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Synopsis

In many branches of Mathematics a strategy for study of the
mathematical entities is to view them as being made up of simpler entities
In one or more ways. The task is then divided into two parts : (i)
identifying and studying simple entities, (ii) investigating various
manners of amalgamating\' these simple building blocks together. When
two mathematical objects of the same nature are glued together to obtain
a third such object, the latter is often called a sum or a product. In this
thesis our objects of study are sums and products and their similar

counterparts in various areas of Mathematics.

The first chapter gives a survey of various known sums and
products in many mathematical branches including Algebra, Topology

and Graph Theory.

In the second chapter direct product and wreath products of
transformation semigroups have been defined and studies. Their nature

and applicability have been investigated and their associavity and mutual

distributivity have been established.

In the third chapter two kinds of ‘product’s of partially ordered sets

have been studied. In particular such products of lattices have been

considered.



The fourth chapter introduces two kinds of ‘sum’s for topological
spaces. One of them is a generalisation of ‘connected sum’ of surfaces,
while the other is constructed after the pattern of ‘amalgamated free

product’ for groups. Some properties of these products have been studied.

In the fifth and last chapter a number of ‘sums’ and ‘products’ have
been defined and studied for two objects in a category. These have a

maximal or a minimal property in some sense.
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Chapter 1

A Survey of Well-known Sums and Products

Introduction

We shall describe here how in different branches of Mathematics
various procedures have been used to amalgamate two or more
mathematical objects of the same nature to yield a new such object. The
resulting object is usually called a sum or a product. The method of
forming such sums and products has often proved very useful for building

complex mathematical entities out of a number of simpler objects.

In this chapter we shall give an account of forming sums and
products or some such separations in a number of branches of
Mathematics and hint at their possible applications. This will illustrate the
significance and importance of these processes. The branches of

Mathematics considered here include Algebra, Topology and Graph

Theory. 5

1. Algebra
(a) Groups:
(i) External Direct Product

Let A and B be groups. Then the external direct product of A and

B, written A x B, is defined as the set A x B together with multiplication

(a, b). (@, b')= (aa’, bb’). As an example , Cpy % Cq & Cpy » if (m, n) =1

and C, is the cyclic group of order r.



In general, if {Ay}qe is any non-empty collection of groups, then

the external direct product []A,is the group is the Cartesian product

ael

x A, together with multiplication {a,}.{ax} = {a,au}-

vel
Sometimes it is called the unrestricted direct product.
The restricted direct product is the subgroup S of the external

direct product U] Aa consisting of all those elements {a,} for which a,#
ae

ey, for only a finite number of a’s.

If I is finite, the restricted and the unrestricted direct product
coincide.

If N denotes the additive group of real numbers, 90" is the external
direct product of n copies of i of with

R = NXNR X x9N (n copies) and

(@1, @2, cveerene an). (b, bay vere. , bo) = (atby, agtby, ... a,+by).

For abelian groups i.e. commutative groups, written additively, the
restricted direct product is called the direct sum (external).

Thus R" is the direct sum of n copies of (M, +).

(ii) Internal Direct Product

Let G be a group and let {Ng}aer be a nonempty collection of

normal subgroups of G such that (i) for each ael, NuM N, ={e} where

N. is the subgroup of G generated by [ JN,, (i) G is generated by
o Bel pra

N, .

cel



In this case, every element of G can be expressed uniquely as a

product P Tl avsaswsss n, for some r where o, oy, .... , o, are distinct and the

uniqueness is upto the order of n,’s.
Also n, ny = ny ng for each distinct pair (o, o).

It can be shown that ([], p.34) that the internal direct produét {N.}

is isomorphic to the restricted external direct product of {Ng}ger.
Direct Sum

If the group is additive abelian, the above product is called the

direct sum (internal). The direct sum is denoted by ®. Thus

Application

Direct sums are used to describe the structures of certain classes of
abelian groups, e.g. free abelian groups, divisible groups and finitely
generated abelian groups.

Direct Sum (external and internal) of vector spaces, modules is

similarly defined. -

We have the following uniqueness proposition about free products.

Proposition ([61], p-97)
Let G and G’ are free products of a collection {G;: i€l} of groups

(with respect 1o homomorphism ¢; : Gi = G and @' : G —» G,

respectively). Then there exists a unique isomorphism h : G = G’ such

that the following diagram is commutative for any iel:



G
10f
Gi _ h
\(P;\ i
GI

Theorem ([61], p. 98)
Given any collection {G;: i€I} of groups, their free products exists.

We denote the free product of groups Gy, G, ... G, by
G* Gy* ... *Gpor [[*G,.

l<isn

The free product of the family of groups {G;: il} is denoted by
[1*6G..
I5izn
Examples
1. A free group on n generators Is a free product of n infinite
cyclic groups. |
2. IHG=<x,y | x"=e¢, y" = e>, then G is a free product of cyclic
group of order m andn,ie,G=Cn* C,.
Application
Free product is. used to describe the structure of fundamental
groups of path-connected topological spaces.
If X and Y are two path—cormected topological spaces such that X

~ Y is a singleton, then 7 XuY)=nX)*n (Y).

(iii) Semidirect Product
Iet G be a group, N a normal subgroup and H a subgroup of G

such that every element of G can be expressed uniquely a product hn,



heH, neN. Then G is called the semidirect product of N by H, denoted
by H ON. The element hn is denoted by [h,n], heH, neN.

Theorem ([61], p- 89)

If G is the semidirect product of N by H then the elements of [h, 1]
of G form a subgroup isomorphic to H and the elements [1, n] form a
normal subgroup isomorphic to N. Moreover, the automorphism of N as a
subgroup of G is induced by transformation by the element h=[h,1] of H
as a subgroup of G. Moreover, G=HUN=HN.

Theorem ([61], p. 89)

G is the semidirect product of N by H if and only if N is a normal
subgroup of G and H is a subgroup of G whose elements may be taken as

the coset representation of N. Otherwise expressed
i. N is a normal subgroup of G

ii. H is a subgroup of G

iii. HAN =1
iv. HUN=G.
Examples

S, is the semidirect product of C3 with C,.

S; is the semidirect product of Az by S2=Co.

(iv) Wreath Products of Permutation Groups

Let G and H be permutation groups on sets A and B, respectively.

We define wreath product of G by H, written G¢H in the following way:



GcH is the group of all permutations 8 on Ax B of the following kind
0(a,b) = (aYy, bn), acA, beB where for each beB, Y}, is a permutation of
G on A, but for different b’s the choices of the permutations Y, are
independent. The permutation 1 is a permutation of H on B. The
permutation 6 with n=1 form a normal subgroup G* isomorphic to the
direct product of n copies of G, where n is the number of letters in the B.
The factor group GcH/G* is isomorphic to H, and the permutation 6 with
all Y, =1 form a subgroup isomorphic to H, whose elements may be taken
as coset representation of G* in G. Let X and Y be finite set with
X~Y=0. Let G be a permutation group on X and H be a permutation
group on Y. Then the wreath product GgH is permutation group on X x Y

and the direct product G x H is permutation group on XY,

(v) Free Product

A group G is said to be the free product of its subgroups 4, (a
ranges OVEr some index set) if the subgroups A4, generate G, that is, if

every element g of G is the product of a finite number of the elements of
the A,, g = aas -..an, & € A, i=1,2,..,0, (1)

and if every element g of G, g #1, has a unique representation in the form
(1) subject to the condition that all the elements ai are different from the
unit element and that in (1) no two adjacent elements are in the same

subgroup Aa-although the product (1) may, in general, contain several
factors from one and the same subgroup .

The free product is denoted by the symbol.

G =, A 2)



and if G is the free product of a finite number of subgroups A, Ay, ..., Ay,
by the symbol

G= A|*A2* LK Ak.

The subgroups A, are called the free factors of the free decomposition
(2) of G. The expression (1) (under the restrictions imposed on it) is
called the normal form (or irreducible representation) of the element g in
the decomposition (2), and the number n the length of g in this

decomposition; we write n=1(g).

If a group G is generated by subgroups A, (where a ranges over an
index set), then G is the free prodﬁct of these subgroups if and only if for
every group H and every set of homomorphic mappings ®, of each A,

into H there exists a homomorphic mapping ¢, of G into H that coincides

with ¢, on each A,.

Free Product with an Amalgamated Subgroup

In some connections an even more general construction than that of
the free product turns out to be useful. Let A, be groups, where a ranges

over a set of indices, and let a proper subgroup B, be chosen in every Ao

such that all these subgroups are isomorphic to a fixed group B. By ¢ we

. 5 -
denote a specific isomorphic mapping of B, onto B; then ¢of3 = PoP g 1S

an isomorphic mapping of B, onto Bg.

The free product of the groups A, with the amalgamated subgroup

B is defined as the factor group G of the free product of the groups Aq

with respect to the normal subgroup generated by all elements of the form

b,b; . where by = b, waf3, where b, ranges over the whole subgroup B

and where o and B are all possible index palrs. In other words, if every



group Ay is given by a system of generators M, and a system of defining
relations @, between these generators, then G has as a system of
generators the union of all sets My, as a system of defining relations the
union of the sets @, and, in addition, all relations obtained by identifying
those elements of different subgroups B, and Bg which are mapped by the
isomorphisms ¢, and @ onto one and the same element of B. The
subgroups B, are “amalgamated”, as it were, in accordance with thé

isomorphisms ‘Fegp.
We note two important results involving free products.

(o) Kurosh’s Subgroup Theorem [19]
If G= H;Aa (1)

and if H is an arbitrary subgroup of G, then there exists a free

decomposition of H.
G =F* [], 4. (2)

where F is a free group and every B is conjugate in G to a subgroup of

one of the free factors A,.

(B) Theorem (Baer and Levi) [19]

No group can be decomposable both into a free product and into a

direct product.

Torsion Products of Abelian Groups

For abelian groups A and G we define the torsion product Tor(G,

A) as that abelian group which has generators all symbols < g, m, a=, ’



with m € Z, mg = 0 in G, and ma=0 in A, subject to the relations

(“additivity” and “slide” rules for factors m, n)
<g;tgy, m, a>=<g;,m,a>+<g,, m,a>,
<g, m a;ta,> =<g, m, a;> + <g, m, a,>,
<g, mn, a> = <gm, n, a>,

<g, mn, a> = <g, m, na>,

mg; =0 =ma
mg = 0 = ma;
mng =0=na

mg = 0 = mna

Each relation is imposed whenever both sides are defined; in each

case this amounts to the requirement that the symbols on the right hand

side be defined. The additivity relations imply that <0, m, a> =0= <g, m,

0>. Hence Tor(G, A) = 0 when A has no elements (except 0) of finite

order. Also Tor(A, G) = Tor(G, A).

In particular, Tor(Z, A) = Tor(Q, A) = Tor(R, A) =0, for each

abelian group A, and Tor(Zms Zn) = Zm, n)-

Modules and Vector Spaces

Let R be a commutative ring with 1. Let A and B be two R-

modules. The tensor product of A and B, written A®gB is the R-module

generated by all symbols a®b, acA, beB with defining relations.

(]) (a|+ag) ®b = a|®b ¥ a2®b
(ii) a®(b; +b;) = a®D; + a®b;

(iii) ar®b = a®rb,

for each aj, az, a€A, b, by, b € B, reR.

As particular cases,

R®RA = A, VACTYAE= Zins Zn®Zy = Z (m, n)-
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The tensor product of two vector spaces U and V over a field F is

defined similarly. If dim U=m and dim V=n, then dim (U®;V) = mn.

Tensor product of modules and vector spaces are associative in the

Sense:

QAC)REQCDRC:EJA()R(JBC)RCD,
GJC)FVQQngVEEXJ@DF(VmngV)

Also tensor product is distributive over direct sum in the following

sense.

A®R(BAC) = (AG:B) ® (A®C),
(A®B) ®;C = (A®:C) ® (B®:C).

UR(VAW) = (UB:V) &(US:W),
(UDY) ®W = (USW) ® (VO W).

Cayley-Dickson Construction of Division Algebras

An algebra A is a vector space equipped with a multiplication of

vectors and a multiplicative identity. A division algebra is an algebra A

such that ifa, b €A and ab=0 then either a =0 or b=0, i.e., every non-zero

element of A has a multiplicative inverse.

There are only 4 normed division algebras: R, the real numbers, C, the

complex number, H, the quaternions, and O, the octonions. C= has a basis

{L,i}

ijk=-1.0 has a basis {1,€1,€25- e+

over R with i> =-1.H has a basis {1, i, j, k} over R with i*=j*=k* =

e;} over R with
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i €2 es €4 es e e
€ =] €4 €7 —e, €6 - iy
©2 Cd )] es e —e3 &7 —eq
3 —C7 —€s -1 €6 ) —ey e
4 €2 —€ —€¢ -1 €y €3 —€5
Cs —€6 €3 —ey —e; ~1 e €4
€6 s —€7 €4 —€3 —€) -1 €
€7 €3 €s —€) €; —€4 —€2 -1

There is an interesting method of constructing these algebras step by
step.

A algebra is an algebra equipped with a conjugation, i.e., real linear
map * : A—>A with a** = a, (ab)* =b* a*.

A complex number can be thought of as an order (a, b) or real

numbers with component-wise addition and multiplication given by (a, b)
(c, d) = (ac—db, ad+cb).
We can also define conjugate of a complex number by (a, b)* = (a,~b).

We can then define a quaternion in a similar way. A quaternion is a

pair of complex numbers. Addition is component-wise and multiplication

is given by (a, b)(c, d) = (ac—db*, a*d + cb) (2)
We can also define the conjugate of a quaternion by (3) (a, b)*= (a*, -b).

We can now define an octonion by an ordered pair of quaternions. As

before we can define addition and multiplication using (2) and (3).

This method can be continued to obtain a new algebra from an old

one. This method is called Cayley-Dickson construction.
Rajshahi University Lib
Documentation Sectio -
Document No ;D"Zg5.2>
Date./3:11:0..7
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L] T e

Let G and H be ‘t:WO groups given by the following generators and
relations: G = <x;...; r;...> and H = <y,...; 5,...> Let A and B be subgroups
of G and H respectively such that their exists an isomorphism ¢ : A—> B.
Then the free product of G and H, amalgamating the subgroups A and B
by their isomorphism ¢ is the group <xj, ... ; ¥i, voo 3 Ity cor 5 Sp5 ey @ = P

(a), ae A>.

An important concept very closely related to the free product of
two groups with an amalgamated subgroup is the Higmann-Neumann-

Neuman extension or HNN extension of a group relative to two of its

subgroups A, B and an isomorphism ¢ . A—B.

HNN Extension

Let G be a group and Let A and B be subgroups of G with ¢ :
A—B an isomorphism. The HNN extension of G related to A, B and ¢

is the group G* = <G, t; t'at = @(a), acA>.
Free products with amalgamation and HNN extensions are often

motivated by consideration of fundamental groups of topological spaces.

All topological space are assumed to be path connected. If X is a

topological space T (X) will be denote the fundamental groups of X. Let

X and Y be space, and Let U and V be open path connected subspaces of

X and Y respectively such that there is a homeomorphism, h:U—->V.

Choose. Choose a base point ueU for the fundamental groups of U and

X. Similarly, choose as base point h(p) = veV. There is a homomorphism

n: m(U) = mi(X) defined by simply considering a loop in U as a loop in

X. Suppose that 1 and the similarly defined hommomrphism & : (V)

- (Y) are both injections. The homeomorphism h induces an
!



13

isomorphism h*:m;(U)— (V). Suppose we identify U and V by the
homeomorphism h to obtain a new space Z. Under the assumptions made,

the Seifert-van Kampen Theorem (Massey [61]) says that
T(Z) = (m(X)* m(Y); mi(V), h*>

The HNN extension has a similar topological interpretation.
Suppose that U and V are both subspaces of the arcwise connected space
X. Assume the same hypothesis on U and V as above. Let I be the unit
interval, and let C=UxI. Identify U x{0} with U and identify Ux{1} with
V by the homeomorphism h. Let Z be the resulting space. (What we have.

done is to attach a handle to X.) The Seifert-van Kampen Theorem can be

used to show that 7,(Z) = < m(X),t :t'ut =h(u)u eU >
Free Products of Groups

Let {Gi}ic be a collection of groups, and assume there is given for
each index i a homomorphism @; of G; into a fixed group G. We say that
G is the free product of the groups G; (with respect to the

homomorphism ¢; ) if and only if the following condition holds:
For any group H and any hormomorphism y; : G; — H, 1€l
there exists a unique homomorphisms f: G—H such that for any

iel, the following diagram is commutative

G
_E

i

G;
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(b) Rings :
(i) Complete Direct Sum and Subdirect Sum
Let {A;: iel} be a class of rings.

Consider the set S of symbols (a,, aj, .....) where a; belongs to A;.
These are infinite vectors. Addition and multiplication are defined co-

ordinatewise.

(8.1, o1, e — ) + (b], bz, ...... ) = (a1+b,, a2+b2, ...... )

(a|, Az, ceeennnn ) (b[, bz, ...... ) = (albl, agbg, ...... )

Then S is a ring and if is called the complete direct sum of the
rings A;.

The set of all elements of the form (0, 0, .... 0, a;, 0, ....) is a subring

A’; which is isomorphic to A; and the mapping

(a5, 8z, w5 @iy o) —(0, 0, .... 0, a;, 0, ....) is homomorphism of S
onto A';. The subring which consists of all elements of S which have only
a finite number of nonzero entries is called the weak direct sum of the

A;. The weak direct sum is also called the direct sum.

Thus the natural homomorphisms of the weak direct sum to A'; are

onto for every i. We say that a subring S* of the complete direct sum S is

a subdirect sum of the rings A; if natural homomorphism of §* to A';

(a1, az, - » 8> ) =(0, 0, ... 0, a, 0, ....) is an onto mapping for

every i .

The subdirect sum has a Very useful characterisation in the

following result.



15

Theorem (|34],p 64)

A ring R is isomorphic to a subdirect sum of the rings A; if and

only if R contains a class of ideals {B;} such that [1B,=0and R/Bj= A;

(c) Radicals
A non-empty class R or rings is called a radical or a radical class if
(o) R 1s homomorphically closed;

(B) every ring A has an R-ideal R(A) which contains every R-ideal
of A;

(y) for every ring A, -R_(AB has no non-zero R-ideals.
A

If R(A) = A, A is called an R-radical ring and if R(A) = 0, A is

called an R-semisimple ring.

Examples

(1) The set of nil rings is a radical N. Here a nil ring is a ring. A

such that for each x is A, x"=0 for some positive integer n.

(2) The set of all right quasi-regular rings is a radical J. A ring A is

called right quasi regular if for each xeA, there is an element

yeA such thatx +y +Xy= 0

Given a non-empty class of rings C, there is a smallest radical

containing C. It is called the lower radical determined by C. and is

denoted by Lc. If C satisfie
1apped homomorphically onto a non-zero ring in

s the condition: every non-zero ideal of a non-

zero ring in C can be n

C. then the class Uc of rings A which cannot be mapped onto a non-zero
?
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ring in C is radical and is the largest radical with respect to which A is

semisimple.

We now describe a number of methods of forming a new radicals

out of two given radicals.

(i) Join (Sum) and Meet (Product) of two Radicals
Let R, and R; be two radicals, then the Join or the sum of R; and

R, is the radical Z,,, (see Leavitt [60], Majumdar and Dey [49].

For two radicals R, and R,, the meet or the product of R, and R, is
the radical R; M Ry ([55], [43]). This is denoted by R; A Ry or Ry Rz and
is the largest radical contained in both R; and R,.

(ii) Radical Pairs and their likes

For two radicals R, and R,-Snider [43] defined a radical (R, : R»),

called the radical pair, defined as

(1) (R, : Ry) = The class of all rings A such that for each ideal I of
A A
A, R, ("I‘l) o R (7)

Majumdar and Paul [46] generalised this construction and obtained

three radicals and called them radicals similar to radical pairs. These

are :

2) Ry; R,) = The class of all rings A such that for each ideal I of

! /
A and each ideal J of I, R, (7) DR (7).
3) Ry | | R,) = The class of all rings A such that for each ideal I

A
of A, Ry (’/[1)=R2 (7)'



Id

(4) (Ri ® Ry) = The class of all rings A such that for each ideal T

of A and for each ideal J of I, R, (§) =R, (i).
J

The classes of rings (1) —(4) are not always radicals. Conditions for

which these classes of rings are radicals have been stated and proved in

[43] and [46].

(d) Lattices

'-

Majumdar and Sultana [ ] defined two kinds of internal and
external chain products and also internal and external tag products of

lattices. Bae and Lee [ ] define truncated product and Bennet [ | defined
rectangular product of lattices.

We describe :

There are a number of products of lattices. We shall describ.e here
some of them.
(i) Direct Product

Let L and K be lattices. Consider LxK, the Cartesian product of the

sets L and K. Define two binary operations A and v on LxK by
(a,b) A (@, b)=(ana ,bA b"),
(a,b)v(a,b) =(ava' ,bv b)

Then L x K becomes a lattice under these operations. This lattice is

called the direct product of L and K. The definition of direct product can

be extended to an arbitrary family of lattices.
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Example

The set of all real numbers is a lattice under the usual ordering. If
forz=a+ib,z’'=a' +ib’ (a, b, a', b’ € N), we define z < 7' if eithera < a,
or (a =a’ and b < b") then C, the set or complex numbers is a lattice under

this ordering and is isomorphic to the direct product 9 x 9.

(i1) Free Distributive Product [13]

Let L; and L, be two disjoint distributive lattices. Then Q = L; U
L, is a partially ordered set. A free lattice generated by Q over the class D

of all distributive lattices is called a free distributive product L, and L, .

(iii) Tensor Product of Distributive Lattices

Let A, B and C be distributive lattices. A Functionf: AxB — Cis
called a bihomomorphism if the functions g, : B — C defined by gi(b) =
fla ,b) and h, : A > C defined by hy(a) = f(a ,b) are lattice
homomorphism for each a €A and b e B.

Let A and B be distributivé lattices. A distributive lattices C is a
tensor product of A and B if there exists a canonical bihomomorphism f :
A x B — C such that C is generated by f(A x B) and for any distributive

and any bihomomorphism g : A x B = D, there is a homomorphism h : C

—» D satisfying g = hf.

(i) Internal Chain Products [55]

Let (L, <) be a lattice and A, B be two sublattices of L such that A

« B, B ZA.
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AUB will be called the internal chain product (first kind) of A with
B if

1 AnB=g,
(i) foreachx eAandy e B,y <x.
We denote this product by A.B. Clearly A-B is a sublattice of L.

AUB will be called the internal chain product ( second kind ) of

A with B if

(i) ANB=C (say), C#4¢,
(il) foreachx eA-B,yeCandze B-A,zsy=sx.

We denote this product by A ® B. Then A © B is a sublattice of L.

(ii) External Chain products [55]
Let (A, <)) and (B, <) be two disjoint lattices. Let X=A U B and

define a relation < on X by

(i) foreachx,y€ A x<yifxsy,
(i) foreachx,y €B,x <Yy ifx <y,

(iii) for each x €B, yeA,x<y.

Then < is a partial ordering of X and (X, <) is a lattice. We call it the

external chain product (First kind) of A with B and denoted by A:B.

Let (A, <) and (B, <,) be two disjoint lattices such that there exists
sublattices C of Aand D of B with the properties:
(i) foreachx € A—Candforeachy € C,y 1%

(ii) for each u eB —D and for eachveD,us v;

(ili) thereisan isomorphism f from C onto D.
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Define an equivalence relation ~ on A U B by the partition
M= {{x} | xe(A-C)U (B -D)} U {{x, f(x)} | xeC).
Thus, for each x € (A-C) U (B - D), cls x = {x}, and for each x

€ C,clsx=cls f{(x) = {x, f(x)} Let x === B Define a relation < on X by

(a) foreach x,y € A, clsx <clsy ifx <y,

(b) foreach x, y € B, cls x <cls y if x <y,

(c) for each xeB — D and for eachye A - C,clsx <clsy.

Then < is a partial ordering on X and ( X, <) 1s a lattice.

We call X the external chain product (second kind) of A and B,
and denote it by AGB.

(iv) Internal Tag Product [S5]
Let (L ,<. ) be a lattice and let A and B be two distinct bounded

sublattices of L such that
(1) AN B= {]-/-\: lB: OA7 OB}

(2) 1o =15, 0= 0.

Define the relation < on A U B by the following:
(i) foreachay, a €A, a <ayifa; L ay,

(ii) for each by, by €A, b <b, if b; £, b2

(iii) for each a €A, b €B, a# 1a, 0,and b# 1p, 0y =>a <b,b<a.

Then < is a partial ordering and A U B is a lattice under <. This

will be called the internal tag product of A and B and will be denoted

by AoB. Clearly, AoB s bounded, and 1408 = 1a = 15, Oaos = 0o = Og.



21

(v) External Tag Product [55]

Let (A, <)) and (B, <) be twé disjoint bounded lattices. Let X = A
U B, and let ~ be the equivalence -relation of X defined by the partition: I
= {({x}| x# 14, 15, Oa, 0} U {{1x, 15}, {On, Og}}. Thus, cls 1, =cls 15
= {1a, 1g}, cls 0o =cls Og = {04, Og}, cls x = {x}, x # 14, 1p, O, Op.

Define a relation < on - by the following:

(i) foreach x,y €A, clsx<clsy<ifx <y
(ii) foreach x,y €B, clsx <clsyifx 5y
(iii) foreachx € A,y € B, x # 15, 0p, and y # 133, Oy, > cls x < cls

y,clsy <clsx.

Then < is a partial ordering and X is a lattice under <. It will be

~

called the external tag product of A und B.

We denote it by A O B.
All lattices L with 1 to 6 elements are expressed in terms of

chain products and tag products as follow

Number of Lattices

elements

1 S'

2 §?

3 s*

4 s* sns’

5 g3 s, (S3DS)(S3DS)S s*1s*isd st
s s, (s [ZJS) (s"ms’) s' s'.(s*nstus?,
(s’ 0s’ DS)S -

TR YT YR A UNTERN T
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Majumdar and Sultana [55] defined two kinds of internal and
external chain products and also internal and external tag products of
lattices. Bae and Lee [63] define truncated product and Bennet [64]

defined rectangular product of lattices.
We describe :

There are a number of products of lattices. We shall describe here

some of them.
(i) Direct Product [55]

Let L and K be lattices. Consider LxK, the Cartesian product of the

sets L and K. Define two binary operations A and v on LxK by
(a,b)a(a ,b)=(ana ba b),
(a,b)v(a,b)=(ava ,bv b)

Then L x K becomes a lattice under these operations. This lattice is
called the direct product of L and K. The definition of direct product can

be extended to an arbitrary family of lattices.

Example

The set of all real numbers is a lattice under the usual ordering. If

. L 1 . < q'
forz=a +ib,z =a' +ib’ (a,b, &, b’ € R), we define z < z' if either a < &,

or (a=a'and b <b’) then C, the set or complex numbers is a lattice under

this ordering and is isomorphic to the direct product 9N x R.
(ii) Free Distributive Product [13]

and L, be two disjoint distributive lattices. Then Q = L, U

Let L,
. ; srated by O over the class D
: ti -dered set. A free lattice generated by &)1 clas
IH: !;t?! i’-l ;;sm-lil;/ﬁgmmm&ﬁ V HAISE B TR AR R BIRRNRE b arke e



(iif) Tensor Product of Distributive Lattices

Let A, B and C be distributive lattices. A Function f: A x B — C is
called a bihomomorphism if the functions g, : B — C defined by g,(b) =
fla ,b) and hy, : A — C defined by hy(a) = fla ,b) are lattice

homomorphism for each a €A and b € B.

Let A and B be distributive lattices. A distributive lattices C is a
tensor product of A and B if there exists a canonical bihomomorphism f :
A x B — C such that C is generated by f(A x B) and for any distributive

and any bihomomorphism g : A x B — D, there is a homomorphism h : C

— D satisfying g = hf.

2. Topology

(i) Product space
Let X and Y be two topological space. Consider the Cartesian

product X x Y together is with the topology T of generated by all sets of

the form U x Y and X x V, where U and V are open sets in X and Y

respectively. This topological space X x Y is called the product of X

with Y.

Example

The Euclidean plane with the usual metric topology is the product

of the real line with itself.

(i1) Sum

Let X and Y be two topology spaces such either X N'Y = ¢ or the

topology on X M Y as subspaces of X and Y are identical. Then X U Y
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together with the topology T consisting of all subsets of X U Y which are
of the form G U H, where G and H are open in X and Y respectively, has
been defined as the sum of X and Y and has been denoted by X+Y in [ ].

[fX Y =¢,the sum is called the direct sum and X+Y is written X ®Y

(iii) Fibre Space

Let X, B be a topological space, a map p: X —B is called (Serre)
fibre map it for each polyhedron |K | , map fi: | K | — X and homotopy g
: |K| — B with gy = fyp there is a homotopy f : | K | — X with g = fp. If
we pick a base point b, € B then p']bo called the fibre (over bg), X is

called the fibre space or total space and B the base-space of the

fibration.

Connected Sum

Let S, and S, be disjoint surfaces .The connected sum, denoted by
S #S,, is formed by cutting a small circular hole in each surface, and then
gluing the two surfaces together along the boundaries of the holes. We

choose the subsets D, Sy and D2 < S, such that D; and D, are closed

disc (i.e., homeomorphic to E?). Let S'; denote the complement of the

interior of D; in S; for i =1 and 2. Choose a homeomorphism h of the

boundary circle of D, onto the boundary of D,. Then S |#S, is the quotient

space of S'; U 5" obtained by identifying the points X and h(x) for all

points x in the boundary of Dy. It is clear that S#S, is a surface.

(iv) Suspension

pension SX is the quotient of X x T obtained

For a space X, the sus t _
by collapsing Xx{0} to ane point and Xx{1} to another point. ‘I'he

\
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motivating example is X = S", when SX = ™ with the two ‘suspension
points’ at the north and south poles of $*/, the points (0,...,0, +1). One
can regard SX as a double cone on X, the union of two copies of the cone
CX=(X x ) /(X x {0}). If X is a CW complex, so are SX and CX as

quotients of X x [ with its product cell structure, / being given the

standard cell structure of two 0-cells joined by a 1-cell.
(v) Join

The cone CX is the union of all line segments joining points of X
to an external vertex, and similarly the suspension SX is the union of all
line segments joining points of X to two external vertices. More
generally, given X and a second space Y, one can define the space of all
lines segments joining points in X to points in Y. This is the join X*Y,
the quotient space of X x Y x I under the identifications (X , y1, 0)~ (x,

ys, 0) and (x;, ¥, 1)~ (X2, y, 1). Thus we are collapsing the subspace
XxYx{0} to Xand X x Y x {1} to Y.

(vi) Wedge Sum
Given spaces X and Y with chosen points Xy € X and yp € Y, then

the wedge sum X v Y is the quotient of the disjoint union X Y

obtained by identifying x

homeomorphic to the figure ‘8,

, and y, to a single point. For example, S' v 8 is
two circles touching at a point. More

generally one could form the wedge sum £, X, of an arbitrary collection

of spaces Xq by starting with the disjoint union TIaX, and identifying

points xq = Xo t0 @ single point. In case the spaces X, are cell complexes
o =

and the points xq arc 0-cells, then VoXa is a cell complexes since it is
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obtained from the cell complex I;X, by collapsing a subcomplex to a

point.
(vii) Smash Product

Inside a product space X x Y there are copies of X and Y; namely
Xx{yyp} and {x,}xY for points X, €X and y, €Y. These two copies of X
and Y in XxY intersect only at the point (xy, yy), so their union can be
identified with wedge sum X v Y. The smash product X A Y is then
defined to be the quotient X x ¥/ X v Y. One can think of X A Y as a
reduced version of X x ¥ obtained by collapsing away the parts that are

not genuinely a product, the separate factors X and Y.

(vii) CW- complex [1]
An important and useful method of building up complex

topological out of simple one is provided by the following procedure. The

constituents are called n-cells and the constituted structure is called a cell

complex or CW-complex.

We describe below the procedure :

(1) Start with a discrete set X% whose points are regarded as O-cells.

(2) Inductively, form the n-skeleton X" from X™! by attaching n-cells

g -1 -1 . n : .
¢! via maps Qu .g™! X", This means that X" is the quotient

—_— . -1 n n-1 < % -
space of the disjoint union X" Uge! of X7 with a collection of n

disks D! under the ‘dentifications x ~ @a(x) for x €aD; . Thus a

- ’ h open n-disk.
set X" = X" Uge, where each e isan op
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(3) One can either stop this inductive process at a finite stage, setting
=1 n
X = X" for some n < o, or one can continue indefinitely, setting X
—_— n . .
= unX" . In the latter case X is given the weak topology : A set A

c X is open (or closed) if and only if A n X" is open (or closed) in

X" for each n.
3. Graphs

Let Gy and G, be graphs with disjoint points sets V; and V;, and

live sets X, and X, respectively.
(i) Union
The union G=G,UG, is a graph with V=V UV, and X=X,UX.
(iii) Join
The join of Gy and G is G;+G, is the graph of consisting
GG, and all lines joining V| with V,.

(iii) Product
The product Gy X G, has V=V xV; and any two pts u = (uy, uz)

and v = (vi, V2) are adjacent in Gy X G, whenever (u; = v; and up

adj vp) or (U = V2 and u; adj vi).

(iv) Composition

The composition G = G, [G,] has V=V x V, and u = (uy, uy) is

adjacent with v = (V1, v,) wherever (U adj v, or u; = v; and u, adj va).

4. Categories

A category is a class A, together with a class M which is a disjoint

union of the form M= U[A,B],,

A Bed

(To avoid logical difficulties we
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postulate that each [A, B], is a set). For each triple A, B, C €A, we are to
have a function from [B, C] x [A, B] into [A, C]. The image of the pair
(B, o) under this function will be called the composition of 3 by «, and

will be denoted by Ba.. The composition function are subject to axioms.

(i) Associatively : When ever the compositions make sense are have
(YRl =y (Pov).

(i1) Existence of identities : For each A €A, we have an element 1,€ [A,
A] such that 1,00 = o and Bl, = B whenever the compositions make

sense.

The members of A are called objects and the members of M are
called morphisms. If a.e[A, B] we shall call A the domains and B the
codomain of a. o is called a morphism from A to B and this is

represented by ‘o : A—>B’ or ‘4A—*>B".

If A is a set the category is called small.

The Nonobjective Approach -

A category can also be defined as a class M, together with a binary

operation on M, called composition, which is not always defined (that is a

function from a subclass of MxM to M). The image of the pair (B,®)

under this operation Is denoted by Bo (if defined). An element eeM is

called an identity if ea=c and Pe=p whenever the compositions make

sense. We assume the following axioms:

(i) If either (yB)o or v(Bo) is defined, the other is defined, and they are

equal.



29

(ii) If yB and Bo are defined and B is an identity, then vB is defined.

(iii) Given a.eM, there are identities and e, in M such that e c and ceg

are defined (and hence equal o).

(iv) For any pair of identities e; and ey, the class {aeM |(eLOL)eR is

defined} is a set.

Examples

1. The category S whose class of objects is the class of all sets,
where [A, B]s is the class of all functions from A to B, is called the

category of sets. S is not small.

9 A similar definition applies to the category T of all topological

spaces where the morphisms from space A to space B are the continuous

functions from A to B.

Special Morphisms
0 : A — B is a coretraction if there exists 0’ : B — A such that 60

= 1. A is called a retract of A. Dually, 6 is a retraction if there is 9" :

B—>A such that, 86"=1p. If O is both a retraction and coretraction then 6

. £ % ! s
is called an isomorphism OF equivalence. If o : A'=> A s a

monomorphism, A’ is called a subobject of A.

Dually if o @ A—> A’ is an epimorphism, A’ is called a quotient

object of A.
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Equivalence

A diagram

is called commutative if Ba = y and we say in this case that y factors

through B.

Pull backs and Push out

Given two morphisms al : Aj > A and o 1 Ay > A with a
common codomain, a commutative diagram is called a pull back for o) an
if for every pair of morphisms g/ : P=A, g, : P=>A; such that o) 8 = a

B, there exists a morphism y : P'=>P such that g =By, 5= Bay.

Intersections
If the intersection exists for every set of subobjects of every object
in A we say that A has intersections. If intersection exists only for every

finite set of subobjects we say that A has a finite intersections.

Proposition

If A,—A and A,—A are monomorphisms in a category A, then the

diagram P—>A; is a pullback if and only if

P—A,>A = P=A; A is the intersection of A; and A,. Hence if

A has pull backs then A has finite intersections.
The dual of intersection is cointersection
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Product and Coproduct

Let {Ai}ic be a set of objects in an arbitrary category A. A product
for the family is a of morphisms {p; :A — A; } ;; with the property that
for any family {o; :A" — Aj}ic there is a unique morphism o (A’ — A

such that pjo = o; ,for all iel. The object A is denoted by x 4,. The

jel
morphisms p; are called the projection morphism from the product. Each
p; is a retraction. In particular, this will always be true when A has a zero
object. In this case we can define morphisms u; :A; = A is called the
injection morphisms into the product such that pju; — &; where 6; =0 for
i #jand &; =1a.

The coproduect of the family {Ai}iel is defined dually to the product
.Thus the coproduct is a family of morphisms {u; : Aj = A } called
injections such that for each family of morphisms {c :Aj = A'}ier We
have a unique morphisms o A — A with au; = oy ,for all i €l. The

object A is denotes by @ Ai. If A has a zero object then we can define

iel
projections p; :A = Ai such that pju; = ;.
cl we have A; = A. In this case we denote the

Suppose that for all i

|
product of the family by Al and the coproduct by 'A. We have the

diagonal morphism A: A — Al defined by P; A = 1, for all iel, and

dually, the codiagonal morphism V: 'A—> A de‘ﬁ-ned by Vui=1A for all

A is necessarily 2 monomorphism and V is necessarily an

iel. Then
epimorphism.
- phi from the coproduct P4, to a
In a general category A, a morphism f p @’ ,

ined by its coordinate morphisms

product X B, s completely determ
iel



32

fi=Pifu;, where y is the j-th injection into the coproduct and P; is the ith

projection from the product.
For all A'eA the set of morphisms [A’, A] is in 1-1 correspondence

with the cartesiam product of sets XA, Al [@AJ, XB,] is in 1-1

Jel iel
correspondence with the set of all IxJ matrices of the form (fj;) where fje
[A;, Bj]. We shall frequently denote such a morphism by its

corresponding matrix.

In particular, when A has a zero object, we have the morphism &=(0jj)

Jjel iel iet

{@A, —>XA,} If 8 is an isomorphism then [@A,}is called a

biproduct.



Chapter 2

Direct Product and Wreath Product of
Transformation Semigroups

Introduction

Here we have defined and studied two kinds of amalgamating two
transformation semigroups to obtain a third transformation semigroup.
These have been called direct product and wreath product and have been
defined as generalisations of the corresponding concepts for
transformation groups. Uses of such products have been illustrated, and
the associability of both the products as well as the distributivity of

wreath product over direct product have been established.

Definition

Let S be a semigroup and X a non-empty set. S will be called a

transformation semigroup on X if there is a mapping ¢: SxX—X, for

which we write ¢ (s, x) =s (x) and which satisfies the condition (s; s2) (X)

=s, (si(x)), for each xeX and for each sy, 52 €5.

If S is a monoid, 1L.e., if S has an identify element I, then the

mapping ¢ is further assumed to satisfy 1(x) = x, for each x eX.

Clearly, the semigroup E(X) of all endomappings of X is a

transformation semigroup on X For every transformation semigroup S on
hism y: S —E (X) given by w(s) = f, where f(x) = s(x).

X, is a homomorp
then (s152)(x) = $1 (s2(X)) =fi(H(x)) = (fi 2 )(x),

If w(s;) = fi, w(s2) = £z

and so, y(s152) = fif Thus, v is indeed a homomorphism.
3 &
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E(X) will be c.:alled the full transformation semigroup on X. If X
is finite, so is E(X); and if the number of elements of X is n, the number
of elements of E(X) isn". If S is a semigroup, then End S , the set of all
endomorphisms of S, i.e. the set of all homomorphisms of S into itself, is

a subsemigroup of E(S) under the composition of maps.
Direct Product and Wreath Product of Transformation Semigroups

Direct product and wreath product of transformation groups are
well known and useful concepts (see [ ] ). Using Majumdar’s ideas we
generalize these concepts of transformation semigroups and give some

characterizations and study their properties.

We consider two transformation semigroups S; and S; on non-
empty sets X; and X, respectively, we shall see how S; and S, naturally

yield transformation semigroups on X, UX, and X, x X, respectively.

Definition

The direct product of S, and S,, written S,xS,, is defined as a

transformation semigroup on X,UX,, the elements of S,xS, being the

ordered pairs (s, S2), S1 €51, $2 eS,, with (51, 82) (x1) = s1(X1) (81, 52) (%2)

= sy(xp), for each x,€X;, x2€Xa The multiplication in $;xS; is

; t i ' is indeed a transformation
component-wise. It 18 casily seen that S1xSs

' : ents of S; x S, is
semigroup. It S; and S, are finite, the numbet of elem [ X S,

obviously the product of the numbers of elements of S; and S,.
Theorem

If Sy, S,, Sy are transformation semigroups on X, Xa, X3, then
ls 2

(SxSy) x S3 = S, x(S2xS3) as ransformation semigroup on X; WX, UX;.
1 XD2 3 = 2
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Proof

Obviously, the map ((s), ), 53) — (s1, (s2, 53)) is an isomorphism
of semigroups (S,xS,) x S; and S;x(S, xS;). To see that is also so as
transformation semigroups, we note as a typical case, ((s, s2), 83) (1) =

(s1, 82) (X1) =s1(x1), and also, (s, (s2, 83)) (%)) = 51(x)).

Definition

The wreath product of S; with S,, written S; ¢ S, is the
transformation semigroup on X, x X, consisting of elements 6 on X, x X
which are given by 0 : X; x X; =& X, x X such that, 8 (x), X2) =
(514, (%,).8:(x,)), with s in S; and for each s, in Sy,s,,, s, being

determined by Xa.

It follows from the definition that if Sy, Sy, X, X, are finite, then

lSl c Sz|= |S]1|‘\"'><Sg|, where IS; | and | X, | denote the numbers of

elements of S;(i=1,2) and X, respectively.
An alternative description of the wreath product in terms of direct
products is given below:

Theorem

If (S, X;) and (S2, X,) are transformation semigroups, then (S g

% S )st ( U X, )qujwhere each §,, =S8, and
1,%3 1 N 2

XN .

S,, X;xXa) = ((

X,€X)

X, =X | :

1%,

Proof

,| b
Define ¢ : (S1 ¢ S,, X; xXz) = [_r‘;f\,lSnxz XSZ’.vg',X"x') y

¢ (O = (o, },7) and define
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b [x\ Sia %y XSZ’.\-H:, Xl,xz) — (81 ¢S5, X xX5) by
V ({o,,},1)=0(.0).

It follows from the definitions ® and s are inverses of each other,

so that both ¢ and v are 1-1 and onto.
Now, (06,1 6 (o'v)) (X1, X2) )
=0y (0, (), 7' (1))
= (OO, (50)) T(7' (%))
= (0 5y )15 (777) (%2))
= (o, (x)), 77" (x3))
= 0,0y (X1, X2)
where o] (x,) = (04,0, (X))
Hence
(900 (608" @) (%, )
= 4 Bran) (i3,
= (for, ) (%)
= o, (x),77'(X3)

(1)

= (O iy Ty (51,77 (X2))

X

Also

(0(Bom)> @ (0¥, xl)



Also,

And

= ((b(e(ﬁ.'c))a (G;! (XI),T’(XQ))
= (Gr'(.\'!) (O-iz (XI ))’ T(T’(xz)))

= ((O'r'(.\',) 0-;3 (Xl )aTT’(Xz))

= (0 5.1, (&'vy) (x2)
= ((I)(O G"‘t'c')) (X2)
= (11')(x2)

= ($(0 (b’ (o)) (%2)

= ($(0 (.0) (T'(x2))

= 1(7'(x2))

= (t1')(x2)

It follows from (1) and (2) that
Ty S NI CREEN
Thus ¢ is a homomorphism.

Therefore ¢ is an isomorphism and

x,€X;

(SIQSE, Xlxxz)E ([ X Sl,xngz,H’ X|>x2)UX2J-

Clearly, this description also holds for

transformation groups.

transformation g

Wreath prod
roups or (resp- transformation semigrou

37

(2)

wreath products of

ucts are very much useful when one has a situation of

ps) on a union of
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collection of exactly similar classes, or sets with structures. Applications
of wreath products of groups and semigrbups appear in Majumdar and
Sultana [55] in case of lattices and Majumdar [50], Hossain [52] and
Majumdar, Hossain and Dey [53] in case of directed graphs specially,

directed rooted trees.

We explain and illustrate applications of direct products and wreath

products through the following example.
Example

Let X {a, b, c, de, £} The full transformation semigroup E(X)
consists of all maiapings of X into itself, i.e., under ¢ € E(X), each of a, b,
c, d, e, f may be mapped onto any one of a, b, ¢, d, e ,f ,of course, @
determines which one will be mapped onto which element. Thus the
transformation semigroup (E(X), X) has 5° =46656 such elements , i.e.,

|E(X) | = 46656 with | X | =6.

Next, write X = X; U X, where X, = {a, b}, X2 = {c, d, ¢, f}.
Then, if we consider the semigroups of all those endomappings of X
which map X; into X, and X, into Xp. Then S is precisely the direct
product E(X,) x E (X,) transforming X,UX, into itself so each X; is

mapped into itself. Hence the transformation semigroup (S, X) = (E (X))
= 1024 elements. Thus, |E (X;) x

x E(X,), X; U Xy) has 22 4% =4 x 256
E(X,) | = 1024, with x| = | XU, =5

Finally, write X =E, UE, UE3, where E, = {a,b}, E» = {c, d} and

E; ={c, f}. Consider the set of all endomappings of X which maps all

elements of an E; into an Ej i,j not necessarily distinct. They form a
subsemigroup S’ of E (X) is precisely of the form E(2) ¢ E (3). Here E(n)

‘s the full transformation semi group on a set with n elements. This is
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explained as follows. We may write X; = {x,,, Xa1}, Xa = {X12, X22}>
X3={X13, X23}, 1.€., we write a = x;;, b=x3,, ¢ =X/3, d=X2, ¢ =X|3 f = Xu3.
Again we may write Y = {y,, y2} and X = Yx {1,2,3}, so that (Vi) = Xisj
i=1,2, j=1, 2, 3,. Then S’ is precisely E (Y) ¢ E ({1, 2, 3}). Because,
under the action of the transformations in S, each of the Yx {1}, Yx{2}
and Y x{3} is mapped arbitrarily into any of these yielding the semigroup
E ({1, 2, 3}), and each such map is to be considered together with
independent maps of each of the sets Yx{j},j =1, 2, 3 into itself, i.e,
with a copy of E(Y) , the total number of required endomappings in S’ is
|EY) |2 x [E({1,2,3)) | =22 x3° =4 x3° =64x27 = 1728.

Remarks

(i) If (S;, X)) and (S5, Xy) are transformation semigroups with

Sz{l_\_z}, then both (S; x Sz, X; U X3) and (Sig Sz, X X X;) may be

identified with (S, X)) and J]S,..¥X, respectively, ignoring the trivial

x€X;

action of S, on Xs. Thus, in this case, S, xS,=8;and Sig S = []—[S,&J

(direct product) as semigroups.

(ii) If S, {1, }, then both (S; x Sz, X3 X,) and (Sig Sz, X1 x X3)
may be identified with (S2, X2) since §, =8y = lgo for each pair of
elements  Xa, X2 €Xa.

(iii) If S and S’ are transformation semigroups on the same set X,

then (S;g 8’ , X x X) may be identified with [(]__[Sx]xS',UXX UXJ. As

xeX xeX

semigroups, Sg S' £ (stjx S'.

XEX
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If, in particular, 8=S' and X is finite with |X| =n, then Sc S
= SxSxSx:een xSx8 (n+ 1 copies).

We shall now establish a result which will show that wreath

product is distributive over direct product.

Theorem

Let (S, X)), (¢, X;) and (S;, X;3) be three transformation
semigroups. Then (S;g (S, x S3), X; x (X5 U X3)) = ((S) ¢ S2) x (S) 6 S3),
(X % Xa) U (X1 % X3)

Proof

Define @ : (Sig (S2 % S3), X1 x (Xa U X3)) =((S1 6 S2) x (81 6 S3),
(X x X2) U (X x X3)) by ¢ (8) = (8, 6) (1)

where, if 0 (X1, X2) = (o, (%,),(03,03)(x,))

=(0,,, ()0, (x,))
0 (x1, X3) = (0, ():(02,03)(%))

= (0, (%,),05(x:)) (2)
Then (6',0") (x1, %) = 0 (x1, %)

= (o, (x1), 02 (x2)) (3)
(6,6") (x1, x3) = 0" (X1, X3)

= (o, (x1), 03 (x3)) (4)

Also define
W1 (S; ¢ S2) x (S16S3), (Xi % Xy) U (X x X3)) =

(S1g (S2 % S3), Xy x (X2 U X3))



by v (0,0")=0"

where if (0, 0") (X, x2) = 0’ (x1, X»)

=(0o,, (x1); 02 (X2))

(0, 0") (x1, %3) = 0" (x1, x3)

=(o,,, (x1), 03 (x3))

then

0" (x1, X2) = (o, (X1), (02, G3) (X2)
= (o, (x1),02(x2))

0" (x1, x3) = (o, (X1); (02, 03) (X3)
= (o, (x1),03(x3))

It follows from (1) --- (10) that

D 1 (5165008 1 8008 KON D)

and WO =15 . s x50.0x (50020

Thus both ¢ and  are 1-1 and onto.

Now, Let 8, 0 & (S (Sz2x S3), X1 x (X2 X;)) by given by
0 (x1, X2) = o1, (x1), 02 (x2))

B (x1, X3) = 0., (x1)5 03 (%3))

where &, €S,, 03 € S3, and o\, » Oy

the former being determined b

y X, and the latter by X3.

41

(8)

9)

(10)
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and
8 (x1, x2) = o1, (x1), 02 (x2))
0 (x1,%2) = o, (x1), 02 (x3))

where o, €8,, o3 € S, and By 4 E;,“ €S, the former being
determined by x, and the latter by x3.

Then
(0 ) (x1, %2) = (01, 7, (%,),0,52(x,)),
© 0) (x1, X3) = (0, 71,3, 0,53(x,))

Since

I

¢ (8) = (0,0,)andp(®) = (81,0 »),
Where

(8, 6) (x1.%)) = (00, (31,02 (%)s
(6,65) (x,,%3) = (o0, (), 05 (),

and |
(81, 82) (x,x) = €ors (1), 02 (%))
(81, 82) (x,%,) = (@10 (). 03(%)

we have ¢ (0 0) = (0) ¢( é),

Hence ¢ is a homomerphism. Therefore ¢ is an isomorphism, Thus

(Si¢ (S2 % Sa)s X1 x (X2 W X3)) = (816 82) X (81 6 Sa), (X, x Xo) U (X, x
X3).



Chapter 3

Maximal and Minimal Sums and Products

Introduction

We shall construct from two objects in a category a third object
which will be maximal or minimal in some sense. The construction will
be done in a number of ways and the resulting object will be termed a
kind of sum or product of the given two objects. We shall examine the
existence and uniqueness of such products, and in possible cases, give
examples in certain particular categories. A brief study of their properties
will be made in a few cases. For groups two other kinds of constructions

will also be considered.

1. Let C be a category.

(a) Definition
(a) Let A and B be two objects in C. An object P, will be called a
product of the first kind for A and B if (i) there exist epics

P —2>4, P—£B (ii) if P'is any object in C such that there epics
P —< 4, p—£— B, then there is an epic @: P2 —>P, such that ap=a/,

Bp=Pp', i.e. the diagram P,

is commutative.
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In general, let {A;} be a class of objects in C. An object P in C will

be called a product of the first kind for {Ai}, if (ii) for each i, there exist

an epic o;:P\—A; and (ii) if there is an object P and for each i, there is an

epic a,: B’ —P; then there exists an epic @ : F; =P, such that «] = o for

each 1.

If ¢ is unique, the product P,, if it exists, is unique upto

equivalence.
Examples

(1) I C=S, then the category of sets, Pj=x A, the cartesian product.

(i) If C=G, the category of groups, then P/=][4,, the restricted
direct product of Ay’s. {{a} |aieAi} with component wise
multiplication with o; ({a;}) = aj, i.e., o; is the projection onto
the i-th component.

(iii) If C= My the category of all R-modules, R being a ring with 1,
then P;=the direct product of the Aj's ={{a;} ’a;eAi}, with
component-wise addition and R-multiplication and «; is the
projection onto the i-th component.

(iv) If Vg is the category of vector spaces over a field F, then
P|:{{Vi}lvievi}: with component wise addition and scalar
multiplication with the projection onto the i-th component.

(v) If C= T= the category of all topological spaces, then P\=]]4,,

the product space of the Aj's and «; is the projection onto the

i-th component.
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Let {A;} and {B;} be two class of objects in C with P; and P’ as their
products of the first kind on C, and let f; : A; — B; be an epic, for each i.
Then, for each i, fio; :P—B; and fioi:P'—>B; are epics. Hence by the
definition of the product there is an epic ¢':P—P' such that ¢'fioy; = iy’

(b) Definition

If C is such a category of finite sets/finite groups / finite
topological spaces, then the product does not exist for infinite class of
objegts. If in the above definition we remove the restriction of uniqueness
from ¢, then the product P;, so defined will be called a semiweak

product of the first kind.

Examples

(i) Every product of the first kind is obviously semi-weak product

of the first kind.

(c) Definition

An object P, will called a weak product of the first kind for a class
of objects {A;} if there exist epics ai:P,—>A;, for each i and an epic
@:Py'—>Po.

Examples
(i) Clearly every product and every semi-weak product of the first

kind are weak products of the first kind.

Comments
(i) It remains to be decided whether the three concepts of a product,

a semi weak product and a weak product are all distinct \We are yet to

find an example of a semi-weak product which is not a product and an

\
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example of a weak product which is not a semi-weak product. In fact we

have not been able to provide an example of a weak product which is not
even a product.

Also it remains to be decided whether a product defined here is
different from the usual concept of product (an universal object) in

categories, the given examples of our product are all products in the usual

sense,

(i1) The products in certain categories like G, My, V, T represent
objects which are minimal object in same sense.
Theorem

Let {A;} be a class of objects. If a product of the first kind exists
for {A;}, then it is unique.
Proof

Let P, and P’ be two product of the first kind for {A;}. Then for
each i, there exist epics P; —%— A; and P;’ —%— A, and also unique epics
P,—2> P’'and P’ —%— P, such that &; ¢=q; and «, ¢'=a;’ for each i. So

ope'=0y; and o ¢'¢=a;, for each i. It follows that the diagram

Sl P

—_—r -——-,———P

P, 5
a;
o, / : PN ,/
Aj

tative. By the definition of a product of the first kind ¢'¢ =

Q'
PP P, P!
Isi
i
Aj
are commu

1, and Q@' =1,. Hence both ¢ and ¢’ are equivalence.
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2. Definition

For a category C, let {A;} be a class of objects and let S; denote the

object in C such that (i) for each i, there exists a monic Aj—2— S, and if

$' is an object in C such that there are monics A;—%— S, and if §' is an
object in C such that there are monics S; —2— S’ such that oo=o;. S; will

be called a sum of the first kind for the class {A;}.

A semi-weak sum and a weak product of {A;} are defined as the
corresponding products as S; with the arrows reversed and ‘monic’
replacing ‘epic’. |
Theorem

Let {A;} be a class of objects. If a sum of the first kind exists, then
it is unique.
Proof

Let S, and S/ be two products of the first kind for {A;}. Then for
each i, there exist monics A;—%— S, and A;—%— S/ also unique monics
Si— > S'and S;—%—> S/such that o/¢=o; and o ¢'=a;. Hence

aipe'=0,; and a; @'¢=ca,, for each i, thus the diagram

0’ o’ .
. L. ) R i ——

A T

N\ RN

Ai Ai

'
i

are commutative. By the definition of a sum of the first kind ¢’ = 1 and

@@’ = 1,. Hence both ¢ and @' are equivalences.
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Examples
(i) ForS, S, =X, Ai, the Cartesian product,

(if)  For G, S, = T Ai, the restricted direct product of the Af's, i.e.
{{ai} | 3i€Ai} with A; not equal to the identity element only for
a finite number of i’s and with multiplication defined

componentwise.
(ii1)  For both My and Vy, S, is the direct sum of {A}.

(iv) For T, S, is equal to the product P, which is the product space

[14 -

3. Let C be a category. Let {A;} be a class of objects in C. An object P,
of C will be called a product of the second kind for {A;}il (i) there exist

monics P, —%— A;, and (ii) if there is an object 7, and there are monics

P, —= 5 A, then there exists a monic P, —*—»P, such that «, ¢p=c¢/ for
each 1.

Remark

If we replace ‘monic’ by ‘morphism’ and demand ¢ to be unique

then , ‘the product of the second kind’ becomes ‘the product’ in the usual
sense.

Theorem

It {A;} is a class of objects of C for which a product of the second kind

exists, then this product is unique upto equivalence.

Proof
Let P, and P/ be two products of the first kind for {A;}. Then for

each i, there exist monics A;—2%—S; and A; > S, also unique monics

:
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v : - ,
S Si and Si—— 5 such that o' =y and « ¢'=a;’. Hence

Foes ! o LA & : 5
cipp=a; and o ¢'p=«’, for each L, thus the diagram

o'p '
g T g, 00

S y P LS’ Ir
BRE e T

N, N/

A

are commutative. By the definition of P, and 7} it following that qo'=
l,and @'¢ = 1,i.e. ¢ and @' are equivalences, since o; and and. Hence

both ¢ and ¢’ are monics.
Examples
(1) For S, S| = x;A,, the cartesian product.

(if) For G, S; = 2.A,, the restricted direct product of the Aj's, i.e.
{{a;} | a,e A;} with A; not equal to the identity element only for

a finite number of i’s and with multiplication defined

component wise.
(iii) For both Mg and Vg, S; is the direct sum of {A;}.

(iv) For T, S, is equal to the product Py which is the product space

14 -

i

Comments
(i)  The product of the second kind does not always exist. For
example Z, and Z both are Z-modules or abelian groups. and

there is no product of this second kind for them in My=A.
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(1) As known by example (i) above, in certain categories the

product of the second kind is a maximal object (a set) which is

contained in each of the given objects.

(i11) The products of the two kinds introduced here are thus dual to

each other in some sense.,

4. We now consider a second kind of sum in a category. Let C be a
category and {A;} a class of objects in C. An object S, will be call a

product of the second kind for {A;} if (i) there exists an epic A;—%— S,

for each i, and (ii) if S} is an object such that there is an epic A; —%— 5!,
then there is an epic S; —2- 53, such that o;p = « .

Remark

If epic is replaced by morphism and ¢ is assumed to be unique, the

sum of the second kind becomes the usual coproduct.

Theorem
If {A;} be a-class of objects in A category. If a sum of the second

kind exists for {A;}, then it is unique upto equivalence.

Proof
Let S, and S, be two sums of the second kind for {A;}. Then for

% 48, and A;—%— S; ,and also there exist

each i, there exist epics A;

epics A;—2—> S;and Ai—2—> S, such that @, =o; and ¢’ e, =0’ for each

_ B et . o .. o
i. Hence ¢'@a=c; =1, and @'/ =a; =1y for each i, i.e., the diagram

' oo’
g ———*
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are commutative. By the definition of S; and S; @'¢p =1, and pp'= 1,
since o; and e« are epics. Hence both ¢ and ¢’ are equivalences.

Examples

(1)  IfA;=Csand A,=S;, then the product of the second kind for
{A1,Az) is Cs.

(i) Ifc,,cC,..cC, arecyclic groups of order m;, my, ... m, with

the h.c.f of my, my, ... m, = p a prime, then C, is the sum of the

second kind for C, , C, ... C, .

m?

5. (a) We now consider only G, the category of groups.

Definition

For two groups A and B we call a sum of the third kind for A and
B if (i) Q contains A and B as subgroups and (ii) no proper subgroup of Q
contains both A and B. Q is thus a minimal group containing A,B as
subgroup.

The definition is similar for an arbitrary class {A;} replacing A and B.

Comments
(i) It is easily seen that Q need not be unique. For if A=C; and
B=C,, the cyclic groups of order 3 and 2 respectively, then both
S,, the semidirect product of A and B, and Cg, the direct product

of C; and Cy, are sums of the third kind for A and B.

(i) In general, for any two groups A and B, their direct product and

semidirect product both are sums of the third kind for A and B.



(a) The previous examples also show that the product of the
second kind for A and B need not be abelian even though

both A and B are abelian.

(iii) If we impose A Q in the definition of the product Q, the totality
of such Q’s include as particular cases the extensions
1-A—>Q—B-—1, and in these cases, all these extensions build

up the second cohomology group 112 (G,Z) with integral
coefficients. In such situations the further restriction is B = %

If' A, B are finite, consideration of the orders of A, B and Q
proves that such Q is induced a sum of the third kind for A
and B.

(iv) The free product of two groups A and B, two is a product of the

second kind for A and B. We thus see that if A and B both are

finite, a product of the second kind for A and B need not be

finite.

(b) The corresponding sum in the category of sets is the union. AUB s

the sum of second kind for sets A and B. For an arbitrary class of sets

{A;}, this sum Q is U/l, .

Ifin G, A and B are subgroups of a group G, then the sum Q of the
third kind for A and B is the group theoretic union of A and B. This

means that Q is the subgroup of G generated by AUB. Q for {A;} where

are subgroups of a group, is the subgroup generated by | 4, .

(¢) In the category Mg and V, the sum of the third kind for A and B, is

their direct product A@B. If A, B are submodules of a module or
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subspace of a vector space V, then their sum Q is A+B in My or Vi

respectively.

(d)  Inthe category T, sum Q for two disjoint topological spaces A and
B is their direct sum and if A and B are two intersecting topological
spaces for which the intersection has the same topology as subspaces of A
and B, then the sum Q is the sum A+B defined in Chapter 2. We have

discussed its properties there.

(e) In the category of lattices a product of the third kind for a class of

lattices {A;}is a lattice S; such that (i) each A; is a sublattice of S, and

(i1) S'5 is a lattice containing each A; as a sublattice, then S; is a sublattice

of S’

Comment

(i) A sum of the third kind for a class of lattices need not always be
unique.

For if A, and A, both are chains of length 3, then A, A,

themselves as well as the lattices are sums of the third kind for A, and A,
and these are non isomorphic lattices.
(ii) If the A’s are sublattices of a given lattice L, then S; for {A;} is the

sublattice of L generated by | J4, .

6.(a) Again we consider only the category of groups. Let A and B be

two groups. Let R denotes a group which has both A and B as factor
groups but no proper factor group of R has this property. We call R a
product of the third kind for A and B.

The definition for a product of the third kind for an arbitrary class

{A;} of groups is similar.
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Examples

(i) If A=C,, B=C,, cyclic groups of order 4 and 6 respectively, then
Ciz and Cy x Cg both are products of the third kind for {A, B}.

Thus a product of the third kind may not always be unique.

(i) Let A;= ¢, , i =12, ... then a product of the third kind for {Ai} is
the quasi-cyclic group (Zy), the group with generators, X;, Xz, X3 ...
={x, | neN} and defining relations.

n eN

P o — P =P = == — _
i =1, x;=x3, x,=x}, ., x, =x%, ={x" =1, x, =x°

n+l n n+l

(b) In Vy, the corresponding product of V, and V, is V,, if V, and V,

are finite dimensional with dim V,>dimV..

(¢) (i) We now consider a product of the third kind in T, defined as in (a).
If X and Y are topological space none of which is homeomorphic
to a quotient space of the other, then X x Y is a product of the third

kind for Xand Y.

(ii) If X is a topological space, then a product of the third kind for X™
and X" is X", if m>n. In particular, for A=R"™, B=R" (m2n), A is a
product of the third kind for A and B.



Chapter 4

Semi-periodic Product

Introduction

Two kinds of products of partially ordered sets have been defined.
These have been called semiperiodic product and periodic product. These
products for lattices have been studied and a few properties have been

established.
Definition

A partially ordered set (X,<) will be called a semi-periodic
product of a partially ordered set (A, <,) with a collection of partially
ordered sets B={B,, <.} a € A if (i) there exists an onto order
homomorphism p:X—A, such that p"(a) = B,, for each acA. (ii) for each
a € A, there exist order homeomorphisms i,: B, =X and n,;X— B, such
that m,i, =1B, (iii) for each pair a, a' €A, a<a' and a # a’ together implies
x<x' whenever x € p'l(a), x'ep’'(a’) and if a=a’, then x < x' if fux) < fy
(x') X is denoted by A O B. X will be said to be semi-periodically

ordered.

Periodic Product
If each B, is order-isomorphic to a partially ordered set (B, <p),
then X is said to be periodically ordered. In this case, X is called the

periodic product of A with B and is denoted by A o B.
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Examples

I.Let (A, <) bea partially ordered set and B= {B,} where (B,, <,)
is a bounded partially ordered set. Let X= {(a, by), a€A, b,eB,} and
define < on X by (a, b,) < (a', b'y) if eithera< 4, a’ ora=a’ and b, <, b',.
Then X = A O B. Here p: X — A is given by p(a,b,) = a, and i(a) =
(2,0, ), for each a €A, b, €B; while 1, : X—>B, and i, : B, = X, are

given by m,(a,b,) = b,, ia(by) =(b, ,a ) foreach acA, b, €B,.

In particular, if each B, is order-isomorphic to a partially ordered
set B, then A OB, = A o B is order isomorphic to the direct product A x
B. In particular if A=[0, 1] = B, then A x B, the closed unit square in the

Euclidean plane is periodically ordered.

Also if A=S’, the open unit circle = {(1, ¢, 0)] 0 < ¢ < 2x} in
cylindrical polar coordinates, and B=[0, 1], then the X=AxB is the
vertically half-open right cylindrical surface with a circular bare S'. In
cylindrical polar coordinates X= {(1, ¢, 2)| 0 <@ <27, 0 <z < 1}. (I, ¢,
z)<(1l,¢',2'),ifand only if z<z'orz=2', ¢ < ¢'. After a regular period
of 27 in the variation of ¢; each point on the cylinder returns to the same

vertical line ,a fact which motivates the name of the term periodic.

2. Let A be a totally ordered set, and for each a € A, let B, be a
bounded partially ordered set and let B ={B,}. ca. Let A be such that each
acA has an immediate successor a', i.e., there is an element a’ €A such

thata=a’,a<a andifa< a, forsome a €A, theneithera= aor a=

a’. Let X = (|JB,) .with 0,. =1, =a , for each a € A .Then X=AO B

aeAd
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swhere p: X — A, i A 5X, 7, : X B, and i, : B, & X are given by
p(ba) = a, i{a) = Ly, ,T(ba)=b, ;i(a) = b,.

As a particular case, we have the following semiperiodic product A

U B as shown in the figure

Here B ={ 3, »B,,B,,B,,B,}, A={a;, ay, a3, a4 ,as }.This
example is easily seen to be a lattice obtained from a chain product of

B,,8,,8,,8,,B, Dbyidentifying 0,with 1, i=1,2,.4.

W 2"

3. Let X be the right circular cone with height h, semi-vertical
angle o and base the circle x*+y? = 1, z=0 and axis the z-axis. Then, in

Cartesian coordinates,

X:{(h;zlcos V, h;usin v, uj IOSush,Osvggﬂ}.

For two points P.Q with the parametric values (uy, vy), (uy, v), P <

Q if u; < uy or if u=v, and v; < v,. Then X=A 0O B. Where A is the

segment of the line %:%, y=0, between the points (1, 0, 0 ) and (0, 0, h)

and B is the circle x*+y*=1, z=0, i.e., B={(cos v, sin v, 0) | 0 < v < 27}

with the natural ordering i:A—>X p:X—A are given by i (x, y, z) = (x, Y,

z) =g cos v, hﬁusin v, u| =(cosv,sinv, 0).
» P z 5

3. Let X be the segment of a circular helix X={(cos t, sin t, t) | 0<
t<n, 0 <t<2nm} winding n times round the right circular cylinder with
base x*+y?=1, z=0 and axis the z-axis. Then X = A o B, where A={0, 1,
2, ... n-1} (with one point removed) i.e., B={(cos 0, sin 6, 0) | 0<o <

27} with ordering on B induced by that on © and the order of A is natural.

\
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Here p (cos t, sint, t) =k, if t e [2km, (2k+1) ) and for 0 <k <n-1
and 0 <t <27, m, (cos t, sin t,t)=(cost, sint, 0) iy (cos t, sint, t) = (cos t,
sin t, (2k-1) m+t). Hence p'(k) = {(cos t, sin t, t) | t e [2kn, (2k+1) )}
= {(cos t, sint, 0) | t € [0, 2m)} (order isomorphic) = B. Also 7 i (cos t,
sint, 0) =m (cos t, sin t, (2k-1) n+t) =(cos t, sin t, 0). .. 7, ix = lp.

4. Let B={a, b, c, d, e, f, g} be the set of seven musical nodes, viz.,
do, re, mi, pha, sol, la, ti in an octave and A={1, 2, 3...} is the set of
numbers representing the audiable octaves in the ascending order of the
pitch. Then the frequencies of the notes in all the octaves has a natural
ascending order. Also B has a natural ascending order in accordance with
their pitches. If we write the note x in the n-th octave as (x, n) then all the

audiable X={(x, n) |x € B, n € A}. Let (x,n) denote the frequency of the
note (x , n). If we write (x, n) £ (x’, n') if (x,n)< (x",n"); i.e., if either n <n’
orn=n"andn<n’,then X=A0B.

Here p(x, n)=n, while 7 (x, n) =x. We may take i(x) = (X, n) for a
fixed nge A. In particular, we may write i(x) = (%, 1). Then p" (n) = {(a,
n), (b, n) ... (g, n)} = {(a, b, c ... g} = B. Also i(x) =X, so that 7i = 1.

In this example, the periodicity of the product is reflected in the
repeated return of the same tunes in the same order as one passes from
one octave to another. This is an audio property which does not have a
counter part in the visual case, where as the frequency of the light wave
goes on increasing or decreasing, the corresponding nature ot the colour

goes on changing in violet — red direction or red-violet direction without

any kind of repetition occurring.
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Properties of Periodic Product

We shall now prove a few results concerning the properties of a
semiperiodic and periodic products.

Theorem 1

If (A <4) and each (B, <a) are totally ordered, A O B is totally

ordered.
Proof

Let x, x" € X. Let p(x) = a and p(x') = a’ First suppose a # a’. Since
A is totally ordered either a < a’ or a’ < a. Suppose a < a’. Then by the
definition of a semiperiodic product, x < x’. Next let a = a".Then f,(x) and
fa (x") = f(x") both belong to B,. The latter being totally ordered f, (x) < f,
(x")orf, (x') £ £, (x'), f,being an order isomorphism, x < x’ or x’ < x.
Corollary 1

If A and B are totally ordered sets, sois Ao B

Theorem 2

If (A <a) and each (B,, <,) are complete lattices, then A OB is a

complete lattice. ' -

Proof

Let x, x' € X. Letu=p(x) v px'), | =p(x) A p(x’) and u' = 1 (x) v
7w (x"), I = m(x) A n(x). If p(x) = p(x), define x v X' =inf 7' (W), x AX’
= sup ! (1.

Letx, x' €X. Ifp(x)=p (x')=a, say thenx, x'e p” (a). Hence x v

x’ and x A X' are fa’l (fu(x) v fo(x")) and fa“‘ (fa(x) A fi(x7)), the latter are
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well defined elements of X and ;lre indeed equal to x v x’ and x A X’
respectively since B, is a lattice and f, is an order-isomorphism. Next let
p(x) # p(x’). Then x v x’ = inf p” (p(x) v p(x")) and x A X' = sup p”' (p(x)
A p(x)). The existence of the elements on the right hand side follows

from the facts that (i) A is a lattice and that each B, is a complete lattice.

It is clear from the nature of x v x’ and x A X' in both the above

cases that A 0 B is a complete.
Corollary 2

If A and B are complete lattices so is A O B.
Theorem 3

Let A and B each B, be bounded complete lattices. Then AOB is a

bounded complete lattice.

Proof
We are only to show that the lattice A 00 B is a bounded. Let 1A,
0A 1Ba and 0, be the greatest and lowest elements in A and B,

respectively. Then 1, =1,,,and0, =0,, . The truth of this statement
follows from the definition of A O B.

Corollary 3

If A and B are bounded complete lattices, then so is A (1 B.

Theorem 4

~

If A, B, are complete lattices from each a € A and if each B, is

order isomorphic to B. Regard A, B and A 0 B as topological spaces

with order topology. Then A 0O B is a covering space of B.
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Proof:

By Theorem 2, AOB is a complete lattice. We recall that the order
topology on a partially ordered set X s the topology generated by all
intervals (a, b) on X. Here a, b € Xand (a,b)={ xeX ' as<x<b,x#a,

X#b }.

We first prove that each of A, B and A O B is path-connected. Let

a), a; €A Define f: I5A by fix)=a,if 0<x <
2

=avb,il‘x=l
2

=b,if L<x <1
2
Then f is continuous, to see this U be an open interval in A, If a,
b, avb eU, then f'(U) = &, which is open. Ifa €U, b, a v b ¢ U, then '

(U) = [0, x) , for some x < 21 Ifb eU ,a, avb ¢ U. then £(U) = (x, 1], for

some X > % Ifa,avb eU, b eU then f'(U) = [0,x], for some x, such

that %< x <l.If
IfagU, b,av b €U, then f'(U) = (x, 1], for some x such that 0 < x
<%-If a, b, av b €U, then (o)) = [0, 1].Thus ,in each case , f'(U) is

open . Hence f'is continuous . Alse £(0) =1,f(1) =b, So fis indeed a path-

connected.
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Next, for each acA, Let f:B;—B be an order isomorphism. Define
g AOB—B by g(x)= fn,(x), for some a, arbitrary but fixed. Let beBand
let Uy be an open internal in B such that b U, . Then £ '.(Uy) is an open
set Vyp, in B, which is oder-1501n§rphism to Up. Then w'.f',(U) =n
'\ (V) is an open set in A O B. It is clear that the arc-components of 7
'a(Vab) are open intervals in A and each of these is oder isomorphic to Vi,

and hence ,to U. Therefore, AOB is a covering space of B.



Chapter 5

On Connected Sums and External
Sums of Topological Spaces

Introduction

Connected sums of surfaces were introduced and applied for
classification of compact surfaces by Mébius. Here a similar concept has
been introduced for more general situations like metric spaces and
topological spaces. Investigation has been made regarding the
conservation of various properties of a topological space under connected

sum .

1. Given two topological spaces X and Y , if is sometimes possible to
define a topology on X 'Y . Such a space X U Y may be called a sum of
X and Y. It is obvious that the existence of a sum requires the intersection

X N Y to be either or to have the same topology as subspaces of X and Y

. This may be called the compatibility condition.

Majumdar and Asaduzzaman [50] have considered two spaces X and
Y satisfying the above condition and called X U Y the sum of X and Y
when the topology on X W Y is precisely {G W H |G, H openin X and Y
respectively . They denoted it by X+Y.When XNY=¢, they called
the sum direct sum and denoted it by X @ Y . In the case the expression
of an open set in X @ Y as a union of open sets in X and Y is unique.

They studied some properties of X+Y.

\
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A concept some what similar to a sum of two spaces occur in

Bourbaki [31] and the idea of the direct sum occurs in a different name in
Dugunji [61].

When X and Y are subspace of a topological space Z, the natural way
of considering X as a topological space such that X and Y are its
subspaces would be to regard X U Y as a subspace of Z i.e., to consider
the subspace topology on X U Y with this topology on X U Y we call

X W'Y the usual or the normal sum of X and Y
Here we shall make use of the concepts of sum, direct sum

and normal sum to define new types of amalgamations of

topological spaces. These will be called the connected sum and

the external sum.

2. We shall make the union of two metric spaces into a metric space by

defining a suitable metric on the union. This is done in the following

theorem.
Theorem (A)
Let (X, d,) and (Y, d2) be two metric space such that XmY;écb.and
let
d, | (XNY) x (XNY) = dy | (XNY) x (XNY)
Let us define
d: (XUY) x (XUY) >R
be given by d(z,z") =d, (z,2) ifz,2'eX-Y

=d, (z,2') if z, Z'e X-X
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= inf{di(z,c) +d; (c,2) | ¢ eXNY}, ifzeX-Y, zeY-X
Then d is a well-defined metric on X U Y. Since
di(z, 2') = dy(z, 2') for all (z, 2') eXNY)x(XNY).
(i) Now d > 0 since d; > 0 and d, 2 0.
(i1) From the definition of d, it is clear that d(t, t)= 0 for all te XUY \
(iii) Forany t; ,b in X U Y,
d(t; ,t) =d;(t; ,t) = di(tz ,t)), if t; e X =Y,
=da(t) ,t) = do(ty 1)), if t; ;b€ Y-X,
= inf {d,(t;,c) + d; (¢, t;) | c eXNY},ift, e X-Y, e Y-X,
=d( t,, t;) when any two of the t’s are in X one isin Y.
Let t), t; €X and t; €Y then d(t, tp) +d (tz, t3)= d; (t;, tp)+ inf
{d; (tz, ©) + d3 (c, t3), ceXNY} = inf {d; (t;, &) +d, (tz, ¢) +d1 (c,
t3), ce XY} > infiex~y {di (t1,¢)+d2 (¢, t3)} = d(ty, t;).
i.e. d(t), t) +d (t, t3)= d(ty, t3). |
Therefore d is a metric on XUY.
3. Connected Sum of Metric Spaces

Definition

Let (X, d), (Y, d') be two disjoint metric spaces such that the closed

sphere

S=8,(xg) = {xeX|d (x, Xo) <t} and §'=8y (yo) = {veYld (y, yo) <

r'} are homeomorphic. Let f : S—>S' be a homomorphism. If C and ¢’
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denote the boundary of S and §' respectively, then C={xeX|d (x, xo) =r}

and C'={yeY|d' (¥, Yo) = 1'}. Also suppose that f restricted to C is not
only a homomorphism but also an isometry [and so d (x;, x2) = d (f(x)),
f(x2)) for every pair of points x;, x, on C] of C into C'. Let Z= (X—int (S))
U (Y—int (8")). Define a relation ~ on Z as follows :

(i)  foreachz eZ—-(CuC), z~z

(i)  foreachz eC, z~z and z~f (2)

(i) foreachz eC', z'~z and z'~f' (z").

Then ~ is an equivalence relation on Z.

—

Under this identification topology Z s termed as the connected

sum of X and Y. Then Z =7 is thus a topological space .We can regard

Z as (XUY-(int (S) m int (S")) under the identification x with f(x) for all
xeC. So here we regard C = C'=(X-int (S8)) N (Y-int (S")). We shall

investigate whether Z inherits a metric from the metric d and d’ or not.
The connected sum of X and Y is denoted by X#pY.
Let us define a function don Z
d(z1,22) = d(z1, 2) if 21, pE(X-int S ) — (Y —int S )
=d'(z, zo) if 2}, Zn€ (Y =int S ) - (X-int S)
= inf {d(z;,c) + d'(c, z2) lc eC hif zie(X-int S ) — (Y -

int S ), ze(Y-int § )~ (X—intS).

Then d is well-defined , since d | cxc=d" lcxc. Now by Theorem (A)
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i otr 7 5 3 3 . = ;
disametricon 7 Thus Z is also a metric space (7, d) and d induces the

required identification topology on Z .

Theorem (B)

Let (X, di) and (Y, d;) be compact, then (Z, d) = X#Y , the

connected sum of X and Y is compact.

Proof

To prove that (2, d) is compact, it suffices to show that (Z, d) is

sequentially compact. Let {z,} be a sequence in Z. Then there exist
subsequences {Z, } and {z, } of {z,} such that {Zz, } and {z,} are
sequences in X and Y respectively. Here at least one of these

subsequences, say { Z, }, must contain as infinite number of terms of the

sequence {z,}. Since X is compact, {Z, } has a convergent subsequence

of {Z, } which is also a convergent subsequence of {z,}. Thus Z is

compact.
4, Connected Sum of Topological Spaces

Definition
" Let (X, ), (Y, ) be two topological spaces such that XY = ¢.
Suppose that there exists nonempty closed sets F and F' of X and Y

respectively such that F is homeomorphic to F'. Let f : F>F' be a

homomorphism. Let I =f|b (F). Then Jisa homeomorphism. Let f :
b(F) (=B) —b (F') =B'. Let Z=(X~int (F)) U (Y-int (F')). We define a
relation ~ on Z as follows :

(i) foreachz eZ-— (BUB'), z~z
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(i1) for each z €B, z~z and z~f (z)
(iii) for each 2/ €B', 2~z and z'~f'(2").
Then ~ is an equivalence relation on Z.

T =
We write Z= :Then Z =X,UB U Y, whereX,=X-F,Y=Y-F’, and

B has been identified with B’ via the homeomorphism /. We regard Z =

X|®B® Y, where X, B and Y| have subspace topologies from X and Y.

Z will be called connected sum of X and Y and will be denoted by

X#eY.

If X are Y are disjoint subspaces of a topological Z and the

topology on the union (X-int S) U (Y-int S’) is the subspace topology,
then the resulting connected sum will be called the usual or the normal

connected sum. As is well known for the both compact orientable and
non-orientable subspaces ,
(i)  The connected sum of two spheres is homeomorphic to a
sphere.

(ii)  The connected sum of two tori is a sphere with two handles.

In general the connected sum of n tori is a sphere with n
handles.

(iii) Any orientable compact surface is either homeomorphic to a
sphere or to a connected sum of tori onto a connected sum of projective

planes. If S; and S, are projective planes then S| # S, is a Klein Bottle.

Normal connected sum is useful for describing structures of

compact surfaces. Also it is of great help for determination of
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fundamental groups of surfaces It is expected that general connected sum

will also be of some use in these regards.

Theorem 1

The connected sum X#rY is connected if and only if both X-int (F)

and Y- int (F') are connected.

Before proving the theorem, we recall the definition or sum of two
topological spaces. Let X and Y be topological spaces such that either X
MY =O or the topology on induced by X and Y are the same. Then X UY
is a topological spaces where the topology is {G U H| G is open in X
and H is open in Y}. Here XUY is called the sum of X and Y and
denoted by X+Y. We first prove a result due to Majumdar and

Asaduzzaman [50].

Lemma 1

X+Y is connected if and only if both X and Y are connected and

XNY#d.

Proof

First, let XUY # ®. Suppose (XUY.T) is not connected. Then there
exist two nonempty T-open sets Gy and G, such that G;NG>,=® and XUY
= G,UG,. Now XNG, and XNG; are T;-open sets and (XNG;) N(XNG,)
= X(GNG,) = ® and (XNGy) 'V’ (XNG,) = XN(GUGy) = XN(XUY)
= X. Since (X. T)) is connected, one of the sets XNG; and XNG, must be
empty. Let XNG, =P then XNG, = X= XgG,. Similarly, if XNnG, = @
then XNG, = X= XcGi. Thus XcG; or  XcG,. Similarly the
connectedness of (Y, T2) YcG, or YcG;, then XNYcG NG, = O.

Similarly, Y&G, and YEGo implies XNY= @. Hence both X and Y are in
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Gy or both are in G,. If X, YcG then G,UG, = XuYcG, =G, = O.
Similarly X, YcG, then G, = ®. The contradictions in both the cases
prove that (XUY. T) is connected.

Conversely, if XNY = ® then XUY is obviously disconnected

since X and Y are open in XUY.
Proof of Theorem 1

| We know that X#¢Y =(X — int(F) ) + ( Y- int (F)) where F and F’
have been identified via a homeomorphism of F onto F’. Since =(X —
int(F) ) m (Y- int (F)) = b(F) # ®,lemma 1 shows that X#:Y is connected
if and only if both =(X — int(F)) and ( Y- int (F’)) are connected i.e., if
and only if (X — int(F) ) and ( Y- int (F")) are both connected.

We now prove

Lemma 2

If X and Y are locally connzacted then the sum X+Y is locally
connected.
Proof

Let ze X+Y. If W is an open set in X+Y with ze W, then W=UUV

with U open in X and V open in Y. If zeU, there exist connected open

sets U' in X with zeU' and U’ ¢ U. Since U and U' are open in X+Y, the

latter is locally connected.

Lemma 3

If X is locally connected and R is an equivalence relation on X,

X .
then the quotient space - 1S locally connected.
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Proof

, X L
Let m: X — Edenote the mapping given by n(x) = class x = [x].

Then 7 is continuous, open and onto. Let xeX and et U be an open set

X s e
M such that class x € U. Then U =n(U), for some open set U in X

such that Xeu. Since X is locally connected there exists a connected

open set U' in X such that xeU' and U’ < U. Then n(U") is connected and

[x]en (U') < U. Hence % is locally connected.

Theorem 2

Let X and Y be topological spaces and let F and F’ be closed sets of
X and Y respectively such that F is homeomorphic to F' are locally

connected then X#rY is locally connected if both X-int (F) and Y-int

(F') are locally connected.

Proof
Let X-int(F) and Y-int (F') be locally connected . Then by Lemma
2, (X-int(F)) + (Y-int(F")) is locally connected . By Lemma 3 and the

definition of X#,Y it follows that X#:Y is locally connected .

Theorem 3

If both X and Y are compact, then X #:Y is compact. If X#:Y is
compact then both X-int (F) and Y-int(F') are compact.
Proof

Let both X and Y be compact. We regard X #:Y as sum (X-int F) +
(Y-int F). X-int(F) and Y-int(F) being closed subsets of compact spaces X
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and Y respectively, are themselves compact. If {G,} is an open cover of

X #rY, then {Ga}z{GB}U{GY} where {Gg}is an open cover of X-int F

and {G,} is an open cover of Y-int(F). Hence for some positive integers

m and n, there exists Gg,... Gy oand G, .G, such that X-int F <
Gg, - Gy,and G, .G, and Y-inf F < Gy, Gy and G, ..G, . Hence
Gy, Gy and G, .G, is a finite subcover of {G,}. Therefore X #:Y is

compact.

Now, let X #,:Y be compacﬂ Let {Gq}, {G';} be open cover of (X-
int( F)) and (Y-int (F')) respectively. Let G, and G'g be the images of G,

and G'p in X #:Y under the identification .
We next prove:

Lemma 4

Let X be a locally compact topological space and Y a closed

subspace of X. Then'Y is locally compact.

Proof

Let y €Y. Since yeX and X is is locally compact there exists V
open in X such that yeV, and Vis compact in X. Then VNY is open in Y
and yeVNY. Let {W,} be an open cover of (VNY)yinY. Then V, W, =
U,NY, for some U, open in X. Thus {Ug} is an open were of min
X. Since " N s a closed subset of 7 inX, VN7 i compact in X.
Henee 3 Yo, Vo, eseenn Ua, such mg Vo Yy Ul |

uW“'- . Therefore, Y is locally compaét.

\



73

We note that X # ¥ = (X-Y) U (Y-X) UC, and that X,Y,C, and Y-
X are locally compact by the above lemma, since these are closed

subspaces of the local ly compact spaces X and Y. Hence X#:Y is locally

compact here C=b(F).
Lemma 5

If X is locally compact ,then every quotient space of X is locally

compact .
Proof

Let X be locally compact and let R be an equivalence relation .Let

7

zZ eij\?- and let z=cls x, x €X . Since X is locally compact , there exists

an open set G in X such that x eX and G is compact. Let G* is open in

—)]g. Let {H,'} be an open cover of G'in % Let H,, denote the inverse

image of H,” in X. Then {H,} is an open cover of G . Since G is

— * . X .
compact, G¢ H, ..v.. U H, .Thus G iscompact.So — I locally

compact .

Lemma-6
If X and Y are locally compact disjoint topological spaces ,

then X@®Y is locally compact, and conversely.

Proof
Let X and Y be locally compact disjoint topological spaces. Let
7eX®Y. Then z eX or Y . Suppose z € X. Since X is locally compact,

there is an open subset G of X such that Gy is compact in X. There Gy

A
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is the closure of G in x. Since XY = 0, E}x = éx..,y = E}. say. Let {W¢}
be an open cover of (. X@®Y. Let U, =W,~X. Then {U,} is an open

cover of G. G being compact in X there exists V,U ..UV, .80 G.C
W, - U ..U W, . Hence G = G xgy is compact in X®Y. Thus X@Y is

locally compact. Since X and Y are closed subsets of X®Y both X and Y

are locally compact.

Theorem 4

Let X and Y be disjoint topological spaces F, I'', then X #.Y is

locally compact if and only if X-F, Y-F' and b(F) are locally compact.

Proof

First X and Y be locally compact. We identify X #;:Y with (X-F)
b(F) U (Y-F) =(X-Y) U b(F) U (Y-X)= (X-Y) @ b(F) &(Y-Y) .Since (X-
Y), (Y-X) and b(F) are closed subsets of X and Y, Lemma 4 shows that

they are locally compact . Hence, by Lemma 6, X#¢Y is compact.

Theorem 5
Let X and Y be disjoint spaces with homeomorphic closed subsets F

and F’ respectively. If X and Y are Hausdorff then X#;;Y is Hausdorff. It

X#:Y is Hausdorff, then X-int(F) and Y-int(F") are Hausdorff.

Proof

Let X and Y be Hausdorff. Using the homoeomorphism of F onto F’
we may identify X#:Y with (X-int (F)) (Y-int (F))’ = (X-F) U (Y-

F) Ub(F) = (X-F) ® (Y-F) @ b (F). Let z;, e X#Y. Iz, z€X,
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then there exists, disjoint open sets Gy, G, in X such that z, €Gy,

7y €Ga. Let Gy = G (X-int (F)), G, = Gy (Y-int (F)).

* * Bos . . .
Then G, G, are disjoint open sets in X-int(F) and Y-int(F) and
2,€G* 2,eGy*. Let E], 52 be the images of G,’, G, in X#rY and

contain z,, z, respectively. Hence is Hausdorff,

Now, Let X#:Y be Hausdorff. We write X#:Y = (X-F) U (Y-F) U
b(F). Let z,, z, eX-int(F). Regarding z;, z, as elements of X#:Y,
we can find disjoint open sets G;, G, in X#gY which contain z; and 2z,
respectively. G,, G,, the inverse images of G; and G, are open in X-int
(F) and Y-int (F') respectively. Ln;,t G 1, G are disjoint open set in X-int
(F), and also z,€ G |, z,€ G, . Hence X-int (F) is Hausdorff. Similarly Y-
int(F") is Hausdorff.

Comment

The theorem is still valid if ‘Hausdorff’ is replaced by either ‘normal’
or ‘regular’. The proofs are similar.

We recall that a metric space X is called a Peano space if X is

compact , connected and locally connected []. Every Peano space is path-

connected , and X is a Peano space if X is a Hausdorff and is a

continuous image of the closed unit interval I=[ 0, 1] (see Simmons [15].

Theorem 6
Let X and Y be two metric spaces and let F and F' two closed
subsets of X and Y such that F and F’' are isometric. Then X#:Y is a

Peano space if and only if X-int(F) and Y- int (F') are Peano spaces.
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First suppose X-int( F) and Y-int(F') be Peano spaces . Then, X-int
(F) and Y-int (F') are connected, compact and locally . We regard X-
int(F) and Y-int(F') are connected, when F and F' are identified via the
homoeomorphism. So, (X-int(F)) + (Y-int (F")) connected, since (X-
int(F)) N (Y-int (F)) =b (F) = ¢. As a quotient space of (X- int (F)) + (Y-
int( F)) , X#rY is conceded. Now let {V,} and {Wg} be open covers of
X-int( F) and Y-int( F') in X#rY. Then {Va} U {W} is an open cover of
X#rY, Since X-int( F) and (Y-int( F")) and compact, {V,} and {W;} have
finite subcovers {7, ,..7, } and {w,,..Ww, }. Then {V, ..V, W, .. W, }
is a finite subcover of {V,} U {Wp} for X#:Y ,so that X#:Y is compact

By Theorem 2, X#:Y is locally connected. Hence X#:Y is a Peano space.

Conversely, lel X#rY be a Peano space. By Theorem 3, both X-int
(F) and (Y-int( F')) are compact. Since X#Y is identified with (X-int(F))
+ (Y-int{ F')), Lemma | shows that both (X-int( F)) and (Y-int( F})) (and
hence (Y-int( F'))) are connected. Lemma similarly proves that X-int(F)

and Y-int( F") are locally connected. Hence both X-int( F) and Y-int( F')
are Peano spaces.

The proof is thus complete.

5. External Sum

From two topological spaces X and Y, we shall now from a third

space in a manner similar to the construction of a free product of groups,

with amalgamation. This essentially consists in gluing homeomorphic

closed subspace of the two spaces.
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Definition

Let X and Y be two disjoint topological spaces such that there are
non-empty closed subspaces F and F' of X and Y respectively where F
and F' are homeomorphic to each other. Let f : F — F' be a

homeomorphism. Define a relation R on X U Y as follows :
(i) foreachz € (X -F ) (Y - F"), zZRz, if and onlyifz=2"
(ii) for each x € F, xRx, and xRf(x).

(iii) for each y € F’, yRy, and yRf '(y).

4 /

Consider X U Y as the sum X + Y .Then d ¥

with the quotient

topology will be called the external sum of X and Y and will be denoted
by
X @rY or X @®pY. Clearly ,with the identification via the
homeomorphism f, X @Y = (X-F) @F @ (Y-F).

If X and Y are disjoint subspaces of a topological space then we
consider the usual or normal sum of X and Y ,i.e.,, X U Y with the

subspace topology induced topology by Z, and then consider its quotient

space modulo R. The resulting space will be called the usual or normal
external sum.

We now study a few properties of the external sum.

Theorem

X @Y is connected if and only if both X and Y and connectc
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Proof

First suppose X and Y are connected . Since X @Y may be looked
upon (with proper identification) as X U Y with X A Y =F » ¢ , it follows

that X @,:Y is connected.

Conversely, suppose X @:Y is connected. If possible, let X or Y, say
X, be disconnected. Then there and disjoint open sets G and H is X such
that X=G w H. Then, with identification via the homeomorphism f ;: F—
F'uyX@rY= XUY=XU(Y-F)=G UHuU (Y-F). Here G, H are open
sets in X and Y-F is an open set in Y. So by the definition of the topology
of a sum and the quotient topology, each of G, H and Y-F is open in X
@rY and these are pair-wise disjoint. Hence X @Y is disconnected, The

contradiction proves that both X and Y are connected.

Theorem

X @Y s locally connected if and only if both X and Y are locally

connected.

Proof

Let X ®;Y be locally connected and let x € G where G is open in X.
Since under proper identification, X @Y =X UY=X+Y, G is open in X
@rY. So, there exi.sts a connected open set H in X @;Y such that xeH
cG SinceGcH,Hc X. Thus,Hisa connected open subset of X.

Hence X is locally connected. Similarly, Y is locally connected.

Now suppose both X and Y are locally connected. Let z € X @Y.
Regarding X @Y as X UY, we see that z eX or z€ Y,sayzeX.Let G
be an open set in X @Y such that z eG. Let G’ =G nX. Then , xet
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and G’ is open in X . Since X is locally connected , there is a connected
open set H' in X such that xe /' < G’ .Now H' is also open in X ®;Y =X
U Y, and also, H' is connected as a subset of X &Y , since ,a

disconnection of H' in X @rY automatically yields a disconnection of H'

in X . Hence X @Y is locally connected.

Our next result is
Theorem

X ®fY is compact if and only if both X and Y are compact.
Proof

Let X @rY be compact. Let {G,} be an open cover of X . If we regard
X @Y as X W Y with proper identification ,then {G,} W{Y} is an open
X ®rY . Since X @Y is compact for some n , there exist G, .....G, such

that G, U....uG, uX =X @Y. Hence X = G, v...uG, v.X sothat X

is compact . Similarly, Y is compact .

Conversely, let both X and Y be compact Let {G.} be an open cover
of X @rY. We write X @Y = X u Y and let H=G, N X and Ly = Gy N
Y Then {H, } and {Lg} are open cover X and Y respectively. Since X and
} and
i S—— L,} of (H, } and {Lg}  respectively.  Then

U.UG, UG, U UG, }isa finite subcover of {Gg} . Hence X

@rY is compact .
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Theorem

Let X and Y be two compatible topological spaces. If Z is a
topological space f:X— Z and g :Y-> Z are continuous maps such that
f(t) = g(l), for cach t € X N Y. Then g :X+Y— Z given by h(x) =f(x) for
each x € X and h(y) = g(y) for each y € Y, is continuous .

Proof

Since X and Y are both open subsets of X + Y, the theorem follows

from the pasting lemma.
Theorem

Let X and Y be two disjoint topological spaces with F and F' two
homeomorphic closed subspaces of X and Y respectively with o :F — F
a homeomorphism. Let Z be a topological space and f : X— Z and: g

:Y— Z be continuous maps.

(i)  Iff(t)=go(t), for each t € b(F), then there is unique continuous

map h : X #:Y = Z induced by f and g .

(i)  Iff(t) = ga(t), foreacht € F, then there is a unique continuous

map h : X @Y = Z induced by fand g.

Proof
Both X #;Y and X @rY are quotient spaces of X ®rY. Therefore

(i) and (ii) follow from the previous.theorem. The map h in that theorem
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is easily seen to induce the maps h of (i) and (ii) because or the given

conditions.

We recall the following result on continuous functions :
Theorem (The Pasting Lemma) (Theorem 7.3 p 108, [61])

Let X = A U B, Where A and B are closed (or open) in X. Let \
f:A—Yandg:B — Y be continuous. If f(x) = g(x) for every xeA N
B, then fand g combine to give a continuous function h : X —> Y, defined
by setting h(x) = f(x) if x € A and h(x) =g(x), ifx € B..

We used this to prove the following result on sums, connected

sums and external sums.
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