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Introduction

The concept of fuzzy set was introduced by the American Mathematician
L. A . Zadeh for the first time in 1965 . This provides a natural framework for
generalizing many algebraic and topological concepts in various directions.
Accordingly fuzzy groups , fuzzy ideals , fuzzy rings , fuzzy vector space ,
fuzzy measure , fuzzy topology , fuzzy topological groups, fuzzy topological
vector space and many other branches have been developed all over the world
during the last four decades . It is still developing in many directions. While
reviewing the literature in fuzzy topology , we have seen the gap in separation
axiom of fuzzy topological space , the counter part of which in ordinary
topological space drew attention of several eminent mathematicians like Azad ,
K.K.; Chang, C.L.;Ali,D. M. ; Wuyts, P. ; Srivastava , A. K. and Lowen,
R. etc. We aim to develop of theories of Fuzzy To , Fuzzy T, , Fuzzy T, , Fuzzy
Ry, Fuzzy R, Fuzzy Regular and Fuzzy Normal spaces analogous to its counter
part in ordinary topology . The material of the thesis has been divided into six

chapters , a brief scenario of which we present as follows.

Chapter one incorporates some of the basic definitions and results of
fuzzy set, fuzzy topology and mappings. These results are ready references for
the work in subsequent chapters . Results are stated without proof and can be

seen in the papers referred to .



Our work starts from the second chapter. In the second chapter , we have
introduced and studied some Rgand R; properties in fuzzy topological spaces

and we have established relations among them . Also we have studied some

other properties of these concepts.

In the third chapter , We have introduced and studied some Toand T,
properties in fuzzy topological spaces and we have established relations among

them . Also we have studied some other properties of these concepts.

In the fourth chapter, we have introduced and studied some T, properties
in fuzzy topological spaces and we have established relations among them .

Also we have studied some other properties of these concepts.

In the fifth chapter, we have introduced and studied some Regular
properties in fuzzy topological spaces and we have established relations among

them. Also we have studied some other properties of these concepts.

In the sixth chapter, we have introduced and studied some Normal
properties in fuzzy topological spaces and we have established relations among

them. Also we have studied some other properties of these concepts.



CHAPTER:-1

Prerequisites

1.1. Introduction: - This chapter incorporates concepts and results of the Fuzzy sets, Fuzzy
topological spaces and Fuzzy product topological spaces which are to be used as ready
references for understanding the subsequent chapters. Most of the results are quoted from

various research papers. Through the sequel, we make use the following notations.

A . Index set.
I=[0,1] : Closed unit interval.

I;=[0,1) : Right open unit interval.

Ip=(0,1] : Left open unit interval.
u,v,w,. . Fuzzy sets.

(X,t) . Fuzzy topological space.
(X,T) : Generaltopclogical space.
ITicaX; :  Usual product of X; .-

(X,tixtz): Product of fuzzy topologies t; and t; on the set X.

Io(t) = { u'(a,t] :uet}),a el General topology onX.

1.2. This thesis deals with the study of fuzzy topological spaces. To present our work in a
systematic way in this thesis, we consider in this chapter, various concepts and results on

fuzzy sets and fuzzy topological spaces scattered in various research papers. For this we start

with .



1.2.1. Definition:- Let X be a nonempty set and A be a subset of X. The function

1a: X—— [0, 1] defined by

Ia(x) =1 if xe A

0 if x A

is called the characteristic function of A.

1.2.2. Definition [94]:- A function u from X into the unit interval I is called a fuzzy set in X.
For every xeX , u(x) € I is called the grade of membership ( g.m.f) of x inu . Some

authors say that u is a fuzzy subset of X instead of saying that u is a fuzzy set in X.

1.2.3. Definition [56]:- A fuzzy subset is empty if and only if grade of membership is

identically zero in X. It is denoted by 0.

1.2.4. Definition [56] :- A fuzzy subset is whole if and only if its grade of member ship is

identically one in X. It is denoted by 1.

1.2.5. Definition [94] :- Let X beasetanduandv be two fuzzy subsets of X. Then u is said

to be subset of v if u(x) < v(x) for every x € X. It is denoted byuc v.

1.2.6. Definition [94] :- Let X be a set and u and v be two fuzzy subsets of X. Then u is said

to be equal to v if and only if u(x) = v(x) for every xeX. It is denoted byu=v.

1.2.7. Definition [94] :- Let X be a set and u and v be two fuzzy subsets of X. Then u is said
to be the complement of v if v(x) =1~ u(x), for every xeX. It is denoted by u®. Obviously

wuH’=u.

1.2.8. Definition [15] :- Let X be a set and u and v be two fuzzy subsets of X . Then the

union w of u and v is a fuzzy subset of X , written as w = u U v which is defined by

w(x) = (u Y v)(x) = max { u(x), v(x) } for every xeX.

4



In general, if A be an index set and A={u; :i€A } be a family of fuzzy sets of X then the

union wu; is defined by

(Lup)x)=sup{ui(x) :ieA}, xeX.

1.2.9. Definition [15] :- Let X be a set and u and v be two fuzzy subsets of X. Then the

intersection m of u and v is a fuzzy subset of X , writtenas m(x)= (unv)(x) =

min {u(x), v(x) }, ¥V x € X, and (mu;) (x)=inf {ui(x) :ieA }, xe X, where { u;,ie A }.

1.2.10, Definition :- Let X be a set u and v be two fuzzy subsets of X . Then the difference of

uand v is defined by u-v=unv®

Laws of the algebra of fuzzy sets

As in ordinary set theory , idempotent laws, associative law , commutative law,
distributive laws, identity law , demorgan’s laws hold in the case of fuzzy sets also . But the
complement laws are not necessarily true. For example, if X={a,b,c}anduisa fuzzy

subset of X where is defined by

u={(a,.2),(b,.7),(c, 1)}
then u°={(a, 8),(b,.3),(c,0)}
so uuu=1{(a,.8),(b,.D,(c,)}*1,

ur\u°={(a,.2),(b,.3),(c,0)}¢0.

Also in ordinary set theory UnV=¢ iff Uc V°. But in fuzzy subsets reverse is not

necessary true. For example if

v={(a,.6),(b,.2),(c,0)}then ucv®,

umv={(a,.2),(b,.2),(c,0)}¢0.



1.3. Mapping and fuzzy subsets induced by mappings,

1.3.1. Definition [15] :- Let f be a mapping from a set X into a set Y and u be a fuzzy subset

of X. Then f and u induced a fuzzy subset v of Y defined by

v(y)=sup {u ()} if 7 [{y}]#¢, xe X

=0 otherwise .

1.3.2. Definition [15] :- Let f be a mapping from a set X into Y and v be a fuzzy subset of Y.
Then the inverse of v written as £7'(v) is a fuzzy subset of X and is defined by
1 W)(x) = v (f(x)), for xe X.

We now mention some properties of fuzzy subsets induced by mappings .

Let f be a mapping from X into Y, u be a fuzzy subset of X and v be a fuzzy subset of Y.

Then the following properties are true [13].

(a) £'(ve)= (f'(v))° forany fuzzy subset v of Y.

(b) f(u®)=(f(u))® forany fuzzy subset uof X.

(¢) vicvy = ' (v1)c £'(v2) , where v; and v, are two fuzzy subsets of Y.
(d) ujcu; = f(u)c f(uz), whereu and u, are two fuzzy subsets of X .
(e) vof(f'(v)), forany fuzzy subset vof Y.

(f) uc £ (f(u)), for any fuzzy subset uof X,

(g) Let f bea function from X into Y and g be a function from Y into Z. Then ( g, £Y'(w)

= (g '(w)), for any fuzzy subset win Z, where (gof) is the composition of g and f.



1.3.3. Definition [56] :- A fuzzy pointin X isa special type of fuzzy set in X with
membership function p(x)=r, p(y)=0,V y#x, where 0<r <1, This fuzzy point is said

to have support x and value r and this point is denoted by x; orlx.

1.3.4. Definition [56] :- A fuzzy point p is said to belong a fuzzy set u inX (p € u)ifand

only if p(x) <u(x) and p(y) <u(y) V y #x .Evidently, every fuzzy set u can be expressed

as the union of all the fuzzy points which belong tou .

1.3.5. Definition [56] :- Two fuzzy sets u and v in X are said to be intersected if and only if
there exist a point x € X suchthat (unv)(x)# 0. In this case we say thatu and v

intersect at x.

1.3.6. Definition [89] :- LetI=[0, 1], X be a non empty set, and I* be the collection of
all mappings from Xinto I, ie the class of all fuzzy sets in X . A fuzzy topology on X is

defined as a family t of members of 1%, satisfying the following conditions.

(i) 1,0 et,
(ii) Ifu;et for each i € A, then Uieauj €t

(iii) Ifu;,uzet then uyNuz€et.

The pair (X,t)iscalleda fuzzy topological space ( fts, in short ) and members

of t are called t- open ( or simply open ) fuzzy sets . A fuzzy set v is called a t- closed

(or closed ) fuzzy set if 1-v et.

1.3.7. Example :- Let X={a,b,c,d},t={0,1,u,v},
where 1={(a,1),(b,1),(c,1),(d,1)}

0={(8,0).(b,0),(0,0),(d,0)}
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u= {(a,.2),(b,.5),(0,.7),(d,.9)}
v={ (a,.3),(b,.5),(c,.8),(d,.95))

Then ( X, t) is a fuzzy topological space .

.1.3.8. Definition [50] :- ( According to lowen ) A fuzzy topology on non empty set X is a

collection t of fuzzy subsets of X such that

(1) all constant fuzzy subsets of X belongtot.

(i) tis closed under formation of fuzzy union of arbitrary collection of members of t .

( iii ) t is closed under formation of intersection of finite collection of members of t.

1.3.9. Definition [56] :- Let u be a fuzzy set in ( X, t ) . The interior of u is defined as the
union of all t —open sets contained in u . It is denoted by u®. Evidently u® is the largest

open fuzzy set contained inuand (u°)°=u°.

1.3.10. Definition [S6] :- The intersection of all the t — closed set containing u is called the

closure of u denoted by # . Obviously i is the smallest closed set containing u and

u=u.

1.3.11. Definition [84] :- A fuzzy set nina fis (X, t)is called a neighborhood of a point

x € X, ifand only if there exit u € t suchthatucn and u(x)=n(x)>0.

1.3.12. Example : - Let us consider the example 1.3.7,

andn={(a, 5),(b,.6),(c,.8),(d,.9) }. Now n is a neighborhood of d € X . Since
uet suchthat ucn andu(d)=n(d)>0,n is a neighborhood of d . Similarly

n={(a, _7),(b,,6),(c,.75),(d, .9) } is a neighborhood of d . we denoted the

family of all neighborhoods of x by Ny.



1.3.13. Definition [56] :-A fuzzy set uinafis (X, t)is called a neighborhood of a fuzzy
point x ; if and only if there exist a fuzzy set u; € t such that x, € u; c u. A neighborhood u

is called an open neighborhood if u is open . The family consisting of all the neighborhoods

of X, is called the system of x,.

1.4. Continuous map , open and closed map.

1.4.1. Definition [57] :- The function f: (X ,t) ——> (Y, s) is called fuzzy continuous if

and only if for every ves ,f" (v) et, the function f is called fuzzy homeomerphic if and

only if fis bijéctive and both fand f " are fuzzy continuous.

1.4.2. Definition [53] :- The function f: (X ,t) — (Y, s) is called fuzzy open if and

only if for each open fuzzy set uin (X, t) ,f(u)is open fuzzy setin(Y,s).

1.4.3. Definition [57] :- The function f:(X,t) —> (Y,s) is called fuzzy closed if

and only if for each closed fuzzy setuin (X, t ), f(u) is closed fuzzy setin (Y, s).

1.4.4. Proposition ( [57] Theorem 1.1) :- Let f:(X,t) — (Y,s)beafuzzy

continuous function , then the following properties hold :

(i) For every s— closed v, £(v)ist—closed.

(ii) For each fuzzy point p in X and each neighborhood u of f{u), then there exist a

neighborhood v of p such that f{lv)=u.

(iii) For any fuzzy set u inX, f(_u—) c(f(u)).

(iv) For any fuzzy set vin Y, ( Fiv))c (V)



1.4.5. Proposition ( [53] Theorem 3.1):- Let f:(X,t) —> (Y,s) be a fuzzy open

function , then the following properties hold:

(i) f(u®)c(£(u))®, for each fuzzy set uinX.

(i) (£ (v))°c ' (v°), for each fuzzy set vin Y.

1.4.6. Proposition ( [S3] Theorem 1.5):-Let f: (X,t) — (Y, s) be a function. Then

fis closed ifand only if f(u)c f(u—‘) for each fuzzy set uin X.

1.5. Subspace topology, Base and Subbase.

1.5.1. Definition [56] :- Let ( X, t) be a fuzzy topological space and A be an ordinary
subset of X. Theclass ta={u/A : u et} determines a fuzzy topology on A . This

topology is called the subspace fuzzy topology on A.

1.5.2. Definition [89] :- Let ( X,t) be a fuzzy topological space . A subfamily B oftisa

base for t if and only if each member of t can be express as the union of some members of B.

1.5.3. Definition[89] :- Let ( X ,t ) be a fuzzy topological space . A subfamily S of t is a sub-

base for t if and only if the family of finite intersection of members of S forms a base fort .

1.6. Product topology .

1.6.1. Definition [9] :- Ifu;and u;aretwo fuzzy subsets of X and Y respectively then the

Cartesian product uj x uz of two fuzzy subsets u and u, is a fuzzy subsets of X xY

defined by (usxuz)(x,y)=min (W), va(y)), for each pair (x,y) e X x¥.

10



1.6.2. Definition [47] :- Let { X;,i e A }, be any class of sets and let X denoted the
Cartesian product of these sets, ie X =Il;cs X;. Note that X consists ofall points
p= <aj, i€ A> where a;e X;. Recall that, for each jo € A, we define the
projection mj, from the product set X to the coordinate space Xjo.1e mjo : X —> Xjo
by mi(<a;:ieA>)=aj,

These projections are used to defined the product topology.

1.6.3. Definition [89] :- If (X ;,t;) and ( X;,t ) be two fuzzy topological space and
X =X1x X be the usual product and t be the coarsest fuzzy topology on X, then each

projectionj: X——>X;, i=1,2.is fuzzy continuous. The pair ( X, t ) is called the

product space of the fuzzy topological spaces ( X1, t;)and (X2, t2).

1.6.4. Proposition ( [9] Theorem 3.6) :- If u is a fuzzy subset of a fuzzy topological space

—

(X, t)) and v is a fuzzy subsets of a fuzzy topological space ( Y , tz ), thenu xv ¢ U xv.

1.6.5. Definition [88] :-Let { Xo}aea be a family of nonempty sets . Let X =Ilqen Xo
be the usual product of X ’s and let q be the projection from X into X . Further assume
t};at each X , is an fts with fuzzy topology t o . Now the fuzzy topology generated by

{ne(bo): boeta, e A}asasub basis , is called the product fuzzy topology on X .
Clearly if w is a basis element in the product , then there exist oy, oz, ..... &n € A such

that

w(x)= min { ba(Xa) @ &= 1,2,3,...... n}, where Xx=(Xg)oea € X.

Rajshabi University Librasy
Documentation Section
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1.7 Good extension :

1.7.1. Definition [71] :- Let f be a real valued function on a topological space . If

{ x: f{x)>a } is open for every real o, then f is called lower semi continuous function .

1.7.2. Definition [S0] :- Let X be a nonempty set and T be a topology on X . Lett = )(T)
be the set of all lower semi continuous (Isc) functions from( X , T ) to I (with usual topology).

Thus (T) = {u e I* :ul(a,1]e T} foreacha e I,. It can be shown that w(T) is a

fuzzy topology on X.

Let P be the property of a topological space (X, T )and FP be its fuzzy
topological analogue. Then FP is called a ‘good extension’ of P “ iff the statement (X, T )

has P iff{ X, w(T)) has FP ” holds good for every topological space ( X, T ).

12



Chapter : -2
R and R | Fuzzy Topological Spaces

2.1 Introduction :-

In this chapter, we introduce and study some R ¢ and R, properties in fuzzy topological

spaces and obtain their several features .

2.1.1, Definition : -
Let (X,t) be fuzzy topological space and o € I;.

(a) (X,t) isan o —Rg(i) space<> Vx,y € X, x=y, whenever 3 u et with

u(x)=1and u(y)<a,then 3 vet with v(x)<a and v (y)=1.

(b) (X,t) is ano —Re(ii) space < Vx,ye X, x#y, whenever 3 uet with

u(x)=0 and u(y)>a, then3 vet withv(x)>a andv(y)=0.

(¢) (X,t) is an o -Ro (iii) space <> Vx.y X, x#y,whenever 3 uet with

O<u(x)<a<u(y)<l, then Ivet with 0sv(y)<a<v(x) =<1.
(d) (X,t)is an Ro(iv) space & VX,y€ X,x#y, whenever 3 u e t with

u(x) <u(y), then ,3v et with v(x)>v(y).

2.1.2. Lemma:- Show that the properties o — Ro(i) , - Ro (i) , o0 —Ro(iii) and Ry (iv) are all

independent .

Proof: - For this , we give some examples .

13



2.1.3. Example :- Let X={x,y}andu v el*, where u,v are defined by u(x)= 1,
u(y)=0 and v(x)=0.5, v(y) =1. Consider the fuzzy topology ton X generated by

{0,u,v,1}u{ Constants}. For a.=0.6,itis found that (X, t)is ot — Re(i) , but (X,t)

is not a0 —Ry (ii) .

2.1.4. Example :-Let X={ x, y}andu,ve ", whereu ,v aredefined by ux)=0,

u(y) =1 and v(x)=0.6 , v(y) =0 . Consider the fuzzy topology t on X generated by
“{0,u,v, 1}U{Constants}. For o= 0.5, we seethat (X, t)is o -Rg(ii), but (X,t)is

not o —Ro (i) .

2.1.5. Example :- Let X={x,y}andu ,ve X where u,v are defined by u(x)=1,
u(y)=0 and v(x)=0.2, v(y)=0.7. Consider the fuzzy topology ton X generated by
{0,u,v, 1 }u{Constants}. Fora =0.5, it is easy to see that (X, t) is o - Ro(iii) ,

but ( X, t)is not o —Rp(i) and (X, 1) is not o — Ro(ii).

2.1.6. Example :- Let X={x,y}andu,ve X, whereu, vare defined by u(x)=1,
u(y)= 0and v(x) =02, v(y)=04 .Consider the fuzzy topology ton X generated by
{0,u, v, 1}u{ Constants}. For o= 0.5,itisclear that (X, t)is a—Ro(iv), but (X, t)

is not OL—Ro(i),(X,t)isnotot—Ro(ii)and (X, t)is not o —Ro(iii) .

2.1.7. Example :- Let X ={x,y,z}and u,v,we X, whereu,v,w are defined by
u(x)=1,u() =1, u(z)=0andv(x)=0, v(y)=0, v(z)=1 and w(x)=09,w(y)=05,
w(z) = 0 . Consider the fuzzy topology ton X generated by { 0,u,v,w, 1 }u{ Constants}.
For o= 0.6, it can be shown that (X,t)is a-Ro(i)and (X, t)is a-Ro(ii). It is
observe that ( X, t ) is not o —Re (iii), and (X, t)is notRo(iv), Since w(x)>o2w (y)

but there does not exit q € t such that q () < a.<q(y).

14



2.1.8. Example :-Let X={x,y,z}andu,v eI whereu, v are defined by u(x)=0.8,
u(y )= 0.4, u(2) =0.3, and v(x)=0.3, v(y)=0.8, v(z) =0.2 . Consider the fuzzy topology

ton X generatedby { O,u ,v, 1 }u{ Constants}. For o =0.5 it can be shown that

(X,t) is o—Ro(iii) , but (X,t) is not R (iv), since u(y) >u(z) but wehavenoq e t
such that q(y) <q(z).

This completes the proof.

2.1.9. Theorem :- Provethat (X,t) is 0-Ro(il) <> (X,t)is 0- Ro (iii) .

Proof:- Let (X ,t) be0—Ry(ii) space . We shall prove that ( X, t)is 0 — Ry (iii). Let
%X,y e X with x#y and u € t such that 0<u(x)<0<u(y)<lie u(x)=0,u(y)>0.
Since (X,t) is0—Ry (i), then I v € tsuch that v(x) >0, v(y) =0. Then it is clear that

0 <v(y) <0<w(x)<1. Hence (X,t)is0—Ro (iii) .

Conversely, suppose that ( X, t ) is 0 — R (iii). We shall prove that (X, t)is 0 — R (ii).
Let x,ye X with x#y anduet such that u(x) = 0 and u(y) > 0. It can be written as
0<u(x)<0<ufy)<1. Since (X,1) is 0 — R (iii) , 3 v € t such that 0 < v(y) <0< v(x) < 1
ie v(y)=0and v(x)>0. Hence ( X,t)is 0—-Ro(ii) .

This completes the proof .

2.1.10. Theorem:- Let (X,t) be a fuzzy topological space and
lo(t) = {u(a,1] : uet}, then

(@) (X,t)is a—Ro(i) & (X, l())is Ro.

(b) (X,t)is a - Re () <> (X, I.(t))is Ro.

(6) (X,t)is ou-Ro(ii) <> (X, La(t))is Ro.

d) (X,t)is Ro(iv) <#> (X, la(t))is Ro.
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Proof :- Let (X ,t) be o — Ry (iii) . We shall prove that ( X, Io(t)) isRo.Let x,ye X,
x#y and M e I, (t) with xeM,yegM or x¢gM, ye M. Supposex e M, y ¢ M.
We can writt M =u"( o, 1], whereu € t. Then we have ux)>a , u(y)<a , ie
O<u(y)<a<u(x)<1. Since (X,t) is o —Ry(iii) , forao € I}, 3 v €t such that
Osv(x)<a<v(y)<l,iev(x)<a,v(y)>o.ltfollowsthatx ¢ v'(a, 1], ye vi(a, 1]

and also v'(a,1] €], (1) . Hence it is clear that ( X, I, (t)) is Ro.

Conversely, suppose that ( X, I(t) ) is Ro. We shall prove that (X, t ) is o —Rg (iii).
Let x,ye X,x#y and uet with 0 <u(x)<a<u(y)<1l,ie u®) <o, u(y)>a, it
follows that x g u” (o, 1], yeu'(a,1], and ul(a, 1] €L (t). Since (X, Iq (1))
is Ro,then 3 M e I, (t) such that xe M,y ¢ M. Wecan write M= v™' (o, 1] where
v et,it follows that v(x)>a ,v(y)< o, ie0<v(y) £a<v(x)<1.Hence it is clear that
(X ,t)iso—Rg (i), ie (a)is proved .

Now, we give some examples.

2.1.11. Example :- Let X={x,y,z}andu,ve I where u,v are defined by u(x) =1,
u(y)=0, u(z)= 0.8 and v(x)=0, v(y)=1, v(z) = 0.7. Consider the fuzzy topology t
on X generated by {0,u,v,l }u {Constants} . Foraa=0.6, it is clear that (X ,t )
is a—Ro(). Now I.()={X,®, {x,z},{y,z}, {z} }. It isclearthat Iu(t) isa
topology on X and (X, La(t) ) is notRo space, sincey,ze X, y#zand {x,z}e Iy (t),

withz e{ x z},y@{x,z},butthereisnoUeIa(t) with ze U,ye U.

2.1.12. Example :- Let X= {x,y,z}andu,ve ¥, where u , v are defined by u(x) = 0.3,
u(y) =0, u(z)=08, and v(x)=08,v(y)=1, v(z)=0 . Consider the fuzzy topology t
on X generatedby {0, u,V,] Ju { Constants} . Forau=0.5, it is clear that (X, t)is

@~ R (ii) and (X ,t) isalso Ro(iv) . Now I()={ X, ®, {2}, { y}, {y,z}} ltisclear
16



that To(t) is a topology on X and (X, I, (t) ) is not Ry space, since x, yeX,x#y and

{y} ela(t) with x ¢ {y}, y e {y}, butthereisno U e L(t) with x €U,y ¢ U.

2.1.13. Example :- Let X={x,y}and u, v, we I*, where u, v, ware defined by
u(x)=1,u(y) =0, v(x) =0.4, v(y) = 0.9, w(x)=0.7, w(y) =0.3 . Consider the fuzzy
topology t on X generated by {0,u, v, w, 1 }uf Constants } . For =0.6, it is clear
that (X,t) is not o-Ro(i) and (X,t) is not o —Ro(ii) .Now Iu(t) =

{ X,®,{x}, {y}} Then we seethat Io(t) is a topologyon X and (X, I(t))is Rq.

2.1.14. Example : - Let X={x,y }andu, v € I, where u , v are defined by u(x)=0.4,
u(y) =0.5, v(x)=0.3, and v(y)=0.4. Consider the fuzzy topology t on X generated by
{0,u,v,1}u{Constant }. For aa=0.6, we &%ﬂe?aat (X,tYisnot a—Rg(iv). Now
lo(t)= { X, ®}. Then I, (t) is a topology on X and (X,Is(t)) is Ro.

This completes the proof.

2.1.15. Theorem :-
Let (X, T ) be a topological space. Then (X,T)is Rg, iff (X,w(T))is aa—Ro(p),

where p= i, ii, iii, iv .

Proof:- Let (X, w(T)) be o —Ro(i). We shall prove that (X, T) is Ro. Let
x,ye X withxzy andU € T with x € U, y ¢ U. But by the definition of lIsc,lue 0)(T)
and 1U(x)=1,1u(y)=O.Now we have ly e w(T) with ly(x)=1, lu(y)<a. Since
(X ,0(T)) is a—Ro (i), fora € 1,3 ve w(T) such that v(x)<a, v(y)=1. Then
cevi(a1], ye vi(a 1] w9 S o, V=1, and alio3 v(o, 1] € T,

Hence it is clear that (X, T)is Ro—space.

17



Conversely, suppose that (X, T )bea Rg—space . We shall prove that ( X, ®(T))
is a—Ro(i). Let x,y e X with x#y and there exist u € w(T) such that u(x)=1,
u(y)so . Then xeu'(a,1], yeu'(o,1] as u(x) =1,u(y) <o, andit is clear
thatu'i(a, 1]eT. Since (X, T)is Ry, then 3 Ve T such that x¢ V,ye V, but
lyve 0(T) and 1y(x)=0, 1w(y)=1, ie 3 1y € (T) such that ly(x)<a, lv(y)=1.
Hence it is clear that ( X, w(T)) is o — Ry (i) .

Hence (X, T) is Rp < (X, (1)) is o —Ro(i).

In the same way we can prove that

(X, T)is Ro @ (X,0(T))is o —Rofii) .

(X, T) is Ro @ (X, w(T))is o—Rofii) .

(X, T)is Rg & (X, 0(T))is Ro(iv).

Thus it is seen that oo —Rg (p) is a good extension of its topological counter part
(p=i,iiiil, iv) .

This completes the proof.

2.1.16. Theorem :- Let ( X, t) be a fuzzy topological space and Ac X,
ta={u/A: uet}, then

(a) (X,t)isan a-Ro (i) = (A,ta) isan o —Ro (i) .

(b) (X,t)isan o -Re(ii) = (A,ta) isan a—Rg(i).

(c) (X,t)isan o —Ro (iii) = (A ,ta) isan o — Ry (iii)

(d) (X,t)isan Ro(iv) = (A, ta) is an Rg (iv).

Proof : - First suppose that (X,t)is a—Ro (i) . We shall prove that (A, ta) is & —Rg (i).
Let x ,y € A, with x#y and u€ta such that u(x)=1,u(y) <o, thenalsox,y e X,

x #y. But we can write u=w/A where W € t and hence w(x)=1, w(y)<a . Since
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(X,t)isa~Ro (D), then3Im et such that m(x) <o, m(y)=1.But from the definition

m/A € ta , foreverym e tand m/A(x) <o, m/A(y) =1 .Thus (A, ta) is o —Ro (i) .
similarly (b), (c) and (d) canbe proved .

This completes the proof.

2.1.17. Theorem : - Given (Xi,t), i €A be fuzzy topological spaces and X = [T eaX;

and t be a product fuzzy topology on X. Then ;
(@ VieA, (Xi,t) is a-Ro(i) © (X,t) is a=Ro(i).
(b) VieA, (Xi,ti)is a—-Re(ii) & (X,t) is a—Re(ii).
(©) VieA,(X;,t)is a—Ro(iii) © (X,t) is o—Ro(iii) .

(d) VieA, (Xi,ti) is Ro(iv) & (X,t) is Rg(iv).

Proof :- Let (X;,t),ieA be o—Rg (i) . We shall prove that (X, t) is o —Re (i) .
Letx,y € X ,with x#y and u € tsuchthat u(x) =1, u(y) <o . But we have u(x)=
min{ u; (x;) :i€A} and u(y)=min {u;(yi) :i € A}andhence wecanfind an u €t
and xj#y; suchthatui(x)=1 and ui(y)) < . Since (X;,ti),ie A isa-Ro(i), a €lj,
then 3 v; € t;, such that vi(x;) <o, vi(y;)) = 1. But we have m;(x)}) = xi and w;i(y) = %
and hence vi (mi(x)) <o, vi(mi(y) = 1. It follows that 3 wom ;e t such that ( vio mi)(x) <,
(vio 7;)(y) =1. Hence it is clear that (X ,t)is a-Ro (D).

Conversely, suppose that ( X, t )is o —Ro (i). We shall prove that. (xi, ti) i€ A, is
o = Ry (i) . Let for some i€ A, a; bea fixed element in X, supposethat Ai={xeX=
[lieaX: / x=a forsomei=]j}. So that A; is the subset of X, and this implies that
( Ai, ta;) is also the subspace of (X,t). Since (X, t)is o —Ro(i), then (A;,tai)is
also o —Rg (i) and Aj is a homeomorphic image of Xi . Hence it is clear that (Xi,t;)
is o.— R (i) .ie (a) is proved .

Similarly (b) , (c) and (d) can be provi(; :



2.2.1. Definition : -
Let (X,t) be a fuzzy topological space and a eI .

(a) (X,t)is said to be a-Ry(i) <Vx,yeX with x # y, whenever 3 w e t

with w(x) # w(y),then 3 u,v et such that ux)=v(y)=1 and unvs<a.

(b)(X,t) is said to be o~ R (i) &V x , y € X with x # y, whenever 3 we't

with w(x) # w(y), then 3 u,v et suchthat ux)>a,v(y)>a and unv=0.

(¢) (X,t) is saidto be oo —R(iii) & Vx, ye X with x # y, whenever 3w et

with w(x) = w(y) ,then 3 u,v et suchthat ux)>a, v(y)>a and unv<a.

2.2.2, Lemma :- The following implications are true
(X,t)is a—R (i)
(X,t)is o -R(iii) .

(X,t)is o - Rii)

Proof ; - First , suppose that ( X, t ) is o - R(i). We shall prove that ( X, t)is o - Ry(iii) .
Letx,y € X withx #yand w € t such that w(x) = w(y) . Since (X, t)isa - R (i), for
ooel;,3u,v etsuchthat ux)=v(y) =1 and u ~v<a . Now it is clear that whenw € t
with w(x) # w(y) , 3 u, v € tsuch that u(x) > o, u(y)> o andunv<a.Henceitis clear

that (X, t)isa - Riii).

Next, suppose that ( X, t)isa-Ry(ii) . We shall prove that ( X, t)is o - R(iii). Let
X,y e Xwithx#yandw c t such that w(x) # w(y) . Since (X, t)is - Ry(ii), fora € 1,

Ju.v e tsuch that u(x)>a, v(y) > andunv=0,ieunv<a.Henceitisclear that

(X, t)is o - Ry(iii) .
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Now, we gives some examples to show the non implications among o - R (i),
a - Ry(ii) and o - R (iii).
2.2.3. Example :-Let X={x,y }andu,v e I*, where u , v are defined by u(x)=1,
u(y)=0.4 ,v(x)=0.4 , v(y)=1. Consider the fuzzy topology t on X generated by

{O0,u,v,1}u {Constants }. For o.> 0.4, we see that (X ,t)is o~ R (i), but (X, t)is

not o - R (i) .

2.2.4. Example : - Let X={x,y}andu,vel®, whereu,vare defined by u(x)=0.9
v(y)=0.9 and v(x) =0, u(y) = 0. Consider the fuzzy topology t on X generated by
{0,u,v,1}u {Constants }. For every o.<0.9.1tisseenthat (X,t)is o -R(ii), but

(X,t)isnota-R;(i).

2.2.5, Example: - Let X={ x,y },andu, v e I*, whereu, v are defined by u(x)=0.8
v(y) = 0.8 and u(y) =0.2 v(x)=0.1. Consider the fuzzy topology t on X generated by
{0,u,v,1}u{ Constants }. For every 0.2 <o <038, we have that (X, t ) is o - R(iii),
but (X ,t)isnot o - R (i) and ( X, t ) is not o - Ry(ii).

This completes the proof.

2.2.6. Theorem :- If 0 <a < B <1 then
(@) (X.t) is a-Ru(). = (X, 1) is B-Ri ().
(b) (X,t)is B-Ri(Gi). = (X,1) is a—Ri).

(©) (X,t) is 0-Ry (). < (X,1) is 0-Rii).

Proof :- First, suppose that (X,t) isa a-R, (i) space . We shall prove that (X,t) is
a B-R; (i) space.Let X,y € X with x#y and w et such that w(x)# w(y). Since

(X,t)isa-R; (i), for some ael;, Ju,vetsuchthatux)=1=v(y) and unv <a.

21



Since 0 < o < B < 1. Nowwehave unv<p. Hence it is clearthat (X,t)is a

B - R (i) space.

3.2.7. Example : -Let X={x,y},andu,vel®, whereu, v are defined by u(x) =1,
v(y)=1 and u(y) = 0.2 v(x) =0.2 . Consider the fuzzy topology t on X generated by
{0,u,v,1}u{Constants }. Foroo=0.2 and B = 0.5 . It is clear that ( X, t ) is B - R:(i),

but (X,t)isnot a-R,(i).

Next, suppose that ( X, t ) is B - R(ii) . We shall prove that (X, t ) is o - Ry(ii) . Let
x,y € X with x # y and w € t such that w(x) = w(y). Since (X, t)is B - R (i), forp € I,
Ju, v e tsuch that u(x)>p, v(y) > B and u v =0. This implies that u(x) > o, v(y) > a

as 0 <o <P < 1. Hence it is clear that (X, t ) is o - R(ii).

3.2.8. Example: - Let X={x,y}andu,ve X whereu, v are defined by u(x) = 0.6,
v(y) =0.6 . u(y) =0, v(x) = 0 . Consider the fuzzy topology t on X generated by
{0,u,v,1}u{ Constants }. Fora=0.5 and p= 0.8 .Itisclearthat (X, t)is a - Ry(ii),

but ( X, t) is not B - Ry(ii).

Further, suppose that ( X, t)is 0 —R(ii) . We shall prove that ( X, t)is 0 — R (iii) . Let
x,yeXwithx;tyandwetsuchthatw(x);tw(y).Since(X,t)isO—Rl(ii),Elu,vet
suchthatu(x)>0,v(y)>0andumv=0,ieumvs0. Hence it is clear that (X ,t) is

0 — Ry(iii).

Conversely, suppose that (X, ) is 0- Ry(iii) . We shall prove that (X, t) is 0 — Ry(ii) .
Letx,y € Xwith x#Y and we t such that w(x) # w(y) . Since ( X, t)is 0—Ryiii),
Ju,v etsuchthatu(x)>0,v(y)>0,unv£0,ur\v=0.Hence(X,t)iSO—Ri(ii)_

This completes the proof.
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2.2.9. Theorem : -Let (X, t)be a fuzzy topological space, and
Ia(t)={u'l(a,1] :uet} then
(@ (X,t)is an a-Ri (@) = (X,l.(t))is a R;.
(b) (X,t)is an a0 -R (i) = (X, Il.(t))is a R; .

() (X,t)is an a-R;(iil) = (X, I.(t))is a Ry.

Proof :-Let(X,t)be a-Ry(i) space . We shall prove that ( X, 14(t) ) is R;- space . Let
X,y € X, with x#yand M e [(t) such thatxe M, y ¢ M.WecanwriteM=w'[(oc, 1],
where w € t . Then we see that w(x) > o, w(y) < o, therefore w(x) # w(y) . Since (X, t) is
o-Ry,forael;, 3 u,vet,suchthat ux)=1=v(y) and unv<ao.lt follows that

3 ul(a,1], vi(o,1]ela(t) and xeu'(a,1], yev'(a,1] and

ul(a,1]Av(a,1]=¢ asunv<o. Thusitis clear that (X, Io(t) ) isR 1.

Next, suppose that ( X, t)is o - R(ii). We shall prove that ( X, I4(t) ) is R ;- space.
Let x,y € Xwith x#y and M€ Iot) suchthat xe M, y¢ M. So we can write
M=w'1(0t,l]wherewet.Thenwe see that w(x) > o0, w(y) < o, and hence w(x) # w(y).
Since ( X, t)is o - Ry(ii) , for a € ly,3u,vetsuchthat u(x) >, v(y)>aandunv=0,
It follows that 3 u™(a, 11, v(a,1]€la®) and xeu(a, 1], yevi(a, 1] as
u(x)>a, v(y) >o and u'l(a,l]mv'l(ot,l] =¢ as unv=0. Now it is clear that

( X, I(t) ) is Ry- Space.

Finally, Suppose that (X,t)is a-R (iii) space. We shall prove that ( X, l(t) )is a

R, space. Let x yeX,withx # yand M € Io(t) such that xe M, ye M or x ¢ M,

yeM Suppose that xeM,yeM.Wecanwrite M=w" (ov, 1], where w e t. Now
(x) # w(y). Since ( X ,t)is a-R(iii), fora eI,
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then Ju,v € t such that u(x)> o, v(y)>« and unv < o It follows that Ju ™ (a, 1],
V-l(a , 1] € I4(t) with xeu'l(a,l], yev'l(a ,1] as u(x)>a, v(y)>a and

ul (o, 1]Av™ (o, 1] =6, since unv < o. Nowitis clear that (X,t)isRy.

Now we give some examples.

2.2.10. Example : - Let X={ x,y } andu, v, we I, whereu, v and w are defined by
ux)=1,u(y)=0.1,v(x) =04, v(y)=09, w(x) = 0.7, w(y) = 0.3. Consider the fuzzy
topology ton X generated by { o,u, v, w, 1} U { Constants }. Fora = 0.6, it is clear that
(X,t)isnota - Ry(i) and ( X, t)is not o - Ry(ii) . Now Io(t) = { X, ¢, {x}, {y} }. Then

clear that I4(t) is a topology on X and ( X, I(t) ) is R; —Space.

2.2.11. Example:- Let X = { x,y } and u, v € IX, where u , v are defined by u(x)= 0.4,

u(y) = 0.5 and v(x) = 0.3, v(y) = 0.4 . Consider the fuzzy topology t on X generated by

{0,u,v,1}uf{Constants }. For = 0.6, we see that (X, t) isnot o -R(iii). Now
Lo(t)={ X, & }. Then I ,(t) is a topology on X and ( X, I «(t) ) is R 1- Space.

This completes the proof.

2.2.12. Theorem :- Let ( X,T)be a topological space . Consider the following
statements:

(1) (X, T)bea Ry space.

(2) (X, w(T))bean o-R(i) space.

(3) (X, w(T))bean o -R(ii) space.’

4 (X,w(T))bean o - R (iii) space .

Then the following implications are true.

24



Proof :- First suppose that (X, T)bea R, -space. We shall prove that ( X, w(T) ) be a
o -R 1 (1) space. Let x,y € X with x # y and m € w( T) such that m(x) # m(y) ie

either m(x) < m(y) or m(x)>m(y). Suppose that m(x)<r <m(y) . Then it is clear that
m'(r,1]eT asme 0(T)and x ¢ m'(r,1], ye m'(r,1]. Since (X, T )is R

space then 3 U, Ve T such that xe U,y e Vand U V=¢. Since 1y, lv are lower
semi continuous function from (X, T)into I,then 1y, v € w(T), and it is clear that
ly(x)=1, Iv(y)=1l and lynlyv=0ie (X,w(T)) is o -R (i) space. Alsoit is clear

that ( X, 0(T))is o -R (ii) space.
Further, it is easy to show that (2) = (4) and (3) = (4).
We, therefore prove that (4) = (1) .

Suppose that ( X, w(T) ) is o - R (iii). We shall prove that (X, T )is R space . Let
X, ye Xwith x#zy and M e T suchthat xeM, y¢M or x¢ M,y € M. Suppose
xeM,y¢eM. But ly is lower semi continuous function from (X, T) into I, so
Iy € W(T) and Iy (x) =1, In(y) = 0ie I (x) # Im(y). Since (X, (T)) is o -Ry(iii),
foro. € I then Ju, v € W(T) such that u(x)>a, v(y) >a andunv<a.Now we is
observed that u™ (o, 1], v (a,1]eT such that,x e ul (@, 1], yevi(a,1]
andu (o, 1] nv™ (o, 1]=¢. Thus (X, T)is Ry space.

This completes the proof.
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Thus it is seen that o - R ((p) is a good extension of its topological counter

part. (p=1, i, iii, )

2.2.13. Theorem :- Let (X,t) bea fuzzy topological space, Ac X and
taA={ u/A :uet}, then

(1) (X,t)is a-R (i) = (A,ta)is a-R;().

(b) (X,t)is a-R;(ii) = (A,ta)is a-R,(ii).

(©) (X,t)is a-Ry(iii) = (A,ta)is o-R;(ii).

Proof :- Suppose ( X ,t) is o - R (iii). We shall prove that (A, ta)is o -Ry(iii).
Let x,y € Awith x#y then x,y € X and x=#y.Consider me ty with m(x) = m(y).
Then m can be written as w/A , where w €t and hence w(x) # w(y). Since (X ,t) is
a-Ry(iil), forae € Iy, then3 u,v et such that u(x) >a,v(y) > o and unv <a.
But we have u/A et,, forevery u et. Now we observed that u /A(x) > o, V/A(y) >«
and /AN Vv/A <€ o, since unv <o . Hence it is clear that ( A, t o) is o -Ry(iii) .

Similarly (a) and (b) can be proved .

2.2.14. Theorem :- Given ( X; t; ),i € A be fuzzy topological spaces and X = IT;c\ X;
and t be the product topology on X, then

() VieA, (Xi. ti)isa-Ry() & (X, t)is o-Ry ().

(b) Vie A, (Xi,ti) isa-R(ii) <& (X,t) is o -R (ii) .

© VieA, (Xi,ti) iso-Rii) & (X,t) is a Ry (i) .

Proof :- Suppose that ¥V ie A, (X1,ti ) is o - Ry (iii). We shall prove that ( X, t) is
o -R, (i) . Let x,ye X with x 2y and we t with w(x) # w(y) . But we have w(x) =

min { wi(x) :ieA}, w(y) = min { wi(y)) :i € A}.Hencewe canfind atleast one
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wi etiand xi, yi€ Xi, withx; # yiand w;(x ) = wi(y;). Since (Xi, ), ie Ais - R (iii),
for ¢ € I;,then 3 u; ,v; € t; such that ui(xi)>a, vi(yi)>a and uyynvi<a .
But we have i (x) =x; and m;(y)= y; and hence u; (m; (x))>a , vi(mi(y)) >c.
It follows that 3 wiom;, v om;et such that (wjom;)(x) >a, (viom;)(y)>aand

(iomi) N (viom;)<o.Henceitis clear that (X, t )is o -R | (iii) .

Conversely, suppose that (X, t)is o - R (iii) . We shall prove that (X; , t; ),i € A,
is o -Ry(iii). Let for some i € A, a; be a fixed element in X;, suppose that A;={xeX
=IlieaXi/ x=a; forsomei= j}.Sothat A;isasubset of X, and hence (A;,tai) is
also a subspace of (X ,t). Since (X, t) is o - R (iii), then (A; , ta) isalsoa-R (iii).
Now we have A; is homeomorphic image of X; .Hence it isclear that ( X;, t; ) is
o - Ry (iii) ie (c) is proved .

Similarly (a) and (b) can be proved .

This completes the proof.
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Chapter 3

Ty and T, Fuzzy Topological spaces

3.1 Introduction :-

In this chapter , we introduce and study some Ty and T, properties in fuzzy

topological spaces and obtain their several features .

3.1.1. Definition : -
Let (X, t) be a fuzzy topological space and o € I;.
(a) (X,t)isana - Toi) space <> V x,y € X, with x#y, 3 uet suchthat u(x)=1,

u(y) €aor 3 vet such that v(x) <o, v(y) = 1.

(b) (X,t)isana - Toii) space <> V x,y € X, with x#y, Juet such that u(x)=0,

u(y) > a.or 3 ve t such that v(x) > o, v(y) = 0.

(c) (X,t)is an a - T(iii) space < V x,y € X, with x#y, 3 ue t such that

0<u(x) <o <u(y)<l or3 vet suchthat 0<v(y) sa<v(x)<1.

(d) (X,t)isaTo(iv)space >V x,y € X, with x#y, 3 uet such that u(x)# u(y).

3.1.2. Lemma: - The following implications are true :

(X, t)iso-To(D) \

(X, t)is a-To(ii)) = (X, t)is To (iv).

(X,t)isa-To (i)
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Proof : - Let (X, t) be a fuzzy topological space and (X, ) is o - To (i) . We shall prove
that (X, t)isa-To(iii). Let x,y € X withx #y .Since (X ,t)iso-To (i), foreo € I1,

Ju et such that u(x) =1, u(y) <o . It follows that 0< u(y) < o <u(x) < 1. Hence it is clear

that (X, t)is o - T fiii) .

Next, suppose that ( X, t ) is o - Tq (ii) . We shall prove that ( X, t ) is o - T ofiii).
Let x,y e Xwithx#y. Since (X,t)isa - T (ii), foroo € I, 3 u e t such that u(x)=0,

u(y) > o.. This implies that 0< u(x) < o <u(y) < 1. Hence it is clear that ( X, t ) is o - T oiii).

Finally, suppose that (X, t)is o - T (ili) . We shall prove that (X, t)is T (iv).
Letx,ye Xwith x#y. Since (X,t)is a-Tg(iii), foraael;, Ju et suchthat

0 <u(x) £a <ufy) <1.Now we observe that u(x) = u(y) . Hence (X, t)is T (iv).

Now , we give some examples to show the nonimplications among o - T (i) , o - T g (ii),

o - Ty (iii) and To (iv) .

3.1.3. Example: - Let X={x,y}andue I* be given by u(x) = 0.6, u(y) = 0.8 . Consider
the fuzzy topology t on X generated by {0, u, 1 }w { Constants }. For .= 0.7 it is clear
that (X,t) is o - To(iiiy but (X,t) is not o - To(i) . Itis also clear that (X, t) is not

o -T ()(ll)

3.1.4. Example : - Let X={x,y Jandu e I*, where uis defined by u(x)=1, u(y)=04.
Consider the fuzzy topology ton X generated by {0, u, 1} { Constants } . For o= 0.6,

we see that (X ,t) is o -To(i) but ( X,t)is not o -Toii) .

3.1.5. Example : - Let X={x,y}andu eI, whereuis defined by u(x) =0, u(y) = 0.7.
Consider the fuzzy topology ton X generated by {0, u, 1} {Constants }. Fora. =04, it

is clear that (X, t) is o - To(ii) but (X, t)isnot o -To(i).
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3.1.6. Example : - Let X ={x,y } andu € I¥, where u is defined by u(x) = 0.4, u(y) =0.8.
Consider the fuzzy topology t on X generated by {0, u, 1 }u{ Constants }. Fora.=0.9, we
see that (X, t)is To(iv) but (X, t)is nota, - T o(iii).

This completes the proof,

3.1.7. Lemma :- If 0<a<B <1, then
(@) (X,t)isa-To(i)= (X,t)isB-To ().
(b) (X,t)is B-To(il) > (X,t)is o -Tofii).

(© (X,t)is0-To(i) < (X,t)is 0 - Toii).

Proof :- Suppose that ( X, t) be a fuzzy topological spaceand (X ,t) is o - To(i). We
shall prove that ( X ,t)is B- To(i). Letx,y € X withx#y. Since ( X ,t)is a - Toi), for
a€l;,3 uet suchthat u(x)=1. u(y) £ a.Thisimplies that u(x)=1, u(y) < B, since

0<a<PB<1. Henceitisclearthat (X,t)isp-To (i).

3.1.8. Example: - Let X={x,y}andue 1%, where u is defined by u(x) =1, u(y)=0.7.
Consider the fuzzy topology t on X generated by { 0, u, 1 }u { Constants }. Fora=0.6

and =0.8, weseethat (X,t)is B -To (i) but (X,t)isnot o -To(i).

Next, suppose that ( X, t)is B -T o(ii). We shall prove that (X, t)isa - Ty (ii) .
Let x,y e X with x#y. Since (X,t)is P~ To(ii), forBeli, 3 uet suchthat
u(x) = 0, u(y) > B. This implies that u(x) =0, u(y) > o, since 0 <a <3 <1. Hence it is clear

that (X, t)is o - To (ii).

3.1.9, Example:- Let X={ x,y }andu € 1¥, where u is defined by u(x)=0,u(y)=0.5.
Consider the fuzzy topology t on X generated by { 0, u, 1 } U { Constants }. Fora. = 0.4

andB=0.7,weseethat(X,t)isa-To(ii),but(X,t)isnotB-Tn(ii).
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Finally, suppose that (X,t)is 0-To (ii). We shall prove that (X ,t)is 0 — T (iii).
Letx,y e Xwithx#y. Since (X ,t)is 0 — To(ii), 3 ue t suchthat u(x) =0, u(y) > 0.
This implies that 0 < u(x) < 0 <u(y) < 1. Hence (X, t ) is 0 — T (iii).

Conversely, suppose that (X, t ) is 0-T q(iii). We shall prove that ( X, t ) is 0 — T (ii).
Letx,y e Xwithx#y. Since (X, t)is 0-T(iii), Jue t such that 0 Su(x) <0<u(y) <1
ie u(x)=0,u(y)>0. Hence ( X,t)ix 0- Tofii).

This completes the proof.

3.1.10. Theorem :- Let (X, T ) be a topological space. Consider the following statements:
(1) (X,T)bea Ty-space.
(2) (X, w(T))bean a- Tg(i) space .
(3) (X, w(T))bean a- Tofii) space .
(4) (X, w(T))bean a- Toiii) space .
(5) (X, w(T))bea Tofiv) space.
Then the implications given below are true :
(2)
(1) @) =>0G)=0)
®3)

Proof :- Suppose (X,T) isaTo — topological space . We shall prove that (X, 0(T) ) is
o - T (i) fuzzy topological space. Let x, y € X withx#y. Since (X, T)isTo,3 UeT
such that xe U,y ¢ U. But from the definition of Isc, we have 1y € W(T) and 1y(x) =1,

1u(y) = 0 . Hence we see that (X, @(T)) is o -T o(i) space . Also we see that ( X, 0)(T) ) is

a - T (ii) space.

31



Further, it is easy to show that (2) = (4) (3)=> @ and (4)= (5).

We, therefore prove that (4) = (1),

Suppose ( X, w(T) )be a Toiv) space. We shall prove that ( X, T ) is To — space. Let
x ,y € Xwith x#y. Since (X, wW(T) )is To(iv), I ue w(T) such that u(x) # u(y) ie either
u(x) <u(y) oru(x)>u(y). Suppose u(x) <u(y). Then we can find a r e I;, such that
u(x) <r <u(y). We observe that x ¢ u”'(r, 1], yeu''(r, 1], and by the definition of lIsc ,
u"(r, 1] € T. Hence (X, T )is To - space.
Thus it is seen that o —To (p) is a good extension of its topological counter part
(p=i,ii,ii,iv).

This completes the proof.

3.1.11. Theorem : - Let (X, t)bea fuzzy topological space, and
Io(®)={u'(o,1] :uet}, then
() (X,t)isana-To(i)=> (X, Lat))is To.
(b) (X,t)isana -To(ii) = (X, I(t))is To.

(©) (X,t)isano -Toiii) < (X, Iat) )is To.

Proof :- (a) Let ( X, t) be a fuzzy topological space and ( X, t ) be o - T o(i). We shall prove
that ( X, Io(t) ) is To — space. Letx ,y € X withx #y . Since (X, t)is o -T (i), fore o € I,
3 uet such that u(x) = 1, u(y) < a. Sinceu™'(a, 1]e Ia(t), ye u”(a, andxe u (o, 1],

We have that ( X, I(t))is To— space.

(b) Again, suppose that (X, t)is o - Toii) . We shall prove that ( X, 14(t) ) is To - space.

Letx,y e X with x#y.Since (X,t)isa-Toi), fora € 1i, 3 ue t such that u(x) =0,
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- 1
u(y)>a. Sinceu™(o,1]ela(t),x g u'( e, 1] and yeul(a, 1], one can see that

(X, Ia(t))is To - space .

(c) Finally, suppose that (X, t)is o - T q(iii). We shall prove that ( X, 14(t) ) is To — space.
Letx,y e X with x#y. Since (X,t) is - Tofiii), for o € I;, 3 u et such that
O<u(x)<a<u(y)<1. Sinceu™(a,1]elq(t), xgu™(a,]andy e u™(a, 1], so itis

clear that ( X, Io(t) ) is Tq — space .

Conversely, suppose ( X, 14(t) ) be To - space. We shall prove that (X,t)isaa - Toiii)
space. Let x , y € X with x#y . Since (X, I4(t) ) is To—space, Ju”(a, 1] € L4t) such
thatxe u( o, 1]and ye u'(a, 1], where u e t. Thus we have that ux)> o, uly) <a,

ile0<u(y) <o <u(x) <1, one can see that ( X, t ) is o - T o(iii) space .

Now we give an example:-
3.1.12. Example : - Let X = { x, y }and u €I %, where u is defined by u(x) = 0.8, u(y)=0.2.
Consider the fuzzy topology t on X generated by { 0, u, 1 } U { Constants}. For o. = 0.6 it
is clear that (X, t)isnot o - To(i) and (X, t)isnot a -te(ii) . Now Lo ()= { X, ¢, {x} }.
Then we see that I 4 (t) is a topology on X and (X, I4(t) ) is a To space .

This completes the proof.

3.1.13. Theorem ;- Let ( X, t ) be a fuzzy topological space , AC X, ta={u/A :uet},
then,

(@) (X,t) iso-To())= (A, ta)isa-To()

(b) (X,t) isc-To ()= (A, ta)isc-To(i).

(¢) (X,t) isa-Tg(iii):>(A,tA)isoc-To(iii).

() (X,t) is To(iv)= (A, ta)is To(v).
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Proof :- Suppose that (X, t) bea fuzzy topological space and ( X, t )is o - To(i) . We
shallprovethat(A,tA)iSOL-To(i).Letx,yeAwithx#:y,sothatx,yeX, as Ac X.
Since (X ,t) isa - To(i), fora € I;, 3 ue t such that ux)=1,u(y)<a.For Ac X, we
haveu/A e ta andu/A(x)=1 u/A(y) <o as X,y € A. Henceit is clear that (A, ta)
is o =T o(i).

Similarly (b) , (c) and (d) can be proved.

3.1.14. Theorem : - Given (X;,t;),i e A be fuzzy topological spaces and X = IT; ca X

and t be the product topology on X | then
(a) Vie A, (Xi,ti)is a-Tol) = (X,t)isa-To().
(b) Yie A, (Xi,ti)is a-To(i) = (X, t)isa-To(i).
(c) Vie A, (Xj,ti)is a-To(il) <> (X, t)isa - Ty (iii) .

(d) Vie A, (X;,t;1)is To(iv) = (X,t)is To@v).

Proof :- Suppose that Vi € A, ( Xi, ti) is o - To(i). We shall prove that ( X, t ) is o - To(i).
Letx ,ye X with x#y, then Xi#Yyi,forsomeieA. Since (X;,t;)isa-to (i), for
ael;,Jujet;, ie A such that uj(x)=1 and u;i(y) <o . But we have m; (x) =x;,
and 7t; (y) =y;. Then ui( mi(x)) =1 and ui(mwi(y))<a, ie (ujom;i)(x)=1 and
(uiom;)(y) <. It follows that 3 (ujom;) €t suchthat (uiomi)(x)=1,

(ujom;)(y) <o .Hence it is clear that (X,t)isa-To() .

Conversely, suppose that ( X, t) is a - T ofi) space. We shall prove that (X, t;),ie A
is o - to(i). Let a; be a fixed element in X, suppose that Ai={xe X=Iliea Xi :x;=a;
for some i=j}. Sothat Ajisa subset of X , and hence ( Ai,tai) is also a subspace of
(X,t).Since (X,t) iso-To(d) then (Ai ,tai) is also o-To (i) . Now we have A; is

Hence it is clear that ( Xi, ti), i€Ais o -To (i) .
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Similarly (b) , (c) and (d) can be proved .

3.1.15. Theorem:- Let (X,t) and (Y,s) be two fuzzy topological spaces and
f: X —— Y be a one-one, onto and open map then,

() (X,t)isa-To(i) = (Y,s)isa- To() .

(b) (X, t)iso-Toi)) = (Y,s)is o Toii) .

(© (X,t)isa-To(iil) = (Y, s)is a- Toiii) .

(d) (X,t)isToe(iv)=> (Y, s)is To(iv).

Proof :- Suppose ( X, t) be o -Tg(i) . We shall prove that (Y, s)is o -To(i) . Lety;, y2 € Y
with y; #y, . Since fis onto then, 3 x;, x2 € X with f{x1) =y, f{x2) =y2 and x; £ x; asfis
one-one. Again since ( X, t)is a-To(i), for o € I; , then Jue t such thatu(x) =1, u(y) < a.
Now f(u) (y1)= { Supu(x)) : fx))=y1}
=1.
fu) (y2) = { Supu(xz) :f(x2)=y2 }
<o.
Since fis open then f{u) € s asu € t. We observe that 3 fu) € s such that f{u) (y))=1,
f(u) (y2) < o . Hence it is clear that (Y, s )is . - To(i) .

Similarly (b), (c) and (d) can be proved .

3.1.16. Theorem :- Let (X ,t) and (Y,s) be two fuzzy topological spaces and

f: X —— Y be continuous and one-one map, then

(a) (Y,s)isot-Tg(i):>(X,t)isa-To(i).
(b) (Y,s)isoc-To(ii):>(X,t)isa-To(ii).

(©) (Y, s)is o Tofiii) = (X, 1) is a - To(iii)
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(d) (Y,s)is To(iv) = (X, t)is To(iv) .

Proof:- Suppose (Y, s ) be o - Ty(i) . We shall prove that (X, t)is o -To(i) . Let x;, x2 € X
with x) # X3 , then f(x;) # f{xz) in Y, as fis one-one. Since (Y, s ) is o-To(i), for ot € 1, then

Ju € s such that u( f{x1) ) = 1, u (fx3) ) < a. This implies that £(u) (x)) =1, £'(u) (x2) <a,
since u € s and f is continuous then f™'(u) € t . Now it is clear that 3 £"'(u) € t such that

£ (u) (x1) =1, f'(u) (x2) <o . Hence (X,t)is a -Toi).

Similarly (b) , (c) and (d) can be proved.

3.2.1. Definition : -
Let (X, t) be a fuzzy topological space and . € I;.
(a) (X,t)isan o-T(i)space<> Vx,y e X withx#y,3Ju,vet suchthat

ux)=1,u(y)<aand v(x)<a,v(y)=1.

(b) (X,t)isana -Ty(ii) space <> Vx,y e X with x#y,3u,v et such that

u(x) =0, u(y) > o and v(x)>a,v(y)=0.

() (X,t) isanc -T (i) space > Vx,ye X with x#y,3u, vet such that

O<u(y) Sa<u(x)<land 0<v(x)<a<v(y)<1.

d) (X,t)is a Ty (iv) space & V x,y € Xwithx#y,3 u,vet such that

u(x) <u(y) and v(x) > v(y).
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3.2.2. Lemma :- The following implications are true:

N

(X,t)is o -T ().

(X, t)iso-Ti(iii) = (X, t)isTi(iv).
(X,t)is a-T (i)

Proof:- Let (X, t)be o-T (i) fuzzy topological space . We shall prove that (X, t) is
o -Ty (i) . Letx,ye X withx#y . Since (X, t)isc-T (i), foro € I, Ju, v € tsuch
that u(x) =1, u(y) <a and v(x) <o, v(y) = 1. We see that 0 <u(y) <o <u(x) <1 and

0<v(x)<a<v(y)<1.Henceitisclearthat (X,t)isa -T(iii) .

Next, suppose that ( X, t)is a - Ti(i1). We shall prove that ( X, t ) is o -T ;(iii) .
Letx,y € X with x=y. Since (X, t)isa - Ti(ii), fora € I, 3 u, v € t such that u(x) =0,
u(y)>a. and v(x)>a , v(y) = 0. Now we see that 0< u(x)< a< u(y) <1 and 0< v(y) < a<v(x) <I.

Hence ( X, t ) is o -T (iii) .

Finally, suppose that ( X, t)is - Tu(iii) . We shall prove that (X,t) is T (iv).
Let x,y eX with x#y. Since (X,t )isa-Ti(ii), fora e I;,3 u,vet such that
0< u(x) < o< u(y) < 1 and 0< v(y) < a< v(x) < 1. This implies that u(x)<u(y) and v(x)>v(y) .

Hence ( x, t) is T(iv) .

Now we give some examples to show the non implication among o - Ti(1) , o - Ty(ii),

o - Ty(iii) and T(iv).

3.2.3. Example:- Let X={x,y} andu, v e I* where u, v are defined by u(x)=0.6,
u(y) = 0.8 and v(x) = 0.8, v(y)=0.6. Consider the fuzzy topology t on X generated by
{0,u,v,1}u {Constants}. For= 0.7, it is clear that (X, t)is a - Ty(iii) . But (x,t)is

noto - T(i) and ( X, t)isnota =T (i)
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3.2.4. Example: - Let X={x,y}and u,ve IXwhereu , v are defined by u(x)=1,
u(y)=0.4, and v(x) = 0.4, v(y) = 1. Consider the fuzzy topology t on X generated by

{0,u, v, 1 }{ Constants }. For o= 0.6, we see that ( X, t ) is o -T,(i) , but ( X , t ) is not

o-T |(ll)

3.2.5. Example : - Let X={ x,y }andu, v € I, where u, v are defined by u(x)=0,
u(y) =0.7and v(x)=0.7, v(y) =0 . Consider the fuzzy topology t on X generated by
{0,u,v, 1}u { Constants }. Foraa=0.6, we see that (X,t) is o - Ty(ii), but (X,t)

is not a-Ti(i) .

3.2.6. Example: -Let X={x,y}and -u ,v el™, whereu, v are defined by u(x)=0.4,
u(y)=0.6 and v(x)=0.3, v(y) = 0.3 . Consider the fuzzy topology t on X generated by
{0,u,v, 1} Constants }. Foro. = 0.8, we can see that (X, t)is T (iv) but (X,t)is
not o - Ty(iii) .

This completes the proof.

3.2,7. Theorem : - If 0 <o < <1 ,thep
(@) (X,t)isa-Ty(i)) =(X,t)is B -T 1(i).
(b) (X,t)is P - Ti(ii) = (X, t)isa-T(i) .

(©) (X, t) is 0T (i) & (X,t)is 0~ Taii).

Proof : - (a) Let (X,t) beo - T.(i) space. We shall prove that (X ,t) is B - T(i). Let
x,ye Xwithx#y. Since(X,t)isot-Tl(i),forae I}, 3u,vetsuchthat u(x)=1,
u(y) <o, and v(x)< o, v(y) = 1. This implies that u(x) = 1, u(y) < B and v(x) < B, v(y) =1

as 0<q <B<1. Hence(X,t)is B-Ti).
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3.2.8. Example: - Let X={x,y}and u,ve I¥ where u , v are defined by u(x)=1,

u(y) =0.7and v(x) = 0.7, v(y) = 1 . Consider the fuzzy topology ton X generated by

{0,u,v,1}u{Constants }. Foro.= 0.5 and B=0.8, it is clear that (X, t)is B -T (i)

but (X, t)is not o - Ty(i) .

(b) Next, suppose that (X ,t)is 8 -Ty(ii) . We shall prove that ( X, t )is a - T(ii) .
Letx,y e Xwith x=y, Since (X, t)is B-Ti(ii),forpel;,I u,ve t such that u(x) =0,
u(y) > B and v(x) > B, v(y) = 0. So , we see that u(x) =0, u(y)>aand v(x) > a, v(y)=0

as0'<a<B<1.Hence (X,t)isa-Tii).

3.2.9. Example: - Let X={x,y}andu,v e I¥ where u,v are defined by u(x)=0,
u(y)=0.5, and v(x) = 0.5, v(y) =0 . Consider the fuzzy topology t on X generated by
{0,u,v,1}u{Constants }. Foraa=03 and B=0.7 . It is clear that ( X, t) is o - Ty(ii)

but (X, t)is not B -T(ii).

(c) Finally, suppose ( X, t) be 0 - T (ii) . We shall prove that ( X, t ) is 0-Ty(iii) . Let
X,y€ Xwithx#y.Since (X,t)is 0—T(ii), Ju, v € t such that u(x) =0, u(y) > 0 and
v(x) >0, v(y) = 0. So, we see that 0 Su(x) <0 <u(y)<land 0<v(y)<O<v(x)< 1.

Hence ( X, t ) is 0 —T(iii).

Conversely, suppose that ( X, t ) is 0 — Ty(iii) . We shall prove that (X, t) is 0 - T (ii).
Letx,ye Xwithx #y. Since ( X, t)1is 0 —t (i), 3 u, v € t such that O<u(x) <0 <u(y) < |
and 0 < v(y) < 0 < v(x) < 1. Thus we see that u(x) =0, u(y) > 0 and v(y) = 0, v(x) > 0. Hence
(X, t)is 0 - T(ii) .

This completes the proof.
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3.2.10. Theorem: - Let ( X, T ) be a topological space. Consider the following statements.
(1) (X, T) beaT, - space.

2) (X, w(T))be an o - Ty(i) space .
(3) (X, (T))bean o - Ty(ii) space .
4) (X, w(T))be an o -T y(jii) space .
(5) (X, (T))bean Ti(iv) space .

Then the implications are true:

4 =>0G)=0

(2)
N
N (3)/

Proof :- Let (X, T) be a T space. We shall prove that (X, w(T) ) is o - Ti(i). Letx,y € X
with x#y. Since.(X,t)isTl—space,E] U,VeT such that xeU,ye Uand x¢ V,
y € V. But from the definition of Is¢, 1y, Ive W(T ) and 1y(x) =1, ly(y) =0 and 1v(x) =0,
1v(y)=1. Hence (X, w(T)) iso-Ti(i) space, forany o € I,. Alsoit is clear that

(X,0(T))isa-Tii) .
Further, it is easy to show that (2) = (4), B)=> @ and (4)=(5).
We, therefore prove that (5) = (1).

Suppose, ( X, w(T)) be Ty(iv) space . We shall prove that (X, T )is T - space . Let
x,y e X withx#y. Since (X, w(T))is Ti(iv),3u, v € @(T) such that u(x) < u(y) and

v(x) > v(y) . Let r,s e I be such that u(x) <r<u(y) and v(x) >s>v(y). Then we have
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ul(r,11,v(s,1]e Tand x¢u'(r, 1], yeu'(r,1] and xev'(s, 1],
yev'l(s,1].Hence(X,T)isT1-space_

" This completes the proof.

Thus it is seen that o - T\(p) is a good extension of its topological counter part .

(p=i,ii,iii, iv)

3.2.11. Theorem : - Let ( X, t ) be a fuzzy topological space , and
Io(®={u'(a,1] :uet },then
1) (X,t)isa-Ti(i) = (X,I4(t))isTy.
(2) (X,t)isa-Ti(ii) = (X,Ia())isT;.

(3) (X,t)isa-Ti(ii) < (X,I())isT..

Proof: - Let (X, t) be o - Ti(i) . We shall prove that ( X, I(t) )isT1. Letx,y € X with
x#y.Since (X,t) isa-Ti(i),foro €I, 3u, v e tsuchthatu(x)=1, u(y) <o and
v(x) <o, v(y) = 1. Sinceu"(a,l],v_l(d,l]e Io(t), and it is clear that x e u™(a, 1],

ygu"(q’l]andxgv"(a,1],yEV-l(OC,1]-Heﬂce(X,Ia(t))iSTl‘SPace-

Again, suppose that ( X, t ) is o - Ti(ii) space . We shall prove that (X, I(t)) is
Tl_space_Letx,yeXwithx:ty.Since(X,t)isa—T;(ii),for ae€l, Ju,vet such
that u(x) = 0, u(y) > a and v(x) > o, v(y) = 0. Sinceu™!( o, 17, v7( e, 1] € Iu(t) and it
is clear that x ¢ u™(ca, 1 J,yeu(o, Jand x € vi(a, 11,y evi(a, 1], Hence

(X,I4t))is T, - Space.

Further, suppose that (X, t )is oo -T1(iii) . We shall prove that (X, I4(t))isT,.

Letx,y e X withx=#y Since (X , t)isa-Tiil), fora €11, 3u, veet such that
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O<u(x)<a<u(y)<land 0<v(y)<a<v(x)<1. Since u(a,1],v (e, 1]€lal(®)

and it is clear that x ¢ u(a,1],yeu™(a, 1]and x e vi(a,1],yev'(a, 1].

Hence ( X, I4(t) ) is T -Space.

Conversely, suppose that ( X, I4(t) ) is T;- space. We shall prove that ( X, t ) is o= (iii).
Let x ,ye X with x=#y. Since (X,I4(t)) is T;- space so3 M, N e I,(t) such that
xeM,yeMandx ¢ N,ye N, whereM=u"(a,1],N=v'(a, 1], where u,vet.
Soit isclear that u(x)>o ,u(y)<o and v(x)<a ,v(y)>o. This implies that

0<u(y)<a<u(x)<land 0<v(x)<a<v(y)<1. Hence(X,t)iso -T(iii) .

Now, we give an example.

3.2.12. Example :- Let X={ x,y }andu,v,we 1%, where u, v, w are defined by u(x) =1,
u(y) =0, v(x) =0.42 , v(y) = 0.95, w(x) = 0.15, w(y)=0.32. Consider the fuzzy topology
ton X generated by { 0, u,v,w, 1} u { Constants }. For o = 0.61, it is cleat that ( X , t ) is
not a.-Ty(i) and ( X ,t) is not o - Ty(ii) . Now lo(t) ={ X, ¢, {x}, {y} }. Then we see
that I 4(t) is a topology on X and (X, Ia(t))is T space.

This completes the proof.

3.2.13. Theorem : - Let ( X, t) be a fuzzy topological space , Ac X,
ta={u/A :uet}, then
(a) (X,t)isa-Ti(®) = (A, ta)iso-Ti().
(b) (X,t)isa-Ti(ii) = (A,ta)isa-Tii).
(c) (X,t)isoc-Tl(iii) = (A, ta)isa - Tii) .

@ (X, 1)isTiv) = (A, ta)isTi).
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Proof : - Suppose (X, t)be an fis and (X, t)is o - Ty(i) . We shall prove that (A, ta) s
a-Ti(i). Let x,y e A with x#y, then x, ye X, x#y,as A cX, Since (X,t) is
o-Ti()), fore € I;,Ju, v et suchthat u(x) =1, u(y) <o and v(x) <a, v(y) = 1. For
Ac X, wefind that u/A, v/A e tpand wA(x) =1, W/A(y) < o and V/A (x) < a, V/A(y) = 1
asx,y € A. Hence it is clear that (A, ta)is a - Ty(i).

Similarly (b), (c) and (d) can be proved.

This completes the proof.

3.2.14. Theorem : - Given ( X;,t;), i€ A be fuzzy topological space and X =T1T;a Xi.

Let t be the product fuzzy topology on X, then
(@ VieA,(Xi,ti)isa-Ti@{) < (X,t)isa-T).
(b) Vie A, (X;,t;)isa-Ti() < (X, t)iso -T(ii).
(© VieA, (X, ti)isa-T{i) < (X, t)is o -T(ii).

() VieA, (X, ti)is Ti(iv) < (X, t)isTuiv).

Proof : - Suppose that V i € A, ( X, ti) is o -Ty(i). We shall prove that (X, t)is & T (i) .
Letx,y e X withx#y, thenx;#yi, for somei € A. Since (X, ti)isa - Ty(i), for ae I,
Ju;,vieti,ieA,suchthat ui(x;) =1 ,ui(y) <occand vi(xi)) <a, vi(yi) =1 . But we
have mi(x)=x;and ni(y) =yi. Then u(mix))=1,ui(mi(y))<aand vi(mtix) ) <a,
vi(mi(y) )= 1.1t follows that 3 ujom;i, viom; €tsuch that (ujom;)(x) =1,
(uioni)(y)Saand(v;om)(x)Sot,(v;om)(y)=1.Henceit is clear that ( X, t ) is

o - Ty(i) -

Conversely, suppose that (X,t)isa-T(i). We shall provethat (X;,t;),ie A
is o -T,(i) . Let fore some ie A, ajbea fixed element in X;, suppose that A;={xe X =

[ X: :x = afor some i#j} . Sothat A is a subset of X, and hence (A, t ;) is also
ieAxi . J_' i)
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a subspace of (X, t). Since ( X, t) is o0 -Ti(i) , then ( A;, t o3 ) is also o -T 1(i) . Now we
have A; is a homeomorphic image of X;. Hence (X, t;),i€ A, is o -Ti(i) .

Similarly (b) , (c) and (d) can be proved .

3.2.15. Theorem : -

(@) (X,t)isa-Ti) = (X,t)iso-Tiii) = (X,t)is Ti(iv).

( ll JJ

(X,Disa-To{) = (X,t)is o - To(iii) = (X,t)is Tofiv).
(b) (X, t)iso-Ty(ii) = (X,t)is o-Ti(ii) = (X,t)is Ti(iv)

ﬂ ﬂ ﬂ

(X, t)iso-To(i)) = (X,t)isa-Todii)= (X,t) is Toliv).

Proof : - The proofs of (a) and (b) are easy .

3.2.16. Theorem:- Let (X ,t)and (Y,s) be two fuzzy topological spacesand
f:X — Y be a one-one, onto and open map then,

(a) (X,t)isa—Tl(i):>(Y,s)isa-T1(i).

(b) (X, t)isa-Tiii) = (Y, s)is o -Ti(ii) .

(©) (X,t)isa Th(ii) = (Y, s)isa -T\(iit) .

(d) (X,t)isT,(iv):>(Y,s)isT1(iv).

Proof :- Suppose ( X, t) be a- T:(i) . We shall prove that (Y, 8)is o -Ti(i) . Lety; ,y, € Y

with y; #y, . Since f is onto then 3 xi, X2 € X with fx1))=y1, fixs) =y2and x;#x;as f is

44



one-one . Againsince (X ,t)is o -Ti(i), foro e I;, Ju , v € tsuchthatu(x)) =1, u(x) s

and v(x1) € oL, v(x3) = 1.
Now f(u) (y)={Supuxi) ;fx))=y; }
= 1.
fu) (2) ={ Supulxa) ;f(xx)=y, }
<a
and  f(v) (y1)) = { Supv(x)) ;f(xi)=y1 }
<a
f(v) (y2) = { Sup v(x2) ; flx2)=1y2 }
=1
Since fis open then f{u), f{v) € s . Now it is clear that 3 f{u) , f{v) € s such that f{u) (y1) = 1,
fu) (y2) <o and f(v) (y1) S, f(v) (y2)=1.Hence (Y, s)is a- Ti(i).

Similarly (b) , (c) and (d) can be proved .

3.2.17. Theorem:- Let (X,t) and (Y,s) be two fuzzy topological spaces and

f:X — > Y be a continuous and one-one map then,

() (Y,s)isa-Ti(1) = (X, t)isa-Tii).
(M (Y, s)isa - Tiii) = (X, t)isa-Tii).
(€) (Y, s)isa- Tiii) = (X, t)iso-Ti(ii) .

@) (Y, s)is Tiiv) = (X, t)is Tiiv).

Proof :- Suppose (Y ,s)be o - T,(i) . We shall prove that (X, t Yisa -Ti(i) . Let x;, x; € X
with x; # x, , then f(x1) # f(x2) in Y as fis one-one . Since (Y, s)isa -Ti(i), fora €I, ,
Ju,v e t such that u( f{x)) =1 _u( fixg)) <o and v(fixi)) <o, v(f(x2))=1. This
implies that '(u) (x) =1, £(u) (x2) S @ and f1(v) () o, £(v) (x2) =1, since fis
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continuousand u, v € s then f'(u), f'(v) e t. Now it is clear that 3 £'(u),f'(v) €t

such that £'(u) (x1) =1, f(u) (x2) <o and £(v) () <o, £(v)(x2)=1.Hence (X, 1)

is o - T1(i).

Similarly (b) ,(c) and (d) can be proved.
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Chapter : -4

T, Topological Space

4. Introduction:-

In this chapter, we introduce and study some T, properties in fuzzy topological

spaces and obtain their several features.

4.1. Definition:-
Let (X, t) be a fuzzy topological space and o € I;.

(a) (X, t)iso -Ta(i) space <> Vx,y € Xwithx#y, Ju, v € t such that u(x) = 1 = v(y)

and unv<ao.

(b) (X,t)isa - Ta(ii) space > V x,y € X with x#y,Ju, v e tsuchthat ux)>a,

v(iy)>aandumnv=0.

(¢) (X,t)is o - Tafiii) space < Vx,ye X with x#y,Ju, v e tsuch that u(x) > q,

v(y)>aand unvsa.

4.2. Lemma :- The following implication are true .

(X,t)isa-Tz(i)\

(X, t)is o - Tafii)

(X, t)is o - Taiii).

Proof:- Let (X ,t) bea fuzzy topological spaceand (X, t)is o - Ty(i) . We shall prove

that (X, 1) is o - To(iii) . Let x,y € X with x#y. Since (X, t)isa-Ty(i), fora 1,
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Ju,vet suchthatu(x)=1=v(y)andu~v<o, Soit is clear that u(x) > o, v(y) > o and

unv<a. Hence it is clear that (X, t ) is o - Taiii).

Next, suppose that ( X, t) is o - T,(ii). We shall prove that ( X, t ) is o - Ta(iii). Let
x,yeX withx=y. Since (X, t)is o - Toii) , fora e I, Ju, v etsuch that u(x)>a,

v(y) > o and umv=0.Nowitisclearthatu(x)>(x,v(y)>aandumv.<_oc.Hence(X,t)

is o ~Ta(iii).

Now, we give some examples to show the non implication among o - T, (i) ,

o - Tz (ii) and a - Tz (iii) .

4.3. Example :- Let X ={x,y}, and u,v eI where u and v are defined by
u(x) =0.7, u(y) =0, v(x) = 0 and v(y) = 0.7. Consider the fuzzy topology t on X generated
by {0,u,v,1} U { Constants }. Fora=0.5it is clear that ( X, t ) is o - Ta(ii) but (X, 1)

is not o~ Ta(i).

4.4. Example :- Let X ={ x,y } and u, v € I*, where u, v are defined by u(x)=1= v(y),
and u(y) = 0.4 =v(x). Consider the fuzzy topology ton X generated by {O,u,v,1}u

{Constants }. For o = 0.6, we see that (X, t ) is o - Tai) but (X, t)is not a- T(ii).

4.5. Examples :- Let X={x,y},and u,ve 1*, where u, vare defined by u(x)=09,
u(y) =03, v(x)=0.2 and v(y)= 0.9. Consider the fuzzy topology t on X generated
by {0,u,v, 1 }u{ Constants }. Foraa=0.5, we get (X, t) is ol - Ta(iii), but (X, t ) is not

o - Ty(i) and (X ,t)isnota - Tafii).
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4.6. Theorem ;- If O<sazB<i , then
(a)(X,t)isa-Tz(i) :(X,t)isB-Tz(i).
(b)(X,t)isB-Tz(ii) :>(X,t)isa-T2(ii).

(©) (X, t)is 0-Ty(ii) & (X, t)is 0 - Tyiii).

Proof :- Suppose ( X, t)isa, - Ty(i) . We shall prove that ( X, t)is B -Ta(i). Letx,y e X
with x =y . Since (X, t) is o - Ty(i) , for o e I;,3 u, v et suchthat ux)=1=v(y) and

uNv<a . This implies that u(x)=1=v(y) and uNv<P as0<oa<B<l.Hence(X,t)

is B - Ta(i) .

4.7. Example:- LetX ={x,y}and u, v e 1™, where u , v are defined by u(x) =1,
u(y)= 0.6, v(x) = 0.7, v(y) = 1. Consider the fuzzy topology ton X generated by
{0,u,v,1}uU {Constants }. For oc=0.3 and B=.08,weget(X,t)isB-Tyi), but

(X, t)is not o -Ty(i).

Next, suppose that ( X, t) is B -Ta(ii). We shall prove that (X, t )is o - To(ii).
Let x,ye X, with x= y. Since (X,t) is B-Taii), forpel;, 3 u,v et such that
u(x)>pB,v(y)>pand unv=0.Thisimpliesthat u(x)>a,v(y)>a and unv=0.

as 0 <o <P <1. Hence it is clear that ( X, t ) is o - T(ii).

4.8. Example :-Let X ={x,y}and u,ve I, where u, v are defined by u(x) = 0.6,
u(y) =0, v(x)=0 and v(y)=0.7. Consider the fuzzy topology t on X generated by

(0,u.v,1}u { Constants } Fora=0.5 and B=09, weget (X, t)isa - Ty(ii), but
(X, t)is not B - Ta(ii).
Finally, suppose that ( X, t) is 0 — Ta(ii) . We shall prove that (X, t) is 0 - Tyiii),

Letx,ye X withx:fﬁy.Since(X,t)iso"T’(ii)'3 U, v €t suchthat u(x)>0, v(y) >0
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anduv=0. This implies that u(x)>0, v(y)>0 and u~v <0.Hence it is clear that

(X, t)is 0 ~Tyji).

Conversely, suppose that ( X, t ) is 0 - Ty(iii) . We shall prove that (X, t ) is 0 — Ta(ii) .

Letx,yeX,withx#y.Since(X,t)is 0 —Ta(iii), Ju, v € t such that u(x) >0, v(y) > 0

andunv <0. This implies that u)>0,v(y)>0and unv=0.Hence it is clear that

(X, t)is 0 — Taii).

This completes the proof,

4.9. Theorem :- Let (X, T ) be a topological space. Consider the following statements:
(1)(X,T) isa T;-space.
(2) (X, w(T))is a - Tai) space .
(3) (X, w(T))is o - Taii) space .
(5) (X, w(T)) is a - Ta(iii) space.

Then the following implications are true.

2) \
7

€)

(#) === (I

(1) /
~

Proof:- Let(X,T) beaT;—space. We shall provethat (X, w(T)) is o - Ty(i).
Let x,y € X, with x;ty.Since(X,T)ist-space,E! U,V eTsuch that xe U,ye Vv
and U~ V= ¢ . From the definition of lower semi continuous function 1y, 1v € W(T) and
lu(x)=1, 1y(y)=1and lyn 1v=0. If lynly#0,then 3 z e X such that (ly 1v) (z)
20 = 1y(2)#0, 1v(z) 20, =>2e U, ZE€ V=2>zeUNnV2UnNVz4,acontradiction.
So that 1y 1y =0, and consequently (X, o(T))isa “Ta(i) . Also, we see that ( X, w(T) )

isa. - Tz(ll)
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Further, it is easy to show that (D= @and 3)=>(4).

We, therefore prove that (4) = 1.

Suppose that (X, (T) ) is o - Ta(iii) space. We shall prove that ( X, T ) is Ts- space.
Letx,y e X withx#y . Since (X, W(T) ) is o - To(iii) , for someat € I, then 3 u, ve w(T)
such that u(x)> o, v(y) >a and u n v <o, . Now we have that ul(a, 1], vi(a,1]eT,
aeljand x € u"(cx, 1]l,yevi(a, 1]. Moreoveru™(a, 1 1nv'(a, 1]=¢. Forif
zZ€ u'l(ot, 11avi(a,l J,then zeu(o,1] andz vi(a,1] = u(z) > o and
v(z)>a => (unv) (z)>a, a contradiction as (u M v )(z) <o. Hence (X, T)is T; — space.
This completes the proof.

Thus it is seen that o - To(p) is a good extension of its topological counter part

(p=i,ii, iii, )

4.10. Theorem :- Let ( X, t ) be a fuzzy topological space, and
Iot)={u'(a,1]: uet}.Then
(@ (X,t)is o-Ta(i) = (X, La(t))is T2
(b)(X,t).is o - Toii) = (X, Ia(t))is Ta.

(© (X,t)isa-Tafii) & (X, 1a(t))is Tz

Proof : - Consider(X,t)beaftsand(X,t)isot-Tz(i).We shall prove that ( X, I4(t))
isT,. Let x,y € Xwith x#y. Since (X, t)iso-Ta(), foraeh,3 u,vet such
that u(x) = 1, v(y) =1 and u " v < o . But for every aeh, u'(a, 1], vi(a,1]el()

1 1 1]lnvi(a,1]=¢, asunv<a.
and alsoxeu(a,1], YEV (a,1] andu (o, 1] ( 1=¢ @

Hence it is clear that ( X , L«(t) ) is T2 —space.
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Next, suppose that ( X, t ) is g - Ty(ii) . We shall prove that ( X, It) ) is To-space.

Let x, y e X, withx #y. Since (X, t) is o - Ty(ii), for ooel,Ju,vet such that
u(x) > o, v(y) >oand u v =0, But foreverya e I, u(a, 1], v'(a, 1] elqt). So

wehavex e u™(a, 1], yev'l(a,l] and u'l(a,l]nv'l(a,l]zd),as unv =0.

Hence it is clear that (X, I4(t))is T, — space .

Further, suppose that (X, t)is o - Ta(iii). We shall prove that ( X, I4(t) ) is T2-space.
Let x,ye Xwith x#y. Since (X,t)is o - To(iii), foraoel;,3 u,vet such that
u(x) > o, v(y) > o and unv<a.Butforevery a eI, u‘l(a,l], v'l(oa,l]e Lo(t).
So we havexeu'l(a, 1], yev'l(a,l] and u"((x,l]mv"(a,l] =¢, as

unv<o. Hence it is clear that (X, I4(t) ) is T,— space.

Conversely, suppose that ( X, I4(t) ) is Tz — space. We shall prove that ( X, t )is
o~ To(iii). Let x,y € X with x#y. Since (X, 14(t) ) is Ta-space, 3 U, V € I4t), such
that xe U,ye Vand UnV=¢. Againsince U, V € I4(t), so we get u, v € t such that
U=u'(a,1], V=v'(a,1]. Thisimpliesthat u(x)>o, v(y)>a and u™(o, 1]

via,l 1=¢= (unv)'(a,l]=0ie unv<a. So, weseethat (X, t) is o Tiii).
Now we give an example.

4.11. Example :-Let X={x,y},and u,ve 1%, where u, v are deﬁned by u(x) =0.8,
u(y)=0.2, v(x) =0.3 and v(y) =0.7.. Consider the fuzzy topology t on X generated by
{0,u,v,1}u {Constants }. For a. = 0.5, we see that (X, t ) is not o -To(i) and ( X , t ) is
not a- Ty(ii) . Now Lo(t)={ X, ¢, {x}, {y} }. Then we see that I(t) is a topology on X
and (X, I4(t))is T»- space.

This completes the proof.
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4.12. Theorem :- Let (X ,t)bea fuzzy topological space and A c X,
ta={wA : uet},then

(a) (X, t)isan o - Ty(i) = (A, ta)is an o - Ty(j).

(b) (X,t)isana-Tg(ii) = (A, ta)isan o - Tyii).

(¢) (X,t)isana - Taiii) = (A, ta)isan o - Taiii).

Proof :- Suppose (X, t) be an o - To(iii) . We shall prove that (A,ta) is an o - Ty(iii) .
Let x,ye A, with x#y, then x,y € X, with x#y. Since (X,t) is o - Tafiii) , for
o €I}, 3u, v etsuchthat ux)>a, v(y)>a and uNnv<o.Butwehaveu/A, v/A €ty

for every u, v e t. This implies that u/A(x) > a., v/A(y) > o and u/A nv/A <a . Hence it

is clear that ( A . ta ) is o - Tofiii) .
Similarly, other cases can be proved .

4.13. Theorem :- Given { (X, t;j),ie A } be fuzzy topological spaces and X =TIT;x X;
and t be the product fuzzy topology on X . Then
@VieA, (X, t)isana-Ty(i) < (X,t)isana-Ty().
(b)VieA,(Xi,ti)isano - Ty(ii) < (X, t)isan o -Ta(ii) .

(©VieA, (X, t)isana - Tafiii) < (X,t)isana -Taiii) .

Proof :- Suppose Vie A(Xi,ti)bean o -Tz(iii) . We shall prove that (X, t ) is a-T(iii).

Let x,y be two distinct points in X =ITjea Xi, then there existan x;#y;in X;. Since
(Xi,t;) is an o (i) , for o € I, Fui, vi € ti such that ui(x) > o, vi(yi) > o andui N vi < 0.
But we have Ti(x) =i, m(y)=yi, then u(mi(x)) > o, vi(mi(y)) > and (uinv)om<a.

Hence (ujom)(x)>a,(viom)(y)>a and (wom)n(viom)<a. Put u=uom,
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v=viom,thenu,vet with u)>o, v(y)>o and unv<a . Hence it is clear that

(X, t)is o - Taiii) .

Conversely, suppose that (X,t) is o -Taiii). We shall prove that (X, t;)
is o -Ta(iii), for i € A. Forsomeie A, let a; bea fixed element in X;. Suppose that
Ai={xeX=Tlica Xi :x=a;for some i#]}. Then A; isa subsets of X and therefore
(Ai,tai) is a subspace of (X,t). Since (X, t ) is o - To(iii) space. Then, we have also
(Ai, tai) is also a - To(iii) space . Further more , A is Homeomorphic image of X; . Hence it

is clear that ( X;, t; ) is o -To(iii) space.
The proofs for (a) and (b) are similar .

4.14. Theorem:-

(a) (X,t)isa-Ta() = (X,t)is o - Taiii)

(X,t)isa-Ti(Q) = (X,t)isa-Ti(i) = (X,t)is Ti(iv).

!

(X, t)isa-To)) = (X,t)isa-Toii) = (X,t) is To(iv)

(b) (X,t)is ou-Ta (i) = (X,t)is o-Taii).

“ |

(X,t)is a-Toi) = (X,t)isa-Tii) = (X,t)isTi(v).

ll ‘ ﬂ

(X t)is o-To() = (X,t)is a-Toi)) = (X,t) is To(iv).

Proof : - The proofs of (a) and (b) are easy .
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4.15. Theorem:- Let
et (X,t)and (Y, s)be two fuzzy topological spaces and

f: X —— Y be a one-one, onto and open map , then

(@) (X, t)is o -Ta() = (Y, 5 ) is o -Ta(i) .
(b) (X, t)is o -Talii) = (Y, s ) is & -Taii)

(©) (X, t)is o -Ta(iii) = (Y, s ) is & -Tafii)

Proof:- Suppose ( X, t)is o -Ty(i) . We shall prove that (Y, s)isa-Tx(i).Lety;,y2e Y
with y; # y2 . Since fis onto then, 3 x; , x, €X with fix)=y1,f(xx)=yrand x; £xz as f is
one-one . Again since (X ,t)isa -Ta(i), fora € I;, Ju, v € t such that u(x;) = 1 = v(x,)
andunv<ao.
Now flu) (y1) = { Supu(x;) : fix))=y:}
=1
fv) (y) = { Supv(x2) : f(xa)=y> }

and f(unv)(y)={Supunv)x) :fx)=y1 }

f(unv) () ={Sup(unv)(x) : )=y}
Hence f(unv)<a = fluynfliv)<a.
Since f is open then flu) , f(v) € s. Now it is clear that 3 {u) , f{v) € s such that f{u) (y1) = 1,
f(v) (y2) = 1 and f(u) ~ f{v) < o . Hence (Y, s ) is - Tx(i) .

Similarly (b) and (c) can be proved.

4.16. Theorem :- Let (X, t) and (Y, s) be two fuzzy topological spaces and

f:X ——» Y be continuous and one-one map then,,

(a) (Y,s)isa-Tz(i):>(X,t)isa-Tz(i).
() (Y,s)iso-Ta(ii) = (X, t)is ot~ Tali).

(© (Y,s)is o -Taii) = (X, ) is o~ Ta(iii).
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Proof:- Suppose (Y, s ) is o - T,(i) . We shall prove that (X, t)is o -To(i) . Let x; , x2 € X

with x; # X2, then f{x1) # f{x3) in Y, as f is one-one . Since (Y,s)isa-Ty(i), fora € I,

then 3 u, ve s such that u (f(x)))=1=v (f(x2))and u N v < o.. This implies that £'(u) (x;) =1,
@) ) =Tland f'(unv) <o ie fu) f'(v)<a,sinceu, v e s and fis continuous
then f'(u), £'(v) € t.Now it is clear that 3 £'(w) , £'(v) e t such that £'(u) (x) =1,

£'(v) (x2) =1 and £"'(u) ~ f'(v) <ot . Hence ( X, t )is o -Ta(i) .

Similarly (b) and (c) can be proved.
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Chapter : -5

Regular Fuzzy Topological Space

5. Introduction:-

In this chapter, we introduce and study some Regular property in fuzzy

topological spaces and obtain their several features.

S.1. Definition:- Let ( X, t ) be a fuzzy topological space and . € I,.
(a)(X,t)isan o - FR(i) space & Vwet®,Vxe X, with w(x)<1,3u,vetsuch

thatux)=1,v(y)=1,yew {1} and urvs<a.

(b) (X,t)isan o -FR(ii) space <> Vwet’,Vxe X, withw(x)<1,3u,vetsuch

thatu(x)> o, v(y)=1,yew*{l}andunv<a.

(€) (X, t)is an a - FR(iii) space < Vwet® VxeX,withw(x)=0,3u,vetsuch

thatux)=1,v(y)=1,yew'{l}andunv<a.

(d) (X t)isana-FR(iv)space o Vwet®,VxeX,withw(x)=0,3u,vetsuch

thatu(x)>a,v(y)=1,yew"{l},umvSa.

5.2. Theorem:- The following implications are true .

/ (X, t)is o -FR(ii) \

(X,t)is o - FR(i) (X, t)iso-FR(iv).

(X, t)is o - FR(ii)
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Proof:- First, suppose that ( X, t ) is o - FR(i). We shall prove that ( X, t ) is & - FR(i) .
Let wet®,xeX,with wx)<1. Since (X,t)isa -FR(),foracel;, Ju,ve t
such that u(x)=1,v(y)=1,y € w'{1} and unr v <o. Now, we see that u(x) > o ,

v(y)=1,y e w'{1} and unv <o . Hence it is clear that (X, t)is o -FR(ii) .

Next, suppose that (X, t)is o -FR(i) . We shall prove that ( X, t)is o - FR(iii) .
Let we t° xeX, with w(x)=0. Then we have w(x)<1. Since (X,t) is o - FR(i),

foraoel13u,vetsuchthatu(x)=1,v(y)=1,y e w'{1} andu~v<a.Nowitis clear

that ( X, t) is a -FR(iii).

Again, suppose that (X ,t) is o -FR(ii) . We shall prove that( X,t)is o -FR(iv).
Letw et x € X, with w(x) =0, Then clearly w(x) <1 . Since (X, t)is o -FR(ii), for
oel;, Ju,vetsuchthat ux)>a,v(y)=1,y€ w{1} and u nv <o . Hence it is clear

that ( X, t ) is o -FR(iv ).

Further, suppose that (X ,t)is o - FR(iii) . We shall prove that ( X, t)is o -FR(iv).
Let wetSandx € X, with w(x)=0. Since (X, t)is a- Fr(iii), fora e I;,3u,vet
such that u(x) =1, v(y)=1,y¢€ w {1} and u nv <o . Hence one can see that (X, t)is

o -FR(iv).

Now , we give some examples to show the non implication among o~ FR(i) ,

o - FR(ii) , o~ FR(ii) and o - FR(v) .

x o
5.3. Example :- Let X={x,Yy }and u,vel”, whereu, v are defined by u(x) =0.9,

u(y)=0, v(x)=05 and v(y) = 1. Consider the fuzzy topology t on X generated by
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{0,u,v, 1} {Constants}. For w=1 —u and a.=0.7, we see that ( X, t ) is o - FR(ii)

but (X, t) is not o-FR(i) .

S-4. Example :-Let X ={x,y}andu,ve 1%, where u, v are defined by u(x)=0.2,

u(y)=0.3, v(x)=0.3, v(y)=0.2 . Consider the fuzzy topology t on X generated by
{0,u,v,1} U {Constants}. Forw = | —uand a=0.5,weseethat (X,t)is o - FR(iii)
and (X, t)isa -FR(iv), but (X, t)isnot o - FR(ii). As there do not exist any u, v € t

such that u(x)> o, v(y)=1,yew'{1}andunv<a.

5.5. Example :- Let X={x,y}and u,v,wel”, where u, vand w are defined by
u(x)=0.9,u(y)=0,v(x)=0.5,v(y)=1,w(x)=1, w(y) =0 . Consider the fuzzy topology
ton X generated by { 0,u,v,w,1}u {Constants }. Forao=0.6and p=1-w, it is
seen that (X, t)is o - FR(iv) but (X, t)is not a - FR(iii).

This completes the proof.

5.6. Theorem :- Let 0 <a <P <1, then
(a) (X,t)isa-FR() = (X, t)is B-FR().

(b) (X,t) isc-FR(ii) = (X,t)is B-FR(ii).

Proof :- First , suppose that (X, t) isa - FR(i). We shall prove that (X, t)is B - FR(i) .
Let w e t°and x € X with w(x) <1.Since (X, t)is o-FR(i), forao e Iy,3u, v etsuch

that u(x)=1,v(y)=1,y € w1} andunv<a. Sincea<B,thenunv<p. Soitis

observed that ( X, t)is B - FR().

Next, suppose that (X, t) is o - FR(iii) . We shall prove that ( X, t ) is B - FR(iii) .

Letw e t® x e X with w(x)=0.Since(X,t)isa-FR(iii),f‘oroceIl,E] u, v € tsuch

that u(x) = 1, u(y) =1 yew“{l}andumvsa_ Since 0 <a <P <1,thenunv <. Now
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it can be writtenas Vw e t© V x € X, with w(x)=0, Ju,vet such that u(x)=1,

vy)=1yew {1} andunv<B. Henceitis clear that (X, t )is p - FRiii).

Now, we give an example.

5.7. Example ;- Let X={x,y} and u,velIX whereu,v are defined by u(x)=1,
u(y) =0, v(x) = 0.7, v(y) = 1. Consider the fuzzy topology t on X generated by
{0,u, v,1 }u{Constants}. For w=1-u, a=0.75, B =0.6. We see that (X, t ) is B - FR(i)

and (X, t)is B - FRiii), but (X, t)is not o. - FR(i) and ( X, t ) is not o -FR(iii).

5.8. Theorem :- Let ( X, t ) be a fuzzy topological space and
I()={u'(a,1] : uet}, then

(X,t)is 0-FR(@) = (X, Io(t))isRegular.

Proof :- Consider ( X, t ) be a 0 —FR(i) . We shall prove that ( X, Io(t) ) is Regular . Let V be
a closed set in Ip(t) and x € X such that x¢ V. Then V° € Io(t) and x € V*. So by the

definition of Ig(t), there exists an u €t such that V°= u'l( 0,1]1e u(x)>0 .Since uet,
then u is closed fuzzy set in t and u(x) < 1. Since (X ,t)is 0 —FR(i), then3 v, w € t such

= w=0.
that v(x) =1, w21 .., VN

. 1
(a) Since v, w € tthen v'!(O,l],Wl(O,l] €lo(tyand xev7(0,1]

-1
(b) Since w21 then w'(0,112 (1("1')4‘”) (0,1].

w1}

(¢) And vmw=0,mean(vmw)'1(0,1]=v'](0,l]mw“(O,1]=¢_

Now , we have
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Gy (0,17 = (x - ey @ € (0,17}

= {x i 1(",)4“} =1}

={x: xe (u9'{1} )

Il

{ x: v x)=1

{x: ux) =0 }
= { x: xgV® }
= {x: xeV }
=V
PutW=v'1(0,1] and W'=w'1(0,1],then xeW, W2V and WAW'=¢.

Hence it is clear that ( X, Io(t) ) is Regular.

5.9. Theorem :- Let ( X, t) be a fuzzy topological space Ac X, and ta={wA :uet},

then

Lo () = ( Ly /A )

Proof :- Let w be a closed fuzzy set intaie w e ta®, then WA=w"®, whereuet.

Now we have

o i xEE)D
Loy @) = {1 if xe((%)c)_‘{l}

0 if xep: () 0=1
‘{ xely: (/)0 =1

(-;;

(/) () <1
/() =1

0 if w(x) <1
1wl

1
iy,
—_ O
o Sy
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Again 1(",)_.{” (x) ={0 if xe @)1
b xewy'
={0 if xg{y:u‘(y)=1
1 if xe{y:z:‘(y);l}
= {O if u(x) <1
1 lf “c(x) =1
Now ( l(r,f)-lm /A) (X) = 9 0 lf (":/A)(x) <1
\1 if (t A)(x) =1
- 0 if (%)”(x)d
11 i ("/4)°(x) =1
_Jjo 7 w(x) <1
1 if w(x) =1

Hence it is clear that 1(%),)_,“)(30 =( Legrp /A ().

5.10. Theorem :- Let ( X, t ) be a fuzzy topological space and A ¢ X and
ta={u/A :uet},then

(a) (X,t)isa-FR(i):>(A,tA)isa-FR(i).

(b) (X,t)isa-FR(ii):>(A,tA)isa-FR(ii).

(©) (X,t)isa-FR(ii) = (A,ta)is o - FRiii) .

(d) (X,t)isa-FR(Gv) = (A, ta)iso-FR(iv).

Proof :- Let (X ,t) be o -FR(). We shall prove that (A, ta)is o -FR(i). Let w bea

closed fuzzy set in ta, and x € A such that w(x') < 1. This implies that w® € t, and

L i - c 1 C* "
w (x’) > 0. So there exists anu €t such that u/A=w° and clearly u®isclosed int and

u’(x") = (u/A)(x) = w(x ) <1, ie u(x") < 1. Since (X, t)is a -FR(i), forao € I;, v, v'et
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uch that v(x) =1, v'> $ : .
8 x)=1v> 1("‘)"'“} and v v <o . Since v,v et,then v/A,v'/A e taand

VIAK) =1, VIAZ (L IA) and VA AVIA= (v VYA <.

But 1 /A =

W) 1((%)r)-lm = lw-.m,then v/A> 1,y - Hence it is clear that (A, ta)
is o - FR(i).

The proofs of (b), (c) and (d) are similar.

5.11. Theorem :- Let ( X, T) be a topological space. Consider the following statements .

(1) (X, T)isaRegular space.
(2) (X, W(T))is o -FR() .
(3) (X, w(T))is o -FR(ii) .
(4) (X, (T))is o -FRiii) .
(5) (X, w(T))is o -FR(iv) .
Then
(3)
(1) == (2) &)= 0

(4)

Proof :- First , suppose that (X, T ) be regular space . We shall prove that (X, w(T)) is
o -FR(i) . Let w be a closed fuzzy set in w(T) and x € X such that w(x) <1, then w° ew(T)
and wE(x) > 0. Now we have (w9 '(0,1]eT, xe (W' (0, 1]. Also it is clear that
[( wc)-l( 0,1]1]° = w'{1} be a closed in Tand x ¢ w{1}. Since (X, T)is Regular,
then 3 V, V' e T suchthat xe V, Vviow'{l}and VA V" = ¢ . But by the definition of

lower semi continuous function 1v,1ys € @(T) and 1v() =1, Tw 2 1., lvaly,. =

1, .=0.Put u=lyand v= Ly, then, itis clear that u(x)=1,v2 1, anduka.

Hence ( X , w(T) ) is o - FR(). 63



It can easily be shown that (2) = (3) | B)I=6),Q=>@), (@) =(5).

We therefore prove that (5) = (1),

Let (X, (T)) be o -FR(iv) . We shall prove that (X, T ) is Regular space . Let
x € X,V beaclosed setin T, such that x ¢ V. This implies that V°e T and x eV°. But

from the definition of w(T), 1. € w(T), and (1,.)°= 1, closed in 0(T) and 1v(x)=0.

Since (X, 0X(T) )is o - FR(iv), forooe I;,3 u, v e (T) such that u(x) > o, v> b

=lyvandunv<a. Sinceu, ve w(T), thenu(a, 1 ],v'l(a, l1leTandxeu(a, 1]
Sincev> 1y, then vi(a,1]12(1y)"(a,1]=V, and unv<o implies
(unv)!a,1]=u(a,1]nv?(a,1]=¢. Now from the above it is clear that (X, T )
is Regular space.

Thus it is seen that o - FR(p) is a good extension of its topological counter part

(p=i,ii, i, iv).

5.12. Theorem: - Let (X ,t) and (Y, s) be two fuzzy topological spaces and

f:X — Y be continuous , one-one , onto and open map then,
(a) (X,t)isot-FR(i):>(Y,s)isot-FR(i).
(b) (X,t)isa-FR(ii):>(Y,s)isoc-FR(ii).
(c) (X,t)isoc-FR(iii):>(Y,s)isa-FR(iii).
(d) (X,t)isot-FR(iv):>(Y,S)iSOC'FR(iV)-

Proof :- Suppose (X, t)bect- FR(i) . We shall prove that (Y,s)iso-FR(i).Let we s®

and Y such that w(p) <1 f“(w) e t© as f is continuous and x € X such that f{x) = p as
ndp e Y suc )

nce £7'(w) (x) =W (f(x)) = w(p) <1. Since (X, t) is & - FR(i) , for
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ael,thendu,vet such that u(x)=’1aV(Y)=1,YE{f“l(w)}-l{l}andurNVSOL.

This implies that
fu) (p)={ Supu(x) :f(x)=p } =1.
and f(v) f{y) ={Supv(y)}=1las f(f'(w)cw = fy) e w {1}
and funv)Soasunv<a = fu) ARy <o
Now it is clear that 3 f{u), f{v) € s such that flu) (x) =1, f(v) (fy)) = 1, f{y) € w™'{1}
and f{u) " f{v) <o . Hence (Y, s ) is o - FR(J).

Similarly (b) , (c) and (d) can be proved .

5.13. Theorem:- Let (X ,t)and (Y,s) be two fuzzy topological spaces and

f: X —— Y be a continuous , one-one , onto and closed map then ,

(@ (Y,s)isa-FR@) = (X,t)isa-FR(3).
(b) (Y,s)isa-FR(3ii) = (X,t)iso-FR(i).
() (Y,s)iso-FR(ii) = (X,t)is o - FR(ii) .

(d) (Y,s)isa-FR(iv) = (X,t)iso-FR(iv).

Proof:- Suppose (Y, s)beo -FR(i). We shall prove that ( X, t)is o - FR(i) . w € t° and
x € X with w(x) < 1, then f{lw) € s° as fis closed and we find peY suchthat f{x)=pasf
is one-one. Now we have f{w) (p) = { Sup w(x) : fixy=p}<1.Since (Y,s)isa-FR(),
foraoel;,thendu,ve s such that u(f(x))=1,v(y)=1,y € (fiw) {1} and unv<a.
This implies that £(u), £(v) e tasf is continuous and u, v € 5. Now £™(u) (x) = u (f(x)) =
u(p)=1and £(v) (q) = v (f(q) ) = v(y) = 1as flq) =y, y € (Aw)) " {1} ie f(p) e(Aw)) {1}

5 qew(1) and f_l(u)mf-l(v)_.: fflunv)s oasunvsao. Now we observe that
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I ), £ (V) ets
’ u h h :
) ch that £"'(u) (x) = L) (@) =
ence(X’t)isa-FR(i) q —1’qew-l{l}andf-l(u)mf'l(v)<
. sa.

Simi
imilarly (b) , (¢) and (d) can be p
roved.
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Chapter : - 6

Normal Fuzzy Topological Space

6. Introduction:-

In this chapter, we introduce and study Normal property in fuzzy topological

spaces and obtain their several features.

6.1. Definition :- Let ( X, t ) be a fuzzy topological space and o € I;.
(a) (X,t)is o - FN(i) space <> Vw,w et with wrw <a,Ju,u et suchthat

ux)=1,Yxew'{l} ,u‘(y)=1,Vyew"1{1} and unu =0.

(b) (X,t) is o - FN(i1) space < Vw,w et® withww' =0,3u,u e tsuch that

u(x) =1 ,Vxew"{l},u‘(y)=1,Vyew"l{l} and unu' <o,

* . x .
(¢) (X,1) is a o - FN(iii) space & Vw, w ct® withwnw <a,3u,u, etsuch

thatu(x)=1,Vxew"{1} ,u'(y)=1,Vyew"'{1} and unu <o

6.2. Theorem :- The following implications are true:

(X, t)is0-FN() < (X,t)is0-FN(i) o (X, t)is 0 -FN(iii) .

Proof:- Suppose (X, t)be @ -FN(i). We shall prove that ( X, t)is O -FN(ii). Let w, w ete

with w ~ w' =0 . This implies that wAw <0. Since (X,t)is 0-FN(), fora €1y,

[ * ¢__
Ju.u et suchthat u() =1,V xew'{1},u(=1, Vyew [Lj e, =4,

It can be written as u ~u’ < 0. Hence it is clear that (X, t) is & - FN(ii).
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Conversely, suppose that (X, t ) is 0 - FN(ii) . We shall prove that ( X, t ) is0- FN(i) .

Letw,w €t with wnw SO,iewmw'=0.Since(X,t)isO—FN(ii),Elu,u'et

such that “(x)=1’VXGW"{l},u'(y)=1,Vyew'{11),and unu's0,ieunu =0,

Hence it is clear that (X, t) is 0 - FN(j) |

Next, suppose that (X, t)is 0~ FN(ii) . We shall prove that (X, t)is 0 FN(ii).

Let w,w etcwithwmw'so,iewﬁw'=0.Since(X,t)isO—FN(ii),Elu,u‘et

such that u(x) = 1, Vx e w'{1},u'(y)=1,Vy e w '{1}and u ~ u’ < 0. Hence it is clear

that (X, t) is @-FN(iii).

Conversely, suppose that ( X, t ) is 0 — FN(iii) . We shall prove that ( X, t) is 0 — FN(ii).
Let w,w' e t° with wmw'=0,iewmw'50.Since(X,t)isO—FN(iii),Elu,u' et
such that u(x)=1,Vxew!{1},u'(y)=1,Vye w {1} andu nu’ <0. Hence it is clear

that (X, t ) is @-FN(ii).

6.3. Theorem :- If 0 <a <P <1, then
(a) (X,t)isB-FN({) = (X,t)is o - FN(@) .

(b) (X,t)is o - FN(i) = (X,t)is B -FN(ii).

Proof :- First, suppose that (X, t)is B-FN(). We shall prove that (X,t)is o -FN().

* a ‘< . .
Letw,w et®with wnw <o. Since 0<a<P<l1,then wnw <P . Since(X,t)is

B'FN(i),forBell,Eiu,u'et such that ux)=1,Vxew {1}, u()=1LVyew {1}

andu ~u’ =0 . Hence it is clear that ( X, t)isao-FN().

Next, suppose that (X, t)is o - FN(ii) . We shall prove that (X, t ) is B - FN(ii) .

‘ i i is o -FN(ii), 3 u,u’ et such that
Let w ,w et® with wnW =0 . Since (X,t)1Is (ii)

X)=1, xew ) )
B - FN(ii) -
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6.4. Theorem :- Let (X, t ) be a fuzzy topological space , and

L) ={u™(o,1] :uet},then

(X, t)is 0-FN(ii) space = (X, To(t) ) is Normal space .

Proof :- Suppose that (X,t)be a a - FN(iii) space . We shall prove that (X, Ip(t) ) is
Normal space . Let V, V" be closed set in Io(t), and VAV =6¢.Then V®, V' € It(t) and
(VAV) = VOU V' =X. Since V, V' e Iot), then, 3 u,u’ e t such that V°=
u(0,1]and V'°= u"(0,1]and u(0,1JuUu"(0,1] =VSU V=X . Hence
(uuu)(0,11=X. Nowwefindu®,u'°et such that ((uuu’ )™ (0,1])=¢.
This implies that (uwu)*=u’~u'°=0. Since (X, t)is 0-FN(ii), 3 v, v’ et such

L ]

that v2>1 >1 vAv = 0. But from the definition of Io(t), v*(0, 1],

wy'm Y = ey

v (0,1 e Io(t), and we get v'(0, 1] 21 (0,13, v'(0,1]12 1 a0, 1],

@
(vav)'(0,1]=¢.Put W=v'(0,1], W= v (0, 1]inIg(t) . Then finally we find,

WoV, W oV and Wn w' = ¢ . Hence it is clear that ( X, Io(t) ) is Normal space.

6.5. Theorem :- Let { X, T ) be a topological space consider the following statements:
(a) (X, T)beaNormal space
(b) (X, 0(T))be o - FN(i) space .
(©) (X, w(T))be a - FN(ii) space .
(d) (X, u(T))be a - FN(iii) space .

Then (a) = (b) = (c) = () -

Proof :- First suppose that (X,T)bea Normal space . We shall prove that (X, w(T) ) be

& - FN() space . Let w' be closed in w(T) and wAw <o . Then it is clear that

o > 0. But from the definition of w(T), (w*) (0, 1],
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w'7(0,1] € T. Now we see that ((Wﬁw')c)'l(o,1]=X,andwealso see that
(w9(0,11)°=w'{1} and ((w9%0.1 D =(w") {1} be closed in T. Now

(((waw) 0, 11)°=(wAw) (1) =wl{1) A w' (1) =4, Since (X, t) is fuzzy
Normal , then, 3V, V" e T such that Vow'{1},V' o w1} and VAV =¢ . But

from the definition of w(T), 1v, L. e w(T), ly> 1 L.> 1

wigy * Ly and 1, .=0.

'y

Hence (X, w(T)) is o - FN(i) space .
It can easily be shown that (b) = (c) = (d).
We, therefore prove that (d) = (a).

Suppose, that ( X, w(T) ) is o - FN(iii) . We shall prove that ( X, T ) is Normal space .

Let V, V'eT®and VN V= ¢ . Thenitis clear that lv, 1,. be closed in w(T) and

1L, . =O.Since(X,w(T))isoc-FN(iii),thenElu,u'ew(T) such that u>1y, u" > 1

Ve e
andunu' <a. Butfromthedeﬁnitionofw(T),u"(a,1] ,u"l(a, 1]eT anu(a, 1]
S(1) N a,1]1=V, u"'(a,1];(1V,)'1(a,1]=V‘ and ul(a,1]mu (a,1]

= (unu) (o, 1]=0¢. Henceit is clear that (X, T)is Normal space .

Thus it is seen that o - FN(p) is a good extension of its topological counter part

(p=i,ii,iii)

6.6. Theorem :- Let (X,t) and (Y, s) be two fuzzy topological spaces and

f: X — Y be a continuous , one-one, onto and open map then ,

() (X,t)isa-FN(i):>(Y,s)isa-FN(i).
(b) (X,t)isa—FN(ii):>(Y,s)isa-FN(ii).
() (X,t)isoc-FN(iii):>(Y,s)isot-FN(iii).

70



Proof :-  Suppose (X,t) be o - FN(i) . We shall prove that (Y,s) isa -FN(i). Let

y ¢ i * -1 . *
W, W €8s with wnw* < q then f (W), £'(w") et® as f is continuous. Now

fi(w Nw) Saasw Aw'< a = Flw) A Fw) < o . Since (X, t)is o - FN(i) , for
ael,then3u,u’ e tsuchthat ux)=1,x e (') (1), u' ) =1,y e (F'(w)) (1)
andu A u” = 0. This implies that f(u) , f{v) € s as fis open .

Now flu) (p) = { Supu(x) ;) =p }, £'(p) € (F'(w)) (1}

ie fu)(p)=1,pew'{1}

and f{u’) (@) = {Supu'(y) ; fy)=q }, £(q) e (Fiw) (1)

ie flu) (@ =1,qew {1} and {u) " fu")=funu’)=0as unu =0

Now it is clear that 3 flu), fu’) € " flw)(p)=1, pew' (1}, fu)(Q=1,
qew {1} and flu) A f{u") =0 . Hence (Y, s )is o - FN(i) .

Similarly (b) and (c) can be proved.

6.7. Theorem :- Let (X ,t)and (Y,s) betwo fuzzy topological spaces and

£+ X — Y be continuous , one-one , onto and closed map then,

(a) (Y,s)isa-FN(i):>(X,t)isa—FN(i).
(b) (Y,s)isot-FN(ii):>(X,t)isa-FN(ii).

(© (Y,s)iso-FN(ii) = (X, ) is o - FNiii).

Proof:- Suppose (Y, $) be o - FN(i) . We shall prove that ( X,t) is o - FN(i). Let

W w' et with wAw <a, then fw), fiw’) e s® asfisclosed and fw) A flw") =

f(wmw‘)<(1 as wmw.SO!.. Since(Y,s) is oo -FN(1) , for a € I, then HU,U.ES

such that u(x)=1, x € (fw)) (1}, u(y)=1.yE€ (ftw’)) {1} and unu’ =0. This

implies that £'(u), f'(u’) et asfis continuousand u, U €.
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Now £7(u) (P) = u ((p)) = u(x) = 1 as fp)=x e (fw)) (1)
ief'(w)(P)=1, pew'{1)

Fl@) @=v" @) =u'5) = 1as gy =y e (qw')"{1)
ie f')(@=1,qew"{1}

-

and f'l(u) & f'l(u*) =f'(unu' )=0.
Now it is clear that 3 f'l(u) , f’I(u') € tsuch'that f“(u) P =1,pew'{1}, ' (@ =1,

aew {1} and () A (') =0  Hence (X, t) is o - FNG).

Similarly (b) and (c) can be proved.
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