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Abstract

ABSTRACT

The thesis studies extensively the nature of finitely generated n-ideals of a
neatlattice. Many authors including [1], [34] and [35] have studied about n-ideals of
a lattice. A convex sublattice containing a fixed element n of a lattice L, is called an
n-ideal, If L has '0", then teplacing n by '0', an n-ideal becomes an ideal. Similatly, if
I has 1, an n-ideal becomes a filter replacing n by 1. Thus the idea of n-ideals is a
kind of generalization of both ideals and filters of lattices. Many authots including
[27], [40], [47] and [56] done some wotk on n-ideals of a neatlattice. A nearlattice is
a meet semilattice with the propetty that any two elements possessing a common
uppet bound, have a suptemum. For two n-ideals I and ] of a nearlattice S, [27]
has given a neat description of Iv], while the set theotetic intersection is the
infinimum. So, 1.(S) , the set of all n-ideals of a nearlattice S, is a lattice. An n-ideal
generated by a finite number of elements a,, ay, ..., a  is called a finitely generated
n-ideal and denoted by <a,, a,, ....,a>,, while the n-ideal generated by a single
element x is called a primipal n-ideal, denoted by <x>_. F,(S) and P(S) denotes the
set of all finitely generated n-ideals and the set of all principal n-ideals respectively.
When neS is medial and standard, then P,(S) is meet semilattice. Moreover, when
n is sesquimedial and neuttal, then P,(S) is again a neatlattice. In general F,(§) is a
join semilattice. But when § is distributive, then F(5) is also a distributive lattice.
In this thesis we prove sevetal results on finitely generated n-ideals of a distributive
neatlattice S when n is an upper element. These results certainly extend and
generalize many results on disjunctive, generalized Boolean, generalized Stone and
relatively Stone neatlattices. Since for a disttibutive nearlattice S with neS, I,(S) is

a distributive algebraic lattice, so it is pseudocomplemented. Since we can talk

VII



Abstract

about the pseudocomplementation of F,(S) only when 0, 1e S (that is, S is
bounded lattice), so for a genetal F (S) we consider only the sectional and telative

pseudocomplementation.

In chapter 1, we describe some basic properties of nearlattices which are essential
for the rest of the thesis. Here we discuss the ideals and congruences of a
nearlattice. Then we discuss on n-ideals of a neatlattice. Recently [25] and [40]
have established some results on n-ideals. Here we extend their wotk and establish

some important results.

Chapter 2 discusses the ptime n-ideals of a neatlattice and establishes several
propetties of prime n-ideals. We include a proof of the generalization of Stone's
seperation theorem. We make a cotrection to a cettain inaccuracy in the statement
of the result P (S) = (n]? x [n) if and only if n is a central element, due to [42].
‘Then we show that F,(S) is sectionally complemented if and only if P,(S) is so.
Using this result we show that F,(S) is generalized Boolean if and only if the ptime
n-ideals of S ate unordered by set inclusion. Then we discuss on the congtuences
of S containing an n-ideal I as a class. We show that when S is distributive,
1,8 = I(F,(S)) if F,(S) is generalized Boolean. Moreover, there is an isomorphism
between C(F,(S)) and C(S) when n is an upper element. Finally, we include a result
on the permutability of the congruences ® (I) and © (J) for n-ideals I and J of a

distributive nearlattice S when n is upper.

In chapter 3, we study the n-kernels of skeletal congruences on a distributive
neatlattice. Previously, skeletal congtuences have been studied by Cornish [8].
Then Latif in [34] studied the n-kernels of skeletal congruences on a distributive

lattice. This chaptet generalizes several tesults of their wotk. Here we give a
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Abstract

description on @ ()™ for an n-ideal ] of a distributive neatlattice S. For a neatlattice

S, we define the skeleton

SC(S) ={® eC(S): ®=0* for some ® & C(S)}
={0eCO):0=0""}
We define J* ={xeS: m(x, n, j) =n for all jeJ} when nis a medial element of S.
Obviously J* is is an n-ideal and JNJ* ={n}. We also define Ker,® ={xeS:
x=n® } and K ,SC(S) ={ Ker,®: ® eSC(S) }.
This chapter establishes the following fundamental results:
(i) J" is the n-kernel of © (] y*, when n is an upper element of a disttibutive
nearlattice S.
(i) F,(S)is disjunctive if and only if P,(S) is disjunctive, when nis an upper
element of S.
(iii) F,(S)is disjunctive if and only if <a>, =<a>,"", when n is upper.
(iv) F,(S)is disjunctive if and only if ® (J*) = (@ (]))" for dense n-ideal J.
) F,(S) is generalized Boolean if and only if for any n-ideal ], @ (H=0 ()".
(i) F,(S) is generalized Boolean if and only if the map © —»er, O is
a lattice isomorphism of SC(S) onto K, SC(S), whose inverse is the map
] © (), when ] is an n-ideal of a distributive neatlattice S with aﬂ uppet

element n.

Chapter 4 discusses on minimal ptime n-ideals of a nearlattice. We give some
charactetizations of minimal ptime n-ideals which ate essential for the further

development of this chapter. Here we provide a number of results which are
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Abstract

genetalizations of the results on generalized Stone nearlattices. We also give several
characterizations of those F (S) which are generalized Stone neatlattices, in terms
of n-ideals. We prove that when F (S) is an sectionally pseudocomplemented
distributive neatlattice, then F (S) is generalized Stone if and only if for any two
minimal prime ideals P and Q, Pv Q = S. We give some characterizations of
those I7,(S) which are relatively Stone in terms of n-ideals and relative
n-annihilators. These results are certainly generalizations of several results on
relatively Stone neatlattices. Also, we show that for a nearlattice S, when F,(S) is a
rclatively pseudocomplemented distributive nearlattice and n is an upper element,
then F (S) is relatively Stone if and only if two incomparable prime n-ideals P and

Q are comaximal. Thatis Pv Q =S8.

Pseudocomplemented distributive nearlattices satisfying Lec's identides form
equational subclasses denoted by B, -1 £ m < w. Cornish [9] and Mandelker [38]
have studied disttibutive lattices analouges to B,-lattices. Motcover, Cotnish[10],
Beazer [4], Davey [14] and ayub [1] have each independently obtained several
charactetizations of sectionally B, -lattices and relative B, — lattices. In chapter 5
we generalize their results by studying principal n-ideals which are sectionally in B
and relatively in B,,. We show that if for a central element n, P,(S) is sectionally

pseudocomplemented and distributive, then P (S) is sectionally in B, if and only if

for any xy Xy Xp.eeennen. , X €5,
<x> v <z, > v v <x,>,7 = S, which is also equivalent to the condition that
for any m-+1 distinct minimal prime n-ideals Py, ....., P, of S, Pyv P v..... vP, =

S. At the end, we also show that if P (S) is telatively pseudocomplemented, then
P,(S) is telatively in B, if and only if for any m+1 pairwise incomparable prime n-

ideals P, ...... , P, PovPiv..... vP =S

m?
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Chapter 1

CHAPTER1
NEARLATTICES AND n-IDEALS OF NEARLATTICES

1.1. Preliminaries

In this section it is intended only to outline and fix the notation for some of the
concepts of necatlattices which are basic to this thesis. We also described some
results on arbitrary nearlattices which we have developed independently. For the
background material in lattice theory we refer the reader to the texts of
G. Birkhoff [5], G. Gratzer [16], [18], D.E. Ruthetford [58], V.K. Khanna [31]
and Szasz [63].

By a nearlattice S we will always mean a (lowet) semilattice which has the property
that any two elements possessing a common uppet bound, have a supremum.
Cornish and Hickman, in their paper [11], referred this property as the upper
bound property, and a semilattice of this nature as a semilattice with the upper
bound property. These types of semilattices have been studied extensively by [11],
[12], [27], [39], [41], [40] and [51]. They have noticed that the behaviour of such a
semilattice is closer to that of a lattice than an ordinary semilattice. So they

preferred to use the term “nearlattice” in place of semilattice with the upper bound

property.

Of course, a nearlattice with a latgest element is a lattice. Since any semilattice
satisfying the descending chain condition has the upper bound property, all finite
semilattices are neatlattices. |

Now we give an example of a meet semilattice which is not a neatlattice.

Example: In R? consider the set

$=1{(0,0} U {2,0} U {0,2} U {2,y):y>2}
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Shown by the following figure 1.1.

©,2)

——
O

), 0? (2', 0)

Figure 1.1
Now, define the partial ordering < on S by (x,y) < (x,y,) if and only if
x<x, and y<y,. Observe that (S, <) is a mect semilattice . Both (2, 0) and (0, 2)
have common upper bounds. In fact {(2,y) : y >2} are common upper bounds of
them. But the supremum of (2, 0) and (0, 2) does not exist. Therefore, (§,<) is not
a neatlattice.
'I'he upper bound propetty first appeated in Gratzer and Lakser [19], while Rozen

[57] has shown that it is the result of placing certain associativity conditions on the
partial join operation.

Evans in his paper [15] referted neatlattices as conditional lattices. By 2 conditional
Jattice he means a (meet) semilatice S with the condition that for each xeS§, {yeS:
y < x} is a lattice and it can be casily scen that this condition is equivalent to the
upper bound propetty of S. Also Nieminen refers to nearlattices as “partial lattices”

in his paper [39].
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I'he least element of a nearlattice i denoted by 0. If x,, x, x,, ..,X, ate the

elements of a nearlattice then by x,vx,y VX, We mean that the supremum

of Xy, X, X3, ....x, exists and XV VX, is the symbol denoting this

supremum.

A non-mpty subset K of a neatlattice S is called a swbnearlattice of S if for any a, b
€ K, bothaab and av b ( whenever it exists in S) belong to
K (A andv are taken in S) and the A and v of K are the testrictions of the A

andy, of S to K. Moreover, a subneatlattice K of a neatlattice S is called a

sublattice of Sif av beK Va,bek

A nearlattice S is called modularif for any a, b, c €S with c<a,

an(by c) = (anb) v c whenevet bv c exists.

3

By [47] , a nearlattice S is moduiar if and only if for all t , x , y €S with z<x

XA((tAY) v (tAZ)) = (xAtAY) v (tAZ).

A nearlattice S is called distributive if for any x,, %, X5, ...v.... 5 Ko
n(X v,y vX) = (XAX) vV (XAX)V v (xAx,) whenever x,vx,
Voo V X, EXIsts.

Notice that the right hand expression always exists by the upper bound propetty

of S.
By [47], a nearlattice S is distributive if and only if for all t, x, y, ze §,

ta (XAY) v (xA2Z)) = (EAXAY) V (EAXAZ).

Lemma 1.1.1. A nearlattice S is distributive (modular) if and only if
(] = {ye S:y sx } is a distributive (modular) lattice for each x€3. @
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Consider the following lattices:

€
e
b
C
c a
a
Ns M5
d
d
Figure 1.2 Figure 1.3

Hickman in [11] has given the following extension of a very fundamental result of

lattice theoty.

Theotem 1.1.2. A nearlattice S is distributive if and only if S does not contain a sublattice

isomorphic o Ny or My @

Following result is also an extension of a fundamental result of lattice theory which

is due to [11].

Theotem 1.1.3. A nearlattice S is modular if and only if S does not contain a sublattice

isomorphic o Ng. @

In this context it should be mentioned that many lattice theorists e.g.
R. Balbes [2a], J.C. Vatlet [65], R.C. Hickman [24], [25] and K.P.Shum [61] have
worked with a class of semilattices S which has the propetty that for each x ,a,, a5,

R Ja.eSifa, va,vay V... va, exsits then (x A ;) v (x Aa)V (X A ay)
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Vo vV (x A a) exists and equals xA (2, v a, vV a; vV ......... va). [2a] called

them as Prime semi-lattices while [24] referred them as weakly distributive semilattices.
Hickman in [25] has defined a tetnary operation j by j(x,y, z) = (xAy) v(yrz) ona
neatlattice S (which exists by the upper bound property of S). In fact, he has
shown that (also see Lyndon [37, Theotem 4], the resulting algebras of the type

(S; j) form a variety, which is referred to as the variety of join algebras and

following are its defining identities.

® j(x; X, %) = x,

(i 1% ¥, %) = (¥, %, y)

(iig 103, %), 2, (%7, %)) = jx, 00,2 7), %)
(tv) 3,2 = (2 ¥, X).

) 10 ¥, 2)s (% ¥, %), (%, 5 2) = (%, 7, %).
(vi) 10,7, %), 7, 2) =X, ¥, 2)

(vi) I 75 1% 2, %) = )%, ¥, %)

(vii) 10 ¥, 1™, ¥, 2) ), i(%, 75 2), (%, ¥s i(_x, ¥,2)) =] (%Y, 2).

We call a nearlattice S a medial nearlattice if for all x, y, z €S,

m(x, ¥, z) = (xAy) V(yArz) V(z24X) exists .

For a (meet) semilattice S, if m(x, y, z) exists for all x, y, z €S, then it is not hard to
see that S has the upper bound property and hence is a nearlattice. Distributive
medial neatlattices were first studied by Sholander in [59] and [60] and recently by
Evans in [15]. Sholander preferred to call these as median semilattices. There he
showed that every medial neatlattice S can be characterized by means of an algebra
(S; m) of type < 3 >, known as median algebra, satisfying the following two

identities:
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) m(aab)=a
() m(m(a, b, c), m(a,b,d), € =m(m(c, d, €), a, b)

A ncarlattice S is said to have the Zhree property if for any a, b, ¢ €S, avbvc exists

whenever av b, bvc and cva exist.

Neatlattices with the three property wete discussed by Evans in [15], whete he

referted it as sfrong conditional lattice.

Following result shows that the Evan’s conditional lattices are precisely the medial

neatlattices. ‘I'he equivalence of (i) and (ii) of the following lemma is trivial, while

the proof of (i) & (i) is inductive.

Lemma 1.1.4. (Evans [15]). For a nearlattice S the following conditions are equivalent.

() S bas the three property.

(1) Every pair of a finite number 0 (2 3) of elements of S possess a supremum ensures the
existence of the supremum of all the n elements .

(il) Sismedial. @

A family A of subsets of a set A is called a closure systens on A if

@ A€ Aand

(i) Ais closed under arbitrary intersection.

Suppose B is a subfamily of A. @ is called a directed system if for any X, Y €@
there exists 7. in Bsuch that X, Y ¢ Z ‘

If U{x:xe B}eA for every directed system @ contained in the closure system
A, then A is called algebraic. When otdered by set inclusion an algebraic system

forms an algebraic lattice.
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A nonempty subset H of a nearlattice S is called bereditary if for any x€S and ye H,
x <y implies x€H. The set H(S) of all hereditary subsets of S is a complete
distributive lattice when partially ordered by set-inclusion, where the meet and join

in H(S) ate given by set theoretic intetsection and union respectively.
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1.2. Ideals of Nearlattices

A nonempty subset I of a nearlattice S is called an idea/if it is hereditary and closed
under existent finite suprema. In other words, any subnearlattice with hereditary
propetty is an ideal.

We denote the set of all ideals of S by I(S). If S has a smallest element 0, then I(S)
is an algebraic closure system on S and is consequently an algebraic lattice.
However, if S does not possess smallest element then we can only assert that

I(S) Y {@} is an algebraic closure system. For any subset K of a near lattice S, (K]

denotes the ideal generated by K.

Infinimum of two ideals of a nearlattice is their set theoretic intersection. In a
general nearlattice the formula for the supremum of two ideals is not very easy. We
start this section with the following lemma which gives the formula for the

supremum of two ideals. It is in fact exercise 22 of Gratzer [16, p-54] for the

partial lattices.

Lemma 1.2.1. Let1 and ] be ideal of a nearlattice S. Let Ay = 1V],

A, = {xeSix< yvz,yvzexistsandy ,z €A, 4 }, forn=1,2,3,...and

K= )4, ThenK =1v].

n=0

Proof: Since Ay < A Ajs...oil. cAcs...... K is an ideal containing I and J.
Suppose H is any ideal containing I and J. Of course Aogi{. We proceed by
induction. Suppose A, ;SH for some n 21 and let x€A,. Then x syvz withy,
zeA, . Since A, ; SH and H is an ideal, so yvzeH and xeH. Thatis A< H for
evety n. Thus K =1v]. @
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Following result can also be proved in a similar way and it is in fact due to [28].

This will be needed for further development of the thesis.

Lemma 1.2.2. LetK be a  non-empty subset of a nearlattice S.
Then (K] = O A, where Ay = {teS: t = (k;At) v(kyAt) for some k,, k, €K} and
n=0

An={teS:t= (aAt) v (anL) for somea, a,5A,, ). @
Coznish and Hickman in [11, Theorem 1.1] have established the following result.

Theorem 1.2.3. The following conditions on a nearlattice S are equivalent.

(1 S is distributive.
(il Forany HeH(S),
(Hl={h Vv h,v.... vh ih,h,,..h €H}.
(i Foranm1,] €1(9),
IvJ=a/va,v... Va,: 0,0, a, el UJ}.
(iv) 1(S) is a distributive lattice,
) The map B ——> (H] is a lattice homomorphism of H(S) onto 1(S) (which

preserves arbilrary siprema). @

From above Theorem it is easy to see that S is distributive if and only if for any
LJ eI @),

Iv J={iv jiiel,je J}
Let I; (S) denote the set of all finitely generated ideals of a neatlattice S. I¢ (S) is
€S

obviously an uppet subsemilattice of I(S). Also for any x,,x,, . X
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(X1,Xa, ..., X, 18 cleatly the supremum of IV E]V....... v (x,)-
When § is distributive,
(1, X2, s Xl D1 Y Vil
=GV EV Y &) NGV Y Y ()
= }{ (x;Ay;] for any Xy Xy Xms 1 Y2,.....Yn €S (by Th. 1.2.3) and so I (S)

is a distributive sublattice of I(S) , c.f. Cotnish and Hickman [11].

A neatlattice S is said to be finitely smooth if the intersection of two finitely generated
ideals is itself finitcly generated. For example,

(1) distributive nearlattices.

() finite nearlattices,

(iti) lattices ate finitely smooth.

In [25], Hickman exhibited a neatlattice which is not finitely smooth.

By theorem 1.2.3, a nearlattice S is disttibutive if and only if I(S) is distributive. But

for modular neatlattices, the case is different.

By [51], we know that S is modular if I(S) is so. But the following example shows

that its converse may not be true.

Figure 1.4

10
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Notice thatin S, (t] is modular for each r€S . But in I(S), { (0], (a], (a, d],

(b, c], S} is a pentagonal sublattice.

A filter F of a nearlattice S is a2 non-empty subset of S such that if f,, £, €F and x

€ Swith f; < x, then both f;Af, and x arein F.

A filter G is called a prime filter if G# S and at least one of x,, ) CHT , X, 18 in G

whenever x,Vx,V Vx, exists in G.

An ideal P of a nearlattice S is called a prime ideal if P£S and x A y € P implies
X€P or y€P. It is not hard to see that a filter F of a nearlattice S is prime if and

only if S - F is a prime ideal.

The set of filtets of a neatlattice is an upper semilattice; yet it is not a lattice in
general, as there is no guarantee that the intersection of two filters is non-empty,
The join of two filters is given by F,VF,= { s €S: s > f,Af, for some f,€ T, '
f,€ F,}. The smallest filter containing a subset H is denoted by [H) Moteover,
the description of the join of filtets shows that forall a,b € S,

[@) v [) = [ Ab).
A subnearlattice K of a neatlattice S is called a convex sub nearlattice if a < ¢ < b with
a, b€ K c€S implies c€ K.
Now we study some properties of convex subneatlattices of a neatlattice.
Theotm 1.2.4.1n a nearlattice S, suppose K is a convex subneariattice. Then
[K) = {x€S : x>k forsome keK}. @

We omit details as it is very trivial,
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Chapter 1

In a lattice L, it is well known that for a convex sublattice C of L,
C= (] N[O.

Following figure 1.5 shows that for a convex subnearlattice C in a general

neatlattice , this may not be true.

S

Figure 1.5

Here C = {a, b, c} is a convex subnearlattice of S. Observe that (C] = S and [C) =
{a, b, c, x}, hence (C] N [C)=[C) #C

But this result holds when the nearlattice S is distributive. T'o prove this we need

the following lemma.

Lemma 1.2.5.  Suppose C is a convex subnearlattice of a distributive near- lattice S. Then

(C] = {x €S:x = (xAcy) V...V (xAc) forsome c,...,c,€C}.

Proof: Let x, y € R.H.S such that xV y exists. _

--------- vV (xA py) and y = (yAq) V(YAgy)

Vi v (y~q,) forsome p, py, .. P> Qs +-:9a € C.

Thus xV y = xAp) Veerronnn. VEAPD Y FAQ) Ve v A q)
S(EV ) APV (EYDAPIV((XV ) A q) VeV (EY y) A gy

< x Vv yimplies

Then x = (xA py) VEA p) V

12



Chapter 1

XYY = (Y 3) APIVe¥ ((xV5) A ) v

(GVY) A q) Ve V((xV y) A q).
Therefore, xVv y € RH.S.

If x € R.H.S. and t€ S with t < x, then
X=X Ap) V...... v (xA p,) forsomep,, ..., p, €C.
Thus t = tA x = tA [(x Ap) V...V (xA p.)]
=N p)V...V (t A p,) as S is distributive which implies t€ R.H.S.
and so, RH.S. is an ideal. For any c€ C, ¢ = cAc implies c€ R.H.S.
Hence, R.H.S. is an ideal containing C.
Finally, suppose that I is any ideal containing C. Then for any x€R.H.S. implies
X= (XA pp) V... V(x4 p,) forsome Pi,....Pm€ C Then
XA Ppyeveens XN Pn€ land hence x€1. Thetefore RH.S =(C]. @

Theotrem 1.2.6. For a convex subneariattice C of a distributive nearlattice S,
CnG=C

Proof: Obviously, C < (C] n [C).

For the reverse inclusion let x€(C]N [C). Then x€ [C) implies x 2 ¢ for some
ceC. _

By above lemma, x€ (C] implies x = (x Ac)) V...V (xA ¢,) for some

C1,C2....Ca €C. Then cA ¢; = xA¢ = ¢ and so by convexity of C, xAc,€C for each
i=1,2,3,...,n. Hence x€C.

Thetefore, (C] N [C)=C. @

For a convex sublattice C of a lattice it is well known that x € (C] implies x < ¢ for
some ¢ € C. Again x € [C) implies x 2 ¢, for some ¢,€ C and so by convexity of
C, C=(C N [O.

13
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But x € (C] implies x=< ¢ for some c€C is not true in a general nearlattice.

Figure 1.6 shows that this is not true even in a disttibutive neatlattice, although
C=(C] © [C) holds there by theorem 1.2.6

X a b

S
Figure 1.6

Here cleatly S is distributive. Let C = {a, b, c}.

Here (C]=S. Thus x € (C] but x £ ¢ for any c € C,

Because of this fact it is very difficult to wotk with the convex subneatlattices of a
neatlattice. But the things become much easier in case of a medial nearlattice.
Recall that a nearlattice S is mwedial if for all x,y, z €S,

m(x,y,z) = (XA y) ¥V (y A z) V (z A x) exists in S.

Though the following result is due to [ 50 ], we prefer to include its proof for the
convenience of the reader.

Theotem 1.2.7. If C is a convex subnearlattice in a medial nearlattice S, then x € (C]
tmplies for some ¢ € C. Hence C = (C] N [C).

Proof: By lemma 122, (C] = O A, where A’s ate defined as in the lemma .

m=0

If x€A,, then x = (xA¢,) V (xAc,) for some ¢, c,€ C. Observe that
c, A ;S (xAC)V (cyAcy = ¢y implies (xA ¢,) V (c,Acy) € C, by convexity.

Similatly, (x A ¢,) V (c;2¢,) €C.

14
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Thus m(c, x,c) =(x Ac) V (x Acy) V (¢;~c,) €C, and so x < ¢ where
C=(XAC) V (xAC) VY (gAcy.

Now we use the method of induction. ~ Suppose x€ A, , implies x < ¢ for c€C.
Lety €A, Theny = (yra;) vV (yA ay) forsomea, 2,€ A,

Now a, a, €A ,implies a,< p and a, < q for some p, q €C,

Thus y< (yAp)V(y~Aq) < yandsoy = (yAp)V(yAq). This implies y € A,, and so |
y < c for some c €C.

This completes the proof. @

From the above proof we have the following corollary.
Corollary 1.2.8.  For a convex subnearlattice C of a medsal nearlattice S,

(C] = A,, foreachm = 0, 1, 2,....where A, are defined as in Lemma 1.2.2.,
In other words, (C] ={t€S: t= (tAc)) V (t Acy forsomec, c, € C}. @

15
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1.3. Congruences

Suppose S is a nearlattice. An equivalence relation ® on S is called a congruence
relation if x=y;(®) fori=1,2 (x,y; €S) implies

) XA A%, =y,Ay,(© ) and

W) x,Vx,=y,Vy,(®)provided x,Vx, and y,Vy, exist.

Itis easy to show that for an equivalence relation @ on S, the above conditions are
equivalent to the conditions that for x ,y€ S, if x=y(®), then

(1) x~rt= yA t(®) forall t €S and

(@) xv t=yV t(0)forallte S, provided both xVtand yV t exist.

The set of all congruences C(S) on S is an algebraic closure system on S x S and
hence, when ordered by set inclusion, is an algebraic lattice. It is due to Cornish
and Hickman [11] that for an ideal I of a distributive neatlattice S, the relation
© (1) , defined by x=y (® (I) ) if and only if (x] V I = (y] Vv 1, is the smallest

congruence having I as a class.

Also, the equivalence relation R(I) defined by x =y R(T)) if and only if for any s€§,
xAs € Tif and only if yAs€1, is the largest congruence having I as a class.
Suppose S is a distributive neatlattice and x €S, we will use ®, for ©((x]).
Moteover ¥, denotes the congruence, defined bya = b (¥ ) if and only if a A x
= bA x. In a distributive nearlattice S, for any a, b €S, © (a, b) denotes the smallest
congtuence identifying a and b. Due to Cornish and Hickman [11] if a< b, then
® (a, b)=Yan @  Also, in a distributive nearlattice S, they observed that if S
has a smallest clement 0, then clearly © , = @ (0, x) for any x€S. Moreover it is
easy to see that:
@) ©,v Wa = thelargest congruence of S.

(i) @, NnYa = @ the smallest congruence of S.

16
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and © (a,b) = © V¥, wherea < band ‘'’ denotes the complement .

Suppose S is an atbitrary nearlattice and E(S) denotes its lattice of equivalence
telations. For @, @, €E(S), ®,v @, denotes theit supremum, x = y (P, v @) if
and only if there exists x = zy, z,...... » Z, = y such that z, =z (P, or @)

fori=1,2, ..., n.

Gratzer and Lakser in [19], stated the following result without proof and a proof,
different than given below, appears in Cornish and Hickman [11] and

[28]; also see Hickman [24].

Theorem1.3.1. For any nearlattice S, C(S) is a distributive (complete) sub lattice of E(S).
Proof: Suppose ®,P €C(S). Define ¥ to be the supremum of ® and @ in the

lattice of equivalence relations E(S) on S.

Let x =y(¥). Then there exists x = z,, 2,,..., z, = y such that z,,= z (@ or ®).
Thus forany t € S,z At = z At (Bord) as ©, ¢ € C(S). Hence xAt=yA t (¥)
and consequently ¥ is a semilattice congruence.

Then, in particular x Ay = x (¥) and xA y=y (¥), with x <y, and choose
any t€3S, such that both x V tand yV t exist. Then there exits zy, z,, Z,, ..., z, such
thatx = z,, 2z, =yandz, =z (@otd).

Put o, = zA y foralli =0, 1,.,n. Thenx =o,, y= @,, o=, (Qord).
Hence by the wupper bound property , w,v t exists for all i = 0,1,2,....... A
(as w,, t =y Vv tand o, vV t= o vV t (Oor® ) foral i = 12,...... N
(as ©,PeC(S) , ie. xv t= yv t (¥). Then by [12, Lemma 1.2.3],%is a
congruence on S, Therefore, C(S) is a sublattice of the lattice Ii(S).

To show the distributivity of C(S), let x=y (6 N (® v ©,)).

Then xAy=y (@) and (©,v ®,). Also,xAy=x(®)and (@ ,v ©,).

17
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Since xAy=y(©,v @,) , there exists t; t,, t, such that (as we have seen in the
proof of the first part), xAy =t;, t, = y, t,=t (@0t ®)and x Ay=t,S Sy
foreach i=0,1,2,.....,n

Hence t,=t; (®) foralli=1,2,....,nandso t,;=t; (@NO ) or (@ NO)).

Thus x Ay = y(®@nO,) v (6Nn0O,). By symmetry, x Ay =x((@NnO)Vv
(® N ®,)) and the proof completes by transivity of the congruences. @

18
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1.4. n-ideals of a nearlattice

Noot, Latif and Ayub Ali have studied extensively the n-ideals of a lattice in
different contexts. But the idea of n-ideals was first appeared by Cornish and Noor

in the paper [13]. The n-ideals have also been used in proving some results in [40]

and [45].

A convex sublattice containing a fixed element n of a lattice L, is called an n-ideal.
If L has ‘0" then replacing n by ‘0’ an n-ideal becomes an ideal. Similarly if L has 1,
an n-ideal becomes a filter by replacing n by 1. Thus the idea of n-ideals is a kind
of generalization of both ideals and filters of lattices. So any result involving n-

ideals of a lattice L will give a generalization work of the results on ideals and

filters of L.

A convex subnearlattice containing a fixed element n of a nearlattice S, is called
an n-ideal of S. Recently [27] and [46] have done some work on n-ideals of a
neatlattice. In this thesis we are interested to try to extend their work and to

establish several results of [1] and [34] in nearlattices.

The set I (I) of all n-ideals of a lattice L. is an algebraic lattice under set inclusion.
Moreover {n} and L are respectively the smallest and the largest elements of I (L).
In I (I) the set theoretic intersection is the infimum. Moreover, for two n-ideals I
and | of a lattice L,

Iv] = {x € L: ijnrj;= x <i,vj, for some i, ,eI and j,, j,€]} .

In a nearlattice S the following result gives a description of supremum of two

n-ideals which is due to [27].
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Lemma 1.4.1. Let1 and | be n-ideals of a nearlattice S. Suppose Ag=1V ]J.

>

A, = {x€S: in] £ x 2V, where i,V exists and 1,1, 4, ;€ A4} for m=1

2.... Thnlv]={) A, @

m=0

An n-ideal generated by a finite number of elements a,,....,a, is called a finizely

generated n-ideal, denoted by <a,  a,>,.The set of finitely generated n-ideals is
denoted by I7,, (S).

Cleatly < a;,a5,....,2,>, = <a;> v<a,> Vv...v<a >.
An n-ideal generated by single element a is called a princpal n-ideal, denoted by
< a >_. The set of principal n-ideals is denoted by P, (S).

Standatd and neutral elements (ideals) in lattices have been studied by several
authors including [17], [18] and [23] .Then [12] has studied them very extensively

in nearlattices. By [12] an element s of a neatlattice S is called standard if for all
txy €S, tA[xAY) YV (xAGI=(EAxNY) V(A xAS)

The element s is called weutral if
(i) sis standard and
(i) forallx,y,z €S,

S A A Y)Y (2 A D)= A XA Y)Y (A XA 2)

In a distributive neatlattice every element is neutral and hence standard. For
detailed literature on standard and neutral elements in a neatlattice, we again refer

the reader to see [12].
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Following result is due to [13] which gives a description of finitely generated

n-ideals of a nearlattice .
Proposition 1.4.2. LetS be a nearlattice and x €S. For a; 2y, ey 3, € S,
) <a,a,..,2,>,S{yeS:(a] N N.... " (,] " (0]
S@ S @V....v @l V@l
) <2 2,2, > ={y €St aA... Aa, An Sy
=(yAa) VAV Y (y A ag) Vi AN
provided S is distributive.
(i) Forama<s,<a>, = {y<Sarn<y= (A9 vy An))
={yeSiy=@yra) Virn) v @ An)},
whenever 1 is standard in S.

(v)  When S is a lattic, each finitely generated n-ideal is 1o generated. Indeed,

<Ay Ay >y = <A A2, AN

m b alv""\/am\/n)n

v)  WhenSis alattice ,F,(S) is a lattice and ils members are simply the
intervals [ a,b ] such that a < n <b and
[a,b] v [a,, b]=[a »a, bVb]and

[,b] N [a, b)) =[aVa, bAD] @
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An element n of a nearlattice S is called a wedial elewent if

m(x,n,y) = (xA n) V (x Ay) V(¥ A n) exists for all x, y€S. Of course, in 2 medial

nearlattice every element is medial.

An clement n€ S is called sesquz-medial if for all x, y, z€ S, ([xA n) V(y»~ n)] A

(yAn)V (zAn)])VvVEAy V (yArz)existsinS. It is easy to see that every
sesqui-medial element is medial and in a medial nearlattice every element is sesqui-

medial . For detailed literature on these elements, see [13] and [40].

An element n€S is called an #pper element if x V 1 exists for all x€S. Every upper
element is of course a sesqui-medial element. An element n€S is called a central
elemrent if it is upper and complemented in each interval containing it. A nice

description of a central element has been given by Cotnish and Noor in [12].

Now we prove the following result.

Theorem 1.4.3. If n is a medial element of a nearlattice S, then for n-ideals 1 and ] of S,
1n)={mGnj):icl je J}.

Proof: 1Ifx € IN], thenx = m (x, n, x) impliesI N J < R.H.S. Conversely,
foranyi€ Iandj€ ], i An = (i Aj)Vv (irn) = i implies @A j) v (A n) €1

by convexity.
Alsoir n < (irn) vV (jAn) = n implies (1 An) VvV (jAn) €L

Thetefore, m (i, n,j) = ((GA ) v (A n)) Vv ((irn) Vv (An)) €Tl aslisan

n-ideal. Similatly m (i, n,j) € J and som(i, n,j)€ I N].

This completes the proof. @
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Following tesults ate due to [40].

Theortem 1.4.4. If n is standard and medial element of a nearlattice S, then P, (S) is a
meet semilattice.  In fact, foralla, b €8,

<a> N <b>“= <m(a,n,b)>

Moreover, when n is neutral and sesquimedial, Then P (S) is also a near- lattice. Thus when n

15 upper and nentral, then P (S) is a nearlattice. @

Corollaryl.4.5.If 1 is neutral and sesquimedial in a nearlattice S, then any finitely generated

n-zdeal which is contained in a principal n-ideal is principal. ()

It should be noted that the set of finitely generated n-ideals F,(S) is merely a join
semilattice for a general nearlattice. As the intersection of two finitely generated
n-ideals of a nearlattice is not necessatily finitely generated, F,(S) is not a lattice for
a general nearlattice. But if S is distributive and n is medial , then F (5) 1s a lattice.

In fact, we have the following result due to [27].

Theorem1.4.6. Iet S be a nearlattice with a neutral and medial element n. Then the

Jfollowing conditions are equivalent.
() S s distributive
(i) T1,(S) is a distributive lattice.
(i) F,(S) s a distributive lattice. @

We conclude this chapter with the following result which will be needed in proving

several results of this thesis.
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Theorem 1.4.7. Let S be a distributive nearlattice with an upper element n and let 1, ] be
two n-ideals of S. Then forany x € IV J, x V n= 1,V jyandx A n = 1,Aj, for some

i, €1, jy jp €] withi, j, Zn andi, j, < n.

Proof: Letx € IV J. Thenx€ (1] v (J]. Then by theorem1.2.3,

x =iV j forsome i'€(1]and j/€ (J]. Sobylemma 1.2.5,i" = (i'» ¢)) Vv

...... v (i'ac)and j = (' Ad) Vv ...LV (T AdY forsomec,c, €l and
d, d,. .. d.]. Nown < (i' Ac,) Vn < ¢,V n implies by convexity that
(i'rc)vnel, p=12,....... , t. Therefore, i'vn€l. Similarly ;' Vn€].

xvn=(i'vn) vV (j' Vn) =i Vj whetei;= i’ Vnel,j = j'Vn€E].
By the dual proof of above similasly, we can show that xA n = i,A], for some

el ¢). @
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CHAPTER 2

FINITELY GENERATED n-IDEALS WHICH ARE
GENERALIZED BOOLEAN

Introduction

In case of lattices prime n-ideals have been studied extensively by [43]. In this
chapter we studied the prime n-ideals, principal n-ideals, finitely generated n-ideals,
semi-Boolean algebras and congruences cotresponding to n-ideals in a distributive
neatlattice. We have given several charactetizations of prime n-ideals for
neatlattices which helped us in proving many results of the thesis. For a medial
clement n of a ncarlattice S, an n-ideal P of S is called przme if P # S and

m(x, n,y)eP (x, yeS) implies either xeP oryeP.

In section 4 of chapter 1, we have discussed the principal n-ideals, < a >,
generated by aeS. The set of principal n-ideals of a neatlattice S is denoted by

P.(S). When n is standard ,
<a> = {yeS: aangy =(yaa) v(yan) }
= {yeS: y = (ya0) v(yAn) v (aar) =m(y,n,4) )

Recall that an clement neS is an #pper element if x v n exists for all xeS. If neS is an
uppet clement, then clearly < a > = [aan, avn|. Also, recall that an clement

neS is central if
(i) nis neutral and upper.

and (ii) it has a complement in each interval containing it.
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A nice description of semi-Boolean algebras have been given by Cornish and

Hickman in [11]. According to [11], a semilattice S is a semi-Boolean algebra if and

only if the following conditions are satisfied.

(0 S has the upper bound property.

(i)  Sis distributive.

(i) S hasa0and forany xe$, (x]" = {yeS: yax =0} is an ideal and
(] v (x|’ =S,

A neatlattice S is called relatively complemented if each interval [x, y] in S is
complemented. That 1s for x < t < y there exists s in [x, y] such that tAs = x and

tvs =y.

A neatlattice S is called sectionally complemented if [0, x] is complemented for each
xeS. Of coursc, evety relatively complemented neatlattices S with 0 is sectionally
complemented. Thus a neatlattice S with 0 is semi-Boolean if and only if it is

sectionally complemented and distributive.

In section 1 of this chapter, we have discussed the prime n-ideals of a neatlattice.
We have established several properties of prime n-ideals. Finally we have

generalized the separation property for n-ideals in a distributive nearlattice.

In section 2, we have shown that for a distributive neatlatice S, F,(S) is generalized
Boolean if and only if P,(S) is semi-Boolean when n is an upper element.
Moreover, 17,(S) is generalized Boolean if and only if [a, n] and [n , b] ate
complemented for all 2 < n < b. We have also shown that F,(S) is generalized

Boolean if and only if the set of all prime n-ideals of S are unordered by set
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inclusion.

In section 3, we studied the smallest congtuences generated by n-ideals of a
distributive nearlattice. Here we have shown that for an upper clement n of a
distributive neatlattice S, each 6 eC( F(S) ), define a relaton p(@ ) on a
distributive neatlattice S given by x =y p(8) if and only if < x >, = <y > (0)
and so p(0) is a congruence relation on S. Moteover, we have also shown that

6,eC (F,(S), ie A, where A is an index set,

®  p (") =np(F)
(i1) p(v8) =vp(8).

At the end, we have shown the permutability of congruences #( 1) and 8(]), for
n-ideals I and | of a distributive medial nearlattice S. We have proved that above
congruences permute for all T and J if and only if S is a lattice and n is

complemented in each interval containing it.
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2.1. Prime n-ideals of a nearlattice

Recall that an element n of a neatlattice Sis medial if m(x , n,y) exists forall x , y
€3. Also recall that for a medial element n, an n-ideal P of a neat- lattice S is prime
if P=Sand  m(x,n,y) € P (x, y€S)implics eithet x€P or yeP. The set of
all prime n-ideals of S is denoted by P(S). Now we will study these prime n-ideals

more claborately. Following results will give a cleat idea about prime n-ideals.

Theorem 2.1.1. If n is medial element and P is a prime n-ideal of a nearlattice S, then P

contains either (n| or |n), but not both.

Proof: Suppose P is ptime n-ideal and P2 (n]. Then thete exists t < n such that
re P. Now let s€[n). Then m(r, n, s) = (tAn)V (nAs) vV (tAs) =tvnVve =neP.
Thatis, m(t,n,s) €P. Since P is prime, this implies s€P and so P2[n).
Similatly, if P2[n), then we can show that P2(n].  Finally, if P contains both (n]

and [n) , then by convexity of P, P = § which is impossible. @
'The following results are due to [42] which give a clear idea on prime n-ideals.

Theorem 2.1.2. Let n be a nentral and medial element of a nearlattice S. Then every prime
n-ideal P of S is either an ideal filter. If it is an ideal, then it is also prime ideal. If it is a filter

then it is a prime filter. @

Lemma 2.1.3. For a medial element 1, any prime ideal P containing n of a nearlattice S is a

prime n-ideal. @

Lemma 2.1.4. Let n be a nentral and medial element of a nearlatizce S. Then any prime

filter Q containing 0 is a prime n-ideal. @
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Following result has been proved by [42] when n is a medial nearlattice. We

improve the result for a general nearlattice with n as a medial element.

Lemma 2.1.5. In a distributive nearlattice S if I is an n-ideal and 1D is a convex

subnearlattice with1 "D =®. Then either (1] 0 D= @ or [1) "D = 0,

Proof: Suppose, (1] N D #® and [I) "D # ®. Letxe(1] » D. This implies

x€ (1] and xeD. Since S is distributive, so by lemma 1.2.5,
X = (xAL)V(RAL) Vi Vv (xA1) for some iy, iy, E L
Againlet ye[1) N D, this impliesyeD andy 2 i’ for some i'€I.

Now, xAy S yA[(RAL)V (XAL) V... Vv (xA1)]

So by convexity, (yAi)V (Al V.ooe.. Vv (yniy) €D.

Again, i' i, € yad; i implies by convexity that ya1 €l

Similatly yAi,el, ..., yri €l Hence, (321 V (FAL) Veeeeens v (yri) €L
Thus,I "D # @ which is a contradiction.

Therefore, if [N D =@, then either (I} "D = ® or [1) "D = ®. [ )

Separation propetty is a well known result in lattice theory. Following result is an

extension of that result for nearlattices which is due to [ 51 ].
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Theorem 2.1.6. Lez 1 be an ideal and D be a convex: subnearlattice of a distributive

nearlattice S with 1ND = ©. Then there exists a prime ideal P2 1 such that PrD = & @

Now we generalize this result for n-ideal in a distributive nearlattice. This also

generalizes |34, Theorem 1.2.4.] .

Theorem 2.1.7. Ler S be a distributive nearlattice and n be a medial element of S. Let 1 be
an n-ideal and 1D be a convex subnearlattice with 10 D = ®. Then there exists a prime

n-ideal P of S such that P21 and PN D = @.

Proof: Sinceln D= &, sobylemma2.1.5, cithet (] N D = ® or
[I)nD=ad. If (1] "D = @, then by theorem 2.1.6, there exists a prime ideal
P2 (1] such that P n D = . Since n€P, so by lemma 2.1.3, P is a prime n-ideal.
On the other hand if [1) ND = &, then by dual tesult of theorem 2.1.6, thete
exists a prime filter Q2 [1) such that QN D = @. Thus neQ. Since Sis
distributive, so n is a neutral clement of § and so by lemma 2.1.4, Q is also a prime

n-ideal. This completes the proof. @
Following corollary trivially follows from above result.

Corollary 2.1.8. Lesn be medial element and 1 be an n-ideal of a distributive nearlattice S

and let a€ S such that ae 1. Then there exists a prime n-ideal P of S sich that P21 and a¢ P@

Following result is also an extension of a resultin [ 51 ] for n-ideals. 'This also

generalizes | 34, Corollary 1.2.6.] and [1, Corollary 1.2.10. for n-ideals in a lattice].

Lemma 2.1.9. Let n be a medial of a distributive nearlattice S. Then every n-ideal I of S is

the intersection of all prime n-ideals containing it.

Proof: l.ct1,= N {p: P21, Pisaprime n-ideal of S }.
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If 1#1,, then there is an clement a€ I, — 1. 'Then by above corollary, there is a

ptime n-ideal P with P21, ag¢P. But a¢ P21, gives a contradiction.

‘This completes the proof. @
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2.2, Principal and Finitely generated n-ideals

In section 4 of chapter 1, we have defined the principal n-ideal < a >, generated
a€S. The set of principal n-ideals of a nearlattice § is denoted by P,(S). By

proposition 1.4.2, if n is standard element of a nearlattice S, then for any a€S,
<a>,= {yeStarnsy=(yra) v (yAn))

By 1.4.4, we know that when n is standard and medial, then P (S) is a meet

semilattice and < a> N <b > =<m(a,n, b)>, forala,bes.

Also by 1.4.4, when n is neutral and sesquimedial, then P (S) is in fact a neatlattice.
Thus when n is upper and neutral, P,(S) is a neatlattice. Moreover, [ 42 ] have

improved that result by the following theorem.

Theotem 2.2.1. If S is a medial nearlattice and n is a nentral element of S, then P (S) is

also a medial nearlattice. @

In this thesis, the central elements play a very important role. [42,Th2.2.2 ] have
proved that for an clement nesS, n is central element if and only if n is upper and
P,(S) =(n|*x [n). But we find certain inaccuracy in their result. Observe that in
five-element lattice { 0,a,b,n,1:arb=a An=bAn= 0;avn=avb=bvn=
1}, P,(S) is a four-clement Boolean lattice and P,(S) =(n ]* x [ n). Thus nis
complemented in each interval containing it. But n is not central as it is not

neutral. ‘Thus we can restate that result as follows:

Theorem 2.2.2. For a neutral element n of ~a nearlattice S, n i central if and only if n

is upper and v is upper and P (S) = (n]*x [n). @
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Recall that a nearlattice S with 0 is sectionally complemented, if the interval |0, x| is

complemented for each x€8.

Of coutse, every relatively complemented nearlattice S with 0 is sectionally

complemented.

A nearlattice S with 0 is called sem:-Boolean if it is distributive and the interval |0, x]

is complemented for each x€8.
Following results ate easy consequences of the above theorem.

Corollary 2.2.3. Let S be a nearlattice and n€S be a central element. Then P (S) 15
sectionally complemented if and only if the intervals [a ,n] and [n b are complemented for

eacha ,b €5,(a<n<Dh)@

We know by 1.4.6, that if n is medial in distributive neatlattice S, then I,(S) is also

distributive and hence P, (S) (if it s a neatlattice) is also distributive.

Corollaty 2.2.4. If n is central element of a distributive nearlattice S, then P (S) is semi-
Boolean if and only if the intervals [ a, n'] and [ n, b'] are complemented for each a, b €S

@sn<b). @

Following results are due to [51] . These will be needed for further development

of the thesis.

Lemma 2.2.5. IfS, is a subnearlattice of a distributive nearlattice S and P, is a prime ideal

(filter) in S,, then there excists a prime ideal P in S such that P, = PnS,. @

In lattice theory it is well known that a distributive lattice L with 0 and 1 is
Boolean if and only if its set of prime ideals is unordered by set inclusion.

Following result due to [51] have generalized this result for distributive nearlattices
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with 0.

Theorem 2.2.6. IfS is a distributive nearlattice with O, then S is semi-Boolean if and only if
tts set of prime ideals (filters) is unordered by set inclusion. @

Now we would like to generalize this result for n-ideals. To do this we need the

following results.

Theorem 2.2.7. Let S be a distributive nearlattice with an upper element n. Then the

Jollowing conditions are equivalent.

) F.(S) is generalized Boolean.

W  P.(S) is serni-Boolean.

Proof: (i) = (ii) is obvious by corollary 1.4.5. Conversely, let (i) holds.
Let {n} € <x4,%p, 3%, >2S <Y1, Yareee s Vs e

Thatis, {n} S <xy,Xp.000n. , %, >N <y;>, € <y;>,, which implies
{n}S (<x>,V <x,> Vo V<X, >) N <y >, €<y >, and so

{I'I} = [(<Xl>nm<YI>n) MESTTITERY V(<Xp>nm<YI>n)] = <YI>n'

Thus, {n} S< mx;, n, y1) >, vV coeivienins v < m(x, n,y) >, & <y;>,. By

corollary 1.4.5, <m(x;, 0,¥) >y ¥V -oneeennn v <m(x, 1, ,) >,is a principal n-ideal.

Now let, < t,>, = <m(x;, 0, ¥) >,V eerennnn. v <m(x, n,y,) >,and let <>,
be a complement of < t; > such that < 1, >, v < t; >, =< y,;7, and

< r1>n N<t 1>n = {ﬂ}

So, we can get < t >, ;i = 1,2,.,5 and the complement , < £;>,; i=12...sof
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< ti>n SUCh that < ri: r2’ ruk ey t >n v < Xla XZ’ """ > Xp >n =< ynyz’""‘s ys >n’

and P f s
= (<>, 0 <Ky Kgy X, ) Ve V(S 1300 <X, Xy X, )
= {n} v {n}v.......v{n}
= {n}

Therefore, F,(S) is generalized Boolean. @

Lemma 2.2.8. Lef n be an upper element of a distributive nearlattice S. Then the following

conditions are equivalent.

()  P.(S) és semi Boolean

(i) [a,n] and [n,b] are complemented forall a <n <b.
Proof: (i) =(ii). Suppose P,(S) is semi-Boolean and leta s y < n.
Therefore, {n} €<y >,E <a>_ whichimplies
{n} [y,n]<[an]

Let < t >, be the relative complement of <y >, in [{n},<a>,]. Thent < n.
Also,<t>n<y> ={n} and <t> Vv<y> =<a>,
Now < t> N <y>_ = {n} implies

[t, 1] A~ [y, n] = {n} and so

[tvy, n] = {n} implies tVy = n.
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Also,<t> Vv <y> =<a> imples
[t,n]VIy, n] =[a 0] andso
[try, n] = [a, n]. Thus try = a.

Hence, [a, n] is complemented. Similatly we can prove dually that [n, b] is also

complemented.

(i) = (i). Suppose [a, n] and [n, b] are complemented for all a < n < b.
Consider {n}s < p>,< <q>,.Then qrAn < pAn<nspvns qvn Since
[n, qvn] is complemented, so there exists s [n, qVn], such that (pvn) As = nand
pvavs = qvn. Again as [qAn n] is complemented, so there exists € [qAn, 0]

such that tApAn = qvn and tv(pAno) = n.
Then [t,s] " <p>,= {n}.
[6s] v <pZa=<q7w

That is [r, 5] is the relative complement of <p >, in [{n}, < q >,]. But by corollary
1.45, we know that any finitely generated n-ideal contained in a principal n-ideal

is principal. Hence [t, ] eP,(S) and so P,(S) is semi- Boolean. @
Now we extend the result [34, Th. 1.2.9.] for neatlattices.

Theorem 2.2.9. Let S be a distributive nearlattice and n€S be an wpper elemnent. Then the

Sfollowing conditions are eqz/z'ya/em‘.

6 F (S) #s generalized Boolean.
(iiy  The set of prime n-ideals P(S) of S is unardered by set inclusion.

Proof : (i) < (ii). Suppose F,(S) is generalized Boolean. Then by theotem 2.2.7
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and 2.2.8, the interval [ x, n | and [ n, y ] ate complemented for each x,y € S with
x s n s y. If P(S) is not unordered, suppose there are prime n-ideals P, Q with
PcQ. Let beQ — P. Now as Q is prime, there exists a€S such that agQ. Then

either aAneQ or avne Q (here avn exists an n is uppet). For otherwise a<Q, by

convexity.

Suppose avneQ, Since [n , avn] is complemented and n <(aAb)vn < avn , 50

there exists t€[n , avn] such that tA[(anb) va] =nand t Vv [(arb) Vo] =ava.

Since tA[aab)va] = m( , n ,(a Ab) vn) = n , thus tA[(anb) vn] =
m(t, n, (a Ab) vn) €P. Since P is prime, so either teP or (a Ab)vn €P. Now
ns (anb) va s bvn implies (arb) v n € Q. If t€P, then t€Q and so avn =

tv [(aab) v n] €Q, which gives a contradiction.

If (aAb)vneP, then (arb)vn = m(@vn, n, b) €P implies beP which is again a

contradiction. Therefore, avn €Q.

Now if arneQ, then arbangQ as n€Q and Q is convex. Since bAn has relative
complement in [aAbAn, n]. Proceeding as above, again we artive at a
contradiction. Thus a~neQ. Since both asn and avn belong Q, so by convexity
acQ. This gives a contradiction. Thetefore the set of prime n-ideals P(S) is

unordered.

(ii)= (i). Suppose that P(S) is unordered. Consider any interval [n, b]inS. Let Py
Q, be two prime ideals of [n, b] . Then by lemma 2.2.5, there exist prime ideals P
and Q of S such that P, = PN[n, b] and Q, = QN [n, b].

Since P and Q contains n, so by lemma 2.1.3, they are ptime n-ideals. Since P(S) is

unotdered, so P and Q ate incomparable. This follows that P, and Q, are also
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incomparable.

If not, let P,cQ,. Then for any z€P, (zvn)Ab €[n, b] and n< (zvn)Ab szvn
implies, (zvn) AbeP,cQ,. Thus (zvn) Ab €Q. But b Q as Q, is prime in [n, b].
Therefore zvneQ as Q is a prime ideal of S and so z€ Q. Hence PcQ, which is a
cqntradicdon. Thetefore by [16, Th. 22, p-46], [n, b] is complemented. .

Again consider the intetval [a, n]. Since the prime filters are the complements of
prime ideals, so consideting two prime filters of [a, n] and using the same
argument as above we see that [a, n] is also complemented. Hence by lemma 2.2.8,,

P(S) is semi-Boolean and by theotem 2.2.7, F,(S) is generalized Boolean. @
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2.3. Congruences corresponding to n-ideals in a distributive

nearlattice

In this section we discuss on the permutability of the congruences © (I) and © (J)
in the distributive neatlattice S, whete 1 and ] are n-ideals of S. In a nearlattice S,
two congruences @ and ® permute if for a, b, ¢ €S with a=b (©) and b=c (D)
imply that there exists some d€S such that a=d(®) and d=c(®). For an n-ideal 1
in a distributive neatlattice, the congruence © (I) have been studied by [42]. The
following result of [42] gives a desctiption of the smallest congruence relation of a

distributive neatlattice S containing an n-ideal as a class, where n is a fixed element
of S.

Theorem 2.3.1.  For an n-ideal C of a distributive nearlattice S, the_relation ® (C) on S
defined by x=y © (C) (x,y€S) if and only if xnc = yac for some ceC and (x] v(C]

=(y] v (C), is the smallest congruence containing C as a class. @

[42, Th.2.3.4.] has also shown that a neatlattice S with a neutral element n is

distributive if and only if each n-ideal C is a class of some congruence of S.
Following tesult is due to [42 ]

Lemma 2.3.2. Lefn be a medial element of a distributive nearlattice S. Then for any fwo n-
ideals 1 and ] of S,

@ e(In))=0e()ne(])
@ e (v)y=e(l)ve(]) @

Theorem 2.3.3. Let S be a distributive nearlattice and n be an upper element of S. Then the
map p  CL,S) —>CEO) isan isomonphism where for each ©® €C(F,(S)), p(©)
is defined byx=y p(©) ifand only if <x >,= <y >,0.
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Proof: By above lemma it is sufficient to prove that pis one-one and onto .

Suppose p (@) = p(®).Then <a> =<c>_ © ifand onlyifa=c p(®) =
p(®)ifand only if <a> =<c> (®). Nowlet, <a,, 2,...2,>, = < ¢,,C,...C. >,
(®).Then,

<., 8,7 NG = <Gyt C,P NS>, 0351= L2, .iviennls
Thus, < m(a;, n,¢),..ccc.en ,m(a, n, ¢)>, = <¢>_(0).
But by corollary 1.4.5, <m(a; n,c),........... ,ma,n, c)> =<t> forsome

t,€S. Thus,< t;> = < ¢;>, (©). Hence t; =¢; p(®) = p(P).This implies < >,

=< G >n((D)'
Thus, <m(a;, n, ¢ ,.....,,m(a, n, c) >, = <> (D) for eachi =1, 2,.....
Therefore, <a,,a,,...... a,> M < €Ly -y C,
Similatly, < a,,a,,..., 2>, N <c¢;,Cy,..., C

>n = <a1982" sy ar >n((D)

and 50 < a,,85,..., &, >, = < C,Cypusy G >, (®). This implies ® € @. Similarly,

S ®,andso O = ®. Therefore, p is one-one.

For ontoness, let ® €C(S). Define @ eC(F,(S)) by ® = v{©(<a>, <b>):
a=b @}, If x=y(®), Then<x>=<y>0(<x>  <y>), and so0

< x > =<y > © This implies x=y p (@) and so ® < p(©).

To prove the reverse inclusion , let x=y p(@)(< 2 >,,<b >): a=b®).Then
<X>HE<Y>n®(<a>nm<b>n.<a>nv<b>")‘
This implies < x >, N <a >N <b > =<y>N<a>N< b >, and

<x>v<a>Vv<b> =<y>v<a>Vv< b >.. Then by some routine
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calculations we get,
(xnn) V(ann) v(bAn) = (yan) v(arn) v(bAn)
(xva) A (avn) A (bvn) = (yva) A (ava) A (bvn)
And xAanban =yAaanban
(x] v(a] v(b] v(n] = (y] v(a] v(b] v(n]
Now xAn = (xAn) A[(xAn) v@rn)v(ban)]
= (xAn) A[(yAn) v(arn)v(ban)
= (xAn) Af(yAn) V(ban)] © (a, b)
= (xAyAn) v (xaban) as S is distibutive.
= (xAyAn) V(xAarban) @(a, b)
= (xayAn) v(yrarban)
= (yAn) A[(xAn) v @nban)]
= (yAn) Al(xAn) v@arn)v(bAn)] ©(a,b)
= (yan) A [[yAn) V(arn)v(ban)] = yAn.
Hence xAn =yAn © (a, b).
Again xvn = (xvn) V[(xvn) A (avn) A (bvn)]

= (xvn) V[(yvn) ~ (avn) ~ (bvn)]

4]



Chapter 2

= (xvn) v[gvn) A (bvn)] ©(a,b)
Then , (xvn] = (xvn] v((yvn] A(bvn]) ®(<a>, ,<b>)
= (I v] va]) A v ©] vaD)
= (&l vl v(a]) A(x] V() v (b] v(n]) ©(<a>, <b>)
= (& vl v]) A6 V@l v ©] vn)
= ((x] V] v(nl) A(G] VD) V(@ V@D A(G] V() ©(<a>,, <b>,)
= (1 v (] v (] V(o)) (@] v(a]) A((] v(a])
= (yvn] v((xva) Aavn) A(bvn)]
= (yvn] V(o) Afave) Abvn)
= (yvn]

That is, (xvn] = (yvn] ©(<a >, <b>)andsoxva =yvn® (a, b). Then by
distributivity, x=y®(a b). Also @ (a, b) < ®. Thusx =y(®).

Therefore, by above lemma p (@) ®. Hence p(©) =@ and so p is onto. @

By [52], it is well known that for a distributive nearlattice S with 0, S is semi-

Boolean if and only if I(S) = C(S). [42] have generalized the result for n-idealg

given by following result.

Theorem 2.3.4. Letn bea central element of a nearlattice S , then I,(S) =C(S) #f and
only if P (S) is sem-Boolean. ®
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Since the lattice of ideals of a distributive neatlattice S is isomorphic to the lattice

of congruences if and only if S is semi-Boolean, so using 2.3.3 and above theorem,

we obtain the following corollary.

Corollary 2.3.5. For a central element n of a distributive nearlattice S, 1,(S) = 1 (F,(S)) &f
F.(S) és generalized Boolean. @

Now, we describe an isomorphism between C(F,(S)) and C(S) in presence of

distributivity. We prove this with the help of the following lemma.

Lemma 2.3.6. Let n be an upper element of a distributive nearlattice S. For each © €
C(F,(S)), define a relation p (@) on'S given by x=y p(®) if and only f<x> =<y>,
(®). Then p (©) is a congrnence relation on S.

Moreover, for ©, € C(F,(S)), i€ A where A is an index set,
@  p(nOY)="p(®)
and (i) p (V@) =Vp(©).

Proof: Cleatly p(®) is an equivalence relaton . To prove the substitudon
propetty, suppose x=y p (@) and teS. Let xvt, yvt exist. Then <x > =<y>, ©

andso, <x> v <tvn> = <y>v<tvn>, 0 That is,

[n, xvtvn] = [n,yv €tV N] O . i (1)

Again <x> N<trAn>=<y>, N< tan > (©). Thatis
(xan) v (tan), o] =[An) v (Ean) , 0] (@) e (i)

T'aking suptemum of (i) and (ii), we have
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[(xAn) v (tAn), xviva] =[(yAn) v (tAn), yvtva]( ©)
Thus, [(xvt) An, xvtvn] = [(yVE) An,yvtva] (®), as nis neutral.

That is, < xvt > = <yvt> (0),and so xVt = yvt p(0©). Similarly a dual proof

of above shows that xAt = yAt p(®) and so p (®)is a congtuence of S.

For the second part, the proof of (i) is trivial. For the proof of (i), Since p is

order preserving, obviously Vv p(®@) € p(vO).
To prove the teverse inequality, assume that x=y p (v @;). Then

<x> E<y>n(V®;), Thus<x>nﬁ<y>“:<m(x,n,y) >nE<X>n(V®i)

so by corollary 1.4.5, there exists a sequence of principal n-ideals.

<mx,ny).>, =<z>,, <z >, < 2,> = <y>,

n}

with <z > =<z>(0,); i€ A Lkj=12,.... L.

This implies z,_, = z, p(®, ), which shows that m(x, n, y)=x (Vp(9)).
Similarly, m(x, n, y) = y(v £ (©)). Hence x =y (v p( @)).
So we have p(v ©) €V p(9).

Hence p(VO)=Vvp(©). @

We now discuss on the permutability of the congruences ©(I) and ©(] ) in 2

distributive neatlattice S, where I and ] are n-ideals of S.

It is well known in lattice theory that fot any two ideals T and J of a distributive
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neatlattice S, © (T) and © (J) always permute. But this is not true in general for

n-ideals. For example, consider the 3 — clement chain

L= {0, n, 1}.

Let1={0,n} and J = {n, 1}. Hete 0= n ® (1) and n=1 ©(] ). But there exists
o x€S such that0 = x @(J)and x=1 O(I).

In [ 34, Theorem 2.1.11] Latif has proved a result on the permutability of the
congruences @ (1) and ® (]J) in a disttibutive lattice L, whete 1and J ate

n- ideals. We conclude this chapter with the following result which generalizes

[34 ,Theorem 2.1.11]

Theorem 2.3.7. Let S be a distributive medial nearlattice and n is an upper element of S

Then for1, J€1.(S), the following conditions are equivalent .

(1) O (1) and ©(]) permute .

(i) S isa lattice and n is complemented in each interval containing i,
(111) P.(S) isa lattc.

Proof: (i) = (ii). Leta, beS. Consider @ (n, avn) and @ (n, bvn). Now, avn =
(avn) A(bvn) © (n, avn) and (avn) A(bvn) =bva ©(n, bvn).

Since © (n, avn) and @ (n, bvn) permute, so there exists t€S such that avn=t @
(n , bvn) and t=bvn @(n, avn). These imply (avn] v (bvn] = (t] Vv (bvn]

and (t] v (ava] = bvalv (avn]
Thus, avn = ((avn) At) v ( (avn) ~Abvn))
and bvn = ((bvn) At) v ((bvn) AMavn) ).
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Since § is a medial neatlattice, So avbvn = ((avn) At)v( (bvn) At) v ( (avn) A

(bvn)) exists. ‘Therefore, avb exists in S, and so S is a lattice.

Now let x s n< y. Also, x=n0 (x, n) and n= y® (n, y). Since © (x, n) and O (n, y)
petmute, so there exists t€S such that x=t® (n, y) and t =y @ (x, n). These imply

x = tAnand y = tvn. Thus, t is the relative complement of n in [x, y], So (i) is -

proved.
(11) :(Hl) LCt <a >n > < b >n EPH(S)'

As Sisalattice,so <a> v <b> = [a”n ,avn] Vv [bAn,bvn] = [aAb n ,

avbvnl.

Since n is complemented in each interval containing it, so there exists

c € [aAbAn, avbvn] such that cAn = aAbAnand cvn =avbvn.
Thetrefore, <a> Vv <b> =<c>, andhenceP, (S)is a lattice.
(iii) = (ii) . Suppose P, (5) is a lattice. Let a, beS.,

Now <a>Vv<b> = <t> forsome teS.

Thatis [aAn, avn] v [bAn, bva] = [tAn , tval].

This implies avn, bvn < tvn. Then by the upper bound propetty, avbvn exists ,

and so avb exists. Therefore, S is a lattice .

Also forx s nsy, [xy] = <x> v<y> = <t>=[t"n, tvn] for some
teS . ‘This implies tAn = x and tvn = y. Therefore n is complemented in each

interval containing it.
Tinally, (ii)= (i) follows from the proof of (i) = (i) in [34, Theotem 2.1.11]. @
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CHAPTER 3

THE n-KERNELS OF SKELETAL CONGRUENCES ON A
DISTRIBUTIVE NEARLATTICE

Introduction

"Throughout this chapter we will be concerned with a distributive nearlattice S with
a fixed element n. Skeletal congruences on distributive lattices have been studied

extensively by Cornishin [ 8].

Fotr any © € C (§), ® denotes the psendocomplement of ©. By its very definition
®@N® = @ ifand onlyif <@ @eC(S). Since C(S) is a distributive algebraic
lattice, so ®" must exists. |

The skeleton SCS) = {®€ CS) : ® = 0" }. The set I(S) of all ideals of a
distributive neatlattice S with 0 is pseudocomplemented. The pseudo complement
J of an ideal | 1s the annthilator ideal J* ={x €S: x A j =0 forall j€ J}. we also
denote KSC(S) = {ker ©: ©€ SC(S)}. The kerne/ of congruence © is
ker @={x €S:x = 0(0)}. Of course ket ® (] ) =].

The set T, () of all n-ideals of a distributive nearlattice S is a distributive algebraic
lattice. So 1, (S) is pseudocomplemented . For a medial element n and for any
n-ideal ] of a distributive nearlattice S, we define J* = {x€ S: m(x, n, j) = n for all
j €J}. ‘Then " is an n-ideal and JNJ* ={n}. J" is called the annibilator n-ideal of },
which is the pseudocomplement of | in I,(S) .We define n-ketnel of a congruence
® by ker,®= {x € & x = n(®) }, which is cleatly an n-ideal. © €C(S) is called

dense if ©° = @ while an n-ideal ] is called denseif J* = {n}.
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A non-empty subset T of a nearlattice S is called join-dense if each z€ S is the join

of its predecessors in T. Also, T is called meet-dense if each z € S is the meet of its

successots in T.

Fora,b€S,<a, b> = {x €S: x Aa < b} is called the annihilator of a relative to
b, or simply a relative annibilator. In presence of distributivity it is easy to see that
each relative annihilator is an ideal.

In a lattice L, we define < a, b >, = {x €L: xVa 2 b} is known as relasive dual
annthilator. For relative annihilator ideals of a distributive lattice we refer the reader

to see [38].  Recently [2] have extended these results for neatlattices.

A distributive nearlattice S with 0 is called digiunctive (weakly comple-mented and
sectionally semi-complemented ate alternative terms) if for 0 < a < b, there is an
element x €5 such thatx A a=0and 0 <x S b . For details on these lattices see

(8], [5] , [65] and recently [560] have extended the results of [8] for neatlattices.

M. A. Latif has studied the skeletal congruences in a lattice L in [34] extensively
and established several equivalent conditions for F, (L) to be disjunctive and

generalized Boolean in terms of skeletal congruences of L.

In this chaptet, we have discussed the skeletal congruence extensively in case of
neatlattice and studied those F,(S), which are disjunctive.
In section 1, we have studied the skeletal congrences ©° of a distributive nearlattice

S, whete * represents the pseudocomplement. Then we have given a descriptions
of ® (J)', whete ® (J) is the smallest congruence of S containing n-ideal ] as a
class and showed that J* is the n-kernel of ® (J)* .  We have proved that for a

convex subsemilattice ] of a distributive nearlattice S is small if and only if it is
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meet-dense in S.
In section 2,we have shown that for an upper element n , F (S) is disjunctive if

and only if the intervals [a, n] is dual disjunctive and [n, b] is disjunctive forall a

IA

n<b, abeS.Wehave also shown that F,(S) is disjunctive if and only if
the n-kernel of each skeletal congruence is an annihilator n-ideal. Moreover, we
have given some other equivalent conditions for F.(S) to be disjunctive and
generalized Boolean. Finally it is proved that F,(S) is genetalized Boolean if and
only if the map ® —>Ker, © is a lattice isomorphism of SC(S) onto K, SC(S) whose

inverse is the map ] = © (J), where ] is an n-ideal and n is an upper element of S.
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3.1. Skeletal congruence on a distributive nearlattice

For any @ €C(S) , ©" denotes the pscudocomplement of ©. For a neat- lattice S,
we define the skeleton
SCE) ={©@cCO): ©=P" forsome ®eC(S)}.

={0eC): o=0"].

Recall that fora, be§, <a, b> = {x € S: xA a £ b} is the amnihilator of a relative
to b, or simply a relative annibilator. In presence of distributivity, it is casy to show
that each relative annihilatot is an ideal. Also note that<a, b>=<a , anb >,

In case of a lattice L, we define

<a,b>;= {x€ : xV a 2 b} which is known as a dna/ amlz"/Jz'/afar of a relativeto b,
ot simply relative dual annibilator. 1t is very easy to sce that <a, b>, in a dual ideal
(filter) of L when L is distributive. Since in a general nearlattice, supremum of two
elements may not exist, so it is not possible to define a dual relative annihilator

ideal for any two elements a and b.

But if n is an uppet element of S, then x Vv n exists for all x€S. Then for any
a€(n], a v x exists for all x € § by the upper bound property of S. Thus for any
a€(n] , we can talk about dual telative annihilator ideal of the form <a,b >, for
any b €S. That is, forany a £ nin §,

<a,b>; = {x €S:x Va2 b }is a relative dual annihilator and in presence of

distributivity, it is a filter of S.

The following theotem gives a ncat description of the pseudocomplenent ©° of
@€ C (S), which is due to [56]. This could also be deduced from Paperts
description in [55, Theorem 2], also ¢ .f [55, Th. 3.1and 3.2].
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Theotem 3.1.1.. For a distributive nearlattice S with 0,  the Jollowing conditions  hold.
) Fora<b (a,be8), x =y(@(a, b)) tfand only if x Ab) V a
=y Ab)Va , where (©(a, b)) is the complementof © (a, b).
(i) Iorany @€ C(S),x =y(©") (x, y € S) if and only if for each a , b€S
with a<band a=Db 0;(x Ab) Va= (yAr b)va,
(i) Forany @€ CS), x =y (0") ifandonlyif ® 0,x) N © = O
(©,y) N ©.Thatis, ®, " ©=© N © i andonlyif V<0 =
",Ne @

Following result is due to [2 ] which gives a nice characterization of ®° when n is

an uppetr element.

Theotem 3.1.2. Let S be a distributive nearlattice with an upper element n. Then for any
©cC(S),x = y(©") ifandonlyif O(n,x) "O® =0 (n,y) " ©. @

The following result is due to [ 56 ] which is a generalization of a result of Cornish
[ 8] for lattices.
Theotem 3.1.3.  For a distributive nearlattice S with 0, the following conditions hold.
(i) Foranyideal] ,x =y (©(J) (x,y€S) fandonlyif (x] "] = y]"]
i.c.if andonly if x Nj=yAj forallj € ).
(i) Foran ideal ), both © (J) and ©(J") have J" as their Kernel.
(iii) An ideal ) is the Kernel of a skeletal congruence if and only if it is the intersection of
relative annibilator ideals .

(iv) Each principal ideal is an intersection of relative annibilator ideals. @
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Now we generalize the above results for n-ideals when n is an upper clement of S.

Recall that for an n-ideal ] of a distributive neatlattice S, if n is a medial clement
J"={x€S: m(x,n,j) = n forallj €]} J* is known as the annihilator n-ideal of ]
and JNJ* = {n}. Of cousse |* is an n-ideal. Also recall that the n-ketnel of a

congruence O is given by Ker,® = {x €S: x=n®} , which is also an n-idcal.

Following result is a generalization of above tesult, which is also due to |2]. Here
we prefer to include the proof for the convenience.
Theorem 3.1.4. If S is a distributive nearlattice and n€ S is an upper element , then the

Jfollowing conditions hold.
() Loranyn-ideal |, x =y (©(J)") (X, y €S) ffand only if <x > 0 ]

= <y> NJ ie iffandonly if m(x, n,j) =m(y,n, ) foralj € ].

(i)  For an n-ideal J, both © (J)' and © (J*) have J" as their n-kernel.

(i) The n-kernels of the skeletal congrnences are Precisely those n-ideals which are
intersection of relative annibilator ideals and dual relative annibilator ideals whose end
points are of the form x v 1 and XA\ n respectively.

(iv) Bach principal n-ideal in a distributive nearlattice is the intersection of relative

annibilator ideals and dual relative annibilator ideals whose end points are of the form

XA nand XV n.

Proof: (i). For any two n-ideals Tand J of S, we have ® 1 0] ) = © M no ().
Also, since n is upper so ® (n,x) = ® (nAx, nvVx) = O (<x2, ). Then by
3.12,x=y (0 ())ifandonlyif ® (n,x) NO () = O (n, y) " O (J) if and only
fe(<x>)Nnoe()=0 (<y>) "o () if and only if ® (<K x> N J) =
@ (<y>n ) ifand only if <x>, 0 J=<y>n],by 2306, if and only if
m(x, n, j) = m(y, n, j) forall j €] by theorem 1.4.3. Hence (i) holds.
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(ii). If x € Ker,(6())"), then x= n (8()").Then by (i) above ,<x > N] =
<n > N] if and only if m(x, n, j) = m(n, 0, j) = n for all j €] and so x€ J*, and

thus (ii) holds.

(iii). Consider a, b€S with a< b, Since ®(a, b)" = ©(a, b) . So by theorem
311, x €Ker,®(a, b)' if and only if (xA b) v a =(nA b) Va (since aS b, if

and only if (xA b) Va and (nA D)V a exist by the upper bound propesty of S.)

Now, we shall show that ( xAb)Va=(na b)va is equivalent to x€<bVn,aVn >

A <a An , bA n>,. Since (xADb) Va = (nAb) Vaimplies xA b < aVvn, we have

>
xA (bvn) = (xAb) vV (xAn) £ avn,andsox €<bvn, avn>

Again from (xAb) V a = (nAb)Va, we have ban £ (xAb) Va,

So,bAn € (xAbAn) v (aAn) £ xV (aAn), which implies x€ <aAn , bAn>,.
Hence x €< bvn, avn> N<asn, bAn>,.

Conversely, letx€<bVvn, avn> N<ann, bAn >,

Then,x €<bvn , a¥n> and x€<ann, bAn>,

Thenx A(bVn) = avnandx V(arn) 2 bAn

Now xA(bVvn) < aVvnimplies

xAb = xAbA (bVn)

(avn) A b

= (arb) Vv (brn)

= aV (bAn) andso(x/\b)VaS LA D) Va e (1)

IA

On the other hand, bAn S x Vv (aAn) implics

= bhAn < bA (XV (ﬂ/\ﬂ))
= (xA bV (af\b/\n)

=(xAb) v (an n).
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and so , (nAD) va < (xADb) Va...oooine (2) |
I'orm (1) and (2) we have, (xAb)va = (nAb)Va.
Since forany ® € C(S),
@' = N{O(a, h)': a=b O}, hence the result follows.
(iv). Since each principal n-ideal
<a> = Ket,0 (<a>)
= Ker,® (aAn, aVvn)and since ® (aAn, aVn) is skeletal, so by(iii)

the result follows. @

A non-empty subset T of a neatlattice S is called /rge if x At = yAt for all t€'T,
x,y €S implies x = y . Also recall that T is join-dense if each z€ S is the join of its
predecessors in T.

In a lattice I, a non-empty subset T is called smal/if xV t = yVt forallt €T,
x, y€ L implies x = y. In a distributive nearlattice S, we call a non-empty subset ‘I’
smallif for all x, y €8, with xS yand y = xV (yAt) forall t€T imply x =y.

Now we will show that these two definitions are equivalent in case of a lattice.
Suppose fitst definition holds for a subset T in a lattice L. T.et x < y with y = xV
(yAt) forall te T,

ThenyVvt= (xV AV =xVtL

Therefore, x =y and so second definitition holds.

Converscly, suppose second definition is true. Let xVt = yVt for all t €. Then
x € yand so xAy <y. Thus,y = yA(YY ) = yA V) = (yAX) V(yAt) = xV(yAl.

Hence by second definition, x = y, and so first definition holds. @

Recall that ‘I is meet-dense in S if each z€ S is the mect of its successors in T. It
can be casily shown that an ideal in a neatlattice is large if and only if it is join

dense. Tt is clear from 3.1.3 that an ideal J of distributive nearlattice S is join
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dense if and only if © (]) is dense in C(O), thatis, ©(J) = @,

Following lemma is due to | 56] and it will be needed for our next theotem,

Lemma 3.1.6. A convex subnearlattice | of a distributive nearfattice S is large if and only if it
is join-dense in S. @

Corollary 3.1.7. An n-ideal of a distributive nearlattice S is large if and only if it is join-
denseinS. @

Dually we can easily prove the following results.

Lemma 3.1.8. 4 convex sub semi-lattice | of a distributive nearfattice S is small if and only
if it is meet-dense in S

Proof: Suppose ] is meet-dense. Let x < y and suppose y = xV (yAt) for all t€].
Let t. is a successot of x in J. Since x <y, and x < t,. Therefore, yA .= (yAt)Vx
= y implies t, is a successor of y . So ] is small.

Convetsely, Suppose ] is small. Let x€ S and {t, }successots of x in J. we nced to
show x = ;AN ..., At
Now, let r be the lower bound of { t;}. Then xVr exists.

Let t be any element of | .

Then tA tIIS xV (tAt) S t,. Then by convexity, xV(tAt) €] and xV (tAt) is a
successor of xin J .

Therefore, xV (tAt) = t, for some k and and so,x V (tAt) Z 1
Thus, =t [xV (tAL)]
= (tAx) V (EAEAL)

= (1-/\)() vV (r/\t) <t
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Hence ¢ = (rAx) Vv (1A 1) for all te].
Since ] is small, this implies £ = rA x.
Thatis, r < x. Since ris the lower bound of {t}, so,x = t,At,A... AL,
’_I'herefore,] is mect-dense in S. @

Corollary 3.1.9.  An  n-ideal of a distributive nearlattice S is small if and only if it is

meet-dense in S. @

Theorem 3.1.10. Lez S be a distributive nearlatiice with an upper element n.Then for any
n-ideal | of S , © ()) is dense in C(S) #f and only if ] is both meet and join dense. @
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3.2. Disjunctive and SemiBoolean algebras

Recall that a distributive nearlattice S with 0 is disjunctive if 0S a < b implies the
existence of x€§ such that xAa = 0 and 0 < x < b. We have alteady mentioned
that the disjunctive (sectionally semi-complemented ) lattices have been studied by
many authors including [8] . Then [53] introduced the notion for nearlattices and
- generalized all the results of [8]. On the other hand, Latif in [34] generalized the

results of [8] for n-ideals in lattices. In this section we will generalize the results of

[53] in terms of n-ideals.

By [2, Th. 2.3.7]], we know that for any n-ideal | of a distributive medial
neatlattice S, R(J) denotes the largest congruence having ] as its kernel , where

x=y R(]) if and only if for each t€ L., m'(x ,n,1) €] ifand only if m(y, n, 1) €]J.

The following result is due to [53] which gives a desctiption of disjunctive

nearlattice.

Theotem 3. 2.1.  For a distributive nearlattice S with 0 , the following conditions are

equivalent.

() S is dignnctive.

(i)  Toralla€S, (a] =(] "’

() R((0])=0 @

Theorem 3.2.2. LetS be a distributive neartattice with QO and n be an upper element of S
then the following conditions are equivalent.

(i) ' (S) s a disjunctive lattice.

()  P(S) is a digjnnctive neartattice.

57



Chapter 3

(i) The interval |a, 0| is dual disiunctive and |n, b is disgunctive for all

asns<Db, a,beS

Proof: (i) = (). Let {n}} & <a> c <b >, Since (D) holds, there exists
o O A X, such that {n} c <x, x,....., x> < <b > forwhich <a>_n
<Xpy Xgyeeeey X, >, = {n}. Now by corollary 1.4.5, <x,,%,,.....,x, >, is a principal

n

n-ideal. Thetcfore, (ii) holds.

(i) = (). Let (i) holds and {n} € < X(sKppe « eesXe Z0S < Y1,Yas +- oY >, Then {n}

E S E K v v e X, >, N<y > c<y> fort=123,...... s.
Thatis, {n} S <m(x,;,n,y)>,V....... v<m(,n,y) >, c <y>,. Butby
corollary 1.4.5, < m(x;, n, y)>,Veeerronne, v<m(x,,n, y) >, Isa principal

n-ideal. Thus there exists < ¢ > and {n} c < ¢ > < <y, > such that
< XKoo X, >, N <y, > N <c> = {n}. This implies < x,,%p....x, >, "< c >,

= {n} whete < c> S <y, yoeeeenn A
Therefore, I7 (S) is disjunctive.

(i) = (iii). Let (ii) holds and a <b sn for which {n} = <b > c<a >  Then by
(i) , there exists <t>  with {n} ¢ <t><c<a> such that<b> n<t>
={n}. This implics n = [ b, n] n[t, n]=]Dbvt, n] and so bvt = n .Motcover ,

{n}c <t>ec< a > implies a s t < n. Therefore, (n] is dual disjunctive.
Similatly, we can show that [n) is disjunctive,

(iii) = (i1). 1.et (iii) holds and {n}= <a> c<b >

So, {n}< [aAn, avn] c [ban, bvn] implies either ban < asn s n

or n < avn < bvn. If ban <asn < n, then thete exists t with b An st < n such
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that (a An)v t = n
So,<t> n<a> =]t n]N[a~rn, a v

=[tv(a an),n] = {n}. Where {n} c<t> c<b>,

Again, if n savn<b vn, wecan similarly show that there exists < s >, with
{n} c<s> < <b> suchthat<s> n <a> = {n}. Therefore, P,(S) is

disjunctive. @

Following tesult has been proved by [2] when S is a distributive medial neatlattice
with an upper element. We generalize that result for an otdinary distributive

nearlattice where n is merely an upper element.

Therom 3.2.3. § uppose S is a  distributive nearlattice with an upper element n, Then the

Jollowing conditions are equivalent .
) F.(S) is disjunciive .
(1) P,(S) zs disgunctive.

.. +

(i) ForeachacS,<a> =<a>".

(iv) R({n}) = o.
Proof: (i) < (i) holds by Theorem 3. 2. 2.

iy = (il). Here n is uppet. Suppose P (S) is disjunctive and supposc that
<a>, k<a>" for some aeS. Since < a > € < a>""  so thete exists
te<a>,' but tg<a>,= |arn,avn|, which implies cither ann 4t or, tdavn.

Supposc arn ¢ , then tranan < aan. Thus [arn |, n] c [trasn, n], and so

{n} € <aan> c<tararn > . Since P (S) is disjunctive, so there exists < b >
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such that {n}c<b > S <trann > and < aan > n<Db > = {n}.This implics

[arn) v (ban), n]= {n}, and so (arn) v(ban) =n.
Now < a >n n< b >n :l(a/\ [1) v (b/\ 1]) , (av n)/\ (bv n)_l.

=, @vo)a(bvn)

={n} asbsn Ience<b>S<a>’.

Now,<b> =<b>n<triaan>,
= [(ban) v(trarnn) , n]
= [(trn) v brn) A(@rn) v bAn),
= [((trn) v(ban)) ~n, n]
=|(trn) v (bAn), ]

=<tAn >nﬁ< b >n

{n} astrane<a>Tand<b> S <a>’.

Thus < b >, = {n}, which isa contradiction. Therefore, <a >, =<a>,"" for

alla €S, which is (iif).
Again suppose tfav n
Then tvn ¥ av n. This implies t= (tA2) v(tAn)
‘That is (tAa) v(tan) <t, and so (tra) va < tvn

Thus {n}s < (tra)vn > c<tvn >
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Since P, (S) is disjunctive, so there exists < ¢ > such that {n} c<c> < <tvn>
and <c > n < (tra) va > = {n}. This implies [cAn , cvn] N [n, (tra) vnl

= {n, and so |n, ((tra) vn) rlevi)] = {n}
Thus, ((tra) vn) A(cvn) = n. That is (trasc) va = n and so, traac <n.
Also,  (trasc) va =n implies [(trc) va] Alavn] = n.
Hence, < (trc) vn > c<a>*.
Now,<c> =<c> n<tvn>
= [can,cvn] N[, tvn]
=fn, (trc) val
=<tvn> N < (t/\c) v >

= {n} as<(trc)vn> c<a>"and tvne<a>",

Thus < ¢ > = n, which is a contradiction. Therefote, < a >, = <a>,"" for all

a€S. Thus (iii) holds.

(ii)= (ii). Supposc < a >, =<a>,"for all asS. Suppose n < a < b. Then {n}
€ <a>c<b> and < a> =<a>", <b > =<bvn>" implics
<a>'><bh>,", so thete exists r €<a>" such that t g <b>," this implics
m(r, n, ) = n and m(t, n, X) #n for some xe< b > Then n = m(t, n, a) =
(rvn) Aa and as x 2n, m(r, n, x) = (tvn) Ax. Then {n} c<m(, n, x) > <

<b> and n<(rvn) Ax s b.

Morcover, aA(rvn) Ax = nax = n. This implies [n) is disjunctive. Similatly we can
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show that (n] is dual disjunctive .

Hence, (n] is dual disjunctive and |n) is disjunctive . So by theotem 3.2.2, P, (S) is

disjunctive, which implies (ii).

() = (v). Suppose P,(S) is disjunctive. Let x=y R({n}). If x=y, then either
XAy < x or, xAay <y. Suppose xAy < x. Since S is distributive, so cither xAyAn

<xAn o or, (xAy)vn <xva If xayan < xan, then < x > c <x> Vv <y>

andso <x> N<y> c<y>

If (xry)van < xvn, then <x > N<y> c <x > Thus x #y implies either< x >,
N<y>,c <x>, o,<x> nNn<y> c <y> . Without loss of generality,
suppose < x > N<y> c <x> .Smnce P (S is disjunctive, there exists < t >_
such that {n} c<t>cs <x>and <t> Nn<x> n<y> = {n} and so
<y>n<t>,= {n}. That is m(y, n, t) = n. Since x=y R ({n}), so m(x, n, ) = n
and so < x > N <t > = {n}. This implies < t >, = {n}, which is a contradiction.

Therefore x = y. Thus R( {n} ) = @ which is (iv).
Finally, we show that ~ (iv) =(ii). T.et R({n}) = @,

Consider the interval [n, b]. If |n, b] is not disjunctive, then there exists x €S with
n < x < b such that xAt > n for all t with n < t < b. Choose any r€S. Then

m(x, n, 1) = m(x, n, (r Ab) vn) = (x ar) vo. Also m(b, n, £) = m(b, n, (r Ab) vn)

=0 ) vn. Ifm (b, n, 1) = n,then n s(x Ar) va s(b Af)vn = n implics

m(x, n, £) = n.

Again m(x, n, r) = n implies n = m(x, n, (r Ab) vn)

=n v(x A[(t Ab) vn]).

This implies x A[(r Ab) vn] = n as x 2n. Since n s(r Ab)vn sb, so by above
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condition( £ Ab)va = n . Thus m(b, n, ) =m(b, n, (¢ Ab) vn) = m(b, n, n)

- 1N

Therefore, m(x, n, £) = n if and only if m (b, n, £) = n for any reS. This implics x
=Db R ({n}) and so x = b, which is a contradiction to our assumption. Hence [n, b]
must be disjunctive. A dual proof of above shows that each interval [a, n], a €S is

a dual disjunctive. Therefore by theorem 3.2.2, P,(S) is disjunctive. @
Following tesult is due to [53] which is a generalization of [10 , Th.2.1]

Theorem 3. 2. 4. In a distributive nearlattice S with 0 , the Jfollowing conditions are

equivalent.

(i) S is disjunctive.

(i) Each dense ideal ] (1. e., j"= (0]) is join -dense.
(i) For each dense ideal ] , © ( j'Y= @ (J)".

(iv) For each dense ideal J, © ( j™) = 0 (J)". @

We generalize the above result for n-ideals. This result is also an improvement of
[2, Th. 3.2.4] . Here we have considered n as merely an upper element instead of
central. We prefer to omit the proof as it can be proved by same technique as in

the proof of |2, Th. 3.2.4].

Theotem: 3.2.5. Let S be a distributive nearlattice and €S be an upper element, then

the following conditions are equivalent.
@ F.(S) s disjunctive.

(ii) P (S) #s disjunctive.
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(iti) Each dense n-ideal ], is both join and meet dense.
(iv) For each dense n-ideal ], © (Jy = @ (J )",
(v) For each dense n-ideal], ® (J*') =@ (J)". @

The following theotem is a generalization of [34,Th. 3.2.6] .

Theorem 3.2.6. Ler S be a distributive nearlattice with an npper element n. Then the

Jollowing conditions are equivalent.

(1) I (S) #s disjunctive.

(i)  For each congruence ©, ®*'= O (ker,d)".

(i) Foreach n-ideal], R(]) ' =0 (]) .

(iv)  Foreach congruence @, ker (@ *) = (ket, ®)".

(v)  Poreach congrnence ®, ket (®"") = (ker,®)*"

(vi) Then n-kernel of each skeletal congruence is an annibilator n-ideal.

Proof : (i) = (ii). Suppose I,(S) 1s disjunctive. Since ® (ket,®) S @, so we have
® < O (ker,®) . So it is sufficient to prove that ® N @ (ket, ®)* = @, Suppose
x sy and x=y (O N O (ker, @)") implies x=y® and x=y O (ker, ®)°. If x <y, then

either xAn <yAn or xvn<yvn

Suppose xv n < yvn. Since I (§) is disjunctive, so by theorem 3.2.2, [n) is also a

disjunctive. So thete exists n <a syvn such that a(xvn) = n,

Now, n= as(xvn) =as(yvn) =a(P)and so acker, O.
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Since x=y® (ker,®)", so xv n=yvn O (ker, ®)" and sincc ae ker,®, so by the
theorem 3.1.4, m(xv n, n, Q) =m(yvn, n, a).Thatis, (xvn)An)v(a A (x vn))
v(naa) = ((yvn) A MV @ Ay vn) v(n Aa) and so, nv (an (xvn)) = xvn, this

implies n = a, which is a contradiction. Thetefore, x =y and so® N O (ker, )"
=0

'i'hus, © (ker, @) s ®*. Hence, d° = O (ker, @) .

(i) =(iii) holds, since ] is the kernel of R(] ) and © L] Je

(if)=(1) . Suppose (iii) holds, since © ({n}) = @ and since (ii) holds ,
so R({n})"= @ ({n})" =1 implics R({n})** = @,

Then by 3.2.3, we have F,(S) is disjunctive.

Since by Theorem 3.1.4 (i), ® (] ) * and (") have J* as their n-kernels,

so (1) = (1v) is obvious.
(iv)=(v) and (v) = (vi) ate obvious.

Finally , we need to prove (vi) =(1). Suppose (vi) holds. Letn < a < c. Then by
theorem 3.1.4 (iif), <c, a> is the n-kernel of a skeletal congruence. Since (vi)
holds, so there is an annihilator n-ideal K such that <c,a>=K = K", As arc
s aimplics <c, a>=K= K". Also,since a<c,ag <¢ca>=K= K"

So there exists e€ K*, such that m(c,n , €) #n. But m(a, n, €) = n implies (arc)v n
= n. That is, ar(evn) = n, and so ar(evn) Ac) = n. Also, m(c, n, ¢c) #n
implics (cvn) Ac>nandson<(ecvn) Acs cwithan(evn) ac = n. Therefore
[n) is disjunctive. A dual proof of this gives that (n] is dual disjunctive and so by

‘theotem 3.2.2, I (S) is disjunctive. @
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Recall that a neatlattice S with 0 is semi-Boolean if it is distributive and the interval
0, x] is complemented for each xeS. By |51], we know that the lattice of all ideals

of a nearlattice is isomorphic to the lattice of congruence if and only if § is semi-

Boolean. Following theotem is due to [56].

Theorem 3.2.7. Let S be a distributive neariattice with 0, then the following conditions are

eqgiivalent.

(i) S is senti-Boolean.

(i)  Foreach congruence @, @ *'= O (kerd ")
(i)  I'oreachideal ], ® JY=0 (])°

(tv) Doreachideal J,® (J°*)=© (]J)"". ®
Now we have following genetalization.

Theorem 3.2.8. Let S be a distributive  nearlattice with an upper element n. Then the

Jollowing conditions are eqnivalent.

(0 TS s generaliged Boolean.

(W)  Toreach congruence ®, ®°= @ (ker,® ")
()  I'oreachideal),® (N =© (])".

(v)  Foreachideal], ® (™) =© (])"".

Proof: (i) =(ii). Suppose I',(§) is genetalized Boolean. Then by 2.2.7, P, (S) is semi-
Boolean. l.et ¥ be any congruence on S. Then by theorem 2.3.3, ¥ =© (ker, W),

‘Thus with W = @ *, we see that (i) implics (if).
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(1) = (i) follows from Theorem 3.1 4 and (i) = (iv) is obvious.

(tv)=(1) . Suppose (iv) holds. Put J=<a,> v<a>" . Since " =S, (iv) implics
O(<a, >, v<a, >n+ ) "*=1 It follows that ® (a>"nO(<a >n+) f= O and

500 (<2,>" )€ @ (Ka>)""'=0 (<a>).

Now, by 3.1.4,<a>" =ker, ©® (<a>) "

Then, ®(<a>") <@ (<a>) andso O(<a>) = © (a>)""c@(<a>")".
Therefore, ©® (<a> )= @ (<a>" ",

But<a>"=<a>"" soby(v)@(<a> ) '=0(a>"""=0 (<a >

= @ (< a >n+)‘
Now, letn sa s b. then forallje<a>_ = |n, a], ma, n, j) =m,n,) =]

Thus by 3.1.4, a=b@(<a>) "= ©(<a>"). Then (a |v(<a>"] =(b]v (<a>"]
implies by 1.2.5, that b = (aab) v (bar) v...... v(bar) for some t,0,.....1,€

< a, >“+ Tl iS,b =qv (b/\l'l) V...V (I)Ars).

Again, r;e<a,;> " implies m(a, n, t) = (@ An) V(a A1) v(; An) = n, and so

anrg;sn Thusaar=asrrAn=rAn,

Now,put p; = (b Arpvnandp=p, vp, V......... V.
"Then n p <Dh. _/\15()1) /\ﬂ:(ﬁ ADb ’\r‘)V ............... V(Tt ADb AI‘S)V(:]. /\n):n
and pva=(brr) v... vibar)vavan=bvn =b.

Fence [n, b] is complemented for cach b €8,

Similarly, a dual proof of above shows that [e, n] is also complemented for cach

¢ <n. [ lence by theorem 2.2.7, I¥, (S) is gencralized Boolean. @
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For a neatlattice S, the skeletal SC(S) = { ® €C@S): ©=ad" for some @ GC(S)} =
{©<C): ® = @} is a complete Boolean 'l.at:t-icc.' The meet of a set {®}<
SCES) is » ©;; as in C(S), while the join is given by i@i = (VG)J = ("B;")’

and the complement of ® eSC(S) is © °.

The fact that SC(S) is complete follows from the fact that SC(S) is preciscly the sct
of closed elements associated with the closure operation @ > ©°’on the

complete lattice C(S) and SC(S) is Boolean because of Glivenko’s theotem, c. f.

Gratzer [16,1h.4, P- 58].

The set KSC(S) ={ket® : ©eSC(S) } is closed undet atbitraty sct theotetic

intersections and hence is a complete lattice.

Also, for any neS , K SC(S) = { Ket,® : ® eSC(S)} is a complete lattice . We also
denote A(S) = {J : Je I(S); J=]""}, which is a Boolean lattice.

The following theotems ate due to |53]. In fact Cornish proved these results for
lattices in [8 , Theorem 2.4 and ‘Theotem 2.5] , which ate extensions of the classical

‘Theotem of [ashimoto |16, Theotem 8, p-9 |.

Theotem 3.2.9. Ler S be a distributive nearlattice with Q. Then the following conditions are

equiivalent.

() S is disuncteve.

(i) Themap © > ker® of SC(S) onto KSC(S) is one lo one.

Gi)  Themap © > ket® of SC(S) onto KS(S)  preserses funite joins,
(i) The map © = ker® is a lattice isomorphism of SC(S) onto KSC(S),

whose inverse is themap ] > @ () * *. @
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Theotem 3.2.10. Iet S be g distributive nearlattice with Q. Then the nearlattice S is

semi-Boolean if and only if  the map @ > Ker © s a lattice isomorphism of SC(S) onto
KSC(S), whose inverse is the map ] =60 (]). ®

Following result has been proved by [ 2] for P(S) when n is central clement. We
make a slight improvement by considering n as an uppet clement instead of

central clement. We omit the proof as it can be proved by using similar technique.

Theorem 3.2.11. Lez S be a distributive nearlattice with an upper element n. Then the

Jollowing conditions are equivalent.

(1) L (S) 25 disjunctive.

i)  Themap © = Ket, ® of SC(S) onto K, SC(S) is one-to-one and so is a one-fo-one
correspondence.

(i)  Themap © = Ker,® of SC(S) onto K, SC(S) preserves finite joins.

(iv)  The map ® = Ker, @ is a lattice isomorphism of SC(S) onto 1<, SC(S),
whose inverse is the map J= © () °° for any n- ideal ] inS. @

We conclude this chaptet by the following result which is a generalization of |34,

Th. 3.2.12).

Theorem 3.2.12. ILer S be a disiibuiive nearlattice with an npper elemsent n. Then the

Jollowing conditions are equivalent.
() U.(S) is generalized Boolean.

(i)  P.(S) s semi-Boolean.
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(i) The map © = Ker, © is a lattice wsomorphism of SC(S) onto K, SC(S), whose
inverse is the map ] = © (J),] is an n-ideal of S.

Proof: By theotem 3.2.7, (i) « (ii).

(i)=(iii). Suppose (ii) holds. Then of course P,(S) is disjunctive and so by theorem

3.212, the inversc of  ® 2Ker, ® is |20 (]) *".

Now by theorem 3.2.9, © (J)"'= © (™) for any j €I ,SC(S). So duc theorem
325, j=§"" Hence ] O (] ) is the inverse of ® 2Ker, ©.

Conversely, let J=>© (] ) is the inverse of ® 2Ker, ©. Then by thecorem 3.2.11
P.(S) is disjunctive and so by theotem 3.2.6, Ket, (€ ())*) = [Ker, (@ ()™ =
J™  for any n-ideal ] of S. Then by theorem 3.1.4, we have J** € K SC(S). Also
we must have ©(J™) = @ (Ker,(© (J))*") = © (J)*". Then by theorem 3.2.8,

P.(S) is semi Boolean. @
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CHAPTER 4

NEAR LATTICES WHOSE FINITELY GENERATED
n-IDEALS FORM A GENERALIZED STONE LATTICE

Introduction

Many authots including [3] , [6], [7], [22], [29], [30], |32], [62] and [64] have studied
about minimal ptime ideals and Stone (generalized) lattices. Chen and Gratzer in
[0] and |7] studied the construction and structures of Stone lattices. On the other
hand, minimal prime ideals and generalized Stone neatlattices have been studied by
[48] .

In this chapter, we introduce the concept of minimal prime n-ideals and generalize
some of the results on minimal prime idcals. These results are used to generalize
scveral important results on generalized Stone neatlattices in terms of n-ideals.

A prime n-ideal P is said to be a winimal prime n-ideal belonging to n-ideal T if

() T Pand

(1) there exists no prime ideal QQ such that Q=P and 1cQcP.

A prime n-ideal P of a nearlattice S is called a minimal prime n-ideal if there exists no
prime n-ideal Q such that Q#P and Q<P. Thus a minimal prime n-ideal is a
minimal ptime n-ideal belonging to {n}.

A distributive Jattice 1, with 0 and [ is called a Sione fattice if it is pscudo-
complemented and for each a€l., a*va®® =1,

Also, we know that a disttibutive pscudocomplemented lattice is a Stone lattice if
and only if for cacha,b €l., (anb) " =a"vh", )

A nearlattice S with 1 is a lattice. So the idea of pscudocomplementation is not
possible in casc of a gencral neatlattice.

But for a nearlattice S with 0, we can talk about sectional pseudocomplemention.
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A nearlattice S with 0 is called sectionally psendocomplemented if the interval [0, x| for

cach x€§ is complemented. Of course, every finite distributive nearlattice is

sectionally pscudocmnplcmcnl'cd.

A ncarlattice S is called relatively psendocomplemented if the interval [a, b] for cach
a,beSwitha<l is pseudocomplemented.

A distributive ncatlattice S with 0 is called a generaliged Sione ncarlattice if
(x]"v(x]"" = S for each x€8.

Itis proved in [ 48] that, a distributive neatlattice S with 0 is a generalized Stone
neatlattice if and only if each interval | 0,x],0 < xe8§ is a Stone lattice.

In chapter 3, we have already defined that for any n-ideal ] of a neatlattice S,
J7={xeS: m(x, n,j) = n for all €]}

Obsetve that J"is an n-ideal and | J* = {n}.

Though we can not talk about pseudocomplementation in a distributive nea-
lattice S with 0, 1(S) the lattice of all ideals of S is pseudocomplemented as it is a
disttibutive algebraic lattice. ‘The n-ideals of § form an algebraic closute system on
S and hence under set inclusion, they form an algebraic lattice, which we denote by
I1,8). we have already mentioned that 1,(S) is a distributive lattice if S is

distributive. ‘I'hus I, (S) is pseudocomplemented.

I'rom chapter 1, we know that for a distributive nearlattice § with a medial clement
n, I'.(S) is a distributive lattice with the smallest clement {n}.

Let <aj,a,,.a.>, €[(S). Byintetval [{n} , <a,, a, .,a,>]in F,(S), we mean
the sct of all finitely generated n-ideals contained in <a,, a,, ..;a,> . L,(©S) 1s called
sectionally psendocomplemented if for cach < a;, a,, .2, >, € I (S) , the interval
| {n}, <ay,a,.....a,>]inF(S) is pseudo -complemented. "I'hat is, cach finitcly
generated n- ideal contained in < ay, ay, ...,2, >, has a relative pscudocomplement

in [{n}, <a, a, .,a>] which is a member of I,(S). We shall denote the relative
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pscudocomplement of < by, by, b, > inany interval by < by, by, ooob, >0

while < b, b
]”(S).

[T ,(S) is a distributive sectionally pscudocomplemented lattice , then I (S) is a

+ .
2 +---bg > " denotes the pscudocomplement of < b, b,, ..,.b, >, in

b n

generalized Stone lattice if for each < a,, Ay, -..na, > € [ (S) , the interval
[{n}, <a,a,....,0> ]inF(S) isaStone lattice.

Torb s as<n if[b, n] is dual pseudocomplemented , then a® denotes the
relative pscudocomplement of a in [b, n]. Tf [n, d] is pscudo complemented, then
for ce|n, d], <" denotes the relative pscudocomplement of ¢ in | n, d |. T'wo
prime n-ideals P and Q of a neatlattice S arc called co-maximal if PvQ =S,

Many authots including Mandclker [38], Vadet [65], Latif [34] and [41] have been
studied relative annihilators in lattices and semi-lattices. Also, Cornish [9] has used
the annihilators in studying relatively normal lattices. Tn this chapter we introduce
the notion of relative annihilators around a fixed element n of a necatlattice S which
is used to generalize several tesults on relatively Stone neatlattices.

Recall from chapter 3 that fora, beS, <a,b > = { x€S: xaa < b } denotes the
relative annihilator. In presence of distributivity , cach relative annihilator is an
ideal. Also, <a,b>=<a,anb > Consult [41] and [47] for dctails on this topic.
Again fora , b €l., where L is a lattice, <a, b> ;= {x€l.: xva > b}, denotcs
the relative dual annthilator.  In presence of distﬁbu(iv‘ity ol 1, <a,b>;isadual
ideal (filter ).

In casc of a nearlattice, it is not possible to define a dual telative annihilator ideal
for any a and b. But if n is an upper clement of S, then xvn exists for all xe8.
‘Then for any a€ (0], we can talk about dual relative annihilator ideal of < a, b >,
for any be$. 'T'hatis, foranya <n inS, <a,b>,;= {xeS:xva2b}.

For any a, beS and uppet clement ne§, we define

<a,bh>"={xeS:m,nx)e<h> }
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{xeS:ban < m(a, n, x) < bvn } is called the annibilator of a relative fo

b aronnd the element n or simply a relative n- annibilator. 1t is easy to see that for all
a,b eSS, <a b> i always a convex  subsct containing n. In presence of
disttibutivity it can be easily scen that < a, b >"is an n-ideal. If 0€S, then putting n
=0, wehave <a,b >" = < >,

For two n-ideals A and B of a nearlattice 8,

<A, B>denotes {xe€S:m(a,nx €BforalacA}, When n is medial
clement. In presence of distr.ibutivity, cleatly < A, B > is an ideal. Morcover, we

can casily show that <a,b>"=<<a>  <b> >,

;
In scction 1, we have studied minimal prime n-ideals of S. Hete we have given
some characterizations of minimal prime n-ideals. We have also shown that for an
uppet  clement n of a distiibutive neatlatice S, I%(S) is  scctionally
pseudocomplemented if and only if (n ] is sectionally dual pscudocomplemented

and [ n) is sectionally pscudocomplemented .

In section 2, we have given several charactetizations of those I, (S) which are
genetalized Stone neatlattices  in terms of n-ideals. We proved that for an upper
element n of a distributive neatlattice S, T, (S) is generalized Stone if and only if
(n] 1s dual generalized Stone and [n) is generalized Stone. Then we have given
scveral characterizations of those 1) (§) which ate generalized Stone.

In scction 3, we have studied annihilator n-ideals < a, b >". We have give some
characterizations of distributive and modular neatlattices in terms of relative
annihilators. We prove that for an upper and neutral clement n of a ncarlattice S,
(n ] and | n) are modulat nearlattices if and only if P,(S) is 2 modular neatlattice,
In scction 4, we have given several characterizations of those F.(S) which are

relatively Stone in terms of n-ideals and relative annihilators. We have shown that
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when n is an ¢ (S) i
upper clement of §, then T, (S) is rclatively Stone if and only if any

two incomparable prit i
7 ‘ime n-ide P i That i
P prime n-ideals P and Q are co-maximal. Thatis PvQ = S.
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4.1. Minimal prime n-ideals

Recall that a prime n-ideal P is a minimal primse n-ideal belonging to n-ideal 1 if

(1) T<Pand

(i) there exists no prime n -ideal Q such that Q=P and T=Qe<P.

Thus a prime n-ideal P of S is a minimal prime n-ideal if there exists no prime
n-ideal Q such that Q#P and Q<P. In other words, a minimal prime n-ideal is a
minimal prime n-ideal belonging to {n}.

Recall that an element n of a nearlattice S is medial if m(x, n, y) exists for all
X, y&S. Since for the definition of prime n-ideal of S, the medial property of n is
essential, so in talking about prime n-ideals of S, we will always assume n as a
medial clement.

We start this section with the following tesult due to [2] which is a generalization
of a well known tesult on lattice theory.

Lemma 4.1.1. et S be a nearlattice with a medial element n. Then every prime n-ideal

contains a minimal prime n-tdeal. o

Theotem 4.1.2. Let S be a distributive nearlattice with a sesquimedial element 0. Then the
Jollowing conditions are equivalent.

(1) T(S) 7s sectionally psendoconplemented.

(i) P.(S) is sectionally psendoconplemented.

Moreover, when n 25 upper , then botly (1) and (ii) are equivalent 1o

(iil) (| Zs sectionally dnal psendocomplemented and [ 1) is sectionally psendocomplemented.
Proof: (i) = (i) . Suppose (1) holds. let {n} € <a><c<b>_ Since (i)
holds, so there exist < ty,ty,. ...t >, I Q) with < t)t,,....... >, € <b > which
is the sectional pseudocomplement of <a >, in [{n} ,<Db >]. But by corollary

1.4.5, < ty,tyy.enee-. it >, = < c > for some ceS. This implies < ¢ > is the
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sectional pseudocomplement of < a >, in [ {n}, < b >]. Therefore, P(S) is

scctionally pscudocomplemented.

(i) = (1). Suppose (ii) holds. Let {n}e < a,a,....a, >, < by, by, ..., >

n 8 n

Lhen {n} < <aja,,....... A, N <h,> e <b> forsomet=123,... 5 Then

by corollary 1.4.5, < aja,,....,a, >, 0 < b, > is principal and let < p, >, =

< Ay A, >, N <Db.>. So, there exist < ¢, >, with {n}s <c¢,> s <b,>,

noa

such that < ¢, > is the sectional pscudocomplement of < p, >,. So,

= nlﬁﬂZJ""’ﬂr>n RIS br>nﬁ = Ct>n = {ll}.

That is, < a,,85....,8,> N<C,Copeen--.. >, = {n}.
MoTE GVel, < € yummssns EF & E Bl b, > . Now let < g, 0 €
<b,bsy. e b,>, and < q Qa0 N < A2, .00,.>, = {0}

Since < q,qay- - - >0 N< by>, €<b, >

Then < qpyqas- - Q>0 N <b>, 0 < a8y, a.>, = {n} implics

< Qs+ - 0 < by > € < ¢>, by corollary 1.4.5. Similarly, we can get,

< Qo 0 D < bpbaye b >, € <6, Gy,

Thatis, < Qe Za € < CisCapev-nsCi ™ -

Hence < ¢(,Cp...nC >, 18 the sectional pscudocomplement of <a,a,,...,a, >, in
[ {0} , € LDyl ™y ] -

Therefore, T, (S) is sectionally pscudocomplemented.

(ii)= (iif). Suppose (ii) holds. Leta <b <n. Then {n}< <b,>,s <a,;>, Then {n}
< [b, n]<la, n]. Since (i) holds, so thete exists < t,>, such that <t >, is the
scctional pscudocomplement of<b> in[{n} , <a>] Then {n} s <t> <

la, n]implicsa st <n.

Now [b,n] N [t,n] = {n}. Thatis, [bvt,n]= {n} which implies bvt=n,
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Let c€S with a <¢ <n such that bve = n’This implics that < b >, Nn< ¢ > = {n}.

Since < t > is the sectional pscudocomplement of <b >, so<c> € <t>,

no?

Thatis, |c;, n] < |t, n] which implies t sc.
Therefore, (n] is sectionally dual pseudocomplemented.
A dual proof of (i) = (iii) shows that [n) is sectionally pscudocomplemented.
Finally, (iif) = (i). Suppose (iii) holds. Let {n} s <a> s <b >
Then ban<asn sn<avnsbvn. By (iii), [ n) is sectionally pscudocomplemented,
So, n avn <bvn, Then there exists t, n < t <bvn such that t is the sectional
pseudocomplement of avn in [n, bvn].
Hence tA(avn) = n.
Again ban sasrn <n, Since (n | is sectionally dual pscudocomplemented, so there
cexists s with ban <s <n such that s is a scctional dual pscudocomplement of aan
in [bAan , n|. ThensV (arn) = n.
Now, {n}c<s,t><c<b> implics {n}s([s, n]Vvin ,t])s<b> and
so{n} < ([srn ,tvn])s<b>,.Thus,{n}s [s, ]S <b> andsoby
corollary 1.4.5, [ s, t]is a principal n-ideal. We will show that this is the required
scctional pscudocomplement of <a>_ in [{n},<b>_].
Now, [s,t]n<a>.

= |s,t]"{aAn,avn|

= | Y (a/\n) , t/\(ﬂ.Vn) l

= {n}.
Iet there exists < P >, in [ {Il} , < b > ] such that < a >, N < P >" = {ll}.
‘This implics [arn ,ava] N [ paAn,pvn] = {n}.
Thatis, | (aan) v (pAn) , (avn) A(pvn) | = {n}.
‘I'his implies (avn) A(pvn) =n and  (aAn) v (pAn)=n.

andso pvn st and pAnzsandso <p>, < [s,t].
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I'hetefore, [s, t ] is the sectionally pseudocomplemented of < a > in

[ {n}, <b>] Therefore, [{n} ,<b > ]is pseudocomplemented in P,(S). Hence

P,(§) is sectionally pscudocomplemented. @

Now we give a charactetization of minimal prime n-ideals of a distributive
nearlattice S, when T (S) is sectionally pseudocomplemented. T'o do this, we need
the following lemmas.

Lemma 4.1.3. [2] Let S be distributive neariattice and n€S be a medial element. Then for

any < a > € P (S) and for any n-ideal I,  n<a>)" Nn<a> =I"n<a>. @

Lemma 4.1.4. Swuppose P (S) is sectionally psendocomplemiented distributive nearfattice and
<b>,c<a>_ P ,(S) then,

(i) <b>"=<b>'n<a>  and

(i) <b>% = <b>"n<a> .
Proof: (i) is trivial. For (i), Using (i), we have <b > P = (<b>0"n <a> =
(<b>"n<a>) n<a>.Thusby 412,<Db >¥=<Db>"nNn<a>. @
Theorem 4.1.5. Let n be a sesquinedial element of a distributive nearlattice S. Suppose
F.(S) is a sectionally psendocomplemented distributive lattice and P is a prime n-ideal of S.
The following conditions are equivalent.
()  Pisnnnimal
(i)  xeP implies<x >4 P.
(i) xeP implies<x>"" <P
(ivy PnD(<t>)=® forallteS—P,

where D( < t>) = {x€ <t> 1 <x >%={n} }.

Proof: (i) = (ii). Suppose P is minimal. If (if) fails, then there exists x €P such that
<x>" < P. Since P is prime n-ideal, so by theorem 2.1.2, P is a prime ideal or a

prime filter. Supposc P is a prime ideal. Let D = (S =P )V |x). We claim that ng D,
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If n€D, then n = qAx for some q€ S —P Then <q > N <x> =
<(97%) v(gAn) vV(xAn) >, = {n} implies < q >, < < x >,* =P, Thusqe D, which
is a contradiction. Hence ng D. Then by theorem 2.1.7, there exists a ptime n-ideal
Q with QND =® Then Q<P as QN(S — p) = ® and Q=D since x¢ Q. But this
conttadicts the minimality of P. Hence <x >_* < P. Similatly, we can prove that

<x>" e PifP is prime filter.

()= (iii). Suppose (ii) holds and x€P. Then < x >n+sé/ P.Since <x > n<x> "
= {n}<P and P is ptime, so, < x> **c P,

(i )= (iv). Suppose (iii) holds and te § — P. Let x¢ PND(< t > ). Then xeP,
x€D(< t>). Thus, <x >? = {n} and so < x > P = < t > By (iii), xe P implics
<x>"" <P Alsobylemma4.14, <x>% =<x>" n<t>

Hence <x>""n<t> =<t> andso<t> < <x>"*" <P Thatis, teP,
which is a contradiction. Therefotre, PN D (< t>) = @ forallte S-P,

(iv) = (1). Suppose P is not minimal. Then there exists a ptime n-ideal Q < P.
Let x¢ P-Q.

Since Q is ptime, so < x > N < x> = {n} € Q implies that < x > "< QcP.
Chose any teS —P. Then <t>, Nn(<x> v <x>"ecP.

NOW’<t>1m(<X>ﬂ‘v <X>1l+):(<t>lln<X>".) v (<t>nﬁ<X>n+)

=<m(t,n,x) >, V( (<t>N<x>)" "< t>) bylemma 4.1.3.
=<m(t,n,x)>, Vv (<m(t,n,x)>"N<t>)
=<m(t,n,x> v <mlt,n,x) >’ by lemma 4.1.4] , whete
< m(t, n, x) >0 is the relative pseudocomplement of < m (t, n, x) >, in
[ {n}, <t >, Since F (S) is sectionally pseudocomplemented , so by theorem
412, P,(S) is also sectionally pseudocomplemented.  Thus < m(t, n, x) > ° is
principal and so < m (t, 0, x) >,V <m(t, n, x) > is finitely generated n-ideal

contained in < t >_ . Thetefore by corollary 1.4.5,
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< . = n
m ( t, n, X) >"V < m(t’ n, x) >n0 =<r >“ , for some re<t >",
Moreover‘ <r >n0 = <m(t, n, x) >n0 N <m(t, n,x) > B {n}
i .

Thus, reP N ich i iction. "
, t€P N D(< t > ), which is a contradiction. Therefore P must be minimal. @
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4.2. Some generalizations of the results on generalized Stone

Nearlattices

Foranyn < b < 1, b* denotes the relative pseudocomplement of b in[ n , 1], while
fors < a <n, a™ denotes the relative dual pseudocomplement of ain [s, n].

Theotem 4.2.1. Lefn be an upper element and U ( S) be a sectionally psendocomplenented
distributive lattice . Then for

{n}es<a>cs<b>_,
<a>? = [arn,avn]’= [@rn)™, (avn)?.

Proof : Since F,(S) is sectionally pseudocomplemented , so by theorem 4.1.2 [a, 0]
is sectionally dual pseudocomplemented and [n, D] is sectionally
pseudocomplemented . Hete bAn s arn s n < avn < bvn, Since (arn)™ is the
relative dual pseudocomplement of (aAn) in [bAn , n] and (avn)® is the relative
pseudocomplement of avn , in [n ,bvn], so [aan ,ava]n [asn)®™ | (avn)® ]
= [@rn) v @An)®, (o) A@va) 1= [o,0] = {n}.

Now let te<a>"?.Then [tAn,tvn] € <a>°. Thus {n} = [tan, tva]N [arn,
avn] = [(tAnv(ann) , (tvn) A (avn)] and so (tAn)v(aAn) =n = (tvn) A(avn).
This implies tArn 2(aan)™ and (tvn) < (avn)’. Hence [tAn, tvn ] < [(arn)™,
avn)’jandso <a>" < [@arn)™, (avn)’].

Thetefore, <a>" = [arn ,avn]’= [@rn)™, avn)’]. @
Suppose S is a distributive lattice with 0 and 1. For n <b <1, let b" denotes the

pscudocomplement of b in [n, 1] and for 0 < a <n, suppose a™ denotes the

dual pseudocomplement of a in [ 0, n]. Thus we have the following result.
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Corollary 4.2.2. Let L be a distributive lattice with 0 and 1 with neL and F{d)isa
psendocomplemented distributive lattice . Then Jor any |a, b]eF (L),
[a, b]" = [a™, b*.

Proof: [a, b]" =([a,n] v[n, b])*

I

[a, n]" A [n, b]

[2"%, 1] A [0, b*] (by 4.2.1)
[ 1] n

[a

[

N [0,b]

Il

de

Recall that a distributive neatlattice S with 0 is a generalized Stone near- lattice if for
each xeL, (x] "V (x] "* =S. By Kattinak [30] , S with 0 is a generalized Stone
nearlattice if the interval [ 0, x ] is Stone for each x€S. Generalized Stone lattices
have been studied by many authors including [9] , [29] , [30] and [1]. Then [48]
have extended their work for neatlattices. Following lemma is nceded to prove
one of the main result of the chapter.
Lemma 4.2.3. Suppose I (S) is a sectionally psendocomplemented distributive nearlattice and
n bea medial element of S. Letx, yeSwith < x> Nn<y> = {n}.Then the
Jollowing conditions are equivalent.
@ <x>'v<y>*=8
(i) ForamyteS,<m(x,n,t) > v<m{y,n,>°"=<t>

where < m(x , n , t) > ° denotes the relative psendocomplement of

<m(x,n,t)>, i [{n}, <t>] |
Proof: (i) =(ii). Suppose () holds. Then foranyt €S§,
<m(x,n, >0 <mly,n,0>0 = (x>0 <> ) v(<y>n<t>)
=(<x>Nn<t>) ' n<t>V((Ky >N <t>)" n<t>). [bylemma 4.14).

= (<x>"n<y>v(<y> TN <t>)[by lemma 4.1.3]

_ + +
= (<x>,, v<y>n)ﬁ<t>n,
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= S§n<t> =<t>,

Hence (ii) holds.

()  =(1). Suppose (i) holds and te§ .

By (i), <m(x, n, ) >°v <m(y,n,t)>"=<t>_ Then using lemma 4.1.3 and
4.1.4 and the calculation of (i) = (i) , we get (< x > 'V <y>Hn<t> =<t>,
This implies <t > c <x>*V<y>

Tand so, te<x > v <y > ",

Thetefore, <x > *v<y>*=S5 @

Following lemma is needed to prove our next theorem which is a key result of this
chapter.

Lemma 4.2.4.  Suppose ¥ (S) and P,(S) are sectionally psendocomple- mented. Let
{n}< <a,, a,, ...,a>,S <b, by, ..,b, >, and < a,, a,, ...,a, >° represents the relative
psendocomplement of < ay, Ay, .8, >, in | {0} , < Dby by ... by >, . If for each
t=1,23,....,8 <c, >, and <d,>, represent the relative psendocomiplement and the donble
relative psendocomplement of the principal n-ideal < a,, 2y, ..., >N < b, > i interval
[ {n}, <b,>], then

B <a,ay......

£ 00+ — —
i) <a;,a,...... a>n<h> =<d>,, t=12,..5s

no’

Proof:(i). Since < ¢, >, is the telative pseudocomplement of <a,, a,, ...,a, > N

¥ n
<D, >,, 80 <a,ap ... a> N<b> Nn<c> = {n}.

That is , <a,, 2, «+.... a> N <c >, ={n}. Moteover, {n} € <c><c<Db,>¢
<b;, bpyervvven b, > . Thus, <c,>,S <a;a,...... a.> % Therefore, R.H.S.€ L.I.S.

- . i 0 - .
For the reverse inclusion, <a;, 25 ...... A >0 N < Db > €F.(S) as IS is

sectionally pseudocomplemented . Thetefore by corollaty 1.4.5,

0
<Ay, Ay vevees a > 'Nn<b > €P(S).
0
Now, (<a,, 2y, ...,a, >, < b, >} O (€2, Ay svsss a>0n<h>,
0
= <Ay, 2 enee A.> N <Ay, Ay, e a>"n<b>.
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rpL e i p < 0
I'his implies <a,, a,, ...... A, N<b> c<c>.

3 o) PRp . 0
I'herefore, <a,, a,, ...... A, N<Dh> =<c>.

(ﬂ)'<ct>nm<dt>n: {I]}
So, <a,, a a>%"<bhb>n<d> =
» Ay, A, A7y ¢~ n >, = {n}.Then
. 0 _ y :
Or, <ay, 2y, ...,a,>,N < d,>, = {n}, which implies

- 00 00
< dt>n— <ﬂ15 aZ’ . '?ar >n b} and SO < dt>ng <a’l: "12: re ‘:ar>n a< bt>ll.'

Conversely <ay, a, ...... a>%n<a a, ... a. > < b, > = {n},implies
(a2 e, > X< D> ) N< 6>, = {a} (by @)

Therefore, <a,, a,, ...... a.> 00 < b, > < relative pseudocomplement of < ¢, >,
in [{n} , <b,>,].Thus <a, ay ...... a>PNn<b > c<d, > and so (i)

holds. @

Lemma 4.2.5. Suppose n is an upper element of a distributive nearlaitice S. Then the
Jollowing conditions are equivalent.
@) T.(S) #s generalized Stone.
(i) P.(S) isgeneralized Stone.
(i) (n] #s dual generalized Stone and [n) s generaliged Stone.
Proof: (i) = (ii). Supposc (i) holds. So P,(S) is sectionally pscudocomple -mented
by 4.1.2. Let us consider {n} € <a>,S < b > . Then by (i) , obviously < a > v
<a>2=<b > This implies (ii) holds.
@)= (). Let {n} = <aj, a5 ... >, € < b,b,, ....b, > If foreach t = 1,23,....s,
< ¢ >, Iis the rclative pscudocomplement of <a;, a,, ...... a> N<Db > in
[ {n}, < b, >] and < d; >, is double relative pscudocomplement  of
<y, Ay, o>, N < b > in | {n} ,<b,>], then

(KA, gy sy 2 VY <y, g, @ > ) N < b >

0 00
= (<ﬂ|, ﬂ2> ""'sar> “ﬁ < bt>l\) v (<ﬂ|., ﬂ?’ """ar>l\ N < bl>u)
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= <.ct>,,V <d,>, bylemma 4.2.4,

= < Db,>,as P (S) is generalized Stone.

‘Thetefore, <aj,a,....,0.>"V <a,a,...,2,>"

(<a,, 2y, ..,0,> "V <a;, 2, .....2a,> 0) "< b, by, b >,
= <b>, v <b>,v

= <by,b,, .....b,>..

....... v < b, >, by distributivity.
Hence | {n}, <b,, b,, ....,b,>,] is Stone and so F,(S) is generalized Stone.

()= (iif) . Let P,(S) be generalized Stone .Consider the interval [n, b] and ns as b.
Thus, {n} € <a>,c <b>_ Since P (S) is generalized Stone, so< a >O0v<g > ®
= < b >, whete < a >’and < a > %%yre the relative and double relative
pseudocomplements respectively of < a >, in [{n} , < b >]. Thus by theorem
421, [n,b]=[n,a’V [n,a*=[n, 2 Vn,a" = [n,a°Va”] where a° and
2 are the relative double relative pseudocomplement tespectively of a in o, b],
and so, 2° v a® = b. This implies [n) is genetalized Stone.

By dual proof of above we can prove that (n] is dual generalized Stone.

(iti) = (if). Suppose (iii) holds. Let {n] € <a>, < <b> ThenbAn<arnsns
aV 1 < bVa. Since [n) is generalized Stone, so there exists (aV n)°® such that (aV n)°
vV (aV n)® = bV n. Similatly, as (n] is dual generalized Stone, so thete exists (aAn)™
such that (arn)™ A (an n)® =ban. Then by Theotem 4.2.1, < a >0v<y>®=
[arn , aV 1110 Varn , aVn]OO = (a/\n)"d, (aV n)OJ VI( a,\n)OOd , (aVn)m] =
[(arn)® A @arn)™, (avn)° V@vn)®]=[ban , bVn] = <b >, This implies P,(S)

is generalized Stone. @

Using above theorem we give the following nice charactesization of those T (S)

which ate generalized Stone. This charactetization has been shown by [2] for P (S)
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when n is a central element .So our result is an improvement of their result. Of

course, the proof of most part of the theorem follows the same technique as the
proof of [2, Th.4.2.6].

Theotem 4.2.6. Let n _be an upper choment of S and F,(S) be a sectionally
psendocomplemented distributive nearlattice. Then the following conditions are equivalent,
(1) F.(S) s generalized Stone.
(i) P,(S) isgeneralized Stone
(i) Forany x€§, <x>*v <x>*" = §,
(iv) Forallx,yeS, (Kx> n<y>) = <x>*v<y>"*
(v) Forallx ,yeS, <x> Nn<y> = {n} implies that< x> ‘v <y>*=§
Proof: (i) < (i) follows by theorem 4.2.4,
()= (it). Suppose (i) holds and t€S, then for any x€S, m(x,n,t) €<t > and
so<m(t,n,x)> €[{n}, <t>,].Since P(S) is generalized Stone, so
<m(t,n,x)>° v<mnx) >%= <t>.
Then by lemma 4.1.4,
<t> = (<m,n x> N<t> )V <m(,nx) >0 <t>)
= (<x>,n<t3,) <RV (x>, 0<5)" n<e>,)
Thus by lemma 4.1.3,
<t> = (<x> o <t>))v(<x>M 0 <e>).
Thus <t> = (<x> v<x>")n<t> .
This implies < t >, s <x > Vv <x>"and so te< x >' v <x >

- +4+
Thetefore, <x > v <x>" =8

(ii)= (iv). Suppose (i) holds. For any x, y €5,

(<x>"ﬁ<y>“)ﬂ(<x>n+ V<y>"+)

87



Chaprer 4

= (x> n<y> n<y >y v(x>, n<y> n<y> Y
= {n} v {n} = {n}.
Nowlet <x> N<y> N I= {n} for some n-ideal 1.
Tlhen <y>, N 1e<x>" Meeting < x> *" with both sides , we have,
<y > NINn<x>" = {n} ThisimpliesI "< x> c <y>*.
Hence I=1NS =In(<x>"v<x>*
=(In<x>")v(In<x>")
c (<x>Fv<y>"
Thetefore, <x > ' v <y>"'=(<x>n<y>)".
(V)= (). Let<x > Nn<y> = {n} forsomex,y €S,
Then by (iv), S = {n}* = (< x> ,n<y>)"
= <x>"*v <y>" Thus (v) holds.

'l'o complete the proof we shall show that (v) = (i). Suppose (v) holds. Since F,(S)
is sectionally pseudocomplemented, so by theorem 4.2.1, ('n] is sectionally dual

pseudocomplemented and [ n) is sectionally pseudo -complemented.

Suppose n s b <d. Let b° be the relative pseudocomplement of b in [n, d]. Now b°

AL =, Thus <b"> A <b®> =[n ,b” ALY =[n,n] = {n}.

Also, < b®>_ , < b® > < <d>_ Then by equivalent conditions of (v) given in
lemma 4.2.3, we have <m (b°,n,d)>" v <m ®b*, n ,d)> = <d>_. But

m(b”,n,d) = b° andm %, n ,d) =b"asnsb® , b¥sd.
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But by corollary 4.2.2,

<B">°_ <b®> and < p® >0= <p™ > =< 0>

Therefore, <d > = <b" > v <b’> = <b® b®> which gives b® vb® =d..
This implies [n, d] is a Stone Jattice That is [ n) is genetalized Stone .

A dual proof of above shows that (v) also implies that ( n] is a dual generalized

Stone lattice. Therefore by lemuma 4.2.5, F, (S) is generalized Stone . ®
Following corollary is an immediate consequence of above result.

Corollary 4.2.7. Let 11 be any element of a distributive lattice L with O and 1 and ket F (L)

be a psendocomplemented distributive lattice. Then the following conditions are equivalent.

© P, i Srone.

() Forallxe L,<x>"v<x>""=1L

(i) Forallx,ye L, (<x> N<y>)=<x>"v<y>"

(iv) Forallx,ye L, <x>,N<y>={n} implies that<x>"v <y>" =L. @

For a prime ideal P of a distributive nearlattice S with 0, we define 0(P) ={ xe$:
xAy =0 for somey € S -P}. Cleatly, OP) is an ideal and O(P) = P. O(P) is the

intersection of all the minimal prime ideals of S which are contained in P.
Tor a prime n-ideal P of a distributive nearlattice S, we write, n(P) = {y € S:

m (y, n, x) = n for some xS — P} . Cleatly, n(P) is an n-ideal and n(P) < P.
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Following results are due to [2] which ate generalizations of [56, Lemma 3.2.1] and

[56, Proposition 3.2.2]

Lemma 4.2.8 LerS be a distributive nearlattice with a medial element 0 and P be a prime

n-zdeal in S Then each minimal prime n-ideal belonging to n(P) is contained inP. @

Proposition 4.2.9. For a medial element 1, if P is a prime n-ideal in a distributive near

lattice S , then n(P) is the intersection of all minimal prime n-ideals contained in P. @

Following result on finitely generated n-ideals have been proved by [44] for
lattices . Then [2] have generalized the result for P (S) whete n is a central
element of neatlattices S. We have improved that result for F,(S) when n is merely

an upper element. We prefer to omit the proof as it follows the same technique of

proof of [2].

Theotem 4. 2.10.  Let TV, (S) be a sectionally psendocomplemented distibutive lattice and

n be an npper element in S. Then the following conditions are equivalent.

@)  ForamyxeS,<x>"v <x>"" =S, equivalenthy, F(S) is generalized Stone.
(i)  For any two minimal prime n-ideals P and Q, PvQ =S,
(it)  Ewery prime n-ideal contains a unique minimal prime n-ideal.

(v)  For each prime n-ideal P, n(P) is a Prime n-ideal. @
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Following cotollary is an immediate consequence of above theorem.

Corollaty 4.2.11. Let 1, be a distributive lattice with O and 1 and n be an upper element of

L. Yy (1) is a psendocomsplenented distributive lattice, then the following conditions are

eqrivalent,

(0 F.(L) s Stone.

(W) For any two minimal prime n-ideals P and Q, P vQ=L.
(i)  Euery Prime n-ideal contains a nnigne minimal prime n-ideal.

(v)  T'or each prime n-ideal P, n(P) is a prime n-ideal. @

91



Chapter 4

4.3. Relative annihilators around an upper element of a nearlattice

We start with the following charactetization of < a,b>",

Theorem: 4.3.1. Let S be a nearlattice with an npper element 0 . Then for all a,b €S, the

Jollowing conditions are eqrivalent.
(i) <a, b >" is an n-ideal.
(i) <ann, ban>, isafilter and

<aVn, bV n > isan ideal
Proof: (i) = (ii). Suppose (i) holds. Let x, y € <aV n, bV n > and xV y cxists.
Then x A(avn) € bvn. Thus (xA(avn))vn < bvn, then by neutrality of n
(xvn) A(avn) < bvn. Also

m (xvn,n,2) = (x vV nva) A(xVvn) A(avn)
=(@xvnAfavn) <bvn

This implies xvV n e <a, b>"
Similarly, yvn e<a,b>". Since <a,b>" isann-ideal ,sox vy vne <a,b>"
This implies m(x vy vn, n,a) sbvn. Thatis,

(xvyvn) A(avn) € bvnandso(x Vy)A(avn) <bVvn
Therefore,x vy e<avn ,bvn>.
Moteovet , forx e<av n,bv n>and t <x (t €5), obviously t A(a v n) < bvn,
so te<avn,bvn>. Hence<avn,bvn>is an ideal.

A dual proof of the above shows that <a An, b An>,is a filter.

()= (i). Suppose (i) holds and x ,ye<a,b >". Then m(x, n,2) € <b >, Then
using the neutrality of n, bAn s (xA2) v(xAn) V(asn) = (x va) A(x vV n) A(av n)
< bvn.

Similatly, bAn s (yAa) v (yAn)V(@arn) = (y Va)A(yVn) Afavn) sbv n.

So, ban < [(xAa) V(xan) V(asn)] An = (xAn) V(asn).

'I'his implics, xAne <asn, ban>,
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Similatly, yA A . _
atly, yrne <asn, ban >, Since <ann , ban >, 1s a filter, so we have

XAyAne <ann, ban>y Thus, (xAyan) V (aan) 2 (bAn).

Butm(xryrn, n,a) = (xAyAn)V(aAn)2b An,so xAyAne<a,b>".

Again by the neuttality of n |

(xVn) A Vi) =[(xVa) A(xVn) A(aVn)] Vns bV

Similatly, (y V' n) A(aVn) s bVn.

Thus ((x Ay)Vn) A(aVn) < BVn.

But ( (x Ay)Vn) A(aVn)=m((x Ay)Vn, n,a),asnis neutral,

Thercfore, (x Ay)V n e<a,b>", and so by the convexity of <a, b >",
xAye<a, b>"

A dual proof of above also shows that xVy e< a, b >" Cleatly < a, b >"

contains n. Therefore, < a, b >"isann-ideal. @

Following result has been proved by [2] when n is a central element. This is also
true when n is merely an uppet element. .
Proposition 4.3.2. Let S be a nearlattice with an upper element n . For alla, b €S, the
Jollowing conditions are hold.
6 < aVn, bV n > isanideal if and only if [ n) is a distributive

subnearlattice of S.
(i) <ansn,bAn>y isafiterifandonlyif (n 14 is a distributive

subneariattice of S. @
By theorem 4.3.1 and the above result we have the following result.

Theorem 4.3.3. LetS be a nearlattice and neS _be an npper element. Then for all a |
beS <a,b>" isann-ideal if and onlyif (n " and [n) are distributive. @
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Recall that a nearlattice S is distributive if for all x , ¥, 7 €S, xA(yVz) = (xAy)
V(xn~z) provided yVv oz exists [47] has given an alternative dcfinition of
distributivity of S.

A nearlattice S is distributive if and only if for all t,x,y,zeS,

tA((xAY)V (xA 2) = (tAxAY)Y (tAxAz).

Similatly by [ 47 |, a nearlattice S is modular if and only if for all t, x, y, zeS with
25x, xA((EAY)V ((A2) = (xAtAY) V(A7)

Recently [1] have generalized [38 , Th. 2] in terms of n-annihilators. [38,Th. 2] has
also been extended by [47] in chatacterizing modular nearlattices. Here we extend
the result for n-ideals in terms of relative n-annihilators.

Theotem 4.3.4. Let n  be an upper and nentral element of a nearlattice S. Then the
Jfollowing conditions are equivalent.

(i) (n]® and[n) are modular nearlattices.

(i1) P (S) is modular nearlattice.

(iii) Fora,b eSwith <b>, s <a> , xe<b> andye<a,b>"umply

xAy,x Vye <a,b>" i xVyexisisin S.

Proof : (i) =(iii) . Suppose [n) and (n] are modular. Here <b > < <a >,
soarn < bAan<ns<bVn €aVn Sincexe<b>, soban<n<bVn,
Hence,arn < bAn < xAn < xVn< bVns<aVn Nowye<a,b>"implies
m(y,n,a) e<b >, Then by neutrality of n, (yr2)V (yAn)V (arn) < bV nand
so (yAa)Y (yAn)V@arn)Va=(yvVn)~(@Vn) < bV n. Thus using the modularity
of [n) and the existence of xVy, m(xVyVn,n,q) = (xVyVn) A@Vn)

= [(aVn) A(yVn)] V(xVn), asxVn<bVnsaVa.

This implies m(xVyVn, n, 2) s bVn andsoxVyVne<a ,b>" Sincenis
neutral, so acn € ban s xAnimplies thatb An < (x An) V (y An) V(ann) =

((x Vy) ~n) V(ann)

=m(xVy) An,n,a) < bVn.
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Thercfore, (xVy) A ne<a, b >" Hence by the convexity of <a, b>", xVye
<a, b>"

7 { “. & g » - l
Again using the modulatity of (n ], a dual proof of above shows that

xAye<a,b>" Hence (iii) holds.

(i) = (1). Suppose (iii) holds. Let x , y , ze [ n) with xsz and whenever xV y exists.
‘Then x V (y~z) <z . This implies < xV (y Az) > € <z >

Now x <xV (yAz) impliessx e <x V(yAaz) >,

AgainyAz < x V (yAz) implies m(y, n,z) = yrz e <xV(yA z) >,

Hencey e < z,xV (yrz) >".

Thus by (i), xVy <z ,xV (yAz) >" Thatis, (xVy) ~ n <xV(y A n) and

50 (xVy) A n=xVY(y A n). Therefore [ n) is modular.

Similarly, using the condition (iii) , we can easily show that ( n] is also modular.
)= ).

Iet (n]and [n) be modular. Consider <a>,<b>,, <c> ¢ P, (S) with
<c>,S <a~>,.

‘ThenaAn scAn € n<cvn < avn. Now for any te S,

<a>, m[(< £> N <b>n) v <t>"ﬁ<c>n]

= [arn, ava]N ([tAn, tva]O (ban, bva)v([tAn, tva ] [can, cva)).

By some continue calculation and using the fact that [n) is modular , we find that
the right hand patt of above interval = ((avn) A (tvn)2 (bvn))v ((tvn) ~ (cvn))
which is same as the right patt of the intetval in
(<a>Nn<t>N<b>)Vv(<t>N <c > ). Similatly, using the modularity of
(n ] and some routine calculation , we find that the left member of the interval in
both <a>N[(€t>N<b>) Vv (<t>N<c>)|and
(a>N<t>N<b>)V(<t>N<c > ) ate also same. This implies,
<a>N[(<t>N<b >)v(<t>n<c >

=(<a>n<t>N<b>)Vv(<t>N<c > ) and so P,(8) is modulat.
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()= (©). Suppose (ii) holds and a, b, ¢ ¢ n ) with ¢ s a. suppose bvc exists. Here
SerE<az, By, <a> n(<b> v<e>)=(<a>n<b>)v<c>,
Thatis [n, a] © ([n,b] v[n,c]) = (|n,a] N o, b)) v |n, ] .

Thatis [n,a] © ([n, bve] = [n,aAb) v [n, c]

That 1s [n, an(bVe)]) = [n, (anb) vc] and this implies aA(bvc) = (aAb) ve and
so [ n) is modulat.

Similarly we can ptove that (n ]*is also modular.

Thetefore, (i) holds.

Thus by (ii), xvy e<z, xv(yAz) >"

Thatis, (xvy) Az < xv(yAz) and so (xVy) Az = xV(yAz).

Thetefore [ n) is modular.

Similarly, using the condition (ii), we can easily show that ( n] is also modular. @

Following the proof of (i) < (ii) in theorem 4.3.4, we can easily prove that P (S) is
distributive if and only if (n |* and [n) are distributive when n is an upper

element. Therefore, by theorem 4.3.2, we have the following result.

Corollary 4.3.5. Let S be a nearlattice and n €S s an npper element. Then for all

a,b €S, <a,b >"is an n-ideal if and only if P, (S) is distributive. @

[34, Th. 1] gave characterizations of distributive lattices. Then [47] extended the
result for neatlattices. [1] generalized the result for n-ideals in lattices. Following
theorem generalizes all the above results for neatlattices using relative
n-annihilators. This has been proved by [2] when n is central element. We omit the

proof as it is exactly same as the proof of |2].
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Theotem 4.3.6. Ler n be an upper and nentral element of a nearlattice S.  Then the

fo//mz/z'z{g conditions are equivalent.
() P.S) is distributive.

() <avb,bvn>isanideal and < ann, ban >, 5 a filter whenever

<a>ng<b>n_.

We conclude this section with the following charactetization of minimal prime n-

ideals belonging to an n-ideal. Since the proof of this is almost similar to theorem

4.1.5, we omit the proof.

Theorem 4.3.7. Let S be a distributive nearlattice and P be a prime n- ideal of S belonging
fo an n-ideal |. Then the following conditions are equivalent.
1) P is minimeal prime n -ideal belonging to ].

(i) x el implies <<x>,,]>¢P. @
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4.4. Some characterizations of those F.(S) which are relatively

Stone lattices

1%,(8) 1s telatively pseudocomplemented if the interval | <ay, a5,....,2,>

n

< bpby. by > ] in F, (S) for each <apag,. - 50,>, ,<byb,.. b >, eI (S), with

<Ay, Ay 8,2, @ < byby,. b > s pseudocomplemented.

Morcover , I7,(S) is a telatively Stone lattice if each interval [<a;, a5....... A
< by,by,...... b, >, ] with <a,, a,,....... 07, E by b, >,
(Sl Bysvi e oo >0, <Db,b,,...... b, > el (S)) is a Stone lattice.

Theotem 4.4.1. Let S be a distributive nearlattice with an upper element 0. Then the

Jollowing conditions hold.
(1) <<x>nv<y>“,<x>n>:<<y>u,<x>">;
i) <<x> ' J>= Vi S <x >, <y> > the suprensim of n-ideals

<<x >, <y >, > in the lattice of n-ideals of S, for any xe S and any n- ideal ],
Proof: (). Obviously L.H.S< R.H.S.
To prove the reverse inclusion let teR.FLS , then te < <y > <x > >.This
implies m(y, n, t) € <x >_Thatis,<m(y,n, t) >, <x> andso (<y> N<t>)
Vx> Nn<t>)e<x>.Thatis, <t>nN[<x>Vv<y> ] < <x> which
implies te < <x > v <y >, <x > > thus teLH.S and so RH.S.€ L.I18.
Hence L.ILS. = R.H.S.
(i) Obviously R.H.S. € L.H.S.
To prove the reverse inclusion, let te L.H.S. Then m(x, n, t) €] thatis m(x, n, t) = j

for some je]. This implies te < <x >, <j > >. Thus te R.FL.S. and so (i) holds @
Iollowing lemma will be needed for the development of this chapter. "I'his is in

fact , the dual of [9, lemma 3.6] and very easy to prove . So we prefer to omit the

proof.
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Lemma 4.4.2. Let 1, be a distributive lattice, Then the following conditions hold.

(1) <XAY:X>d=<Y: X>y.

(i) <[, I'>=v,_. <x Yy >a= where IV is filter of L.

(i) <50 <y, a>,) A, b= {<x, 2>, 0 [a, b}V {<y, 23,0

[a, L]}, where [ a, b] represents any interval in L. @

Lemma 4.4.3 and 4.4.4 are essential for the proof of our main result of this section.

These results are due to [2].
Lemma 4.4.3. Let S be a distributive neariattice with an npper element n.
Suppose a, b, c 8.

() Ifa,b,c2n, then < <m(a,n,b)>, c> >=
<<a>,, <c> >V<<b> , <c> > iseguivalent to
<anb, c> =<a, c>V<h, ¢c>.
) Ifa,b,csn, then < <m(a, n,b)>,, <c> >=<<a> ,<c> >V

<<b>,, <c>, >iseqguivalentfo<aVbh, c> =<a, c>V<Dh, c>,. @

Lemma 4.4.4. Let S be a distributive nearlattice with an npper element n. Suppose a, b, ¢
es.

() Ifa,b,c 2nand aV b exists, then < <c> ,<a>V<b> >

=<<c> ,<a> >V<<<c> ,<b> >iscquivalent to
<c,aVb>=<c,a>V<c,b>

(i) Ifa,b,csn, then <<c> ,<a>V<b> >=<<c> ,<a> >V

<<c> ,<b> >isequivalentto<c,aVb>;=<c,a>V<c,b>,.@
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Following result on Stone lattices is well known due to 9], [29]and [30]

Theotem 4.4.5. Let 1. be a psendocomplemented distributive lattice. Then the following
conditions are eqiivalent.

@ L is Stone
(i) Foreachx,y el ,(x ny)* =x"Vy".
(i) Ifxay=0, x,yel, #hsx'Vy* ‘=1 @

Similarly we can prove the following result which is dual to above theotem.

Theorem 4.4.6. Let L be a dual psendocomplemented distributive lattice. Then the following

conditions are equivalent.

ity 1. is dual Stone

(iv) Foreachx,yeL,(xVy) =gt Ay

i) IfxVy=1, x,yeL,then x'4 Ay =0, where X" denotes the dual

pseﬂdommplemeﬂt ofx. @

Ayub in [1, Th. 3.2.7] has given a nice chatactetization of relatively dual Stone
lattices in terms of dual relative annihilators, which is in fact the dual of [9, Th.3.7]
 As we have mentioned eatliet that in neatlattices the idea of dual relative
annihilators is not always possible. But when n is an upper element in S then xV n
exists for all xe$. Thus for any ae( n ], xVa exists for all xeS. Hence we can

define < a, b >, for all ae (n] and bed.

Tollowing result is due to [2].

Theorem 4.4.7. Let n be an upper element of a distributive nearlattice S sich that (n] is
relatively dnal pxeudommp/emeﬂied Leta, b, c e( n] be arbitrary elements and A, B be
arbitrary filters of () . Then the following conditions are equivalent.

Q)  (n] is relative dual Stone.
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() <2, b>V<b, a>=
(iii) <C,ﬂ’\b>d=<C,a>dV<c,b>d.
(v) 1<O), AVB>,= <[C), A>,V<[C), B>,

(v) <aVb,c>=<a, c>V<h, c>,.@

Theorem 4.4.8 and 4.4.9 are needed for the further development of this section.
Next two theorems are the main results of this section which give several
charactetizations of those F(S) which are relatively Stone.

‘Theorem 4.4.8. Let S be a distributive nearlattice with an upper element n. Then the
Jollowing conditions are equivalent.

() U.(S) is relatively psendocomplemented.

(@)  P.(S) is relatively psendocomplemented.

(111) | (n] 25 relatively dual psendocomplemented and | 0) s relatively psendocomplenented.
Proof : (i) = (i1).Suppose (i) holds. Considet <a> = <b> < <c> . Since
() holds, so thete exists < t, t,, ....t. >, in [ (S) with <t;, t,, ....t, >, € <c >
which is the pseudocomplement of <b > in[<a> ,<c> ]. Butby
Corollary 1.4.5, < t,, tp, ....t,>,= < d > for some deS§. This implies <d > is the
relative pseudocomplement of <b > in [<a >, <c >, ]. Thetefore, P,(S) is
relatively pseudocomplemented.

(i)= (i). Suppose (ii) holds.

Consider < a,, a,, ....a, >, € < b, by, ...b, > € < ¢, ¢, ....c. >, Then
<a,dy,...a,> N<c > <b,b,...b>n<c¢> €<c> forsomet=

1,2, )8,

Then by Cotollary 1.4.5, < by, by, ....b,> N < ¢, >, is ptincipal and let <p, > =
< by, by, ...,b, >, N < ¢, >, So there exists < d, >,, such that < d, >  is the

relative pseudocomplement of < p, > in [ <a,a,...a,>, Nn<¢, >, ,<c> |.
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00, < -
50, <byby . b,> Nn<e> n< d>, =<a,a,..a> n<c >,

T < -
I'hus, < by, by, b> < d,> = <a;, 4y, ....a,> N<c, >, forcacht

no

Hence, <by, by, ...b,>, n<d,dy...d >, = <a, ay ... >

T n

Moreovert, <d,, d,, ....d, > < <c,, c,, ....c,>

n'

Now let, there cexist <q, Qo cvoor G Zw€ <C;, Cp ....c, >, such that

n n

= ql? an ""qm >nn <b1, b25""bs>n = <ﬂl3 ﬂz, ....ﬂ:>n_

Sﬂce <q1’ q2> ""qm >“ﬁ < C >n 5 S C >n » SO <ql’ q?_a 2 "qm >n = C >n d
<bj, by, ....b, >, = <a;, a5, ..., >, N < ¢, >, which implies <q, g3, ...q, >

< ¢ >, € <d,> by Corollary 1.4.5, foreacht=1,2, ....... k.

m
1

[

ThUS, <ql: q.z: "qm>n n< Cl: C2> $i 'Ck >n = <d1’ d2’ te "dk>n .

Thatis < q;, 9y -9y >n S <dy, d,, ....d>, Hence<d,, d,, ....,d,>, is the relative

pseudocomplement of <b,, b,, ...b> in [<a,a, ...a> = <c,Cy....> ]
Therefore, I (S) is relatively pseudocomplemented.

(ii) = (iii). Suppose (ii) holds. Letn =a sb <c.Then<c> s <b> s <a>  So
[n,a] € [n,b] € [n,c] Since (i) holds , so thete exists < t > such that <t >

is the relative pseudocomplement of < b > in [< ¢ > < a > ]

Now, <c> <€ <t> c<a> impliescstsa

So, [n,b]"[n,t]=[n,a] whichimplies brt =a.

Let de§S with a £d <c such that bAd = a. This implies that <b > N <d > =
<a>_,since <b > is the relative pseudocomplement of <b > .

So,<d> < <t>. Thatis [n,d] < [n,t] andso,d =t
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herefore, t is the relative pscudocomplement of b in [ a, ¢] and so [ a, ¢ | is

pscudocomplemented and hence [n) is relatively pseudocomplemented.

A dual Proof of (i) = (iii) shows that (n]" is relatively dual pscudocomplemented.
(1if) = (11). Suppose (iii) holds. Let {n} e<a>cs<b>c<c>,
Then cAn < bAn s aan s n<avns bva scvn. By (iif) , [ n ) is relatively
pseudocomplemented , so bvn has a relative pseudocomplement t in [avn, cvn].
Thus tA(bvn) = avn .

Again cAn < ban < asn. Since (n ] is relative dual pseudocomplement. so, there
exists the relative dual pseudocomplements of b Anin[c An,a Anj .

Thens v(b An)=a An and <s,t>, Nn<b>, =s, t] N [b An,bvn]

=[s v An), tr(bvn) ] =<a>,

Moteover, <s, t >, € < c> implies <s,t>, isa principal n-ideal by Corollary
1.4.5.

Let thete exists < p >, in [<a>, <c>]Jsuchthat<b> Nn<p> =<a> . This
implies [b An,bvn] Nn[pAn,pvn]=<a> .Thatis, [bAnvV (p An),
(bve) A(pva)] =<a>,

This implies (b vn) A (p vn) = avn and (b An) v (pAn) =a An.

Butp vn < tand pAn 2s as t and s are telative pseudocomplement and relative
dual pscudocomplement. Thus <p >, < [s, t].

Therefore, [ s, t] is the relative pseudocomplement of < b > in

[€a>, <c>].

Therefore, [<a >, <c>]is pseudocomplemented and so, P,(S) is relatively

pseudocomplemented. @
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Theotem 4.4.9. Let S be a distributive nearlattice with an npper element n. Then the
Jollowing conditions are equivalent.

0 T.S) s relatively Stone.

i) P.S) is relatively Stone.

() (0] s relatively dual Stone and | 0) is relatively Stone.

Proof: (i) =(ii) . Suppose (i) holds. So , P,(S) is relatively pscudocomplemented by
4.48. Consider <a> € <b><c<c> .SinceF(S) is generalized Stone , 0
the interval [<a>_,<c>_ ] isStone. Thus <b > v<b>‘ " =<c>,,
where < b >_°is the relative pseudocomplement of <b > in [<a > ,<c> ]
This implies P, (S) is relatively Stone.

() = (i).Suppose (ii) holds .Then by Theorem 4.4.8, T, (§) is rclatively
pseudocomplemented.

Let < ap, Ay, ...,2, >, € < by, by, ...b,> € <¢p, ¢ ..00,>, I foreach t =1, 2,
...k, <e> is the relative pseudocomplement of < by, by,....b,>, " <¢,>, in
[<a;, a5 2>, N <>y, <¢ >, Jand <f> s the double telative
pseudocomplement of < by, by,.....b;>, N <>, in [<a, 2, ...,a>, 0<c>,
<c>, ],then[<by,by....b>," Vv <b,, byy...,b>" " ] N <>
= (< by, by, oeub>y N < >,) V(<byby b2t NS c,>y)

=<e>, Vv <f> bylemmad24
= <c¢,>, asP,(S) is relatively Stone.

Therefore, < by, by, ...,b>," ¥ < by, by, b >."

D57 n
= (<by, by, ... ,b>," v <by, by, ... ,b>."" ) N <cy, Gy -G
=<c¢>, V<G>, Vo v<g >
= < ¢y, Cyy ¢+ +Cp 7y -

Hence [<a;, 2 oo Py | < €y Cpy --00C >, | 18 Stone, and so F (S) is relatively

Stone.
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O
(i) = (ii). Jetn s as bsc.So,<a> c <b> c<c>,.SinccP(S)is

relatively Stone, so the interval [<a >, , <c¢>_ ]is Stone. Thus

<b>nov <b>noe :<C>“,

Thatis, [n,b]°Vv[n, b]°° = [n, c]and so by Threorem 4.2.1,
[c, b°]v[n, b°° ]=[n, c],which implies
[n, b vb '] = [n cl,
andso bV b°* =c Thus by 448, [n)is relative Stone.
A dual proof of (ii) = (iii) shows that (n] is relatively dual Stone.
(iii) = (ii). Suppose (iii) holds. Let <a >, € <b>,< <c >,
ThencAn s ban € asns< n < avans bvn<cvn.
Consider, avn < bvn < cvn By (iii), (bvn) " v (bvn)® " =cvn, and (bAn)*¢
A b An)? =can,
Therefote , by 42.1, <b>v <b>/"
= [bAn , bvan]® v [bAn,bvn]""
= [(bAn) 4 bvn) "] v [ bAn) *ed (bvn)**]
= [ban) "¢ A ban) Y, (va) T Y (bve) T
= [crn ,cvn]

= < C>n'

Therefore, by Th. 4.4.8,P,(S) is relatively Stone. o

Following tresult  has been proved by [2] when n is central and S is a
distributributive medial nearlattice. We prove it in a general distributive nearlattice

with n as only an upper element.
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Theorem 4.4.10. Let 0 be gy upper element of a distributive  neariattice and I.(S) be
relatively psesdocomplemented, S

ippose A, B are two n-ideals of S. Then foralla ,b,c e S
the following conditions are equivalent )

,
6] E.(S) is relatively Stone.
@ <<a>,<b>>v <<b> <a>>=5
(i) <<c>,<a> v <b> >= <<c>, <a> >v <<c> <b> >,
whenever av b excists.
(v) <<c> ,AvB>= <<c> A>v <<c¢> B>
M  <m@,n,b)>, <c>>=<<a> v<c>>v<<bhb>, <c> >,
Proof: (f) = (ii) . Let (i) holds. So P,(S) is relatively Stone by theorem 4.4.9. Let
zeS. Consider the intetval
I=[<a> n<b> n<z>,<z> ]inF,(S). Then<a> A<b>, Nn<z>,
is the smallest clement of the interval L.
By () , 1is Stone /Then by theotem 4.4.5, there exist principal n-ideals
<p>,,<q>, elsuch that,
<a> n<z>n <p>=<a>n<b> n<z>
=<b>n<z> n<qg>and<z> =<p> v <q>,.
Now,<a> n<p>=<a> n<p> n<z>,
=<a> n<b> n<z> c<b> imples<p> s <<a> <b> >
j\lso,<b>"<; <q>n=<b>" N<z> nNn<q>,
=<a> n<b> n<z> c<a> implics
<g>, € <<b>"’<a>n>.
Thus <z > e <<a> <b>>v <<b> ,<a>> andso
7€ <<a>'n ,<b>>v <<b> ,<a> >,

Hence, < <a> , <b>>v <<b> ,<a> >=8.

bl

()= (iii) . Suppose (i) holds and av b exists.

Yor (jii), R.IM.S.c1..H.S. is obvious.
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Now,letze < <¢>_ | <a>; v <b> >,

Thenz v ne <<c>,,<a> v <b>>andso m(zvn,n,c)e<a> v<b>,
‘Thatis , m(zvn, n, c) e [ arban, avby n|.
This implies (zvn) A (cvn) < avbva.
Now by (i) , zvne < <a > <b>>v <<b> ,<a> > Then by
Theotem 1.4.7, zva<(pvn) v (qvn) for some pvne< <a>  <b>n>and
qvn e< <b> ,<a> > Hence,zvn = (zvn) A (pvn)) v ((zvn) A (qvn)
= tv t (say).
Now, m(pvn, n,2) = (pvn) A (avn) < bvn. So ban < ra (avn) < bvn.
Hence, tA (cvn) = £A (zvn) A (cvn)

<t A (avbvn)

=tA (avn) v (1A (bvn)
< (bvn).

This implies r e<<c >, <b>_ Similatly te<<c>, ,<a>, >,
Hence, zvne<<c >,

<a>, v<<c>,, <b>>,

3 3

Againze<<c> , <a> v <b> >

bl

implies zAn e<<c>_ , <a> v <b>_ >

Then a dual calculation of above shows that

arne <<c> ,<a> >v <<c>,<b> > Thus by convexity,

ze <<c>,,<a> >v <<c> ,<b>>andsoLHSc RHS."

Hence (iii) holds.

(i) = (iv).Suppose (iii) holds. In (iv), R.H.S. ¢ L.H.S. is obvious.

Now let, xe <<c>_  ,AvB> Thenxvn<<c> ,AvB>.

Thus m(xvn,n,c) eAvB. Nowm(xvn,n,c) = (xvn) A (nvc) 2 n implics
m(xvn,n,c) e (AvB) n[n).

Hence by Theotem 4.4.1. (i), x v ne<<c>,, (An [n) v B~ [n)>.

<1'>“>.

b

= Voetanimp(Brin) <<€ >,
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But by theorem 1.4.7, ¢ ¢ (A A [n) v B~ [n)) implies
r=svtforsomeseA,teB and s, t> n.
Then by (iii) << e >, ,<r> > =<<c>_ | <svt> >

=<<c> , <s>v<t> >

H

=<<c> <s> >v<<c>, , <t> >

>

c <<c> ,A> v <<c>,6 B>.
Hencexvn e <<c> ,A> v <<c> ,B>.
Also,x e <<c>_  ,AvB>implies xAne <<c>, ,AvB>
Since m(xAn ,n,c) = (xAn)v(nAc) <n,
So,xAne <<c>, , (AvB)n(n] > .Then by theorem 4.4.4(ii),
xrne <<c> , An(n])vBn(n] >

Vie(eimwenimy < <€ Zqs <1, >
Again, using theorem 1.4.7, we see thati = pAq where peA,qeBandp,q <n.
Then by (iii) , < <c>_ , <i> > =<<c>,, <paq> >
=<<c>, <p>, v<q>>

b

=<<c>, <p>n> v<<c>n, <q>“>

c<<c>,A> v<<c>,6B>
Hence xAne < <c> , A> v <<c>_ , B> . Therefore by convexity,
xe<<c> ,A> v <<c>, B>andso, LHS. cR.H.S. Thus (iv) holds.
(iv) = (i) is trivial.
(ii) = (v). Suppose (i) holds.
In (v), RH.S. < L.H.S. is obvious.
Now let z e< <m(a, n, b) >, <c>,>.
which implies z vn e< <m(a, n,b) >,, <c>,>. By (ii),
zvne <<a>_, <b> > <<b>, <a>_ >, Then by theorem 1.4.7, zvn =
<b> > andye <<b> , <a> >andx,y2n

xvy forsomexe<<a>,,
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Thus <x > n<a> c<b >, and so,

<x> n< a> = <X>nr\<a>n(\< b>n;< Zv N >“m<a>"m<b>“

=<zvn> n<m@,n,b)> c<c>,

n
This implies x e< < a > ,<Sc¢>, > Similatlyy e< <b > <c¢> >andso
zvne<<a> <c> > v<<b> <c> >

Similatly, a dual calculation of above shows that

zAne<<a> ,<c> >v<<b> <c> >

Thus by convexity,

ze<<a> ,<c> >v<<b>  <c> >andso

L.FL.S. cR.H.S. Hence (v) holds

(v) = (D). Suppose (v) holds. Let a, b, ¢ > n.

By (v),<<m(a, n,b) >, <c> >.

=<<a>

<e¢> >v<<b> 6 <c> >

H 2

But by lemma 4.4.3.(i), this is equivalent to < aab,c>=<a, ¢>v<b, ¢>.
"Then by [56, Th.3.3.5], this shows that [ ) is a telatively Stone.

Similatly, for a , b, ¢< n, using the Lemma 4.4.3 (ii) and Theorem 4.4.7, we find
that (n] is relatively dual Stone .

Therefore, by theorem 4.4.9, I (S) is rclatively Stone. Finally, we need to prove
that (iii) = (i).

Suppose (iii) holds .Let a, b, ce S [n).

By (i), <c> > <a> v <b>,

=<<c¢c> ,<a>>v<<c> , <b>7>

But by Lemma 4.4.4(i) ,this is equivalent to <c, avb>=<¢, a>v<gc, b>,
Then by | 56, '1'h.3.3.5],this showsl that [n) is relatively Stone .
Similarly, for a, b, ¢ < n, using the lemma 4.4.4(ii) and theorem 4.4.7, we find that

(n] is relatively dual Stone. Thetefore, by theorem I, (S) is relatively Stone. o
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By [91, [38] and [14] we know that a lattice is telatively Stone if and only if any
two incomparable prime idcals are co-maximal [49] extend this result for
neatlattices. We conclude this chapter by ptoving the following result, which is a
gencralization of [49, Th.1.5]

Theorem 4.4.11. Tet S be a distributive medial nearlattice and F(S) be relatively
pserdocomplemented. If n is an upper element in S then the Jollowing conditions are equivalent.
6 I (S) is relatively Stone.

() Any two incomparable prime n-ideals P and Q are co-maximal, That is, Pv Q = S .
Proof: (i) =(i)). Suppose F,(S) is relatively Stone . Then by 4.4.9, P.S) is
relatively Stone. Let P and Q be two incomparable prime n-ideals of S. Then there
exista,b e Ssuch thatae P— Qand beQ —P.

Then<a> cP-Qand <b> < Q-P. Since by (i), F,(S) is relatively
Stone, so by theorem 4.4.8 , < <a>_ <b>>v<<b> <a> >=8§,
But as P, Q are prime , so it is easy to see that , < <a> <b> > c Qand
<<b> <a> >cP

Thercfore, S € PvQand PvQ =S,

Thus (i) holds.

(1) = (1). Suppose (ii) holds.

Iet P, and Q, be two incomparable prime ideals of [n) .Then by Lemma 2.2.5,
there cxist two incomparable prime ideals P and Q of S such that P, = P n[n) and

Q,=Q nn).

Since neP,and neQ,, So by Lemma 2.1.3 , P and Q are in fact two incomparable

prime n-ideals of S.
Then by (i), Pv Q = S. Therefore, P,v Q= (Pv Q) N [n) =3 n[n) = [n).
Thus by [49, Th. 1.5], [n) is relatively Stone.
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Similatly, consideting two prime filters of (n] and proceeding as above and using

the dual result of [49, Th.1.5], we find that (n] is relatively dual Stone. Thetcfore by

Theorem 4.4.9, 17, (S) is relatively Stone. @
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CHAPTER 5

CHARACTERIZATIONS OF PRINCIPAL n-IDEALS WHICH
ARE SECTIONALLY IN B,, AND RELATIVELY IN Bm

Introduction

Lee in [30], also see Lakser [33] has determined the lattice of all equational
subclasses of the class of all pseudocomplemented distributive lattices. They are
given by B,cB,c B, c...... c B, ... c B,, where all the inclusions are
proper and B, is the class of all pseudocomplemented distributive lattices, B,
consists of all one element algebra, By is the variety of Boolean algebras while B_ ,

for-1<m<uw consists of all algebrassatisfying the equation (X AX AX3A A X)) v

n

v (X AKA _AX AR AKX A
R

AX)"=1 where x' denotes the pseudocom-

plement of x. Thus B, consists of all Stone algebras.

Cornish in [9] and Mandelker in [38 ] have studied distributive latices analogues to
B,-lattices and relatively B, lattices, Cotnish [9], Beazer [4] Davey [14] have each
independently given several characterizations of (sectionally) B, and telatively B_-
lattices. Moreovet, Gratzer and Lakser in [19] and [20] have obtained some results
on this topic.

Cotnish in [10] have studied distributive lattices (without pseudocomple-
mentation) analogues to B, -lattices and relatively B -lattices. These are known as
m-normal and relatively m-normal lattices.

A sectionally pseudocomplemented distributive nearlattice S is called sectionally in
B, if for each xe S, [0, x]isin B,

A relatively pseudocomplemented distributive neatlattice is called relatively in B_ if

for all x, ye S with x <y, the intetval [x, y] is in B_..
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I section 1, we will study principal n-ideals which are sectionally in B, . We will
include several characterizations which genetalize several tesults of [41] and [56].

We shall show that if for a central element neS, P,(S) is a sectionally

pseudocomple- mented distributive nearlattice , then P, (S) is sectionally in B_ if

: ) + + +
and only if for any Xo, Xy oerens Xm €5, <x> v <x> Fv.... vV<x,>, = S,

whete m(x; , 0, x;) = n, which is also equivalent to the condition that for any m+1

distinct minimal prime n-ideals P, , ...... LPoofS, PyvPv.... vP =

In section 2, we will study those P,(S) which are relatively in B_. Here we will

include 2 number of characterizations of those P (S) which are relatively in B, . We
shall show that for a central element n, if P,(S) is relatively pseudocomplemented

, then P,(S) is relatively in B,, if and only if for any m+1 pair wise incompatable

prime n-ideals Py, ... LoofS, PyvPiv....vP =8,
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5.1. Nearlattices whose P,(S) are sectionally in B,

The following result is due to [14, Lemma 2.2]. 'This follows from the

corresponding result for commutative semi-groups due to Kist [32]. This is also

true in case of a distributive neatlattice.

Lemma 5.1.1. Ler M be a prime ideal containing an ideal | in a distributive nearlattice .

Then M is a minimal prime ideal belonging to ] if and only if for all xe M , there exists x' ¢ M

such thatx , x' €]. @

Now we generalize this result for n-ideals.

Lemma 5.1.2. Let n be a medial element and M. be a prime n-ideal containing an n-ideal | .
Then M is a minimal prime n-ideal belonging 1o | if and only if for all xe M, there exists
x" ¢ M such that m(x n, x")e].

Proof: I.ct M be a minimal prime n-ideal belonging to J and x eM. Then by
theorem 4.3.7, < <x > ] >/<;M . So thete exists x" with m (x, n, x" ) €] such
that x' ¢ M.Convetsely , suppose xe M , then there exists x" ¢ M such thatm (x, n
, x') €]. 'T'his implics x ¢M, but x' e<<x>  J>, thatis <<x> ] >] cM.

Hence by Theotem 4.3.7, M is a prime n-ideal belonging to J. @

Davey in [14, Coro]iary 2.3] used the following result in proving sevetal equivalent
conditions on B_-lattices. On the other hand, Cornish in [9] has used this tesult in
studying m-normal lattices. We omit the proof as it is trivial.

Proposition 5.1.3. Let My M., M, be ntl distinct minimal ptrime idcals
belonging to J. Then thete exists 2, , 2y, ..a,eSsuch thata; o, €] (i # j) and a,e M,

,ji=0,1,...n. @
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The following result is a gencralization of above result in terms of n-ideals,
Proposition 5.1.4. Let S be a distributive nearlattice and nesS is medial. Suppose M,
My, oy My, be m+1 distinet minimal privie n-ideals containing n-ideal ). Then there exists
5 Ay, -2, €S such that m(a; n,a) €] (1#) and a ¢M (j=0,1,...m).
Proof: For n = 1. Let x,e M,-M, and x,€ My —M,. Then by lemma 5.1.1, there
exists x; ¢ M, such that m (x, n, x]) €] .
Hence a; = x,,2,=m( Xo, 01, x;) are the required elements.
Obsetve that m(ag,n,2,) =m (m (%, n, x/),n,x,)
= (Ko aXi A %) V(X AD) V(X AN) V(X A1)
= Xoam(x; 0 X)) v (X An) v(m(x, n x) n)
=mX,, n, m(x, 0 x))
Now,m(x; n x) ,n=m(x,,n, m(x, n_x))
Sm(x; n,x)vn
and m( x; nx/) €], so by convexity m(a, , n , a,) €J. Assume that , the result is
true for n = m-1, and let M; .....M,, be m+1 distinct minimal prime n-ideals . Let

b, (G=0,1, ..m-1) satisfy m(b; , n,b) €] ( #j)and b, ¢eM;. Now choose b,

-1
eM,, - U M; and by Lemma 5.1.2, let b,,satisfy b

J=0

¢M, and m(b,, ,n, b,) €].

m'

establish the result. @

m

Cleatly, a, = m(b; n,b,) (j=0,...m-1)anda,=b

|3

Let ] be an n-ideal of a distributive lattice L. A set of elements x, __ x, eL is said

to be pair wise in ] if m(x; n,x) =n foralli#].

The next tesult is due to [56, Lemma 3.4.1] . In case of lattices it was proved by

[10, Lemma?2.3] which was suggested by Hindman in [26, Th.1.8].

115



Chapter 5

Lemma 5.1.5. Let | be an ideal in a distributive nearluttice S. L'or a given positive integer

n 22, the following conditions are egnivalent.

) I'orany x,, x,, wosXy €S which are "pairwise in]", thatis x; 5 x; €] forany (1#j),

there excists k such that x, €]J.
(z) For any ideals |, ......., | €S such that J;~Jic] for any 17 j, there excists k such that
Jie):

(i) ] 25 the intersection of at most m-1 distinct prime ideals. @

Our next result is a generalization of above result. This result will be needed in

proving the next theorem which is the main result of this section. In fact, the

following lemma is very useful in studying those P,(S), which are sectionally in B,,.

Lemma 5.1.6. Let | be an n-ideal in a distributive nearlattice S and neS is medial, For a
Liven positive integer m 22, the following conditions are equivalent
O Foranyx,, Xy ooox, €S withm(x;, 0, x) €](that is , they are pair wise in ])
Joranyi# i, there exists k sueh that x, €].
()  Forany n-ideals ], ....., ] in S such that [, ], ] for anyi # j, there exists k
such that ], = J.

(i) ] 5 the dntersection of at most m-1 distinct prime n-ideals.

Proof: (i) and (ii) ate easily seen to be equivalent.
(iii) = (). Suppose Py, P, .....P, are (1= k = m-1) distinct prime n-ideals such
that J =P, APy~ .. AP Let %, Xy, X, €5 be such that m(x; , n, x) €] for all
i,
Suppose no element x; is a membet of ]. Then for each r (1 < £ < k) there is at

most one i (1= 1 £ m) such that xeP, . Since k < m , there is some 1 such that
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We need to show (i) = (). Suppose (i) holds for m = 2, Then it implies that | is a
ptime n-ideal. Then (iii) is trivially true. Thus we may assume that there is a largest
integer t with 2< t < m such that the condition () does not hold for ]
(consequently condition (i) holds for t+1 , t+2 | , m ). Then for t < m, we may
suppose that there exist elements a,, a,, ...., a,eS such that m(a, n, a) €] fori#j
A=12, )= 12, tyeta, ..., a, ¢]. ‘

As § is a distributive neatlattice, < <a>, »J > is an n-ideal for any i € { 1,2,...,t}.
Each < <a>_ ,]>isin facta prime n-ideal. Firstly < <a> ] > # S since a,e].
Secondly, suppose that b and care in S and m(b ,n, ¢) e< <a>,, ] >. Considet
the set of t+1 elements { ay, ..., 2, m(b,n,a),m(c,n, a), a,q, ... a, }. This set
is pair wise in ] and so, either m(b, n,a) €] ot m(c, n,a) €]. Since condition
(i) holds for t+1.

Thatis,b e <<a>,,]> or ce <<a> ,]>and so<<a>, ,]>is prime.

Cleatly, J < N < <&, ] > fwe< <a> ,] >, thenw,a,, ..., a, ate pair wise
1sist

in J and so, w €] .FHence ] = N <<za>, ,J > is the intersection of t <m

1sist

prime n-ideals. @

An ideal ] # S satisfying the equivalent conditions of Lemma 5.1.5 is called an m-
prime idcal.

Similarly, an n-ideal ] # S satisfying the equivalent conditions of Lemma 5.1.7, is

called an m-prime n-ideal.

Now we genetalize a result of Davey in [14, Proposition 3.1.] .
Thetem 5.1.7. Let] be an n-ideal of a distributive nearlatiice S and n be a central
elerent of S. Then the following conditions are equivalent,
(i) Forany m+1 distint prime n-ideals P, ......, Py, belonging to J, Py v B
vV o.....vP =S
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(i)  Livery prime n-ideal containing ] contains at most m distinct minimal

prime n-ideals belonging to J.
(i) Ifag ..., a, S withm(, , n, a) e] (1 # j) then v <aP,,J > =,
Proof: (i) = (ii) is obvious.
(i) = (iii). Assume a,, a,, .... , a_, €S with m (a,n,a) €] and

\f< <a> ,] > # 8. It follows that a;¢#], for all j. Then by Theorem 2.1.7, there
exists a prime n-ideal P such that v < <a>,,] > P. But by Theorem 2.1.2, we
; c

know that P is either a prime ideal ot a ptime filter.

Suppose P is a ptime ideal. For each j, let F;={ x y:x > a,x,y > n yeP}. Let
XA Y1, X2 Y2 €55 Then (x4 7) A (%A YD)™ KiaXD) (V1Yo Now

XiaX 28 and Yy A ¥, = m( ¥y, 10, 7,). So, t2x,yimplicst= (t vx) A (t vy). Since
y €P,sot vy ¢P. Hence t eF,. and so F, is a dual ideal.

We now show that F, ~J=®, forallj=0, 1, .., m. If not, let be F. ~]; then
b=x,y,x2a,x,y2n,y ¢P. Hencem(a;,n,y) = (4, ,n) vnv(a y) =

(3 Ay) vN Z(Aj vi) A(y v n). But (3 vn) Ay v n)el} and nS(a,,y) vo S b
implies m(a, n, y) €]. Therefore m(a,, n,y) € I, 1]. Again, m(a, n,y) €] with y
g P implics < <a,>,, ] >«P, which is a contradiction. Hence I, ] = ®for all j.
lor cach j, let P, be a minimal prime n-ideal belonging to J and I AP, = &. Let
yeP, . If yeP, thenyvn ¢P. Thenm(ay n,yvn) = (@vn)a(yvn) eli. But

m@ , n, yvn)e< yvn> <y > P, which is a contradiction. So yeP

()
‘Therefore, PP, and a,¢Pj Torif 2, €P;, then a;v neP;. Now, ajvn = (v n)
(a,vnvy)el forany y ¢P. This implies P, ~ I, # @, which is a contradiction. So a,
eP, But m(a, , n , a) €] P (0 # i) which implies a,eP; (i # j) as P; is prime. It

follows that P, form a set of m+1 distinct minimal prime n-ideals belonging to J

and contained in P. This contradicts (ii). Thercfore v< <a, ] >=8.

Similarly, if P is filter, then a dual proof of above also shows that -
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\f< <a>_,] > =S, and hence (iii) holds.

l'inally, we need to show that (i) = (D). Let Py, Py, ..., P, be m+1 distinct minimal
ptime n-ideals belonging to J. Then by poposition 5.1.4, there exists a, ,a,, ..., a_,

€S such that m(a; n, a) €] (i #j) and a;# P This implies < <a> ] > P forall

J- Then by (i) , < <ap>, L, ] Pv< <a> ] Sy v< <a,>,, ]

“m"n >

We have already mentioned that Lee [ 36 ] and Lakser [ 33 ] have shown That the
equational classes of pseudocomplemented distributive lattices form a chain B.
ycBoc By c........ c B, c... c B,, where B is the trivial class, B, is the class of
Boolean algebras and B, is the class of Stone lattices. Cornish in [ 9] and
Mandelker in [ 38 ] considered distributive lattices analogues to B,-lattices and
relative By-lattices. The following result is due to [56 , Th. 3.4.2] , also scc [4] ,
which is a gencralization of a result in [10] . For lattices this tesult chatacterizes the

distributive lattices analogues to B, -lattices.

Beazer |4] , Davey [14] have each independently obtained a version of this result .
Gratzer and Lakser in [20] ( also see [16 Lemma 2 page 169]) have shown that
condition (iif) of the theorem is equivalent to Lee's condition which charactetize
the nth variety for 0<n< w, of pseudocomplemented distributive lattices. Thus
this theotem should be compated with Lee's Theorem 2 of [36]. Recall that for a
ptime ideal P of a disttibutive neatlattice S, 0(P) = {x: x Ay = 0 for some yeS - P

Ph.D. Thesis, Rajshahi University, Rajshahi, which is an ideal contained in P.
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Theorem 5.1.8. ez S be a distribuiive nearlattice with Q. Then the following conditions are

equivalent.

O  For any m+1 disinct minimal prime ideals Py, P, P,

(i) Every prime ideals contains at most m minimal prime ideals.

(iif)  For any xq, Xy, vy Xy € S s00h that x; Ax,20 for (1 #j),1=0,1,2,.., m,

1=0,1,2,..,m, X)) v{x]" Ve v (%] =
(iv) For each prime ideal P, O(P) is m+1 prime. ®

Our next result is a nice extension of above result in terms of n-ideals. Recall that
for a prime n-ideal P of S, n(P) = { xeS: m(x , n, y) = n for some yeS-P}. Of

course, n(P) is an ideal and n(P) - P.

Theorem 5.1.9. Let S be a distributive nearlattice with a central element n. Then the

following conditions are equivalent.

()  For amy m+1 distinct  minimal  prime n-ideals Py, Py, P,

(i)  Euvery prime n-ideals contains at most . minimal prime n-ideals.

(i)  Forany ag, a;, ...y 2, € Swithm(a; ,n ,2)=n for (1 #),i=0,1,2, ..,

Ym” n

- * * ¥ —
m, j=0,1,2,..,m, <a>, v<a,>,; V... v<a >" =8,
(v)  For each prime n-ideal P, n(P) is an m+1 prime n-ideal.

Proof: (i) = (ii), (i) = (iii) and (iti) = (i) easily hold by theorem 5.1.8, replacing ]
by { n}.
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To complete the proof we need to show that (iv) = (iii) and (i) = (iv).

(iv) = (iii). Suppose (iv) holds and Xgs X1y oy Xy at€ m+1 clements of S such that
m(x, n,x)=nfor (i # j). Suppose<x,> *v<x,>* v.... v<x,>," #8S. Then
by Theotem 2.1.7, there is a ptime n-ideal P such that <x>*v<x>*

LT — v<x, > < P. Hence x4, x4, ..., x,, €S — n(P).
‘I'his contradicts (iv) by lemma 5.1.6 , since m(x; n,x) = nen(P) for i #j.

Thus (iii) holds.

(i) = (iv).This follows immediately from Proposition 4.2.9 and Lemma 5.1.6.

above. @
Following result is due to [56, Th.3.4.5]

Proposition 5.1.10. Let S be a distributive nearlattice with Q. If the equivalent conditions of

Theorem 5.1.8. hold , then for any m+1 elements Xy , Xpyeesy Xy (Ko A X{a v AXw] =

g o
A GO RN S AXEL AR A o A X @

Proposition 5.1.11. Let S be distributive nearlattice and n €S be a central element. If the
equivalent conditions of Theorem 51.10 hold , then for any m+1 elements x4 , x,,...

m»

(<xe>, N <x,> NN <x, >0 = v (<xp>, N <x> NN<xi- >, Nexge, >N

0<isn

+
N<x,>.)".

Proof: let <b> = <x,>, N <x>,N ... N<xi- > Nexpp >, N o N <x > for

cach 0<i <m. Suppose x e(<xg>, N <x,> N N <x,>)" . Then <x> N
<xp> N <x,>, N ...N <x.> = {n}. Forall i# j, (<x> ,N<b>) N(<x> N<b>)
= {n}. So, (<x>,N<by>)" V.ov (<x>,N<b,>)" =S. Thus xe (<x>,N<b> )"

v (<x>,N<b,>)* Hence by the Theorem1.47, xva =2, v a, v .. va,
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i + ’ i
where a; € (<x> N<b>)" and o, 2 n for i=0,1,.....m. Then xvn =(ay A (xvn))

V(@A KV Vv (a, A (xv ). Now ae (<x>,N<b> ) implies <a> N<x>,
N<b>,={n}. Then by routine calculation we find that (A XxADb) v =n. Thus,
A (xvn) e<b> *and so, < Ua(xvn) > N<Db> = [ n, (a5 xab)vn]=
{n} implics that xv ne <by>*v <b,>*v....v<b,>* By a dual proof of above
and using Theorem 1.4.7, we can easily show that

X e <bg>,"v <b;> "v...v<b > " Thus by convexity,

xe e <by>"v <b>"v...v<b, > This proves that L.FLS. cR.H.S. The reverse

inclusion is trivial. @

Theotem 5.1.12, Lez S be a distributive nearlattice and ne S is central. If P (S) is sectionally

psendocomplemented ,then the following conditions are eqrivalent.
@) P.(S) is sectionally in B,
(i)  Ewvery prime n-ideal contains at most v minimal prine n-ideals.

(i)  Forany m+1 distinct minimal prime n-ideals Py, P, P

m?

iv) Ifm(y ,n, ai) =n , this implies <a0>n+v <a]>nJr Vo v<a >"' =8

m n

(v)  For each prime n-ideal P, n(P) is an m+1 prime n-ideal,

Proof: (i) = (ii). Let P,(S) be sectionally in B, since n is central, so by Theorem
2.2.2, both (n]¢ and [n) are sectionally in B,,. Suppose P is any prime n-ideal of S.
Then by Theorem 2.1.1, either P o(n]' or Po[n). Without loss of generality,
suppose P [n). Then by Theorem 2.1.2, P is prime ideal of S. Hence by Lemma
225, P, =P N[n) is a prime ideal of [n). Since [n) is sectionally in B, so by

definition P, contains at most m minimal prime ideals R, R,,...R, of [n).
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Therefore, P contains at most m minimal prime ideals 'I', ..., 'I'.  of S where R,
=T, Nn), R,=T, N[n) ..., R,,=T,, N[n). Since n e Ry Ry ..R,neT,..T

hence'l'y, ...,"I', are minimal ptime n-ideals of S Thus (ii) holds.

m2

(i1) = (). Suppose (i) holds. Let P, be a prime ideal in [n). Then by Lemma 2.2.5,
P, =P N[n) for some prime ideal P of S. Since n eP, <P, 50 P is prime n-ideal.
Thercfore, P contains at most m minimal ptime n-ideals R Ry, ...R,, of S . Thus

by lemma 2.2.5, P, contains at most m minimal prime n-ideals T, = R, N[n),

Ty = Ry N[)yrsy, T =R A1) of [n).

Hence by definition , [n) is sectionally in B,,. Similatly , we can prove that (n]" is

also sectionally dual in B_. Hence by Theorem 2.2.2, P,(S) is sectionally in B,

(i) = (iii) easily hold by Theorem 5.1.7 teplacing ] by {n} Other conditions

follow from Theotem 5.1.9. @

123



Chapter 5

5.2. Generalizations of some results on nearlattices which are

relatively in B,

Several chatactetizations on relative B_-lattices have been given by Davey in [14] .
Also Cornish have studied these lattices in [10 ] under the name of relatively in B,
lattices. Then [56] have given the concept of relatively m-normal nearlattices.
Following result give some charactetizations of P,(S) which ate teladvely in B,

This also generalizes a result in [14].

Theorem 5.2.1. Lot S be a distributive nearlattice with 0 as a central element of S. Suppose

P.(S) is relatively psendocomplemented. Then the Jollowing conditions are equivalent.
O P.S) relatively in B3, .

(1)  Forallx,, X%, €S

m

<<X1>nn<x2>nn """ r1<Xm>n ’ <X0>u >v< <X0>“n<X2>nﬂ """ r1<Xm>u

]

>n N <xm>n> = 5

m-1

(vi)  For any m+1 pair wise incomparable pime n-ideals P, Py, P,

(v) . Any prime n-ideal contains at most t mutsally incomparable prime n-
1deals.

Proof: (i) = (ii) . Let z €S, considet the interval

] = I<< x()> ﬂ < X] >nn .......... n < Xm>nn <z >n b <7 >ll >J in P”(S)
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< x>, N < x> NN < Xy >y N <z> > are obviously pairwise disjoint in

the interval LSince Tis in B, so by Theorem 5.1.12 < t;> ®v ........... v <t,>,°=
<z>, SobyTheotem 1.47,zvn = PoV P1V v VPpn Whete p; 2 n.
J‘l]ljs b < PO >H.n < tO >n = < l-)l >ll m < tl >|l = e = < pl“ >n n < tl“ >|l = ll]c
smallest element of I = < x;> N < x> N........ N<x,> N<z>_ .
Now, <p,>, N <>, =<x>N<x > No.... N <x,>,N<z> which
implics < Po > N < to >, c< p >
Again, < pO >n n < t0 >n = < pO >nn < Xl >nﬁ'““"“.'ﬁ <Xm>n n <z >n
—<p0>nn.<xl>nn """"" ﬂ <Xm>n’ as <p0>ng<Z>u>
This implies < py>,N < x> N........ N<x, > c<x>, and so,
<PG>1|€ < <X|>"ﬂ """"" n <Xm>n,<x()>n>
<p>e <<x>,N<x,> N N<x > ,<x> >
< Pm >nE << XO >nm < Xl >ﬂn """"" m < Xm-l >n ] < Xm >n >
Therefore, zvn o << x> ,N<x> N, N<x, >, , <xp>, >
v <<x> N> M N2>, <>, >
Vo v <<x0>nm<xl>nn """"" r-]<Xm-l>n b] <Xm>n >
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Vo, v <<x,> N<x> N, N<x,.,>. , <X, >, >
Hence by convexity,
ze <<x,> N<x,> N...o..... N<x,>, , <x,>, >
v <<xe> N<x,> N, N<x,>,, <x,>, >
Vovreeeens v <<x> N<x,> N.......... N<Xp1™n > <x,>, >.
This implies (ii) holds.
(i) = (ui). Suppose be <<xy> N<x,;> N.......... N<x_.>., <z>, >. Then by (i) and

the Theotem 1.4.7,bvn =s,vs,  vs_ for some

Sp € <<x,>,N<x,> N.......... N<x, >, <xg>, >
;€ <<x>,N<x,> N, N<x_ >, <x>, >
S € <<xXp>,N<x > N N<K > <x,>, > and sos;2 1n,1=0,1,2, ...m.
Thus <<x,> N<x,> N.......... N<x,>, N<sp> <%=,

<<xp> N<x,>, N, N<x,>, N<s >, o <x,>,

<<xp>, N<x,> N, M<K, 12, N<8,2 e <X 2,

This implies  <<x,> N<x,>,Neceenee N<x, >, N<sy>,
= <<x> N<K 2 Nasawan N<x,, >, N<sy>,
c <<x%p>,N<x > N, N<x,>, N<bv n> o <z >,
Hence so, 5, € <<x,>,N<x>, Moo N<x,>,, <z2>, >
Similatly | 5, e <<xg>,N<H> Mo n<x,>,,<z>,>
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----------------------------------------------------------------------

Sm€ <<x,> ,N<x> N.......... (1 SB

Therefore, bv n « <<x;> N<x,> N.......... N<x,>,,<z>, >

v <<xo> N<x,> N, N<x,>,,<z> >

Vo v <<x> N<x> N, N<x,1>,,<z>, >
The dual proof of above gives,

ban o <<x> N<x> N, N<x > ,<z> >
v <<xp> N<x,> N, SR, B 5,
N v <<xp> <K > M N, >, <2 >
Thus by convexity,
be<<x,> N<x,> N........ N<x,>, ,<z> >

v <<xp>, N<x,> N, n<x, > ,<z> >
- — TEas Ml B L S ) I NCR 55 5 S E Py, >
Therefore,
<<%, N<x > N, (TR P , SBF, & o

S e ) eoo T N § — N<x, >, ,<z2>,>

v <L 1<%, Mo N<K, >, <22, >
- — v <<x>, N<x > N N<K, 1Py s S Z 2y 2
Since the revetse inequality always holds, so (iif) holds.
(iii) = (i). Suppose n=b=d. Let Xg X, voery X € [ b, d ] such that x; Ax, = b, forall
7.
[P P TV D L R— VX,
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.....................................................

..................................................

Xo=6H VLY Vit
Xp= VLY suvn vit,
Xm = tl V tzv ........... V tﬂ‘l-1

Then [b, d]N{<<x>,,<b>>v..... v <<x,>,,< b>>1}

m n?

= [b, d] N{ <<t,> N<t,> N......... N<t,>,,<b> >

m n?

v <<t>, N<t,> N, n<t,>, ,<b> >

VAT v <<t > N<t,> N, N<t, >,, <b> >

= [ b, d] N{ <<ty> N<t> N n<t > ,<b> >}

= [b,d] N< <b>_,, <b >,

= [b, d] NS.

= [b, d].

That is |b, d] is in B,, .Hence [n) is relatively in B,,. A dual proof of above shows

that (n] is tclatively in dual B,,. Hence by Theorem 2.2.2, P,(§) is telatively in B,

(i) = (iv). Suppose (i) holds. Let Py, Py, .....P, be m+1 pairwise incomparable
ptime n-ideals. Then there exists Xy X;, ....Xp, e S such that

X, €, - L"J P,. Then by (i),

i*l
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Now, ;¢ Pyfori=1,2,...m

Thus <<x,> N<x,> N.......... N<x,>, @Py as P, is prime . This implies < t, >
Py and so, t; ¢ Py,

Thetrcefore,

<<x,> N<x,> N N<x, >, , <xg>, > P,
<<%~ <> N N<x,>,, <x>,>P,
ph 5 S ) s - [ I— N<X, >0 s <X, > Py
<<xg>, N<x,> N, <X, > s <%, > P,
<<Ke> N<x > N, MR 12, 5 K2 =P
Hence ,Pyv P v...... vP =S.

(iv) = (v) is trivially by Stonc's seperation theorem.

(iv) = (i). Let any m+1 pair wise incomparable prime n-ideals of S are co-maximal.
Consider the interval [ b, d ] in S with d>n , let Py , Py, ... P " be m+1 distinct
minimal prime ideals of [ b, d] . Then by lemma 2.2.5 there exists prime ideals P
....... ,P_ofSsuch that Py =Py N [b,d], vy P, =P,N [b,d].

Since P, is an ideal , so b ¢P; . Moreover,n < b implies that n ¢ P, Therefore

cach Piis a ptime n-ideal by lemma 1.4.3, i=1,2,..,mSince Py , Py, ..P "are
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incomparable , so P, , P, ... Ly, are also incomparable . Now by (iv),
T N —— vP,=8§
Hence Py v P v......... VP, = PevPv.vP,) N [b, d]

=SN|[b,d]

= [b, d].

Therefore, by Theorem 4.1.2, [b, d] is in B, Hence [n) is relatively in B, A dual

proof of above shows that (n] is relatively in dual B_. Since by 2.2.2,
P,(S) = (n]' x [n),s0 P(S) is relatively in B,. @

We conclude the thesis with the following result which is also a generalization of

(14, Theorem 3.4].

Theorem 5.2.2. Let S be a distributive nearlattice with n &S as an upper element . Then
the following conditions are equivalent.

@) P.(S) is refatively in B, .
VIV 3 M— Ay eSwithm(ay n,a) e<b> (i #]), then
>V v<<a>, <b>>=S.
Proof: (i) = (ii). By Theotem 5.2.1. (v), any prime n-ideal containing b contains at
most m minimal prime n-ideals belonging to < b>,. Hence by Theorem 5.1.7, with

J=<Db>

we have ,

< P, Lh 2P W awms v<<a,> <b>>=S8. "Thus (i) holds.
(i) = (i). Considet b ¢ [n) withb < c.Letay, ..., 2y e [ b, c] with

ana, =D (i #j), then by m(a n,a) = b e <b>,. Then by (i1),
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<<a>, <b>> v v<<a,>, <b>>=8

M7,

So, b, ] = (< <a>, <b>>N1[b, v..... v<<a,> <b>>N[b,c]

Hence by the Theotem 5.1.8, [b, ¢] is in B,.. Therefore, [ n) is relatively in B,

A dual proof of above shows that (n] is relatively in dual B,. Therefore by

Theorem 2.2.2, P (S) is relativelyin B_. @
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