see Fridman [40], Collins [23], Miller [90]).
Lyndon [68] used Fox derivatives for computation of the cohomology of groups of the
single defining relation. His work yielded a partial free resolution for finitely presentated
groups. This solution has been extended to a full resolution and has been used to compute
homology and cohomology for many classes of groups by Majumdar and Akhter [80]-[82].

1.3. Derivation in a free group ring.

Let F be a free group with a free set of generators X.nAn element of F is an equivalence
u of words is represented by a unique reduced word x];jl zies ==+l es+en #L nis
called the length of u. The identity element 1 is representedlby the empty word and is of
length 0. The inverse u~! of u is represented by the word H z;%. The group ZF is the

integral group ring of the free group F i.e., the set of all formal sums X;auu, a, € 4,
ue

with a, # 0 only for a finite number of u's, together with addition and multiplication
u

defined by Y a,u + 3 by = Y (ay + bu)u;
(3 auu) (S byu) = 5 cuu, where ¢y = 3- aubu.

u=vw .
It is clear that ZF is a group ring. The map € : ZF — Z given by (3 ayu) =.Z ay is a
ring homomorhism and is called augmentation homomorphism. The kernel of ¢ is denoted

by F and is called the fundamental ideal of ZF.

' i 1 i d in exactly the same way
In general for any group G, the integral group ring ZQ is define
as gZF. The fun)c,lagmental ideal of ZG too is defined in the case of ZF. 7 : ZF — ZG

4



is defined tl-le ring homomorphism obtained by linearly extending the canonical group
homomorphism F — G. Kerr, is the kernel of 7, is denoted by R.

We note that the following result will be extensively used in our work.
Theorem 1.5 ([22])

If F is a free group with basis X, the F is q right (left) free ZG - module on {z—1|z € X},
and conversely.

Theorem 1.6 ([44])

If F is a free group and R is a normal subgroup of F' with a basis Y, then R is a free
right(left) ZF-module on {y — 1|y € Y}, and conversely. '

Theorem 1.7 (Gruenberg [48] ).

Let F' be a free group. If My and My are ideal of ZF which are free right (left) ZF -module
om{y—1|yeY} {z-1]z¢€ Z}, then M{M, is a right (left) free ZF-module on
{y-1)(z=-1)|y€Y, €2 Y,2C F}.

Theorem 1.8

Let F be a free group, and let G = %. If M is an ideal of ZF which is a right (left)
free ZF-module on {y — 1|y € Y C F}, then 5L ds right (left) ZF - module on
{-1)eY} ‘

A left (resp. right) derivation in a group ring ZG is a mapping D : ZG — ZG such that
D(p +¢) = Dy + D

Di($) = D()e(w) + D(), (resp.D{g) + () D())

Thus, for g,h € G, D(gh) = D(g) + gD(h) (resp. D(h) + D(g)h)

We have the following chacterisation of derivativation in a free group ring. For description
of the works of various mathematicians we define both the left and right derivatives
although Fox’s [38] paper defines only the left derivative.

Theorem 1.9 ( [38], p.550 ).

For a free group F with a basis X, there corresponds a left (resp. right) derivation

D:ZF - ZF

given by

D(y) = (32)ul(GE)n).

. hat
which has the property tha B, Bz,

(5;_;% = z'j(%;)n-



Furthermore, there is one and only one derivation D such that D(z;) = w(zx) and is given
by

Oy
D o
L(p) = 3, 2(@):
We also have the following fundamental result :
Theorem 1.10  ( Moran [91], p.146 )
Let v € ZF, then,
Oy Oy

o—elp)=3 (3-)c(z—1) g(x— D(z-)r (1.1)
(1.1) is often called the fundamental formula.
If p € &, then 3 5

¥
0= (5)ele =1 =Y -1z (12

I
In particular, if w = [[ z7' is an element of F, then
i=1

(ei=1)

(3), - L Mla= =

and

( ) Zez' I1 =5 (L4

F=i+1
For v € ZF, ( £), and ( £) g are called the left (resp. right) Foz derivative of ¢.

The higher order derivatives of ¢ are defined inductively

7l n—1
2 =g (et ) 2.
3$jna.'l,‘j"~l <0y, dz;, \0zj,_, -+ 0Tj,

By applying the fundamental formula (1.1) we obtain the tailor series with remainder.



Theorem 1.11 ([38], p. 553 )

Let F" be a free group with basis X for each Y € ZF,

p(z) = )+ Z (Dj, (1)) le) + ZDjzjx(p(l)(sz - 1)(17]'1 = L)
D ITICICNR AR
+ .Z_ Do (@) (25, = 1)+ (a3, = 1). (1.5)

One also obtain a formal “Tailor series” expansion
D+ Dip()(m;— 1)+ > Dip(1)(zj = 1)(zp — 1) +--- - (L6)
.k

In (1.5) and (1.6) ©(1) standsfor (i), D;¢(1) for €(D;()), and so on.
In particular the formal expansion of

and

are

These expansions are identical with the corresponding expansion (1.1) of Magnus if one
writes a for z; and s for z; — 1.

Structure of ZF

The free differential calculus (Fox derivatives) have been applied by Fox [38] to through
much light on the structure of the free group ring ZF. We enlist below some of these

results. Here we have used left derivatives.

(A) ¢(z) in ZF belong to " if and only if all of its derivatives oforder 0,1, -+, n—1
vanish at n=1. The length [(ip(z)) of a non-zero ¢ = ayuy + - Amun in ZF is defined
as maz{l(u), -+, [(tm)}. Assuming that u; # u; for i # j and that ay,---an, # 0. Also

1(0) = 0.



(B) If (X) € ™ and p(z) # 0, then Lp(z)) > 2.

(C) Uniqueness theorem for power series expansion.

If p(z) and ¥(z) in ZF are such that

(?0(1) = 'u’)(l): DJ((p(]-)) = D]('f,/)(l)), D,,J((,D(].))th,

then

(D) Corollary
Mg =0

(E) Let R be an ideal of ZF and let ¢(z) € ZF, then ¢(z) € RF" if and only if all

its derivatives of order n belong to ® (in which case its derivatives of order ¢ belong to
RF-1i=1,---,n).

(F) The ideal " determines the n-th lower central group Fj,.

(G) The ideal G™ determines the n-th lower central group G,.

(H) ZF has no zero divisor.

(1) The ideal R, F determines the commutator subgroup (R, R] of R.

(J) In order that an element w — 1 of ZF belong to R, it is necessary and sufficient that
there exist an element r € R such that v — 1 € RF.

J. S. Birman also applied Fox derivative for study of free groups. We state her result
below. She used the left derivatives (1.4).

Inverse Function Theorem 1.12 ( Birman [14], p. 635 )

Let {y1, -+ , yx} be a set of k < n elements of Fy. Let Jyn denote the k x n matriz I gi’f Il
(i) If k = n a necessary and sufficient condition for {y1, -+ -, yn} to be a generating set

of Fy, is that Jun have a right inverse.

(ii) Ifk < n, a necessary condition for {y1, ++ , yx} eztend to a generating set {yy, -+, Yn}
is that J,, have a right inverse.

Corollary 1.13 ( [14], p.636)

Any set of n elements which generates a free group of rank n are a set of free geneators.

8



Corollary 1.14 ( [14], p.637 )

Let J2, denote the image of Jnn under the abalianising homomorphism o acting on ZF,.
Then {y1, -+, ya} is a basis for F, only if detJZ, is a unit in ZF,,

Alexander Polynomial.

Let G be a group with a finite presentation

generators HA LI
relarors Tl "t 3 The (1.7)
Then G = %, where f is a free group generated by z, -+, T, and R is the normal closure
of {r1, -+, ma}. Let m: ZF — ZG be the ring homomorphism induced by the canonical

homomorphism F — G and let a : ZG — Z(%) be the ring homomorphism induced by
the canonical homomorphism G — GQ Then the m x n matrix (aw)(%’%) with the centre
is an abelian group Z(%) is called the Alezander matriz associate with the presentation
(1.7).

We shall now introduce an equivalence the marices which will very important in conception
with the Alexander matrices.

An Equivalence of Matrices.

Let A,, Ay be matrices with entries from a fixed commutative ring with 1. Then A, is
said to be equivalent to A, if and only if A, is obtained from A; by a finite number of
elementary operation of the following form or their inverses:

Permute the order of the rows;

(a
(

b) Permute the order of the colunms;

)
)
(¢) Add to any row, any linear combination of the remaining rows;
(d) Add to any column, any linear combination of the remaining rows;
)
)

(e) Insert a row of zeroes;
(f) Insert a new border of the form
i 0]
0
A
A—
0
| * * u |




Then the above equivalent is a genuine equivalence relaion.

Theorem 1.15 (Unigeness of Alexander Matrix) ( [91], p.163)

If a group has two finite presentation then their Alexander matrices are euivalent.

Elementary Ideal of Alexander Matrix.

Let A be a Alexander matrix which has entries from a commutative ring R with unit
element 1. If A is an m X n matrix, then we define the elementary ideal E(A) in R to be
the ideal generated in R by all determinants of every (n = 1) x (n — 1) submatrix of A.

Theorem 1.16 ([91], p.173) (Invariance of Elementary Ideals)

Suppose that A; and A, are equivalent matrices. Then E(A)) = E(A).

1.4. Knots, Links, Braids

A knot K is the image in R® of a continuous mapping f : S! — R® of the unit circle St
which is one to one. A mathematical knot is an obstraction of a common knot of threads
or strings we came across in our daily life with the extra requirment that the two ends
are tied together.

A knot K is said to be equivalent to a knot K’ if and only if there exist a homomorphism
v of R? onto R?® such that ¢(K) = K.

A homomorphism ¢ of R? onto R? is said to be orientation preserving (reversing) if and
only if it maps the right handed corck screw onto a right(left) handed corck screw.

A knot K is tame if and only if it is homeomorphic to the union of a finite number of
straight lines segment in R.

A knot which is not tame is calld wild. Artin and Fox gave an interesting and surprising
example of a wild arc which is given by the following figure.

. Leﬂ;b@gt)(\:)(\\\)})})\\_)@@@b@bmc A

q

A simple arc in 23 whose complement is not simply conneeted.
Figure - 1.1.
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A knot 'K is said to be oriented equivalent to a knot K’ if and only if there exists an
orientation preserving homeomorphism ¢ of R3 onto R? such that p(K) = K.

The knot K is said to be string isotopic to the knot K’ if and only if there exist a
continuous mapping F : S!' x I — R3 sych that F(S,0) = K, F(S',1) = K and for
each fixed value of ¢( with 0 < ¢ < 1) the mapping S — F(s,t) with s € S is one to one
giving rise to the knot {F(s,t), s ¢ S'} which is polygonal.

Theorem 1.17 ([91], p.67 ) If the knots I and K’ are string isotopic. Then K and

K' are oriented equivalent knots.

A simple closed curve is said to be trivial if it is equivalent to the plane circle in R with
the equation z? + 23 = 1, z; = 0.

A knot K is said to be unknotted if and only if it is equivalent to the trivial knot

Figure - 1.2,
otherwise it is said to be knotted.

Examples of some knots:

(i) The left handed trefoil knot;

(ii) The right handed trefoil knot;

(iii) The granny knot:

(iv) The square knot;

(v) The figure eight knot. .

Rajshabi University Librn'
11 Docum.n.«iiva Section

Docuwcui No..-l?.::..z‘.%.g-?..
Date  81Fohy



Figure - 1.3. (Right and left-and trefoil knots)

Knot Group

The group of a knot K is the fundamental group n(R® — K.)

Theorem 1.18  ([87], p.139 ) The group of the trivial knot in R? is infinite cyclic.

In fact the group of a knot K is infinite cyclic if and only if K is a trivial knot. ( see [93],
[100])

Let T be a totrus obtained by identifying the opposite edges of the unite square {(z,y) €

R?*[0<z<10<y<1}. Let L be a line through the origin in R? with slop = 2 where
1 < m < n, mand n are relatively prime integers. Under the above 1dent1ﬂcat10n map
p:R? -5 T, L reduces a simple closed curve K on T and spirals round Tm times while
going round it n times the other way. K is a knot in R3 and is called a torus knot of type

(m,n).

Theorem 1.19 ( [87], p.140 ) The group of a torus knot (m, n) has a presentation:

Generators : &,

Relation : o

Remark

The chief problem of knot theory is to classify knots. Two equivalent knot have isomorphic
knot group. However oriented equivalance classes are ot fully characterised by knot groups,

12



since there are nonequivalent knots having tsomorphic knot groups. The right and left

trefoil knots have isomorphic knot groups with generators x,, x,, Z3, relations z,x; =
T3T2; T3To = I1T3. (See [91], [99])

Schoenflies [103] proved the following result:

Let € be a simple closed curve in the plane R? and let A be a homeomorphism of € onto
the unit circle S! in R2, then A may be extended to a homeomorphism ~=! of R? onto
itself.

This means that there are non-trival knot in a plane. The existence of non-trivial knots
in R® constitutes an obstruction in generalising results from R? to R®.

For example the above result of Schenflies cannot be generalised by replacing R? to R3,
Infact if S is simple closed surface in R3 and A a homeomorphism of S onto the unit sphere
S? in R®. The question whether 4 can be extended to a homeomorphism % of R?® onto
itself , is to answered by Alexander [2] in the following way. He showed the answere is
affirmative in the spacial cae when S is a finite polytop in R® but negative in the general
case. He gave a famous example, the Alexander horned sphere, for which the anwere is
negative. The following figure shows the Alexander horned sphere;

Figure -1.4.(Alexander horned sphere)

A link in R3 is the union of finite number of disjoint polygonal knots in R3.

Equivalence, oriented equivalence,string isotopyfor liks are defined as in the case of kots.
b
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A link L is string isotpic to links L, an

balls in R3, then L is said to be Splz'ttabld Saveich that L B T Tie Dnside it dijainy

e.

The trivial link with of two components

Figure - 1.5.
is splittable, but

Figure - 1.6.
is unsplitted.

The group of a link is the fundamental group n(R® — L).

Theorem 1.20 ( [91], p-128)

If L and L' are links such that their group are not isomorphic then L and L' are not
equivalent.

Knopts links are related with Riemann surfaces through the following result.
There is a close relationship between the study of Riemann surfaces and that of algebraic

14



curves: any irreducible plane algebraic curve admits a holomorphic parametric represen-
tation and the domain of dfinition of this representation is a compact Riemann surface.

The relationship is given by the following two theorems. Before stating this theorem we
recall the definition of Riemann surface.

Definition 1.21

A Riemann surface is a connected Housdorff topological space S together with an open
covering {U,} of S and the family of mappings Z, : U, — C such that

(i) each Z, : Uy — C is a homeomorphism of U,onto an open subset Zo(Uy) of C

(i) if Uo NUp # ¢, then the function Zgo Z ! : Z,(Uy, N Up) = Zs(U, N Up) is
biholomorphic , i.e., the function is itself and its inverse are both holomorphic.
(Ugs Zq) is called a local holomorphic co-ordinate and {U,} is called a holomorphic
co-ordinale covering.

The extended complex numbers ¥ = C U {oco} (one point compactification of complex
numbers) is an example of a Riemann surface with the covering {U, Us}, Uy = E—{o0} =
C, U, = —{0} and the mappings Zy : Uy — C and Z; : U; — C are given by Zp(z) = 2
and

0, z=o00,
Zl(Z) =

Theorem 1.22 (Normalization Theorem) ( [43], p.5 )

For any irreducible algebric curveC C P2C, there ezist a compact Riemann surface C and

holomorphic mapping o : C — P2C such that o(C) = C, and o is injective in the inverse
image of the set of smooth points of C.

The holomorphic mapping o is called the normalization of C. Also any compact Riemann
surface can be represented by an algebric curve:

Theorem 1.23

Any compact Riemann surface C can be obtained through the normalization of a certai-n
plane algebraic curve C with atmost ordinary double points. i.e., there exist a holomorphic

mapping o : C — P2C such that o(C) is an algebric curve possesing atmost ordinary

double points.

Their connection with 3- dimensional manifols is given in Alexander work:

15



Theorem 1.24  (Alexander [2))

Every 3-dimensional closed manifold may be generated by rotation about an azis of a

Riemann surface with a fized number of simple brance point ever crosse the azis or merges
into other.

n-braid or braid or n strings is defined by the following :

(i) n points Py, Py, -+ P, in R? which have the same z-cordinate, z = a, say, and whose

x-cordinate strictly increases as one goes from P; to P,,; along the line segment
PP, ., for each i;

(i) n points @i, @3, ---, @, in R? which have the same z-co-ordinate z = b, say, and
whose z -co-ordinate strictly increases as one goes from @Q; to Q;4; along the line
segment Q;Q;4,, for each i;

(iii) for every i there is a finite polygonal path joining P — ¢ to Qiy, where g is a
permutation of 1, 2, - -+, n so that as one travels along this path from P; to Q;, the
z-co-ordinate strictly decreases;

(iv) @ > b and no two distinct path intersect.

In an n-braid , the path joining P; to Q;, is called the i-th string, where 1 < i < n.

-7 i-th string

O 0> Qin Qn z=b

Figure - 1.7,
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‘Two n-braids are said to be equal or string isotopic if and only if there is a continuous
deformation of one braid onto the other n-braid which satisfy the above condition

(i) - (iv) throughout the deformation and the distance between two vertices is never
less than a fixed number § > 0.

and \ are String isotop;
a Dic.

Figure - 1.8,

We shall assume that all braids are given in the form that their projection onto
zz-plane satisfy the following conditions:

(i) A vertex does not project onto a double point;

(ii) The only mutiple points of the projection are double point.
For a positive integer n, the set B, of all n-braids can be turned into group taking
string isoptopy as equivalence relation and the following operation as the product:
If o and o’ are n-braids, then their product oo’ is obtained by first constructing an

n-braid ¢” which is string isotopic to ¢’ so that the initial points of the string of o
coincide with the end points of the string of ¢ and the placing ¢" under ¢.

The product of the 3-braids

N G

Figure - 1.9.
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is

e

Figure - 1.10.
The n-braid
e & s . n times
Figure 1.11.

is the identity element.



The invese of a braid ¢ is obtained in the following way.

Reflect o in a line z = a, where a is a req

_ | number such that ¢ lies in the region
z < a of R3. The inverse of g =

S5 ¢

Figure - 1.12.

Theorem 1.25 ([91] p.92)

The group of n-braids is defined by _
Generators: 0;0; = 0;0;, |i—j|> 2 and
0:i0i4+10; = 0341030341, 1 <i<n—1

Link corresponding to a Braid

If o is an n-braid with yhe i-th string joining P; to Q;, then the corresponding link
L(o) is obtained from ¢ by identifying P; to Q;.

Theorem 1.26 (Artin and Birmann) ( [91], p.119)( [15])

Suppose that o is an n-braid. The group G(L(c)) of the link L(c) has a presentation
of the form :

Generators : Ty, , Ty

Relations : T=0(z1), -+, Tn = 0(zy),



where & denotes the automorphism of the fre group F =< Tyt ,Tq > determined
by o. Conversely the group of every link is given in this manner.

Consequence: ([91], p.124)

If o is an n-braid, then

o(L(0)) =<z, zpsm1 = 0(21), -+, 15 = ozy) -, 7, = o(zn) > for every i
with 1 < ¢ < n.

Theorem 1.27 ([91], p.137)

Let the link L(o) has components and let G(L(c)) be the group of a link o, then

(&) =t e,

1.5 Alexander Polynomial of a Knot

The elementary ideal of a knot group is perticularly easy to calculate. For suppose
that the link associated with an n-braid ¢ is a knot K (o). Then by the theorem of
Artin and Birman and its consequence, we have

G(K(0)) =< 21, ,Zp 1 3(z1)21 Y, -+ 6(Tnor )zl > .

Hence the Alexander matrix of this group is the (n — 1) x n matrix 4 = (ai;), where

o 3(5(5&')3{1))
al] B 6$j ry=zn=t

fori1<i<n—-1land1<j<n.

It follows that the Alexander matrix of G(K (o)) is equivalent to the matrix
[(a(am).zzl) ) }
Or.1
61?_7' Iy =r=xp=t :

Thus the elementary ideal of G(K(c)) is the principal ideal generated by the element

0(5(z;).z71)
det (_—__6@ Ty=-=x,=t
i) ] <n-1

in Z[t, 7Y,
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A generator of this ideal is of the form f(t) where f(t) is a polynomial in ¢ with
integer coefficient and nopnzero positive constant term when f(¢) # 0. Such a
polynomial is called the Alezander polynomial of the knot K (o). the Alexander
polynomial of knots are equivalent if and only if they generate the same ideal in

the ring Z[¢, t7'], i.e., if and only if one is a multiple of the other by an invertible
element in Z[t, t71].

It follows from the invariance of elementary ideals that the Alezander polynomial of
equivalent knots are equivalent. Hence if two knots have nonequivalent Alerander
polynomials, then they cannot be equivalent,

Alexander Polynomial of a Link

Let o be an n-braid and L(o) be the corresponding link with more than one com-
ponent. Then by the theorem of Artin and Birman and consequence

GLE) H< @y @n (1) =21+ ,5(2a) = 20 >

Suppose that under the group homomorphism

. G(L(o)
ar: F< 2y, -z, >— m,

we have by theorem of Artin and Birman , that
am(z;) =t for 1 < j < n,

where 1 < 6(j) < ¢ > 1 with ¢ being the number of components of the link L(o).
Then the Alexander matrix of the group G(L(c)) is the (n — 1) X n matrix A =
(aij),where

8(5(z:).z7 ")

a,_J = (—a—l‘j——-)zlz...xnzt

and z; = t55). In order to calculate the elementary ideal E(A) one has to evaluate
the determinant A, of the submatrix of A, which is obtained from A by deleting
the the j-th column of A, for 7 =1,2,--- ,n.

The elementary ideal E(A) of A is the ideal generated in [t,"™,--.,1%] by the
elements Ay, Ng, -+, Ny

If A,

Lo(s)-1
then E(A) is the ideal generated in [t{,--- ,t¥] by the elements

(-1

= A,

Bty — 1), Bl — 1y we v 5 ATty == 1)
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The element A of [¢,”™, - ] is called the Alezander Polynomial of the link L(o)
with more than one component.

1.6. We conclude thi chapter by giving a brief account of Lens spaces referred in
the first paragraph in connection with Fox’s work related to this spaves.

Lens spaces (Siefart and Threlfall [106], Hilton and Wylie [37])

We follow Hilton and Wylie [53] in the following description of Lens spaces.

Let p, g, p > ¢ be two co-prime non-integers. the Lens spcase L(p,q) is a 3-
dimensional manifold dfined as follows. consider a close rgion in R? bounded by
regular p-sided polygon ag, af, -+, a3_,. We shall regard the subscript in af as be-
ing an element in Z;, so that af is defined for all. Join this region two points of
R?, af and aZ, one on each side of R?, to form a solid double pyramid P on the given
polygonal base. The frontier of P is covered by triangles ala, a2 j =0org; L(p,q)
is obtained from P by identifying certain points on its frontier. There is a unique lin-
ear order preserving homeomorphism between afal, ;af and a?, ,a?, . ,a2; two points
related undersuch a homeomorphism 0 < ¢ < p—1, are to be identified. The sloping
faces of a pyramid are matches with those of the other after twist of 29, It is clear

P
that if ¢ = ¢'(modp), then L(p, ¢) is homeomorphic to L(p, q').

Theorem 1.28 ([57] p.224)

A necessary condition that L(p,q) is homeomorphic to L(p,q') is that q¢’ be a
quadratic residue modulo p.

J. H. C. Whitehead [113] has proved that this necessary condition is also sufficient for
L(p, q) and L(p, ¢') to be of the same homotopy type. The homotopy classification
of Lens spaces is therefore complete. L(7, 1) and L(7, 2) provide example of two
non-homeomorphic 3-dimensional manifolds that are of the same homotopy type.
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CHAPTER - 2

AUTOMORPHISMS OF FREE GROUPS

2.1 Introduction

The present chapter deals with automorphisms of free groups. The central result in
this context is that of Birman [15] in which a necessary and suffiecint condition has
been given for an endomorphism of a free group to be an automorohism. Topping’s
[110] result have been briefly described. We have determined the automorphism
group of a free group of rank 2 and have obtained here a necessary and sufficient
condition for an endomorphsm of a finitely presented group to be an automorphism.
Fox derivative have been extensively used.

2.2 Characterisation of an Automorphism of a Free Group of
a Finite Rank.

J. S. Birman [14], has characterised the automorphisms of a free group with a finite
basis with the help of Fox derivatives. Jacobian matrices play a fundamental role
in her characterisation. We start with her fundamental result.

Theorem 2.1

Let F be a free group with basis {zy,-- ,Za}.If uy, -+ ,u, are elements of F,then
the endomorphism of F is defined by z; — u; is an automorphoism if and only if

the Foz Jacobian (g—‘z‘;) is a unit, i.e., if (%J%) with the entries in group ring ZF, F'
has a left inverse.

This is a consequence of Birman’s Inverse Function Theorem and its consequence.
Topping [110] had established independently certain cases of this result. It has been
established thatlf ¢ is a free metabelian group with z,,-+- ,z, and u;, -+, u, are
elements of ¢, then the map defined by z; — w; is an automorphism if and only if the
Fox Jacobian evaluated now over the integral group ring of I—*ﬁ has determinant

]!
+g for some g € E5.

For any basis x (not necessarily finite) and z in X, let o, be the endomorphism
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carying z into 7! and leaving X — {z} fixed. For any z,y in X, where z # y, let
Bzy bet the endopmrphism carrying z into zy and leaving X — {z} fixed. In both
cases it is easy to see that the image of X is an another basis, whence o, and S,
are automorphisms. For finite X we prove this using Birman’s Theorem:

Theorem 2.2

Let Xbe a set with a finite basis of a free group F. Then each o, and f3,, are
automorphisms of F.

Proof

Let X = {z1,--- ,z,} and let F be free on X. We have to show that a; and Sy,

are automorphisms.By Birman [14] it suffices to show that —M“gz(‘_”" )l and —-‘f——a(ﬁgz(z‘))!
7 2
are units in $(ZF).
We have for every z € X
dzy  Om az,
oz oz;! . Az
F) ) F)
Oax(z:))\ _ oo 2
33:]—
\ Oz  9zy dz;t )
Ozn Oz, OTn
-zt 0 0
_ 0 —z;! 0
0 0 -—a;;l
which has an inverse
—Z 0 0
0 —T3 0
0 0 it
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Again

/ 9z dzy Ozizy 9z 9z,
3.‘:1 62:1 8:::1 6::. aII \
9z, 9z Oz,z; 9zt 9zp
dz4 Oza dzy 8z, 9z
3 - Ou om . Omm .. oz ... om
M g5 8z, 9z oy, Oz, ) 55:
6.’1,‘]' ........................................
9z dzp Oziz; 9z; 9zq
61,‘1 a:r:l a.'):[ 6I1 61!
\ dz)  Ozp dzrz; 9z 0z, }
dzn Ozn 0z, dzn Ozn
(1 0 0 -+ 0 0\
0 0 --- 0 0
loo z 0 0
00 1 1 0
\ 0 0 0 - 0 v 1 )

Which has a left inverse

(1 0 - 0 0 0 )
01 - 0 0

O oy s :
e o . :
e s e 1

Therefore a, and f;, are automorphisms in F for all z in F.

Theorem 2.3

Let X = {z,,--- ,zn} be a finite set and let F' be free on X. Then ay,, ,81_.:)_ generate
AutF.

The proof is outlined in [71], p.22.

This Theorem is a particular case of the following general result.
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Theorem 2.4 ([71] Prop. 4.1, p.23)

Let F' be free with basis X, and let Aut;(F') be the subgroup of Aut(F) generated
by the elementary Nielson transformation a; and (;,. Then Aut;(F) is dense in
Aut(F) in the sense that if u), -+ - , u, are elements of F and o € Aut(F) there exist
B € Autp(F) such that u,c,- - yUn@ = u,f. In perticular if F has finite rank,
then Auty(F) = Aut(F)

We shall now determine AutF, by disovering relations satisfying o, 0y, Pzy, and By;.

We write o (z,y) for (ag(z), az(y)), Bey(z,y) for (Bzy (), Bay(y)), etc.
Then

5\

oz(z, y) = (71, y)
Ofy(:I:, y) = (.’I:, y_l)

ﬁzy(xa y) = (:cy, y)

,Byx(z: y) = (35: ya:) 4

Using (A),we have

oZ(z,y) = ezl y) = (z,v),
so that
ol =1
And
al(z,y) = oz, y™) = (z,y).
Hence
ozj =1
ol =a =1, (2.1)
0z Bay(z,y) = a(zy,y) = (27 y,y),
and

ﬁzrya:z(x)y) = ﬂmy(x_lyy) = (y z :y)-
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Thus,

azﬁ:y 75 ﬁxyaz:.

(azﬁy:c)2(37: y) = azﬂyﬁ:azﬁyz(m;y) = azﬁyzax(x’yz)

= aa:/gy.’r:('r_l’y:r_l) = ar(x_l’y) = (z,y)

Hence
(azfye)® = 1.
(0B2y)?(2,y) = Beyary(2y,9)
= oyfay(zy™y ")
= oy(zyy™hy™h) = oz, y7Y)
s0 that
(yfBy)? = 1.
@y Byz(z,y) = oy(z,yz) = (z,y7'z),
Byty(2,y) = Bya(z,y™") = (z,27'y ™)),
S OyBys F Bysoy,
0zfyz(Z,Y) = aulz,yz) = (274, 9277),
Byz(2,y) = Bya(z™',y) = (z7,y3).
L 0zByz(T,y) # Buaa(z,y)-
@y Bey(2,y) = oy(zy,y) = (zy™'y7")
and

27
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,B:cyay(m: y) = f@my(xi 'y_l) = (:cy, y_l)'
- gy # Bercy (27)

Therefore

AutFy =< g, oy, Boy, By | 0f = o) = (02Byz)® = (oBzy)® =1 >

Let
Gy = 21, Oy = 29, ﬁ:z:y = Zz3, /Byz = Z4,

then

AutFo =< z1, 29, 23, 24 | 28 = 22 = (2124)? = (2223)% >

We may obtain from Birman’s Theorem a necessary and sufficient condition for an
automorphism of a finitely pesented group to be an automorphism. This is expressed
in the following theorem. '

Theorem 2.5

Let G = %, where F is a free group with basis {z1, -+ ,zn} and R is the normal
closure of {r1, - ,mn}. Let m be the ring homomorphism induced by the canonical
homomorphism F — G.An endomorphism f of G is an automorphism if || %%f—) |

has a unit inverse and W(f('r‘;c))~= 1,where f : F = F is the homomorphism which
induces f, 1. = re(f(z1), - , f(@m))-

Proof

If || %ﬁf‘l || has a left inverse, by Birman’s Theorem,then f is an automorphism of
F and so has an inverse. Let 7} be rx(f(z1),--- , f(zm)). Then G is also given by

G =< flz),  f(@m) |1}, o+ 70 >

Hence if for each k, wf1(rt) = 1, ie., f(ri) € R, then f~! induces an
endomophism g and g must be the inverse of f. Thus f is an automorphiosm of G.
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CHAPTER-3

THE FREIHEITSSATZ

3.1 Introduction

In this chapter we shall give a new proof of a very important result in the theory of
a groups with a single defininig relation. This is the famous Freiheitssatz proved by
Magnus [83] to establish the solvability of word problem for this class of groups. We
have briefly outlined an account of works by other mathematicians about this theorem,
its generalizations and other proofs. Our method of proof is based on the use of Fox

derivatives.We have used Majumdar ideas.

3.2 Groups with a Single Definining Relations

Groups with a single defining relations have been studied extensively by many mathe-
maticians. The importance of this class of groups lies mainly in the fact that the funda-
mental groups of compact connected 2-manifolds, i.e., surfaces, belong to this class. We
recall that such surfaces are (i) spheres or connected sums of a finite number of tori (
if orientable ) and (ii) connected sum of either a projective plane or a Klein bottle and

connected sum of orientable surfaces(otherwise).

The fundamental groups of the surfaces are obtained from their canonical representations

by plane figures.
Thus the fundamental groups of some of these are given below:

(a) The connected sum of n tori

-1p-1 -1p—-1
<a1,b1,---,an,bn|a1b1al bl --'anbnan bn >
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(b) The connected sum of n projective planes

<a1’...,an a%...ai>.

Dehn ( [26], [27])showed the solvablity of the word problem, the conjugacy problem and

the isomorphism problem

for fundamental groups of 2-manifolds. Magnus proved that the word problem for groups
with a single defining relation is solvable. The fundamental tool used by Magnus in this
proof of this result was a theorem (namely, the Freiheitssatz) which is very significant
and important by itself. This theorem and the technique of proof have been very useful

in proving other resuls for single-relator groups.

The Freiheitssatz thus occupies a central place in the theory of groups with a single

defining relation.

We state the Freiheitssatz below.

Theorem 3.1 (The Freiheitssatz)[85] ,[71] and [83])

Let X be a non-empty set and let r be a cyclically reduced word in the elements of X
such that r involves € X. Then the subgroup of G =< z : r > which is generated by

them; in other words, every non-trivial relation of G must involves x.

Sharper result have been obtained in the “Spelling Theorem” of Newman [93] for the case
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where the defining relation is a proper power. Gurevich [51] has strengthened Newmann’s
results, and Schupp [104] has proved a theorem which strengthens both the Freiheitssatz
for one relation in general and Newmann’s results in the torsion case. Gurevich([51] an-
nounced this same result for the case where the relation is a proper power. He later
informed Schupp [105] that his methods of proof would also yield Schupp’s result even
when the relation is not a proper power. Lyndon [69] proved a theorem which extends
Freiheitssatz from free groups that are free products of groups isomorphic to subgroups of
the additive group of real numbers, and at the same time, Lyndon’s own Identity Theo-
rem [68]. Lyndon obtained his result in an attempt to translate Magnus method of proof
of the Freiheitssatz into the language of combinatonial geometry, using a result of Van
Kampen[111]. Schupp’s proof too is geometric and makes use of Lyndon’s “maximum

modulus ” approach to Freiheitssatz. Majumdar [79] used Fox derivatives in this context.

We shall now present our own proof of the Freiheitssatz (Th. 3.1) using Fox’s free partial

derivatives. In this chapter all the derivatives used will be left derivatives. we shall write

% for (%),
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3.3 Proof of the Freiheitssatz

(A). Let w = s"r%s. Then, w does not involve z only if the non-trivial occurences of
z in 7¢ are cancelled by those in both s and s~!. But this implies that r® and hence 7 is

of the form ¢t~!wt. This contradicts that r is cyclically reduced. Hence w involves z.

(B) Next let n > 2. We prove that w involves z by showing that 42 # 0. If possible

dw __
let T — 0.
The case when at least one s; involves z.

Since w = (s7'r§'s;) - -~ (s7'resy,), it is required to prove that % = 0 leads to a contra-
dictions. Without loss of generality we may assume s; involves z. Hence s7! involves z,
=1 P as7t . G
then 81— £ 0. This impies that %L is a non-trivial sum of terms of the form s/ for some
-1
subword s} of s7*. All of these terms cannot cancel with one another; for, otherwise %
. 0.3 . syl o : .
will be 0. Let s} be a surviving term in —;Jx-— (i.e., one which does not cancel with any
ther t i _‘?.if_l. )
other term in —L-.
5“_1 ar

Since %5 = 0, ) cancels with some summand in the term sy'e;r~2 5z or the term

-1,eds
8 7"15;1'.

Case I

. 8 -1 8. -1 -1 = .
Suppose s, cancels with some term in sy r® 9L, say, sy 757 or ( sy r®'s{z™!), sY, being

subword of s; . Then , s, = s7'r®'s} or s! = sT'r*s{z~!. Since s7! does not cancel
even partially on the right with 7!, and s;, and hence sfz™! and s{, do not cancel even

partially on the left with 7!, 51/ and hence sT! contains 7® as a factor- a contradiction.
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Case 11

Suppose s;! cancels with some term in

-1 g=l 7 ] 5 1
say, sy e;r 2 r' for some summand 7’ of r (i.e. r = r'r"),

(1) Let e, = —1. Then s} = s7'r~ ', If r =+ then s, = s7. So the definition of Fox
derivatives yields,

-1 _ n,—-1 =1 _ 0 —1\=1 __ _ u-1
s =88, v = (r{z") " = orf

for some s{ and r{. This is a contradiction to condition (A). So r # r/, and thus,
r~1r' # 1. So, = or (r~!r'z7!) is a proper subword of 1. So s7* = s,/(r~17')~! and

r=1 = (r=1¢")7'~". This contradicts the condition (A).

(2) Let e, = 1. Then s} = s7'r", for some subword r’ of 7, where r = r'r". If s7! = s},
) . -1 -1

then 1 = s{7', i.e,, s{ =7" . Hence s7° = &7

1

= zr” ( first term in the derivative 22),

If ' = 1, s7! = s|. But in this case 7~ -

; T o
s;t = s} = s7'z”! (a term in the derivative =), for some s;. We have a contradiction

) R T Y
to the condition (A). Hence s} can not cancel with any term in s ler™2 %.

Therefore, s} does not cancel with any term in

gg(sl‘lrfsl).

If —s7ls) (or s7tsz~") cancels with a term not contained in 2 (si'riz™"), then
- oL f =y — Pomlpn ]
s7s) (or sy'siz™!) = (sy'riz™") x some other terms.
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. Again, this implies that s’ and hence $1 contains 7~! as a factor, a contradiction.

Thus we may conclude that no s; involves z.

(B) The case when no s; involves z.

(a) Firstlet n = 2, then w = (sT'r®s1)(s71r%2s,), and let s1, s, be free of z. If possible

dw _
let%—o.

Case I (81 = 62)
Suppose e; = e;. Hence 7% = 7% = r 7,13, say, where 71, T3 do not involve z and ry
involves z and begins and ends with z or z~1.

(1) Suppose ry starts with z.

Then 577y (the left most term in 22) can not cancel with any summand in L2 (s7irersy).

It must cancel with some summand in (s7'res;)9%(s51r%2s,), (since e; = e,), say
(s7ir®sy) (s rrhz ),
where
re =rex 'Y (3.1),
say, since s7'r; and other term must have opposite signs.

Then sf1T1 = (31_17‘11”2?‘331)(Sz_lrlrfzm—l)

= roT38:18; mrhr T =1 (3.2)
= w = (s7rreras:)(sy rirhz  rlrsss)

= 51_17‘11"2'7’332)_ by (32) (33)

™ involves z, otherwise, 73 will be replaced by ryrs. Also s1,71,73,52 does not involve

z. (3.4)
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(a) If r3 # 1, the right hand side involves z by (3.3) and so, g—’;’ # 0, a contradiction.
(b) Ifry =1, then rjz~" = r, by (3.1) and so, from (3.2), we have

ro(r3s1s3'r1)re = 1, so that

38157 ' = 152,

The left hand side is free of 2 and so, the right hand side is free of z. (> ©)

But Z(r;?) = 92 (ry + 1)r5% # 0, since 7y + 1 # 0 and &2 3£ 0, since r, involves z and

since has no zero divisors. Hence r;? involves z, a contradiction to (3.5).

[Case I e; = €3]

(2)Suppose 7, starts with z~!
In this case arguing as before we see that s™'r 2~ ( the left most term with oppsite sign)
cancels with

(5777 s1)(s3 ' 1rp),

a summand of

== €1 6 o €1
(5117' 31)5;(5217’ s1)

(since e; = e;), for some rj with

ry = THLTy . (3.6)

Therefore,

sTimz™! = (s7'rirarasy)(sy'rirh).

Thus

7l = (rorss;) (3 riry).
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ie.,
-1 r_
Tor3818; Tiryz =1 .

and so,from (3.6)

-1 n=1
T2T33182 TaTo =1 (37)

From(3.2) we see that

-1 _ _—-1_rn -1

c¢) Ifr) =1, then from (3.8), we have
2

7‘33152_1 = r2‘2. (3.9)

The left hand side is free of z. But %(r{"’) = —-%(rg + 1)r72 # 0, since 7, + 1 # 0 and

hence %’IZ £ 0 ( since 7, involves z ). Hence 752 involves z, a contradiction (from (3.9)).

(d) If r§ # 1, then the right hand side involves z since the existing =’s in two r;!’s can
not be cancelled by the z’s in 75, r§ being subword of r,. Since the left hand side is free

of z, we have a contradiction.

Case II (e, = —e»)

Suppose e; = —ey, then r® = ri79r3 = 77 as before.
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Therefore,

w = (s7'r17er381) (57 75 g e s, (3.10)

(1) Suppose 7, starts with z, then s7'r, cancels with

(s7! T17T27351) (85 1"31r’2x_1),

a summand of

(31_1TIT2T331)6_(32 rytrytriteTh),
for some 77, rj
where
gL =g el (3.11).

So s7lry = (s7 rirorss:)(syirytryzTh).

=> ToT3515; T3 ez =1 (3.12)

= rorysysyrylrylrt =1

= w=s{rrir s, (3.13),

using(3.12).

(¢) If rf = 1, then from (B"), r3' = rpz7!, and (3.11) and (3.12) yields ;53! =

T‘2_1T3_1T3T2 = 1.

(f) Ifrf # 1, then from (D"), the right hand side involves 2 and then % =£ 0, a contra-

diction.
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(2)Suppose r; starts with z-!.

Then s7'rz7! cancels with
] -1,.-1
(517 rirerssy)(s3 g 1rh),

a summand of

_ 0 11—
(s Irlrzrgsl)a-(sz e tes ey ey,

where

ry’ = Tary (3.14)

for some 4,75 cancelling terms must have opposite sign.

So sTira™t = (sylryreras:)(s7 s trh)
= g7l =rorys s rylr
= 7oT38.85 15 ThT =1 (3.15)
= Tor3518; T3 5 'y = 1. using (3.14)
Then w = (s7'rirerasy)(sy '3 r3 r] s2)
= s7lrirhritss). (3.16)

(g) If 74 = 1, then from (C™) w = 1, contradiction since w is a non-trivial relations.
(h) If rf§ # 1. As before 4 involves x (otherwise we may replace i’ by ror7!i.e., replace

-1 .
1 by ri7 ). So w involves z.

Therefore, 2 # 0, a contradiction.

Thus when the number of conjugate factors (sy'r®'s;) in w is 1 or 2, w involves .
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Now we prove the theorem by induction on n. Suppose n > 2 and this is true for n. We

prove it to be true for n + 1.
n+1

Let  w = J[(si'r%s)

i=1

n
s —1,.e1 —1,.er -1 enti
(s7'm%s1) TT (s 'r se) (57t re 1 800)
k=2

Case I (e; = enq1)

Suppose €; = en41, then r® = e®+! = ry7ryry, where 74, 73 are free of z and 79 involves z
and starts with z or z7!

(1) Suppose ry starts with z.

Then the first term in g—“’ = s7'7,. By induction it can not cancel with any term in
0,4 .
=—(J] s5'r%s;).
T

It must cancel with
n

[1(s5 % s;)spiarirea™,
=2

a summand of

j=2
(since e; = e,41), where
Ty = ol iy (3.17),

since s7'r; and other terms must have opposite signs.

Therefore
n

- - | -1 e 71
85 17-1 = (Sl 7‘17‘27'381 H ’33 n+11‘17‘2I )

n
= T2T3S1 H(Sflrej sj)(srjilrlr’zx"l) =1 (3.18)
i=2

= W= Si-l’i"l'l"gb‘;_:.l (319)
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using (3.17) and (3.18)
(¢) If 1 =1, then from (3.19)
W = §7 11735041,

which contradicts the definition of w as

w= [[ (s r%ss),

since 71,73 1s a proper subword of r%. Also if r; = r3, then w = 1, i.e., w is trivial, a

contradiction.

(j) If 7§ # 1, then from ((3.19)), the right hand side involves z and then %2 # 0, a

contradiction.

(2) Suppose r; starts with z7'.

Then the first term in g—;" = —s7'r7'z7!. By induction it can not cancel with any term
in

0 (v —1e;

— | []s;7'r%s; |-

Oz (_-,‘:2 ’

It must cancel with

=18 4.) o1 /
2

n
i=

a summand of
it 1 0 1
e €5 a. =i e1
(sj r :sJ) 37 (Spp1T Sn+1)

j=2

(since e; = eny1), Where
T = THTTY (3.20),

!
for some 74 and 3.
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n
Therefore s7lrz™! = (g-lp® 1
Lol (s7 751 tres '5;)(Sp417172)

J=2

n

= sy'rirerss H i SJ)(S;}HTIT;)'
=2
n
Hence ™t = rorasy [] (s7'7% s5)(sp41717h)
i=2
= TaT3S H T 5] n+1T1T;‘T =1

n
= rarssy [[ (577 s5)(s SniiT1TTy ' =1 using (3.20) (3.21)
Jj=2

= w= 31_17‘17',2’_17'3377_.].1 (3.22) from (1) and (3.21)
(k) If r§ = 1, then from (3.22)
w = S 'T1T38n41- (3.23)

Since sy! does not cancel even partially with r; on the right (as r® = ryr973) and sp4

does not cancel partially with r3 on the left (as r®+ = 7 7,73).

(X) If r; does not cancel with r3, then, since each of sT!, 71,73 of 8,41 contains atmost
only a proper subword r or r~! shows that w is a product of atmost two conjugate of r

or =1, From case (2) in (A) of our proof, w involves z, contradiction.
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(Y) Since atmost a proper subword of r or 7~! can occur as a subword in each of s7!, 71,74

— o1 - _
and Sp41, W = S] T1,T35441 can be non-trivial product of atmost two conjugates of r or

r~'. Hence by Case I, (2) in (B), w involves z, a contradiction.

L. n+1

We have a contradiction to the fact that w is of the form [] (s;!r®s;) by definition,
i=1

since r173 is a proper subword of r¢'. Also if r; = r;?', then w = 1, i.e., w is trivial, a

contradiction.

(I) If r§ # 1, then the right hand side of (3.22) involves z i.e., & # 0, a contradiction.

Case IT (e; = —eny1)
SUppose €1 = —€n+1;, then 781 = ryrors = r—én+1,
(1) Suppose r starts with z.

By induction it can not cancel with any term in
ot g .
(I s577%s;).
6"1; j=2 7

It must cancel with
n

[T (s;7 r% s5) 8173 oz,
=2
a summand of
= —1_.e; a -1 ..—e;
H(sj T""'j)'gg(s 17 8ns1),
=2
where

1yt =l (3.24)

by considering signs.
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n

Therefore ariey = (s7'rirarss:) H(Sflrejsj)(s F173 o)

n+1T3 T2T~
j=2
L R R
= rorzsy [[(s7'7%s;) (spbirsiry iry ) =1, (3.25)

=2

(m) If r4 = 1, then from (3.25)

51H %8551 = 1
n
sl
= H rtis;) = ST Sn+l.
=2

The left hand side involves z but the right hand side does not involve z, a contradiction.

(n) If rf # 1, then from (Bs), and (1)

1, i —1

since 4 involves T 9w £ 0, a contradiction.
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(2) Suppose r; starts with z~!.

. ¥ N R . .
Then by induction —s7'r{'z~! can not cancel with any term in

g -1..¢;
5;(11—:123]- T8 ;).

It must cancel with any term in

a summand of

where
ot = el (3.26).

n
- -1 -1 -1
Therefore sllrlx = (Sl T T2T381 H 55 Y 33 Sp+1T3 T5)

n
= 1= rorgs H s; 7€ ;) (sptiTs Th)

= T2T351 H(Sj_lrej sj)(S;ilra_lTéx) =1
j—2

= TaT351 H 7T (s n+17’3‘17"2—17‘g_1) =1. (3.27)

using (3.26)

(o) If rff =1, then from (3.27)

= H 8131 = Sl 3n+1 .
The left hand side involves = but the right hand side does not involve £ which is a con-

tradiction.
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(p) If ry # 1, then from (3.27), and (1) we get

-1 n,.—1 : . o
w = sy 117y7y s1. Then since rf involves z, %lf # 0, a contradiction.

Thus we always have a contradiction to the assumption on the s;’s.

Therefore, g—‘;’ # 0 i.e., w involves z.
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CHAPTER - 4

PROOF OF THE IDENTITY THEOREM
AND DETERMINATION OF ROOTS

4.1 Introduction

In this chapter we have given a new proof of the famous Identity Theorem due to Lyndon
[68]. We have used Fox derivatives to prove the theorem for torsion free single-relator
groups. Our proof of the general theorem uses two results due to Lyndon. We have also
determined the root of the word w = f'---2}*, and there by have generalised certain
cases of Steinberg’s work [109].

4.2 Lyndon [68] proved an important theorem called the Identity Theorem in connec-
tion with his complete determination of the cohomology of groups with a single defining
relation. This theorem has also been used by Huebschmann [61] for determination of co-
homology of small cancellation groups.

The Identity Theorem in its general form is stated below.

We need a few definitions.
A word w in a free group on generators z; is said to be reduced if it does not contain
adjacent symble z{' and z;** and it is said to be cyclically reduced if its first and last

symbles are not z{' and z;*, e; = =*1.

Identity Theorem 4.1 ( [68], p.658 )

Let F be the free group on generators Ty,-+- ,Zn (and possibly other generators v;);let
Tly-+ Ty be cyclically reduced words in F' such that for each t, z; and T, aritthe first
and last (in order of subscript) of the x; that occure in ry. Let each r, = w", for ft
mazimal and R be the smallest normal subgroup of Fcontaining ry,--+ ,1,. If

i

m
HSlef:Si = I(Si € F, e; = :t, t‘- —] 1,... ,n)’
i=1

then the indices 1, --- , m can be grouped into pairs (¢, 7) such thatt; = ¢;, e; = —e;,

and, for certain integers ¢, Si = 8;q;, moduloR.
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In case of a single relation 7, the condition that r be ¢

we obtain ; yclically reduced is supperflous and

The Simple Identity Theorem 4.2

Ifr=r v , for q is mazimal is a word in the free group, and R is the normal closure of

7, then
HS 1Te‘sl =

implies that the indices can be grouped into pairs (i,j) such e; = ~e;,, and, for certain
integer c;, s; = s;¢%(modR).

Theorem 4.3 ( [68], p.660 )

If r is a power of a generator of the free group F, then r satisfies the Simple Identity
Theorem.

Theorem 4.4 ( [68], p-659)

Let r and r1,- -+ , 7 be given as in the Identity Theorem and in the Simple Identity The-
orem. If the Simple Identity Theorem holds for each of ry,--- ,r, separately, then the
Identity Theorem holds for them all together.

The proof of Theorwm 4.3 uses fox drivatives.
Lyndon also proved the following corollary of the Identity Theorem.

Theorem 4.5 ([68], p.659 )

The Identity Theorem is equivalent to the theorem obtained by replacing the condition
that [](s;*r&s;) = 1 by the condition that this product lies in the commutator subgroup

(R, R).

4.3 We shall now describe our own proof of the Identity Theorem with the help of
Fox derivatives. We start with the following form of the Simple Identity Theorem:

Theorem 4.6

Let G = £ be a torsion free group with a single defining relation, Where F is a free
group with the basis X and R ia the normal closure of r. If

w = H(s‘l'r"'s,) (s; € F, e; = £1)

=1
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is an element of R’ = [R R], then the indices i’s ca
nb
that &; = —ex and s; = s;(modR). e grouped into pairs (7, k) such

We shall use the following result in the proof.

Theorem 4.7 ([50])
If F is a free group with basis X and R is a normal subgroup of F' with basis Y, Then 5

is a left ZG module isomorphic to m where F and R are defined as in Chapter p
and £ — g5 given by f(rR') = (r — 1) + RF is a ZG-isomorphism.

1

Proof of Theorem 4.6

n
Let w = [](s;'r%s;) € R, then by the Theorem 4.1 w —1 € FR. Since
i=1

Theorem 4.7 implies that, for each z € X, g;’ e R.

Now
ow 1081 1 =i 0r 1 e 081
— = [T g osTler T — o+ osTr =
Oz (=31 Oz tse Oz . oz
n j—1
108; =1 Or 0s;
1 — J -1 -1_e; 77
+ Hskre"sk j-a—$+sjejrza—$+sjrax]
=2 k=1
ds -1 9r
= sl_l(re‘_l)a:1-+ 11617”42—8—3:]
_10s; oy mmiOr g .08
+§_:1—_[(sk1 o sp)[~s; 3— +8jeT T o + s T’—é;]- (4.1)
j=2 k=1

For each ¢ € ZF, we denote n(p) by @ where, m :: ZF — ZG is as before, the ring

b}

homomorphism induced by the canonical homomorphlsm F — @G, since

ow dw

-é—z‘-em,—éi-:().

Hence from (4.6) we obtain

48



Now % 2 O;Zfor other\fvise, a_u; € R, for each z, and so y"—1€ RF. So by Theorem 4.7,
r € R. So, 5 = 0. Since 7 1s a free abelian group with basis {y—1) | y e Y}, we
have a contradiction to the definition of R. By the Theorem of Brown [19] QG and hence
ZG has no zero divisors. Therefore from (4.7) we obtain

n
O esh) = 0. (4.3)
i=1
Thus the indices are groped into pairs (j,k)such that ej = —er and §; = 5 ie, s; =
sp(modR).

We now consider a group with a single defining relation which is not torsion free.

Theorem 4.8

If r 15 a power of a word w in F, say r = w9, (¢ > 1), then r satisfies the Simple Identity
Theorem.

Proof

The theorem follows from the Theorem 4.3 and Theorem 4.5, since w? is a finite product
of powers of x’s.

Theorem 4.4, shows that The (general) Identity Theorem is a consequence of Theorem
4.6 and 4.7.

4.4 Root of a Word

Let F be a free group with a basis {z1,--- ,Zn}. Let 7 € F. An element 7 in F is called
a root of w(in F) if w is contained in the normal closure of r.

There is another definition of a root [71] which we donot consider here.

The word problem for a single-relator groups solved by Magnus [83] is the algorithmic
problem of determining whether r is a root of w. However the problem of determining all
roots of r of a given word w is difficult and has been solved only in simple cases.

If w is a word in two generators z; and 3. It is useful to find all roots of z*y' in connection
with the characterisation of one relator group with non-trivial centre [88]. For, if

G =< 21,12 | 7 = [z%, 2y or r = zfa} >,

then, z* is in the centre of G. Moreover if a root r'(z), T2) of w is not a root of any word
F(xy, z3) which represents a given element 2 in the cenre of GG, then the group

k=< zy,22 | T >
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will have a non-trivial centre. It has been co
non-trivial centre is one of the groups K.
Meskin proved the following theorem.

njectured that any one relator group with

Theorem 4.9 ( [109] p.1)

Let ¢ be the class of non abelian group G with centre C(G). If G € ¢ and GG' is free
abelian of rank 2, then G has a presentation

G =<az,z|r = 1(z),25) >

and an integer k > O exists such that r(z1,z2) is a root of [z*, zL]. Furthermore, for
any such presentation if k is minimal, then C(G) =< zx >. Moreover, Steinberg [109]

determined all the roots of z¥z}.

Theorem 4.10 ( [109] p.2)

For k and [ both prime, the only cyclically reduced roots of z¥z}, other than z¥z} itself are
P(z1,z3) # 1, where P(zy, ;) is a primitive in the free group on z; and =3, P(zy,z5) is
unique upto conjugation and inversion. If k¥ # [, then P(z,, z;) has exponent sum & on
71 and [ on z,, if k = [, then P(z,z2) = z172.

Its proof is long and uses three lemmas. Nielsons transformations play a significant role
in their proof.

We shal] determine roots of 7', -+, z}* in the free group F with basis {z;, -+ ,z¢, -+, },

where py, .- ,pi are prime. We thereby generalise by the theorem of Steinberg for the
case when k and 1 are primes. Our result is stated in the following theorem.

Theorem 4.11

Let F be a free group with a basis X ={z1, " 1 Tps** ,},‘a_nd?l{ =z, .- ,JJZ"; where
Pi, -+ ,pe are primes . Then the root of w are w and primitives in F.
Proof

Let r be a root of w. Then

w = [[(s7'r%s2). (4.4)
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Then

Ow Os
R - 1 Eiiem
al_ - ( 113"*'31 elr_lz—l'gT_‘_I_ —1 e;aasl]
T
u j—1 a
~1 e S; e;—1
* = I:[ s Jl(—g—‘l-k _.71617‘ T — 4 g7t 51%
=2 k=1 z o 2 ot
_ _1.0s -
= [s7'(r® 1)81 + 87 elfr‘Lz—lQC]
oz
u j-—1 6
) (N, ARLUBNJUEY, QU
i €5 = + 8 —|.
j=2 k=1 Oz 3 0z 7 Oz
w or
o e =y
o Zel ¢ )aa:
i=1
Now
Sw _ -1, 3
Bz1 T + +$1+1
= a4 m+

Bw __ P, Pl Pl
o =T TRl e e 1

gu 0,l>k

oz J -

From (4.5) % = 0,! > k, by the Freiheitssatz. Thus

.
et 1= Z e:57 ) &
¢
u
2 gl ek 4+ T 1] Sesi)Z2<a<k
i=1 J .

20" e g zg + 1 is irreducible in ZG, (4.6) implies that either

n

el
E €iS; )
i=1

o1

(4.6)



or 5‘%’: is a unit in ZG, (4.6) shows that

n
=—1
i=1

and

-1

+"‘+.’C1+1,

and so,

ar —
go = e BT e aa 1), 2<a <k

so that for 1 < 8 <k,

or _ Ow

dzs ~ Bz

n
The nature of derivatives imply that r = w. On the other hand, 3 e;5;!) is a unit , then
i=1

;T’ is a unit for each ¢. In this case g& # 0in ZF, and so, r is a primitive in ZF.
@
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CHAPTER - 5

ON THE CONJUGACY PROBLEM
FOR A CLASS OF GROUPS

5.1 Introduction

In this chapter we have considered the conjugacy problem for groups. We started with
a brief historical survey of works in this area. Later we have obtained a set of suffitient
conditions for solvablity of cojugacy problem for finitely pesented groups and applied our
result to prove that torsion-free single-relator groups and torsion- free polycyclic-by- finite
groups have solvable conjugacy problm.

9.2  We recall that if G is a group with a presentation G =< X;Y >, G is said
to have solvable conjugacy problem if for any two elements g;, g, € G it is possible to
determine in a finite umber of steps whether g, is a conjugate of g;. Dehn [26] posed the
problem for in general and solved it for the fundamental group of closed orietable two
dimensional manifolds. Dehn’s method for geometric used regular tesselations of the hy-
perbolic plane. Later works in this context used combinatorial group theory independent
of any geometric arguments [27].

Magnus proved the solvablity of the word problem for single relator groups using the
Freiheitssatz. The geometric character of Dehn’s argument was restored in the form of
elementary combinatorial geometry with the emergence of of the small cancellation theory
as a unified and powerful theory. The basic idea of this geometric appranh is as follows.
Let a G group has presentation G =< X, Y >. Let F be a free group with basis X and
R be the normal closure of Y in F. Let a word w in F' be given by w = ¢, - ¢,. v&_lh-ere
¢ = s;'rfs;, (e; = £1). With such a product is associated a map in the Euc11d1a-n
plane which contains every necessary information about the product w = ¢; --- ¢,. This
maps acts as adequate tool for studying membership in the normal subgroup_ R of F
and hence for studying equality in the group G. van Kampen [111], (193?) discovered
the diagrams but did not make much use of them. Lyndon [70] and Weinbaum [112]
discovered these diagrams indepedently and used them for a geometric study of 2 small
cancellation theory. The latter was applied to settle the word problem and the conjugacy
problem for groups in various situations. In his study the word prol.)lem for fundamental
groups of orientable two dimensional maifolds if they showed that .1f a freely reduced on
trivial word w is equality in the fundamental group, _thefl w contains more than ha!f of
some cyclic permutation of the defining relation and its inverse. He used it to obtain a

algorithm, called Dehn’s algorithm, for the word problem.
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Let S be a symmetrized subset of a free group F. Let , and r, be distinct element of
S with 7y = ber and 2 = by, then b is called the piece relative to the set S. Since b
is cancelled in the product r{'ry, and § is Symmetrized, a piece is simply a subword of
an element of S which can be cancelled by the multiplication of two non-inverse element
of S. Let Y be a symmetrized subset of a free group F. Then the hypotheses of small
cancellation asserts that pieces are relatively small parts of elements of S.

In small cancellation theory there are some fundamental metric conditions C'(A),C(p), T(q),
very much useful in connection with word problems.

These are:

Condition C"(A): if y € Y and y = be, where b is a piece, then 16] < Ayl

Condition C(p): element of y is a product of power of p pieces.

Condition T'(q): Let 3 < h < g . Suppose y;,-- -y, are element of ¥ with no succesive ele-

ments are 7y, 7i+; in inverse pair. Then at least one of the products rr, - - - | Th-1Th, ThT]
is reduced without cancellation.

A group G with presentation G =< X;Y > is called a small cancellation group if ¥ is
symmetrized and satisfies at least one of the condition C’(\), C(p) or C(q).

Small cancellation Theory established that Dehn’s Algorithm is valid for Y satisfying
either the metric hypotheses C'(3) or C(3) and T'(4). Greendlinger [44] proved a stronger
result, called Greendlinger’s Lemma( see [44], [49], [71] Thm. 4.9 and Thm 4.6 p. 250).

By establishing Area Theorem ( [71], p.260 ) for maps associated with the presentation
and applying it cleverly Lyndon [71] solved the word problem for groups G =< X,;Y >
(Y is symmetrized) in Y satisfies C(6), or C(4) and T(4), or C(3) and T(6). Schupp
[105] proved that the Layer Theorem ( [71], p.264 ) for maps and applied it to show that
G =< X;Y > (Y symmetrized ) has a solvable conjugacy problem if C(6) or C(4) and

T(4), or C(3) and T(6) holds.

Later weaker small cacellation hypotheses were proposed and applied for solution of the
word problem and the conjugcay problem by Juhasz ([63], [64], [65], Rips ['102] and Ma.ll'ick
[86]). The weaker condition introduced by Juhasz as denoted by w(4), while the condition
introduced by Mallick [86] were denoted by 5, (Ty) and Sp(T4). The woprd problem and
the conjugacy problem were shown to be solvable for these groups.

Majumdar ( [73),(78] ) used Fox derivatives for solution of the word problems and conju-
gacy problems for certain classes of groups.

5.3  We shall now describe our own work on the solvablity of the conjugacy problem
for groups. Our techique reliesheavilyon use of Fox derivatives. We follow Majumdar’s

ideas. Here derivatives means left derivatives.

Let F be a free group with basis X and R, the normal closure of vy, rg, +++, 1 in F.
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Then if anc} R denote respectively the kernels of the ring homomorphisms ZF — Z and
ZF — ZG given by z; — 1 and z; — TR, then F is freely generated as a left ZF by

alz—1, z € X. Also 3% is generated as a left ZG— module by (r; — 1) + RF, where

j =1,2,---,n. See Gruenberg ([49], [50]).

Before we proceed to our first and fundamental result

about the conjugacy problem, we
note the following. jugacy p

There are certain classes of groups G which are finitely presented and are such that the
consistency of any finite system of linear equations over ZG can be decided and if it is
consistent, the solutions can be obtained in a finite number of steps. Free groups, torsion-
free single-relator groups and torsion-free groups are examples of such groups. This follows
from Artin [6], Since the work of J.Lewin and T. Lewin [67], P.Hall [54] Farkas and Snider
[30], Formanek [31] shows that QG and hence ZG, can be embeded in a skew feld. We

thus prove our result.

Theorem 5.1

Let G be a group such that , the following condition hold:
(i) G is finitely presented,
(it) G has solvable word problem,

(iii) given a finite system of linear equations over ZG, there ezist an algorithm to decide
in a finite number of steps whether the system has solution and an algorithm to find
the solution if it is cosistent.

Then G has a solvable conjugacy problem.

Proof

Let G be a group satisfying the condition of the theorem, let G be given by

G =< T1,Z2," " yTm; T1, T2, 3 Tn >

Let F be a free group generated by i,%2,"** ,Zm and let R be the normal closure of
Tl, T2’ e Tn-

Let g, and g, be two elements of G and let g1 = wiRand g, = w2 R, where wy, w; € F.

G has a solvable conjugacy problem if it is possible to determine in a finite number of
steps whether there exists g € G such that ga = g7 q19,
Le., there exist w € F such that

woe = w™lwyw (modR)
> wow 'wyw € R

= (wgw"lwlw == 1) + RF = @1
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. ! . .
?;g]ce) TR ¢ (r— 1+ RF) is an isomorphism £ = 7= of abelian groups (see Gruenberg

<= there exist ¢, ¢,, ... y¥n € ZF such that

(wow™wiw — 1) + RF = > pi(r; = 1) + R,

3=t

by the description in the begining of this section.

<= there exist ¢}, 5, -+, 0, € ZF such that (wow ™ wyw — 1) — thj(rj- 1) € RF
J=1

<= foreach i = 1,2, .-, m, there exist ¢, ¢y, - - - ,ion € ZF, such that
_a_.((w -1 - aTJ
57 W W W) — thpjaxi € R,
]:

Ows , Ow 1 10w L — 0w “\  Or;
- S o T -1, -19% 4F;
Oz; - Oz; i a%; T dz; Z: ? Oz €%

Le.,

an =1 aTlU | _18— 1 =7 _laiv 2 a}]

Ox; Wt dz; bl oz, T Y Bz g:yj&v,- =9 (5.1)
Where g2 = W(wZ)ygl = ﬂ'('lﬂl),g = ’n'(T.U),Vj = W(Soj)vj = 112:"' s T
(5.1) is equivalent to

Ow Ow dw Sw or;
-1 2 _ - _,__1 i =1, I — 0 5.2

999y 5=~ NGy T Bn oz 999 Vi, (5.2)
We write (5.2) as
0w, ow, Ow, ., O

Rl e Ty P = e e —= = 0, 5.3

g al‘i -+ (1 gl) 333{ axi gVJaxi ( )
where ¢ = g,gg;?, so that g = g7 9’2
which is the same as

61_u 6?.0 6'C_U1 Ia;'j ' '
1_2 _ __..._—-———A—'—‘=0,A = | 7 54
g Bz, + (1 m)azi 5z, 5z, gV (5.4)

Now (5.4) is the system of m linear equations over ZG in m+n+1 unknowns

_g"u_}': i=1:2!"':m, /\;)j=1,2,"',ﬂal’ldg',
Ii
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By the condition (iii)
consistent .
If (5.4) is consistent , then by the same cond;

and )\3-. satisfying (5.4) since the coefficients of the equations are unambiguous by the
solvablity ég_)f the word problem. Hence it is possible to find in a finite number of steps the
values of 2, g, A; satisfying (5.2). Also it is possible to verify whether the relation

it is possible to decide in a finite number of steps whether (5.4) is

tion it is possible to find the value of g;“i_,g’,

where

are satisfied. If it is found out that the above conditions are satisfied then g2 is a conjgate
of g;. The conjugacy problem is thus solvable.

Corollary 5.2

Let G be a torsion-free group with a single relation. Then the conjugacy problem for G is
solvable.

Proof

G satisfies (i) and (ii) of Theorem by Magnus [83] . It has been proved by J.Lewin and
T.Lewin[67] that QG and hence ZG, can be embeded in a skew field S. Given a system of
linear equations over S, there is a finite algorithm ( see Artin [6] ), for deciding whether
it has a solution, and to find the solution when it exist. Hence it is also possible to decide
in a finite number of steps whether the solution, if it is exists belong to ZG, the Theorem
9.1 implies that G has a solvabe conjugacy problem.

Corollary 5.3

Let G be a polycyclic-by-finite group. Then the conjugacy problem for G is solvable.

Proof

It follows from ( [30],p.192] ) that QG, has no zero devisors. Also, by [54], ZG satisfies
a.c.c on right ideals. Hence ZG is semiprime with a.c.c, by Theorem 29 of [28], can
be embeded in a skew field. The other arguments are similar to those in the proof of

Corollary 5.2.
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CHAPTER - 6

DETERMINATION OF HOMOLOGY AND
COHOMOLOGY OF A FEW CLASSES OF GROUPS

6.1 Introduction

In this final chapter we have used Fox derivatives to obtain free resolutions for a few
classes of groups and used this derivatives to determine their homology and cohomology.
The classes of groups considered here consist of the dihedral group,the fundamental group
of the union of tori 73, -+, T, (n > 2) such that T; N T}, intersect at a single point, the
unpermuted braid group, the quasi-cyclic group and the 3- dimensional Heisenberg group.

6.2 Lyndon was the first to use Fox deivatives in conection with dtermination of coho-
mology of groups. Using his Identity Thorem he completely determined the cohomology
of groups with a single defining relation. In the process he indirectly indicated the con-
struction of a pertial (4-term) free ZG-resolution of Z [68](49][71]for a finitely presented

group G.
The Fox derivative used in this chapter are right derivatives.

Lyndon’s Pertial (4-term) Resolutions

Let G = %, where F is a free group with basis X = {z,,---,zm} and R, a normal clo-
sure of Y = {ry,--- ,Tn}, S0 that G may be written as G =< 1, T [T1,7++ ;70 >
As before let 7 : ZF — ZG be the ring homomorphism induced by the canonical ho-
momorphism F — G. Let m(z;) = hi, i = 1,---,m. Then the following is a pertial
(4-term) free resoluton of Z:

......... Y, 2L Y, 2% 26 -7 — 0, 6.1)
Yois a rightZG-module free oney, -+, 0m,

Yiis a rightZG-module free onfBy, - Ons
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and the €,dp and d, are ZG-homomorphism given by

e(g) = 1,

do(cs) = (hi=1),4=1,---,m,

m

or;
di(B;) = Zai__z.
= Bzi

6.3 The Lydon’s 4-terms resolutions was extended to a full resolution by Majum-
dar ({73], [74]) for a number of important classes of groups. Who use this to complete
the corresponding homology and the cohomology of group. The general method of ex-
tending Lyndon’s partial resolution to a full resolutions for a finitely presented groups
was achieved by Majumdar and Akhter ([80-82]). The construction of the resolution is
straight-forward and consists of solution of systems of linear equations over the corre-
sponding integral group ring. It is immediately applicable for computation the homology
and the cohomology of the group concerned. They applied the technique for determination
of the homology and the cohomology of many important classes of groups.

6.4 We shall apply the above method of extension of Lyndon’s partial resolution for
the following very useful classes of groups:

(i) The fundamental group a union of n tori ;
(ii) the dihedral group;

(iii) the unpermutated braid group;

(iv) the Heisenberg group Hj and
)

(v) the quasi-cyclic group.

In our construction of the free resolutions we have repeatedly used two results due to
Majumdar ([66], Prop.1,2.). We describe these below.

Let G be a group and H is a subgroup of G. Let {g; | j € J} be a right tr'fmsversal of
H in G, for some indexing set J.Then ZG is a left ZH-module free on {g: | j € J}, and

hence each element -y of ZG can be writtn uniquely in the form
v = Z Zh S HNhjhgj, (6.2)
jeJ
where, for each j and h, Ni; € Z,only & finite number of them being nonzero.

59



We introduce the symble s((H) as follows

s(H) = Zh, ifH is finite,
= 0, otherwise.

For v € ZG, let ZG .y and vZG denote respectively the left ad right ideals of ZG generated

by v For any subset S of ZG, let Ann,S and AnngSdenote respectively the left and right
annihilatos of S.

Let H denotes the set of generators of H.

Lemma 6.1
If H is finite, Ann,{s(H)} = Y.(h—1).ZG.

Lemma 6.2
() Anng{h -1} = s(H).ZG.

heH

6.4.1 Dihedral group Ds,

The dihedral group G = Dsp, is the symmeric group of an n sided regular plane polygon
and prestation :

generators : hi, ha;
relations : h? = hZ = (hihe)? = 1. (6.4.1)

Here h, represents a relation by 2% about the axis t}_lrough th.e cgntre of the p9lygon
and perpendicular to the plane of the polygon and h is a reflexion in one of the lines of
symmetries of the polygon.

The dihedral group D2m can also be viewed differently. It belong to the family of Coxeter

groups. .
The Coxeter group has a presentation [89]

generators : hi, =+, hn
relations : hZ = (hih))™ = 1,1 <]
ranges over {1, -+, n} x {1, -+, n}, my > 2.
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For n=2 , this reduces to the dihedra]

group Do, with generators A, k), where i/, =
hihe and hy = hs. ™ g 1119 1

Recently Yang [97] has shown that the dihedra]

group Dy, where p is an odd prime can
be realised as the automorphism group of the co ’

mpact Riemann surface.

Free resolution for D,,,

G = Dy, is given by G = %,where F'is a fre group generated by z,,z, and R is the
normal closure of 71,75, 73 in F, where r; = ', 7o = 22 and y; = (z125)2.
Then the Fox derivatives of 7,7, and rs are :

87‘1 a'rl

— i m-1 . e . _— = :

By By et 1 5, 0;

37"2 87‘2

=2 = 0 AL P T

Oz, 0xq 72

5_201 = ToT1Tp + I3; 6—3:; =rz+2+1.

Writing 7(z;) = h;, i = 1, 2, we have

a’rl — m—1 P . % =
W(g:;;) = hl + + la ﬂ-(al‘g)

Oray _ o, 2y o Byl
ﬂ-(gﬂ: E= 07 7r(3$2) 2 )

Orsy _ ha(hohe + 1); W(QE) = hihy + 1.
TI'(EI:—I) - 2( 212 ) 6332

We then have

Theorem 6.3

The following 6-term is a free resolution of Z:

Y, % Y, 2 ¥, 25 Yy 2 26 -5 2—0,

i dby {al’ a2}’{/811 621 ﬁS}l
h, 11,Y Y are right ZG —modules freely generate |
?ther?)fz 0')’/ If): }2;11:;1 {631 agg fg b4, 65} and do, d1, d2, ds are ZG — homomorphisms de-
' r 13y T4 ) ) 1‘

fined by
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dg(al) = al(hl——l),

do(az) = ay(hy—1),

a(B) = en(hl !+ 41,

di(f) = alha+1),

di(Bs) = aha(hihy +1) + asho(hihy + 1),

d2(n) = Bk —-1),

da(re) = PFa(ha—1),

do(v3) = —PBs(hha—1),

da(vs) = Bilhe+ 1)+ BhP+-+1) =B+ +1),
ds(8)) = mBP M+ +1),

da(d2) = 7a(ha+1),

d3(63) = 3(hihe +1),

dy(8)) = —ml(AP 4+ 1) ok = 1+ (- 1),

d(8) = —m(hPT D) = (BT e 1) (e = )
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Proof

Exactness at Y] from the right

dida(m) =
dldz(’h) =

dldz(’)’s) =

dida(va) =

di(B1(h = 1)) = dy(By)(hy - 1) = ar(h? - 4+ 1)(hy—1) = 0.
d1(Ba(hz = 1)) = di(B)(ho — 1) = ay(hy + (ha—1) =0,
di(=Bs(hihs = 1)) = —dy (B5)(hihy — 1)

—arha(hrhy +1)(hihy — 1) = aho(hyhy + 1) (Ayhy — 1)

0.

diBi(ha + 1) + Bo (Al 4o + 1) = Bs(hP " 4 -+ + 1)

ar (AP 4o+ D)(he + 1) + aglhe + DAL 4o + 1)
—ayha(hihe + 1)(AT 7 4+ + 1) — aghy(hrhy + D)(AP1 +-- + 1)
o (R + -+ 1) (he + 1) + ea(ha + 1)(AP ™ + -+ + 1)

—ay (R ) (AP 4+ 1) — ap(hP T 4 R (AT + -+ 1)
(AP 4+ D) +aahP 4+ 1) = c;nh{"“(h;’v‘"I +--e 4 1)
—oph AP 4+ 1)

(A e+ D) FophP A ) — (AP e 4 )

—op(AP " 4+ 1)

kerd1 2 Imd, -

Conversely, let d,(Bum + far2 + Byvs) = 0, for some 7; € ZG, i = 1,2,3.
Then q, (A1 +1.(. .1+ )y + aa(he + D72 + [enha(hiha +1) + azha(hihe +1)]7s = 0.

Since Y} is free on a;, cp, e have
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m—1
(A S Dy + ho(hihy + )y =0 }

(ha + 1)ya + (hyhg + 1)y5 = 0

or,
(hi"‘l +-- 4+ Dy + ho(hiho + Dy = 0 ()
(6.4.1)
(ha + 1)v2 + ha(hihy + 1)y =0 (40)
From (i) and (ii)
(R o+ 1)t = (ha + 1)7a = —ho(hyhg + 1)73 = 7 (say). (6.4.2)
(hi=1)m =0
. = gr=7Vgel.
(ho = 1)z =0
= y=) g7 (6.4.3)
g€eC
From (6.4.2) and (6.4.3),we have
(Bpt 4+ m = Y97 = (W07 4+ 1)(he + 1)
9€G
(AP e D = (e +1)7] = 0
Soom — (he +1)Y = (k1 — 1)}, for some v; € ZG,
by Majumdar’s Lemma
o= (=1 (e + 1) (6.4.4)
From (6.4.2)
(et 1)y =7 =297 = (e + DA+ +1)7,
gea
for some +' € ZG.
. (ha+ Ve = (AP o+ 1] = 0.
e = (= D (AT ). (6:45)

Also from (6.4.2) and (6.4.3)

ha(hba 4 1)y =7 = 2,97 = (aha + DT e+ 1Y
geG

Multiplying by hs,we have
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—(h1hy +1)y; = (hihs + DIAT w4 1)y

) = M= =(T 4+ 4 1)y = (hyhy - 1) . (6.4.6)
ence

i+ Bava + Bss
= Bi(h = D7+ Bilhe + v + Balha = 17 + oK + -+ + 1)
—Ps(AT" ™" + -+ + 1)ya = Ba(hrha — 1)
= Bl = 1)my + Balha — 1)y = Ba(huha — 1) + [Buihe + 1)
+B2(AT 7 4+ 1) = BT 4 4+ D)
= da(Bim + Bov2 + Bavs + Bava) .
.. kerd, C Imd, .
Exactness at Y; from the right
déd3(51) = dntP ™+ + 1) = MG+ 1)
= Bi(h—DAEP T4 +1) = 0.
dydy(8y) = da(va(ha + 1)) = fa(hz — 1)(h2+1) = 0.
dody(63) = da(ya(hahe + 1)) = =Ba(hihe — 1)(hiha + 1)=0.
dydy(6)) = do[=m {(AP "+ -+ Dha+ (haho = 1)} + vlhs = 1)
(=Bu[(hy — V(R 4+ + Dho o+ (hrha + D] + alhe + 1)
(R +...+1)_ﬁ3(h’{“1+---+1)](h1—1) =0.

+02

- m=1 ... 4 1)+ v(ha —1
ady(85) = daf—r2(hT" Lyt 1) —p(A] e+ D) Ya(ha = 1)]

m-1 _ —0.
= —ﬂ2(h2—1)(h;n—l+"'+1)—’73(h1 4+ 1)+ulhe—1)=0
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.. kerdy D Imdy .
Conversely, suppose (7171 + a1 + y3m + Yam) € kerdy, for some n; € ZG.

da(NM + Y272 + Va5 + yan — 4) = 0.
S Bulhy = 1) + Balha = V)i — By(huhy — 1) + [Bu(he — 1)
+Bo (AT 4+ 1) = By 4+ D)y = 0.
Lo Bu[(h = 1)+ (he = D)) + Baf(ha — Uimp + (AL 4 o+ + 1))

~Ba[(hihe = L)ms + (AT + -+ 1)y = 0.

Since Y5 is free on §q, B2 and 3, we have
(A —=1)m+(ha—1)ma =0  (i1)
(hg = D+ (AP 4+ 1)na=0  (iv) (6.4.7)

(hthe = Dns+ (R P+ -+ D= 0 (v)

From (iv), we have
(ho + 1)(AP T4+ 1)ma =0
= 29774 =0
—  ng = (o~ 1nj+(he = Drii - (6.4.8)
From (iii) and (6.4.7), we have
(hy — 1)m + (he + 1) (A1 — ny =0
= (hy — 1)+ (hehy +h1 - hy— 1)y = 0
= (h-Um+ (R hy — 1) + hatly — homy =0
(hy = m + (B~ = D + 1), + huny — H" 'y = 0
=  (—1m-(h— 1)(RP2 4+ 1)(he + 1)7;

(b = 1A e+ D = O
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m = (A 14...
(hT + -}-1)77'1.f_(h_;n—3_*_____i_]-)hm4

_fpm—=2
(BT~ 4 4 1) (hy + 1)

(hm_l-}-... ! -
1 + 1)n, — (AT 2+”.+1)h’277:4_77«’4

= (hP Y 4 ... ,
T (AT + -+ 1)[n) - homy] + W hony — 7} -

(6.4.9)
From (iv)and (6.4.8), we have
(ha = L)ma+ (RP ' + -+ +1)(he — L) = 0
= (hg— 1D+ (he = 1)(AP 1 +---+ 1)ny = 0.
ne = (ha+ 1)y — (A" + -+ 1)nff . (6.4.10)
From (v)and (6.4.8), we have
~(hihy = )ms = (A" 4+ 1)(he = 1)y = 0
= (hthy = 1)+ (AT + -+ Y (he — g = 0.
M3 = (hlhz + 1)773 - (hT_l e e o 1)772’ . (6'4'11)

Y1 + Y272 + Y373 + Y474
= m[(Rrt e+ Dlm - honl) + BT hamy — T4l
tyal(he + Ly — (AT e 1)n!] + 73l (hh2 + 1)75

it oyt D)) + al(hy = Dl + (ha — )7}
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-1

N 4+ D7) + ya(hg + Dy + v3(hihy + 1)m;
+—n{hP 1 +... & Dhy + (hyhy — D}y +y(h=1- 1)]77,
Hr2 (AT D) (AP e 1) g (B — 1)]n3)

= d3(v61n — 1+ yamp + Y33 + Yans + v57s) -
kerd, C Imds.

Homology groups of G

Let A be a ZG — module. Then the homology groups H, (G, A) is the homology of the
complex

d2®1 di®] do®]
HRADLRAZENRATEHRATRZCRA—0
G G G ZG iG

or, equivalently by

1. d d
A5 3, q4 G2y 43 Ty 42 B4 0,

where dy, d;, d» and dj are given by

Jg(al, ag) = (h]_ = 1)(11 + (hg — 1)(12 N

dian, 0z, a3) = ((BP~' 4+ Dar + ha(hihe +1)as, ((h2 + 1)az

+ho(hihe + 1)as)),

m-—1
&(ay, a, ag, as) = ((h1-— Day + (h2 + 1)ag, (b2 — 1)ag + (A7

4+ + 1)0'41 —(h1h2 - 1)(13 - (hT—l i kR 1)0.4) ’

1 ~1 ... — ho(R™ Y 4o+ )ag, (he + 1)a2
da(a}-’ ayz, 3, G4, a‘5) — ((h‘;.n + + 1)0-1 2( 1

m-—1
et et D, (ke Vo (A

4oer+ Das, (= Daat (ha — 1)ad) s
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If A is trivial, then

do(al,az) = 0,

d1 (Cl,l, Qas, a3) = (ma1 + 20.3, 2(12 + 2(13).
da(ay, as, a3, ay) = (2a4, may, —may) .
ds(ay, a2, a3, a4, a5) = (ma, — ma, 20, — mas, 2a3 — mas,0).

Let A = Z,then we have

Z Z
H\(G,Z) = kerdy = {(a1, a)|a1, az € Z}

Imd, {(may + 2a3, 2a; + 2a3)|a1, as, a3 € Z}
< (1,00 >8<(0,1) >
< (m, 0)a; + (0, 2)as z + (2, 2)as, >
< (1,0 >8<(0,1) >
<m(l,0) >+ < 2(0,1) > + < 2(1,0)+2(0,1) >

= <$,y|m$=2y=2($+’y)=0>

= <z,ymzr=22=2y=0>

<z,ylz=02y=0> ifmisodd
{<x,y|2x=2y=0> if m is even

<yl2y=0> if m is odd

< z,yl2z =2y =0> ifmiseven
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L2, if m is odd

Zo ® Zy, if miseven .

Hz(G, Z) _ kerd, _ {(aly ag, ag)]mal + 203 = 2a9 + 2a3 = 0}

Imd, {(2a4, maq, —may4) |as € Z}

{(2, m, —m)a|acZ}
{(21 m, _m) | aec Z}

< (2) m, —m) >
< (21 m, _m) >

= 0.

ke'rcfg
Imcf;;

Hg(G, Z) B
{(a1, az, as, a4) |2a4 = may = —may = 0 = 0}
{(ma, — may, 202 — mas, 2a; — mas, 0) | a1, aza4, as € Z}

{(alp ag, a3, O}
{(ma, — mas, 2a; — Mmas, 2a3 — Mas, 0)}

H-(G.7Z) = <(1,0,0,0)>®<(0,1,0,0)>®<(0,0,1,0)
3( ) )'_ <m(1,0,0,0)>+<2(0,1,0,0)>)>+<2(0,0,1,0)>+<—m(1,0,0,0,0)>—<m(0,1,0,0)+m(0,0,1|0)>

= <z,y,z|mz=2y=2z=-—mx:—m(y+z)=0>
<z, y zlmz=2y=22=02> if m is even

0> if m is odd

<z, Yy 2|mz =2y

Dom @ Ly ® Lo, ifm is even

Zom © Lo, if mis odd .

Detemination of cohomology groups of Z

Let A be a right ZG — module. Then the cohomology groups H"(G, A) is the cohomology

of the complex

...... +«—— Homzg
Homgg(ZG, A) +— 0

- . d; N
(Y3, A) & Homge(Ya, A) & Homgg (Y1, A) +— Homgzg (Y, A) &
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or equivalently,

...... 5 dal dl. d'- (Ll
— A A E Homa & g2 E 4
where dg*, di*, d3*, d}*, .-+ are given by

dg*(a) = (a(h1 1), a(hy - 1)),
di*(a1, @) = (@r(hRT 4+ +1), as(he + 1), arho(hiha + 1) + asha(hihe + 1))
di* (a1, az, as) = (a1(h1 — 1), ag(he — 1), aa(hihe — 1), ay(he + 1)
+ag(hP ™ 4+ 1) —ag(RP -+ 1))
dy* (a1, ag, @3) = (al(h’l"'1 + oo+ 1), az(ho + 1), az(hiha + 1))
ay[—he (AP + - + 1) + (Ryhe — 1)) + as(hs — 1),

—aa(A™ Vo 4 1) —ag(AP e+ 1) + ag(he — 1))

If A is trivial, then

g'(@) = (0,0).
d;* (a1, az) = (may, 2as, 2a; + 2as) .
d3* (a1, a2, as) = (0,0, 0, 2a; +maz — mas) .
dy*(ay, az, as, as) = (may, 2a2, 2a3, ma;, —mag — mag)

Let A = Z, then we have
kerdi'” _ Lo g,

H(G,Z) = —5-=3
" _ kerd]”
{(a1, a2) | ma1 = 205 = 201 +2a2 = 0, a1,02 € Z}
B {(0,0)}
= 0.
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HYG, Z) = IIcerdij
mdj

_ {(a1, az, a3) | 2a; + may — mag = 0, a1,as, a3 € Z}
{(may, 2as, 2a; + 2a,)}

Let m be even, say m = 2m'. Then

H2(G Z) — {(al, as, aa) I 201 +2m'ay — 2m’a3 = 0, a;,a;3,a3 € Z}
{(mal, 2CL2, 2(1.1 + 2a2)}

{(a1, as, a3) |a; + m'a; — m'ag = 0}
{(may, 2as, 2a; + 2a,)}

{(m'(as — as), aa, a3}
{(2m’a1, 2(12, 2(11 + 2(12)}

1%

Ly .

Let mbe odd, say, m = 2m' + 1.

{(a1,a2,a3) | 2a; + (2m’ + 1)(az — a3) = 0, ay,a9,03 € Z}
{((2m' + 1)ay, 2as, 201 + 2a2)}

. HYG,Z) =

{((Qm’ + 1)&’1,0.2,612 + 20"1) l a1, 02,03 € Z}
{(2m’ + 1)ay, 2a2, 201 + 202}

{a}((2m' +1),0, 0) + a2(0,1,1)}
{a}((2m' +1),0, 0) +a2(0,2,2)}

< ((2m'+1),0,0) > + < (0,1,1) >
< ((@2m'+1),0,0) > + < 0,2,2) >

= < (0,1,1) + Imd}" >
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H(G, Z)

kerds*
Imds*

{(a1, a2, a3, as) |2ma, = 2a = 2a3 = ma; = —may — maz = 0 ay, as,a3 € Z}

{(0, 0, 0, 2a; + may — mas)}

{(03 03 0, a4) |a4 e Z}

{(0, 0,0, 2a;, + maz — may)}

( {(0:0)010 ) Q. EZ} . .
{(6,0,0,a) a.4€Z} if m is odd

{(0,0,0,0.4) ﬂ-qGZ} . .
| "{(0,0,0,2) | e€2) if m is even

<(0,0,0,1)> ~ 0
<(0,0,0,1)> —

4
<(0,0,01)> ~ 7

L <(0,0,0,2)> — “2
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6.5. The Fundamental Grou

gloizntZ) such that T; and Tj,(

p of the Union of Tori Ti, - -, Tn
1 £ j <n-—1) intersect at a Single

6.5.1 Introduction
.Let Tiyeor  Th _be n two dimensional tori such that each Tj and Tj4,(i < § < n—1)
intersect at a single point. Let X = UT},i=1,2,---,n. In this section we constructed

a free resolution of m(X') and from there determined its homology and cohomology.

By Seifert- van Kampen Theorem ( Massey [87],Th.3.1,p.122 )

[T(X) = [I(T3) * --+ * [[(Tn), where * denotes the free product. Hence [](X) is given
by the presention

generators: Iy, T1, -, T2n-1, T2n;

: 1 - 1 -1 -1
relations : =7 7231%0, 7325 23T, * ¢, Top_1Zon T2n—1T2n-

6.5.2 Free Resolution for Z

We write G for [[(X). Then G = %, where F is a free group generated by =1, 1, **+ , Zan—1, T2n
and R is the normal closure of 71, -, Tn. 1 1
-1 - 1 _—1 e -
r = 27 272,32, T2 = T3 Ty B3Tdy 0y Tn = Top1%on Tan-1T2m
Then the Fox derivatves of ri, 79, =+, Tn 2r€
or;
T i .
___a LA —71 + T29; =0, 7‘7&1‘!
8:01 8371
87";' 4
Ea_rl == —:L'2_1$1$2+].; -_— = 0) 1’?,—_1:
6332 : 5362
67‘,‘ :
_812_ = ——7‘2+,’1’,‘4; —:O,Z§é2,
0z3 0z3
67‘,‘ i
_g_rl = —-1124_11‘3:2244'1; 5;1‘ = U, ?'¢2)
T4
3Tg .
Orn o —re B Tor 0, i#n,
aIZn—l -
57‘,‘ +
arn — y z # n »

-1 5
—3:2”_1(5211-12:211 + ]-s

Il

T O0Zan
0Z2n
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Writing m(z;) = hi,i = 1,2 we have

o7y
axl

aTl

0z,

ors
6333

ors
82:4

orn
0Tan_1

or,

5z2n

We then have

Theorem 6.5.1

= —hg, hon-1hon + 1;

= —l+hy; o _

The following is a free resolution of Z;

where Y, V) are right FG — modules freely generated by {a1, g, -+ -,

0—Y;, Y2 26-22Z—0,

{Bi, Bz, -+, Bn} and &, do and d; are defined by
e(g) 1, Vg € G.
d()(ai) h‘i_"lx 1= 1725 ’277‘;
H 875 j=1,2 )T
di(8;) }ja, 72 .2,

al(h.j+1 = 1) A Cfg(l - hj)a .7 — N R

a$1 o ,Zi# 1’
= —h,,z_lhlh2+1; % =0, i#£1
2
3
_ or;
= —h‘11h3h4+1; a; — 0, 1,752
4
= —1+ hop; 5:5Ti =0, i#n
2n—1
Bri

Qon-1, Q2n} and



Proof
Exactness at Y] from the right

Suppose

B+ Baya + -+ + BnYn € kerd,.
Then '

di(Bin + Bava+ -+ Bava) = 0.
3 [Cdl(hz = 1) =+ (1 = hl)]ﬂfl —+ [&3(’14 - 1) -+ (1 = h3)]"/2

G4 [a2n—1(h"2n = 1) + azn(l = hQn—-l)]'Yn =0.

Since Yj is free on @y, g, -+, Cian, we have

(hz = 1)’)’1 = 0 ('L) }

(1 = hl)"fl =0 ('L’L)

(g =)y =0 (i) }

(1-h3)m=0 (i)

...........................

...........................

(th - 1)71 =0 (U) }

(1 = hop1)11 =0 (vi)

We write Equation (6.5.1), (6.5.2)and (6.5.3) as
(e 1)1 =0  (vid) }

(=) =0 (viii)

---------------------------

(6.5.1)

(6.5.2)

(6.5.4)

(6.5.5)



LAY
........................

(hon = 1)1 =0 (z1)
} (6.5.6)

(han—1 = 1)y =0 (i)

M =72 =0 = yn = 0, since hy, hy, -+, hy, do not have finite orders.
Homology groups of G

Let A be a ZG — module. Then the homology groups H,(G, A) is the homology of the
complex

O___)YE®AJL®1%®A(10®IZG®A_)O
yAel

or, equivalently by

00— Am By 420 Dy 44,
where A* = A @ --- @ A(i-copies).

Since ; X ZG®ZG & ---® ZG and dg, d;,are given by
do(ay, ag, -+ 5 @za) = (1 —1D)ag+ (ha— Dag + -+ + (hen — 1)asn

btonon e = (ST o () STI(7) )

= ((hg — 1)(1-1, (h1 - 1)@1, (h4 == 1)(1.2, (h3 - 1)(12, tety

(h'Zn - 1)(1,,, (h2n.-—1 - l)an) i

If A is trivial, then

JO(G'I: az, ** 'a2n) = 0

071(01, az, " an) = (0,0, 0)2n—copies.
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If A = 2Z, then

Ho(G,Z) = %

= Z.

Hl(G, Z) — kerdo = {(al,ag,"' yaQn) l a; € Z}
Imd, {(0,0,-7,0)}

= (Zozo o Z)'zn—copies

Hy(G,zy = ¥erd _ (v a) |6 € Z)
) 0 {(0’0’ ’0)}

ZoZo - o Z)n—copies

IR

H,(G,Z) = 0,n> 2,

Determination of cohomology groups of Z .

Let A be a right ZG — module. Then the cohomology groups H"(G, A) is the cohomology
of the complex

0 «— Hom(Y;, A) 2= Hom(Yp, A) <> Homzg(ZG, A) +— 0

or equivalently, e g
0— A" ¢ A" & A «—(,

where d}*, d}* are given by
di*(ay, az) = (a(h—1),a(ha=1), -, a(han = 1))
& (ay, az, - > aze) = ([a(ha = 1)+ az(hy = 1)], [aa(ha — 1)
+aq(hs = 1)], [azn—1(h2n — 1) + a2a(h2n-1 — 1)]).
If A is trivial , then
d((e) = (0,0,---,0)2n - copies)
di*(ar, a2, =" s aw) = (0,0, 0)(n — copies) .
Let A = Z, then
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H°(G, z)

HY(G, z)

H(G, Z)

1%

o~

of
1%
N

kerd;* _ {(a1, a9, ~++ , agn) | 0 € Z}
Imda* {(Oa 01 Tty 0)}

(ZDZ&--- &Z)(2n — copies)

Amn {(ay, az, -+, an) | a; € Z}

Imd** {(0,0,---,0)}

(Z®Z®- - ®Z)(n — copies) .
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6.6. Unpermuted Braid Group

6.?.1 VbVe no_w consider the unpermuted braid group [92] which has presentation G = <
a,b,c | [b,c] = [a,¢] =1 > and, determined its homology and cohomology.

6.6.2 Free Resolution for Z

— :
Let G = %,where F is free group generated by 1, 2,23 and R is the normal subgroup
generated by 71,70 , 71 = [z),25] and r, = [z2, 23],

Then the Fox derivatives of ry, 7y, 73 are:

87‘1 87'1
e § i T | .
Bz, 7 1+:r:2., 5z, Ty T1Z2 + 1
o
611',‘3 6331
O ey s _ g5t 1
5zs = 2 33 073 = —T3 ToT3+ 1,
Writing 7(z;) = hi,t =1, 2,we have
67‘1 37"1 -1
— = =1+ hy; — = —hy hiho + 1;
67’1 67‘2
8:::3 81:1
87‘2 8T2 -1
Rl | — i . — —h, h, h, +1 .
e 1 + hg; 5za 3 12113

We then have

Theorem 6.6.1

The following is a free resolution of Z:

0__)}’1_‘5_)}’0—@+ZG-L>Z-——>O,

where Yy, Y, are right ZG — modules freely generated by {1, a2, a5} and {5, B} and
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g, do and d; are defined by

e(g) = 1, VgegG;
do(e) = h;—1 i=1 28

d1(,51) = Oil(h,l *1)'{"02(1“’11)'

di(B2) = oa(hs— 1)+ a3(l = hy) -
Proof
Exactness at Y

Suppose

,31")/1 + ,62’)’2 € kerd,,
Then

di(Birr+ Baye) = 0.

[al(h2 - 1) = a2(1 = hl)]')’l + [ag(hg - 1) + a3(1 — hg)]’yg = 0.

Since Y is free on ap, apas,we have

(ha —m =0 (i)
(1—h)m+(ha—1r=0 () (6.7.1)
(1 — hz)’}’g = (’LZZ)

(i) and (41i) => v = 72 =0, since hy has infinite order.

Homology groups of G
Let A be a ZG — module.Then the homology groups H (G, A) is the homology of the

complex

0——>Y1®A‘£§;Yo§ o2 ZG@f“-—’O

or, equivalently by
0__,A2_‘E_>A3_‘I_°+A-——+O,

where and dy, dy, are given by
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do(@1, @z, azg) = (hy — ay + (hy — 1)ay + (hs — 1)as

dl(al: a2) = = ((h2 - 1)(11, (1 — hl)al + (113 - l)az, (1 = hg)ag),
If A is trivial, then
do(ay, as, a3) = 0.
di(ar, a2) = (0,0,0),
If A = Z, then
Z
Hy(G,zZ) = 7= Z .
kerdy  {(a1, a2, a3) | a; € Z}
H(G,Z) = = .
(G2 = oo {(0,0,0)}
> ZOLDL.
_ kerdi  {(a1, a2) | 0; € Z}
B0 = =5 =" {0
=~ ZZ.

Determination of cohomology groups of Z .

Let A be a right ZG — module. Then the cohomology groups H™(G, A) is the cohomology
of the complex

. .
0 — Hom(Y;, A) ¢ Hom(Y;, A) > Homag(ZG, A) «— 0

or equivalently, ..

0e— A2E #E A0,

where d3*, d}* are given by

(a(hy — 1), alhe — 1),a(hs — 1))

il

dg" (a)

4" (ay, a2, as) = ([(as(ha — 1) +a2(1 = b)), [az(hs — 1) + as(1 = ha)]).
1 3 ]

If A is trivial, then
da‘(a) = (01 Ol 0) j

dy* (a1, a2 e) = (0,0).
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Let A = Z, then

HY(G, Z)

H%(G, Z)

Il

12

o

HO(G1Z) = &~ Z.

kerd}* _ {(a, az, a3) | a; € Z}

Imdy* {(0, 0, 0)}
777,

Z2 _ {(al, ag) I a; € Z}
Imd}* {(0,0)}
7 @ 7.
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6.7 Quasi-cyclic Group
6.7.1 Introduction

In this section we shall construct a free ZG-resolution for the quasi-cyclic group G =

.Z(p""’) and determined its homology. The quasi-cyclic group [41] (Prufer group)[60] is an
ifinitely generatd abelian group given by

generatos : Ty, To, Ty,

Fntie P _ P _ p
relations :  zf = 1, Ty = Ty, Ty = Zg, -

It is dual to an infinite cyclic group. All of its subgroups except itself are finite cyclic
while all of its factor group except 1 are isomorphic to the whole group.

6.7.2. We first prove two results about zero-divisors of a group ring. We shall need
these for the for the construction of the free resoluton.

Lemma 6.7.1 Let G be a group and h an element of G of order p", n > 1. Let
v € ZG be such that
(1+h+-+ A1)y =0, (6.7.1)

then

Y= 4k +h? 4 -+ R F)(1 = h)Y (6.7.2)
=(1+hP +---+hPUP) (1 + RP® 4 RDPYY L
(R RP-1P" (1 — R)) (6.7.3)
for some v € ZG.

Proof

It is easily seen that the righ
We prove (6.7.2).
v may be written as

¢ hand sides of (6.7.2) and (6.7.3) are equal.

n-1
¥ = Z: (pz nihi) Ga»

i=0

where {g,} is a right transversal of the cyclic subgroup H of G generated by h. ZG is

free. Left ZH-module generated by {ga}-
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Hence we have from (6.7.1)

p"—1
(T+h+- 4 ppm1y (Z nihi) 9o =0, (6.7.4)
1=0

' no+n1+---+np._1=0 and n,-=n,-+p, OSiSpn—p,

where the sum ¢ + p is considered modulo p”.
It therefore follows that

pr—1

Z nh*=(1+h +h%® +... 4 h?"P)(1 = h)9,, for some 7, € ZH .
i=0

So, y=(1+h"+h*P+ ... 4 hP"P)(1 - h)y, where + = Z'?aga € ZG.

Lemma 6.7.2 Let G be a group and h an element of G of order p®, n > 1. Let
v € ZG be such that

(1R 4o+ RPDPY (1 pP° e =Dy (L BT e DY (1 - B)y = 0,
(6.7.5)
then
y=(14+h+---+ P~y for some + € ZG.
Proof

From Proposition 2 of Majumdar [72]

1

i 2 n— (_1)n—1
(L4 BP 4 ook RODRY (L AP oo ROTIP) e (L AP e+ RPTEE )y

=(1+h+---+h""1)y forsome 5 € ZG

S ¥ T R L R G R e ETUETy,
. | P BT [y — (LA R4+ RPN =0
.. (1+hP+_._+h(P—1)p)...(1+hP + +h )[’Y ( )]

i.e (1+h”+---+h”"‘f’) [7—(1+h+---+h"‘1)~7] =0.

Hence by Proposition 1 of Majumdar [66],

v (1+h,+---+h”'1)'7 = (1 - h?)y, forsome Y€ ZG.

L (et BT
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Hence the

6.7.3 The quasi-cyclic group (Prufer group) G = Z(p>) has presentation G =
where F is the free group generated by {z;, 4 € N} and R is the normal clousere of

lemma.

(1+h+...+hp—1)7/

)

(bbbt [0 - 7= 5)

where ' = (1 - AY¥ %) € 2.

E
R

{rj» 3 € N}, {r1 = =f, o1 = 272041, n € N} (see Fuchs [41], Huebschmann (59]). It is
clear that GG is abelian and is the union of an infinite ascending sequence of cyclic groups
CPCsz CCpa o
Though G is not finitely presented, the Lyndon’s partial resolution can still be constructed
for G, since each r; contains a finite number of z;’s. Here

Using n(x;)

6T1

83}’1
37”2

oz,

p—1

o 1 _l_ &
3:1:1
67'2 r
o — ~ 2
32:1 ’
Oriy1

= —Ti+1,

h;, i € N, we have

ek 1,
or ~
=2 =gt
62:2
Orit p—-1
e i
a$£+1 1+1
Rt e 41,
-1
h"?—}-l + e + 1,

AR §
1 8’)"2 _
o 3:1:2
_1 Oriy1 _

Theorem 6.7.3

The following is a free 7.G-resolution for Z:
Ly By By Sy 526520,

where Y is a right ZG-module free

phisms given by

O0Tiy1

= 1

87‘1 i
T e 0, 1
al‘j : _T‘L
ot 2o iz1,2
3271'
bt Tog i
sz
87'1 .
— =0, 171
0x; 7
6r2 ”
_— = 1, 2
Orivt _ o 44 i+1
313_7'

for each g € G,

(6.7.6)

(6.7.7)

on {i, i € N} and ¢, do, d,, dy are ZG- homomor-



dl(al) = C!l(hf_l-{-..._*_l),

dl (ai+1) = —o;+ Qi (h,?_;ll + .4 1) , i€ N,
da(e) = ay(hy - 1),
da(tisr) = [Gfl + 02(/1;1’—1 + -4 1)] + ..

i [aHl(h;}—l K I 1)(hf__11 Foee b ) (BT g 1)] (hip1 = 1),

Proof

We first observe that

or.
dileg) = 3 adll(z2), jeN,

ieN

with a finite number of nonzero summands on the right side of each equality sign.
By (6.7.1)and (6.7.7) is exact at Z, ZG and the first ¥ from the right.

We, therefore, have only to verify the exactness at the second and the third ¥ from

the right.

Exactness at the second Y from the right

didy(c;) = dl(al(hl — 1)) = di(a) (b1 — 1) = (h;f_l +-+ 1)l —1) =k -1=0,

didz (i) = d [[a1+ai(h’f"1+---+1)+---
b (B e 1) (B g = 1]
= [dl(al)+d1(a2)(h’1’“+---+1)+---
tdy () (R 1) (Rt 44+ )] (hipn — 1)

= (h’l’_l + o4 1) (hiy1 — 1)

(R 4+ 1)] (R~ - D (i = 1)+

+[—Ot1+012
+[-aito 1(hp;11+"'+1)](hf_l+"'+1)"'(h€_l+"‘+1)(hi+1—1)
—a + i1l
= .
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Therefore, Ker d; D Im d,.

I et = E (8 4} Yi EXe d[ i e i i sum =
5 I( I . Sln(: T 1S a ”I][te th 1 =0
) ere exists n S N SUCh that Yn+k-+1

=N+ Ga Vi

di{onm + -+ + Gy 1Yng1) = 0,

o (hY 7 e D)y e [—on + ctnpi (B2S) + - + )] et = 0.
(B =0
B+ + )1 -1 =0

U (6.7.8)

(B bweeb Ly — Poa1 =0

L B+ Dy =0
Using the result of the Lemma 6.7.1 and solving the system of equations (6.7.8) we obtain

(a1 = (R oo+ 1) (R + 1) (AR — D

| = (hp:ll + et 1) (h]f_l 4-eet1) [(hn — 1)), + (Ray1 — 1)71’14-1]

From (6.7.9), we see that z = da(cavi + - F Cnt1Ypp1) SO that = €1m

. Kerd, € Imd, .
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Exactness at the third ¥ from the right
bdi(a) = dafoalh+-+1) =a(h - )K" +... 4 1) = 0.
dydi(az) = dy[—ar + (B! +... 1))
= —dy(an) +do(ag)(hE™ + -+ 4 1)
= ol = 1)+ [+ W™ 4o 4 Dy = DR+ 4 1)
= —ai(hi = 1) +on(hf — 1) + en(R 4+ + 1)(h3 = 1)

= —Oll(h,l = 1) + al(hl = 1) + ag(hf_l +-e 1)(h1 = 1) = ag(h? - 1)

.. Kerdy D Imd, .

Suppose z € Ker dp. Then, as before,

dz(ai’)’l +agyy + -t Qn+1Ynt1) = 0.

o (b — m + o + a2 -+ D(he = D2+
oy +ap(B -+ 1)+

Fapg (R 4 1) (R 4+ D) (Bngr — D)1 = 0. (6.7.10)

g (h.;-l+---+1)---(h’{“+---+1)(hn+x—1)7n+1=0-

By Lemma (6.7.2) we have

-1 /
Yntl & (h‘lr,H-l + oo+ 1%
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From (6.7.10)

"+1)”'(h€_1+"'+1)(hn—1)%

+ hp—l -
(Ap 1+ 41) (h? 1+---+1)(h,,+1—1)~,-,M=o.

-1 =
(flﬁ-i-%*"“{"l)"'(hf 1+"'+1)(hn"1)7”

p—1 =
Flhnoy e 1 (B b 1) (R = DA 4+ 1)), =00

..............................

4 (6.7.11)

From (6.7.11) we see that z = di(a17] +*** + Cnt17n41)s

.. Kerd, C Imd,.
The proof is thus complete.

6.7.4 Homology of G

Let A be a left ZG-module. Then the homology groups Hn(G,A) are given by the
homology of the complex '

¢,8] ael A*%260 A4 —0
......... Ly A YA Y@ATSY v

i 2G 70 yie}
01, equivalently by
4 RPN VIL. Ny L. Ny gy}
......... By A — AT



where w is an ordinal number of N and . 4,

" d are induced by dy, dy, d; and are given

do(al,az’ "t Gny ’.') = (hl_l)a1+v-.+(hn—l)an+ e
dl(ahaz’ "7 Ony ) = ((}111)_1+"'+1)a1—a2a (h§—1+...+1)a2—a3,
(/zﬁ*1+...+1)an—-an+h )

do(ay, @z, <+, @ny o) = ((hy = D)ay + (hy — Day, (M7 + -+ 1) (ha = 1)ag

+(hs = Dag, -+, (hn — Dag, -+ ).

Here each (a;, ag, - -+) has only a finite number of non-zero entries.

Hy(G,A) = - = A A
0( 3 o Imd_o o {(h1—1)01+(h2—1)a2+} Gh
H(G A)— Kerdﬁ[] _ {(a’l’G’Z)"')|(h‘l_l)al=(h’2_1)a2="'=0}
1\, - Im(il {(h’f'l+-.-+1)a1—a2, (h§'1+---+1)a2—ag, }
(Gl et e —ap=(hE™ et )ap —ag= =0}
Hzn(G,A) - II(S‘:; - {((h111)01+(lh:z—1)02,(h‘l’—l+--'+12)(hz-1)a2+(h3_1)43,...)}’

La2,)|(hi—1)a +(h2_1)a2_—_(hf"l+---+1)(h2—1)+(h3-1)a3='"=0}-
H2n+l(G1A) = (et {(1(hf_ll+---+1)a1—azw(hg—l+'"+1)02—a3:'”)}

Integral Homology

IfA =7, considered as a trivial 7.G-module, then
do(ar, az, as, -+1) = 0

Cz1(111 as 03,"') = (Pal—az,Paz—az,Paa"a4,"')a
) ?

Jg(al, asz, 43, ) = (0, 0, 0, )

=%Z.

Z
Ho(G,Z) = i—rr_].a—_- -

H,(G,Z) = Tmd, {(po1 — a2, POz — 0 e

olN
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Hy (G Z) {a1(p,0,0,- M.—)‘Fa'z(o L0, )4}

= )+a2[(0,1, 0,--)—(1,0,0,- *)J+a3[(0,0,p, - —(0,1,0, )+ } )

H]_(G,Z) = <, Y2, Y3, o+ >
< PY1, PY2 — 1, PYs — Yz, o+ >
= <YV Un o py=0,pr =y, pys =1, - >
= G
where yx = (0,0, ---,0, 1,0, ---) with 1 at the kth place.
For each n > 1,
Hy(G7) = 54 _ {1005 ) |0 € Zandpay —ay = pay —ay =
Imd, {(0,0,0,--+)}
— {a'l(l’p) p27" )|a1€Z}
{(0,0,0,---)}
— {(07 0, 0, )}
{(Oa 0,0, )}
= I since each sequence in the numerator must have
finite number of non-zero entries.
Kercfg {(al, g, 4z, ) Iai € Z} A
H n G Z) = = = = G
2 +1( ) ) Imd, {(pal—az, pag — as, )}
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6.8 The 3-Dimensional Heisenberg Group Hj
6.8.1 Introduction

Here we shall construction a full free resolution
3-dimesional Heisenberg group,
integral homology and cohomol

' : of Z for the integral group ring of the
using the technique mentioned earlier. We compute the
ogy from the resolution obtained.

6.8.2 Hjs, the 3-dimensional Heisenberg group has a presetation

Hy =< 2,y,z[[z,2],= [y,2] = 1,[z,9] = 2z >, ( Burillo [114], p.2 ).

It is a member of widely studied important class of Lie groups called the Heisenberg
group. It is nilpotent of class 2. Huebschmann [61] used his sophisticated perturbation
theory techenique to determine the cohomology of the generalised Heiseberg group given
by

k

G =<zuyzl|lr =12 =15y =2 >

G = Hs, ifk = 1.

The (2n+1 )Heiseberg group Haniiis the group of upper triangular (n + 2) X (n + 2)
matrices of the form:

oo
o~ 8
Ll R S

]

where 2 = (21, T2, =+ » Tn), Y = (y1, Y2o " » Y,), I is the n X n unit mtrix. Thus

Hy is the group of all upper triangular matrices :

)(I)szER)'

o o
O~ 8
— 2 N

i he latter being a
i i hn function ( [114], p-1 )t
bt BOD IR s Ic)teiorr:. I[sopermetric inequalities have been used

best i :ce for isopermetric fun : Epstien
fruitfilolirszzlitf; :tl;idy of hyl;)erbolic groups and automabtlcl gzoil;piz (ng:g::_o;y[s?li)olli)c L
[29]). The cubic nature of Dehn function hir Ha Bhiows I‘: lrz:ction and a quardratic Dehn
automatic, since these have respectively 2 lme,a ' Depr; , thods. He also shows that Hj
function. :[‘hurston proved these facts by combinatorial me 4

IS not combable.
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8.3 Before con i )
6 structing our free resolution for Hj, we give a few definitions, state a

few known results and prove a nu
mber of r :
its proof. esults that will be needed for construction and

Lemma 6.8.1
Hj is torsion-free.
Proof
1 =z 2
fy= 01y ||zyzeR; .
0 01
Now
1z z\"
01y
001
1 nz nz+nzy
=101 ny .
00 1
So,
1z z\"
0 I vy
0 01
1 00
=010,
0 01

if and only if n = 0.

Hence Hj is torsion-free.
The following definitios are due to Higman [55)].

Definition 6.8.2

A group G is said to be indezed i
subgroupof Z.

f it can be mapped homomorphically onto a nonzero

Definition 6.8.3
A group G is said to be indicable throughout if every subgroup H (# 1) of G can be
indexed.

We state two theorems due t0 Higman :
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Theorem 6.8.4 ( [55], p.242 )

If G is indicable throughout and R i : , |
has no zeo devisors. 8 a ring with 1, and has no zero devisors, then RG

Theorem 6.8.5 ( [55], p.243 )

If G is indicable throughout and R is a ring with 1 and has no zero devisors, then the
units of RG are trivial. ’

We shall use these results to prove :

Theorm 6.8.6

Hj is indicable throughout.

Proof

We write G for Hs and let H be a subgroup of G and let H # 1.

Case 1

First suppose that H C G'. By the definition of G, G' C Z(G). This implies that G is
abelian. G’ is the normal subgroup generated by the commutator [Ry, k2], h1, ko are the
images of z1,z2 in G. So a tripical element g’ of G'is [1(g7 " ([hy, ho]®), &5 £ 1.

n
g' = H[h'lahﬂ]e‘.?
i=1

since [hy, ko] is & commutator of hy and hy. Since G’ is infinite cyclic, and since
H # 1, H too is infinite cyclic. S0 H can be indexed.

Case 11

HG' £ S and is not the identity
Suppose B ¢ G'. Then HG' # G', and 50, "G~ 9 a.subgroub O gr, . F o cuch
HG' abelian. Then there is & homomorphism f : “z— s

subgroup. Hence Z5- is free . HG' i
that Imf # {0}. Ifccp is the canonical homomorphism H — fF then g is onto and

Imf # {0}, where f: H — 7, is the composite [ = fo.
Thus H can be indexed.
Hence G is indicable throughout.

As a consequence of Theorem 6 8.4 ad Theorem 6.8.5, Theorem 6.8.6 implies the following:
q :

Corollary 6.8.7

ZG has no zero devisors.
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Corollary 6.8.8

The units of ZG are trivial,

Free resolution of Z

Let G = Hy = %, where F is the free group generated by z;, z, and R is the normal
closure of ry, a.where 1y = [z, [z, z3)] and rp = s, T, sy
ie.,
ro= o7 zy e wem ey 2y 1y e
1 L3 T1%2
and

N, P g 1 -
Ty = T3 Ty T ToT\ToT] 'Z3 'T129

Then the Fox derivatives of ry, 7y are:

67'1 1
T = —T1— IT1T1 + Ty ZT1To + To;
3:1:1
87‘1
- -1
— = —IiT1 + 212, 1z1:c2 -z, T1Z1+ 1,
82?2
Ors 11 -1,.—1
-_— = —:1:%1’2 + 29T Ty T1T2 — Ty Ty T1T2 + Ty
6561
or - 2 ~-1,.~1 -1
8_2 = —rz—:r27-2+:021:v1x2r2+:z:1 Ty T — 1T — T4 z—1zy+1.
To .

Writing 7(z;) = hi, i = 1,2,we have

g{‘l = —-1- hzhl + hz_lhlhg + hg;

6.’31

Oy _ _p 4 hohy'haha — hythiha = hythaba + 15

3:1:2

—61?- = -—hg + hghrlhz_lhlhz = hl_lh;lhlhg + ha;

311:1

Ors  _ 1 _ hy+hythahd+ Bihy habe = hythiha + 1.
6.752

To construct the free resolution of Z we proceed as follows. In Ly o, pesiiall Khes. EESp=
ruc

lution of Z, let

Bim + Bz € kerdy,

w
here 92 € ZG.
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Then

di(Bry + Brye) = 0.
[a1(h2 = 1 = hahyi — AT hihg) + ay

" 1—hy = hylhyh -1
hthyth = 12 — BT Ry By + ha) + an(ha h 2 4 oinn 2 afallm + [oa (~AE

(R hihf + AT Ry hyhy — hythohy — ho)lva = 0

or,

aif(ha = 1 = hohy — R hiho) + (=13 — Ay 'hg'h — 1h3 — By hy hyhy + ho)] + (1 — By -

hy'hihe + hihy i)l + (Hy ' hahd + hT'hi hihe — hy 'hikg — ho)lpa] = 0.

Since Yj is free on «y, as, we have

[(he — 1 — hohy — h;lhlhg)]"/l \
+[{(h3 — hi'ha"hihg — Rty s + ho)le =0 (4)
L. (6.8.1)
(1 — hy — Ay hihe + hihy 'hiho)m
+(Hy'hih2 + hTthy Hihy — hythiha — ha)ye =0 (d1)
We write Equation (6.8.1)as
ayn+bn=0 (7
) (7)
e +dy =0 (i)

where 1
a = hg -1- hghl - h2_ h1h2 etc.

i i i = 1 bitray element of ZG,
Solving th tion (1) in @, we have y; = 7, where 7; 1s an ar |

and ’ng= P:-?ngll:'yl’ =(ld‘1¢czfy{, so that —b~ta = —d~'c. 7 being the arbitrary element
of ZG, —b'a :1 _d-lc € ZG. Since b~'a has an inverse a~'b, b~! = go, for some

% € G, by corollary (6.8.8).

Define Y; as the right ZG— module freely generated by § and define
dg . Yz —k Yl

b
’ dy(8) = B — P20

Then,
dy(6m) = (B~ Bogo)nn = Bm— Bagom
= fm+t Bay2
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Hence

P + By € Imd,.

(did2)(8) = di(B—1- Ba2g0)

= (aman + ®2072) — (cnbgom + Q2dgoy2)
= aia—-a)y + az(c— c)y,
= 0.
.. kerdy, O Imd, .
Now, let § € kerds, then
a1y —aagoy = 0
= v=0.
Thus we have the following free resolution of Z:
0—Y -y Ay 5720552 — 0,

where Y}, ¥}, Y; are right ZG — modules freely generated by {c, a2}, {61, B2}, {¢} and
€, dy, dy, dp are defined by ;

e(g) = 1,Y9€G;
do(a—1) = h—1;
do(a) = he—1,
ay(hy — 1 — hahi — hilhyha) 4+ a2(1 — 1 — hythihe + Rihg hiho) s
di(B) = on(—h2—hithy'h—1h;— h7thyhiha + Ba)

o (hy hahi + hTihy hihy — by hihe = ha).

dz((g) ,51 - ﬂ290 »
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Homology groups of G

Let A be a ZG — module.Then the hom

complex ology groups H,(G, A) is the homology of the

®]
0= "4 K®A%%®Ad"®l “%4 26 (R) A—s 0
2G ZG pusi
or, equivalently by

0—s A %, 42 &, A2 %y 4y

where, dg, dy, do, is given by

do(ar, az) = (k1 —1)a; + (hy — 1)ay
Czl(a]_, az) = ([(hz — 1 -_ h2h1 = h;lhlhg)]al, [(hg
—hithy R R — R Ay hohg + Bo)las) ;

d2(e) = (a, —goa).

If A is trivial, then

d_2 (a:) = (a7 —CL).
A = Z then
A
H(G,2) = =&
kerdyp _ {(a1, a2) | ai € Z}
H],(Gs Z) = Imcil - {(0) 0)}

IR

Z & Z
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Hg(G', Z) = kercf_l = {(ala 0,2) ‘ a; € Z}
Imd, {(a, —a)}

{(a,—a) + (0, a5)}
{(a, —a) |a € Z})

<L -1)>8<(0,1) >

- < (1, “—1) >
~ < (0,1) >
~ 7.

Hy(G, Z) = ke(f? - o

Detemination of cohomology groups of Z

Let A be a right ZG — module. Then the cohomology groups H"(G, A) is the cohomology
of the complex

0 +— Hom(Ys, A) <2 Hom(Y;, 4) < Hom(Y, A) <2 Homgg(ZG, A) ¢— 0

or equivalently,

0— A& 28 28 4 o

where d3*, d}*, d3* are given by

dg*(a) = (a(hi—1), a(ha —1)),
d*(ag,a2) = ([ai(he =1 = hohy — hy'hiha)], [az (R

—h7 Ay k3 = TPy Yhahe + Ba)])

dy* (a1, a2) = @1 — goar.
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If A is trivial , then

Let A = Z, then

ds'(al: a2) =

di*(a1, @) =

dS*(ax,az) = 0.

114

1%

1%

Z ~ 7
6 = Z.
kerd — 1** _ Alar,a9) | a; € z)
Imagg— {(0,0)}
Z & Z.
dy*  {(a1,09) | a; € Z}
Imdi* {(0,0)}
Z & 7.
{a]|acZ}
{0}
Z.
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