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ABSTRACT 
 
Proper data collection and analysis are very important for effective investigation of 
product reliability. Data is critical for building and selecting suitable statistical models 
and model provides new insights for improvements to maintenance and management 
operations in manufacturing industries. Regarding variations in product quality and 
reliability, component nonconformance and assembly error are two important 
problems which occur frequently in manufacturingindustries.In such situations, the 
complex lifetime models are required for analyzing product reliability data. This 
thesis proposes a general model for modeling the effects of quality variation. This 
model includes the mixture model and competing risk model as the special cases.  

The thesis applies these models for analysis of three sets of product reliability data - 
Aircraft windshield failure data, Battery failure data and Hydraulic pump failure data. 
A set of competitive 2-fold and 3-fold mixture models are considered for modeling 
the data sets. The maximum likelihood estimation method via the Expectation 
Maximization (EM) algorithm is applied mainly for estimating the parameters of the 
models and reliability related quantities.  

For the Aircraft windshield failure data, results indicate that the method of estimation 
with the EM algorithm procedure is betterthan theWeibull Probability Paper(WPP) 
plot procedure. For Battery failure data, based on the measures of lifetime quantities, 
it can be concluded thatdata without maintenance information provides approximately 
similar results with the data having maintenance information. According to the 
graphical representation and estimated values of different model selection criterions, 
we found that the 3-fold Weibull-Normal-Exponential mixture model can be selected 
as the best model for the Hydraulic pump failure data. The selected distribution for 
pumps with assembly errors failure mode is Normal and the distribution for pumps 
without assembly error failure mode is Weibull. According to the optimization of the 
proposed objective function, the 3-fold Weibull mixture model gives a bit larger 
optimal maintenance period, however the Weibull-Normal-Exponential model shows 
a reduction in the maintenance cost for the pump. 

Simulation studies are conducted for investigation the performances of the proposed 
models and methods. The simulation results indicate that the proposed models and 
methods of estimation are applicable for analyzing 2-fold and 3-fold mixture models 
for censored product reliability data with incomplete information. 

The results presented in this thesis would be useful for managerial implications in 
assessing and predicting the reliability and maintenance cost of the products. 

Keywords: Product reliability, Data analysis, EM algorithm, Mixture model, 
Competing risk model, Simulation.  



 

Chapter 1  
Introduction and Background 

 

 

1.1   Reliability and Reliability Function 
Due to the increasing global marketplace and the resulting enhanced competition, now 
a days, manufactures need to develop new, higher technology products with improved 
quality, reliability, and productivity. With increasing product reliability, the 
responsibility of engineering organizations also increase to insure that reliability 
requirements are met. As a result, engineers and manufacturesbecome aware to 
calculate and reporton a product's reliability. One of the important part to improve the 
quality of a product is to improve it’s reliability. High quality and high reliability 
products can have a strong competitive advantage in the market. So, manufacturers 
who have had little experience with life data analysis or applied statistics are work on 
improving their reliability. In today's technological world nearly everyone depends 
upon the continued functioning of a wide array of complex machinery and equipment 
for their everyday health, safety, mobility and economic welfare. Consumers expect 
their cars, computers, electrical appliances, lights, televisions, etc. to function day 
after day, year after year whenever they need them. They expect purchased products 
to be reliable and safe. 

It takes a long time for a company to build up a reputation for reliability, and only a 
short time to drop their reputation after supplying a defective product. Continual 
assessment of new product reliability and ongoing control of the reliability of 
everything transported are critical necessities in today's competitive business arena. 
Reliability theory developed apart from the mainstream of probability and statistics, 
and was used primarily as a tool to help nineteenth century maritime and life 
insurance companies compute profitable rates to charge their customers. 
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Reliability of a product (or system) conveys information about the absence of 
failures.The purpose of reliability analysis is to specify the probability of success for a 
specified time. As suggested by Condra (1993), reliability can be defined as ‘quality 
over time’. Blischke and Murthy (2000) mentioned that, reliability of a product 
(system) conveys the concept of dependability, successful operation or performance, 
and the absence of failures. On the other hand, unreliability (or luck of reliability) 
conveys the opposite. Since the process deterioration leading to failure occurs in an 
uncertain manner, the concept of reliability requires a dynamic and probabilistic 
framework. According to Meeker and Escober (1998), the reliability is the probability 
that, a system, vehicle, machine, device, and so on will perform it’s intended function 
for a specified time period when operating under normal (or stated) environmental 
condition. The decisions, taken during the design, available knowledge of component 
reliability (often supplied by vendors), development and in the manufacturing of the 
product help to determine the reliability of the product, and depends on a number of 
factors, including manufacturing quality, operating environment (e.g., heat, humidity, 
dust and chemical solvents), usage intensity (frequency and severity), maintenance 
activities (e.g., frequency and depth of preventive maintenance), and operator’s skills 
(e.g., Murthy, 2010). 

Reliability depends on operating conditions. In other words, a device is reliable under 
given conditions but can be unreliable under more severe conditions. Reliability 
usually varies with time and being calculate in a quantitative way. It is a numerical 
valuebetween zero and one. Warranty data provide a valuable source of information 
for assessing the reliability of an item in operation (called the ‘field reliability’) and to 
make decisions regarding the reliability improvements needed to control the 
consequences of unreliability. 

Reliability is always associated with a given time. That is, the given percentage 
representing the probability of success is a function of time and is essentially paired 
with an associated time. For example, a specification may call for a 90% reliability at 
100 hours of operation. This means that the product has a 90% probability of running 
for 100 hours without failure. It can also be interpreted as 90% of a population of such 
products will run for 100 hours, while the other 10% will have failed before 100 
hours. 
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For a continuous random variable T, the reliability function or survival function gives 
the probability of surviving beyond time t or a unit survives to time t.The reliability 
function denoted by R(t) and defined as: 

R(t)  Pr(T t) 



t

dttf )( ,  0 ≤ t ≤ ∞ 

Note that, R(t) is monotone decreasing continuous function with R(0)=1 and 

  .0lim)( 


tRR
t

 The reliability function is also known as the survival function, 

which is denote by S(t). 

The reliability function also can be expressed as: 

R(t)  1  Pr(T t)  1 F(t) = 1- 
t

dttf
0

)(  

Here F(t) is the cumulative distribution function (cdf) of T , gives the probability that, 
a component will fail before time t. Alternatively, )(tF  can be expressed as the 

proportion of units in the population that will fail before time t. R(t) is the 
complement of the cdf of T. And f(t) is the probability density function (pdf) of the 
random variable T. The pdf for a continuous random variable T is defined as the 

derivative of  )(tF  with respect to t. i.e., 
dt

tdFtf )()(   . The pdf can be used to 

represent relative frequency of failure times as a function of time. Although the pdf is 
less important than the other functions for applications in reliability, it is used 
extensively in the development of technical results.  

We may also represent the reliability function as: 

 



t

dttftR )(  

Reliability function also can be expressed as: 

  







 

t

dtthtR
0

exp)(  

Here h(t) is the hazard function of T. The hazard function is also known as the hazard 
rate, the instantaneous failure rate function, etc. It is defined by: 
 

 
0

Pr ( ) ( )( ) lim
1 ( ) ( )t

t T t t T t f t f th t
t F t R t 

    
  

 
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The hazard function expresses the propensity to fail in the next small interval of time, 
given survival to time t. That is, for small t  

 tTttTttth  Pr)(   

The hazard function can be interpreted as a failure rate in the following sense. If there 
is a large number of times [say, n(t)] in operating at time t, then )()( thtn   is 

approximately equal to the number of failures per unit time [or h(t) is approximately 
equal to the number of failures per unit time per unit at risk]. The hazard function has 
units of fraction failed per unit time. Because of it’s close relationship with failure 
process and maintenance strategies, some reliability engineers think of modeling 
failure time in terms of h(t). During much of the useful life of a product, the hazard 
may be approximately constant, because, failures are caused by external shocks that 
occur at random. Late-life failures are due to wear out.  

1.2 Reliability Data Sources 

Because of rapid advances in manufacturing technology, consumers expect to 
purchase highly sophisticated, reliable and long lasting products. In recent years many 
manufacturers are collecting and analyzing field failure data to boost the reliability of 
their products and to improve goodwill and customer satisfaction (Blischke et al. 
2011).Traditional reliability data have consisted of failure times for failed units and 
service times or censored times for censoring units. Laboratory life tests, field 
tracking studies, and warranty claim databases are the three main sources of reliability 
data. Accelerated life tests are often conducted to gain information in a timely manner 
for a component must last for years or even decades. Components are tested at high 
levels of cycling rate, voltage, temperature, stress, or another accelerating variable to 
get reliability information quickly. Then a physically-motivated model is used to 
extrapolate to usage conditions. See Nelson (2009) for more details on the statistical 
aspects of accelerated testing. Although laboratory life test data are often used to 
make decisions about the design of the product reliability, the ‘real’ reliability data 
comes from the field, often in the form of warranty returns or specially-designed field 
tracking studies. The collection of field data is typically costly and time consuming 
but careful field tracking provides a good quality of reliability data. For example, 
good field data are often available for medical devices and a company’s fleet of 
assets.Warranty databases also deliver a rich source of reliability information. 
Warranty data provide at least a partial alternative to obtaining field data. With 
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warranty periods becoming longer, tracking products through this longer time frame 
provides much additional information that may be of significant value in the new 
product development process. 

1.3 Some Common Difficulties with Reliability Data 

There are three closely related problems that are typical with reliability data and not 
common with most other forms of statistical data. These are:  
 

 Censoring (when the observation period ends, some observations does not 
meet fail i.e., some are survivors, are known as censored). More detail 
discussion on censored data can be found in Section 1.7. 

 Lack of Failures (if there is too much censoring, even though a large number 
of units may be under observation, the information in the data is limited due to 
the lack of actual failures). 

 Information missing in the database (sometimes some important information 
are not collected and reported in the reliability database).  

 
These problems cause extensive practical difficulty when analyzing data for assessing 
productreliability. Typically, the solutions of these problems need to make additional 
assumptions and useof complicated statistical models and methods.                

1.4    Distinguishing Features of Reliability Data 

Reliability data have a number of special features that requires the use of special and 
complicated statistical methods. For example:   

(i) Reliability data are typically censored (i.e., exact failure times are not 
known). The most common reason for censoring is the frequent need to 
analyze life test data before all units have failed. More generally, 
censoring arises when actual response values (e.g., failure times) cannot be 
observed for some or all units under study. Thus censored observations 
provide a bound or bounds on the actual failure times. 
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(ii) Most reliability data are modeled using distributions for positive random 
variables such as:Weibull, Exponential, Gamma and Lognormal. 
Applications ofNormal distribution in modeling reliability data are limited.  

(iii) Inferences and predictions involving extrapolation are often required. For 
example, we might want to estimate the proportion of the units in the 
population that will fail after 1000 hours, based on a test that runs only 500 
hours (extrapolation in time). Again we might want to estimate the time at 
which 10% observations of the population will fail at50°Cbased on tests 
at85°C (extrapolation in operating condition). 

(iv) While making a reasonable decision by analyzing product failure data, it is 
often necessary to use past experiences or other scientific or engineering 
technologies. This information may take the form of a physical based 
model and/or the specification of one or more parameters (e.g., physical 
constants or materials properties) of such a model. This is also a form of 
extrapolation from the past to the present or future behavior of a system or 
product. 

(v) Usually, the traditional parameters of a statistical model (e.g., mean and 
standard deviation) are not of primary interest. Instead, design engineers, 
reliability engineers, manufacturers and customers are mainly interested in 
specific measure of certain characteristics of product reliabilityof a failure 
time distribution (e.g., failure probabilities, quartiles of the life 
distribution, failure rates, mean time to failure). 

(vi) Especially with censored data, it is difficult to meet analytical solutions, 
hence model fitting requires computer implementation of numerical 
methods, and often there is no exact theory for statistical inferences. 

1.5 Lifetime Models 

A variety class of statistical models have been developed and studied extensively in 
the analysis of the product failure data. The univariate continuous distributions can be 
broadly divided into two categories: simple distributions and complex distributions. 
Hence, lifetime models can be divided into two categories: 



   

 

7

1. Standard Lifetime Models 
2. Complex Lifetime Models 

1.5.1 Standard Lifetime Models 

In empirical modeling, the type of mathematical formulations needed for modeling is 
dictated by a preliminary analysis of data available. Some of the standard lifetime 
distributions that are used in analyzing product reliability data in this thesis are as 
follows: 

 Two parameter Weibull distribution 
 Exponential distribution 
 Normal distribution 
 Lognormal distribution 

Details on the standard lifetime models will be discussed in section 2.2. 

1.5.2 Complex Lifetime Models 

Because of quality variation, the lifetimes of the productssometimes do not follow 
standard distributions and must be modeled by more complex model formulations. 
Complex models involve two or more standard lifetime models. Various types of 
complex models have been applied extensively in failure data analysis for 
manufactured products. Complex lifetime models that have used in this thesis are: 

 Mixture Model 
 Competing Risk Model 
 Model for Effect of Quality Variation in Manufacturing (includes both 

Mixture & Competing risk model) 

1.5.2.1 Mixture Model 

In the case of manufactured products, there are situations where some components of 
a product are produced over a period of time by collecting items from different 
merchants, using different raw materials, machines, and manpower and in different 
environmental conditions. The physical characteristics and the reliabilities of such 
components may be different, but sometimes it is difficult to distinguish them clearly. 
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In such situations, mixtures of distributions are often used in the analysis of reliability 
data for these components. In mixture distribution the lifetimes of the components are 
not independently and identically distributed (iid). A mixture model contains the 
combination of two or more standard models. Each model is mixed with a certain 
proportion. Details discussion on Mixture model is given in section 2.3.1. 

1.5.2.2 Competing Risk Model 

In reliability analysis, the cause of failure of any component is called a failure mode 
or competing risk. Products may have more than one causes of failure. Competing 
risk model is applicable in the situation when there is information on failure of the 
components. In the analysis of lifetimes one is usually dealing with time to an event 
of interest like failure of a component or system, dead of an individual, or end to a 
subscription service. In most cases, there are several competing reasons (risks or 
modes of failure) that cause the event of interest. Say, for example, if we consider the 
failure of a bicycle, the competing risks for failure include: a flat tire, a broken chain, 
or the rupture of a brake cable. 
The interest in competing risks is old but the formal development and application of 
the methodology to problems associated with engineering, survival analysis, and other 
applied areas are relatively new. Details on competing risk modelwill be discussed in 
section 2.3.2. 

1.5.2.3 Model for Effect of Quality Variation in Manufacturing 

The quality variation of a product can occureither by the differences in manufacturing 
machines, raw materials, manpower, environment or by the various causes of error 
while assembling the components that built the product. In this thesis we have 
introduced a general complex lifetime model on the variation of the quality of the 
manufactured products. Instead of using mixture and competing risk model 
separately, this general model includes both of the mixture and competing risk 
models.We considered two main causes that effect on the variations of the quality of 
the manufactured products, they are: 

Assembly error:Even a simple product consists of several components, that are 
assembled in production. Errors, caused while assembling the components to 
construct a product are known as assembly error.These types of error could be 
detected soon after putting the product in to operation. Failures causing from 
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assembly errors can be considered as a new mode of failure, which is different from 
other failure modes that one examines during the design process. For the products 
with assembly error, failure will occur sooner rather than later, and that the mean time 
to failure (MTTF) under this new failure mode is much smaller than the design 
MTTF. The type of assembly operation depends on the product. As for example: for 
an electronic product, one of the assembly operations is soldering. If the soldering is 
not done properly which is known as ‘dry solder’, then the connection between the 
components can break within a short period, leading to a premature failure. 

Component non-conformance: Because of variations in quality or manufacturing 
process or lack of ability, some components cannot be able to perform their required 
intended functions. Due to the lacking’s in their aptitude, when products do not meet 
the required design specifications, they are called nonconforming component. Items 
that are produced with such nonconforming components results in some items having 
lower reliability, means such nonconforming components will also tend to have an 
higher failure rate, shorter MTTF, etc. than the intended design value.The 
performance of nonconforming items is usually lower to the performance of 
conforming items. As a result, nonconforming items are less reliable than conforming 
items in terms of reliability measures such as MTTF. 

Details on model for effect of quality variation in manufacturing will be found in 
section 2.3.3. 

1.6 Failures and Failure Modes 

Literally failure means lacking or falling short in something expected, attempted or 
desired.Also failure means the termination of the ability of an item to execute a 
required function.From an engineering point of view, it is useful to define failure in a 
different and broader sense. Failure is an event when machinery/equipment is not 
capable of perform scheduled operations to specification, means device cannot 
perform its function satisfactorily.  Witherell (1994) elaborates as follows: ‘It (failure) 
can be any incident or condition that causes an industrial plant, manufactured product, 
process, material or service to degrade or become unsuitable or unable to perform its 
intended function or purpose safely, reliably and cost-effectively’.  

Product failures are depend on how reliable the product is and this, in turn, is 
influenced by several factors, some under the control of the manufacturer (decisions 
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made during the design and production stages) and others under the control of the 
consumer (operating environment, usage mode and intensity, and so forth). 

The causes of failure of any product are known as failure mode. A failure mode is a 
description of a fault. It is sometimes referred to as fault mode. Failure modes are 
identified by studying the (performance) function of a product. A brief description of 
the different failure modes are as follows: 
 

(i) Intermittent failures: Failures that last only for a short time. A good 
example of this is software faults that occur intermittently. 

 
(ii) Extended failures: Failures that continue until some corrective action 

rectifies the failure. They can be divided in the following two categories:  
a. Complete failure: This results in total loss of function. 
b. Partial failure: This results in partial loss of function. 

                  Each of these can be further subdivided into the following:  
a. Sudden failures: Failures that occur without any warning. 
b. Gradual failures: Failures that occur with signals to warn of the 

occurrence of a failure. 
 
A complete and sudden failure is called a catastrophic failure, and a gradual and 
partial failure is designated a degraded failure.  

1.7 Censoring  
The idea of censoring is associated with a sample. In case of censoring, we analyze a 
part of sample values. Censoring means that, in a group of individuals, a known 
number of observations is missing at either one end (in case of single censoring) or at 
both ends (in case of double censoring). Censoringoccurs when exact lifetimes are 
known for only a portion of the individuals under study; the lifetimes of the remainder 
individuals are known only to exceed certain values.  
 
For example, in a life testing experiment, it may not be practical to continue analysis 
until all items under study have failed because of time limits and other restrictions on 
data collection. This limits the number of individuals to be considered for the 
inferential study which is known as censoring. If the experiment is terminated before 



   

 

11

all items have failed, then for the items which are still unfailed at the time of 
termination only a lower bound on lifetime of these items are available. That is, the 
exact values of the unfailed observations are not known except, they are greater than 
or equal to a predetermined value. Suppose in a life test experiment, n items may be 
placed on test, but a decision made to terminate the test after time T. Let r (r<n) items 
have failed from starting to the time period T, so the exact lifetimes of c=(n-r) items 
are not known but their initial time period is available. These c items are called 
censored for n items.   
 
Censoring arises for a variety of reasons. There are several types of censoring, for 
example: 
 

 Left, Right and Interval censoring 
 Type-I, Type-II and Randomly censoring 
 Single and Multiple censoring  

1.7.1 Left, Right and Interval Censoring 

A left censored value is one that is known only to be less than some specified value, 
e.g., X<10hrs. A right censored value is one that is known only to be more than some 
specified value e.g., X> 5 hrs. A value is interval censored if it is stated as being 
within a specified interval, e.g. 5 hrs<X<10 hrs. Any observation of a continuous 
random variable could be considered interval censored, because its value is reported 
to a few decimal places. A value of X = 25 hrs might be interpreted as 24.5 hrs ≤ X< 
25.5 hrs. This sort of fine-scale interval censoring is usually ignored and the values 
are treated as exactly observed. When the intervals are large and the range of the data 
is small, e.g., 10 or fewer intervals over the range of the data, it is better to consider 
values as interval censored (Dixon and Newman, 1991).  

1.7.2 Type-I, Type-II and Random Censoring 

Sometimes experiments are run over a fixed time period in such a way that, lifetime 
of an item will be known exactly if it is less than some predetermined value. In such 
situation the data are said to be ‘Type-I censoring’ or ‘time censoring’. A sample is 
Type-I censored when the censoring levels are known in advance. The number of 



   

 

12

censored observations c (and hence the number of uncensored/failure observations r) 
is a random outcome, even if the total sample sizen, is fixed. For example, let, 50 
items may be placed on a test, but a decision made to terminate the test after 200 
hours, either 50 items failed or not. Then this type of censoring is known as Type-I or 
Time censoring. 
 
A sample is Type-II censored if the sample size n and number of censored 
observations c (and hence the number of uncensored/failure observations r) are fixed 
in advance. The censoring level(s) are random outcomes. Type-II censored samples 
most commonly arise in time-to-event studies that are planned to end after a specified 
number of failures, and Type-II censored samples are sometimes called failure-
censored samples (Nelson, 1982, p.248). For example, let, 50 items may be placed on 
test, but a decision made to terminate the test when 30 items will fail. Then this type 
of censoring is known as Type-II or Failure censoring.   
 
A sample is Randomlycensored when both the number of censored observations and 
the censoring levels are random outcomes. This type of censoring commonly arises in 
medical time-to-event studies. A subject who moves away from the study area before 
the event of interest occurs has a randomly censored value. The outcome for a subject 
can be modeled as a pair of random variables, (X,C), where X is the random time to 
the event and C is the random time until the subject moves away. X is an observed 
value if X ≤ C and right censored at C if X > C. 

1.7.3 Single and Multiple Censoring 

A sample is singly censored (e.g., singly left censored) if there is only one censoring 
level T. (Technically, left censored data are singly left censored only if all r 
uncensored observations are greater than or equal to T, and rightcensored data are 
singly right censored only if all r uncensored observations are less than or equal to T 
(Nelson, 1982, p.7); otherwise, the data are considered to be multiply censored.) 

A sample is multiply censored if there are several censoring levels, ଵܶ, ଶܶ, … , ௡ܶ, where 

ଵܶ < ଶܶ < ⋯ < ௡ܶ . Multiple censoring commonly occurs with environmental data 
because detection limits can change over time (e.g., because of analytical 
improvements), or detection limits can depend on the type of sample or the 
background matrix. The distinction between single and multiple censoring is mostly 
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of historical interest. Some older statistical methods are specifically for singly 
censored samples. Most currently recommended methods can be used with either 
singly or multiply censored samples, but the implementation is often easier with one 
censoring level. 

1.8 Maintenance 

Every object (product, plant or infrastructure) is designed and built to some 
performance requirement and included of several components (or elements). The 
performance of the object depends on the performance of its components that may 
degrade with age and/or usage intensity,whicheffecton the performance of the object. 
A component is deemed to have failed when its performance falls below a pre 
specified level. The failure of an object is due to the failure of one or more of its 
components. We expect the object/product to perform in a same way and same 
intensity for long time without any disturbance. To ensure the product to be reliable 
and safe we need to maintain it in a proper manner after a specific time period. 
Maintenance is a combination of technical, administrative, and managerial activities 
carried out during the lifecycle of an object. Maintenance actions are of two 
types:‘Preventive maintenance’ (PM) actions to control the degradation processes and 
reduce the likelihood of failure of an item (component or object) and ‘Corrective 
maintenance’ (CM) actions to restore a failed item to a specified operational state, 
involving either repair or replacement of the item. 

1.8.1 Maintenance Outsourcing 

Usually, maintenance was done inhouse by the owner of the object and also dealt with 
the data management issues. Over the last few decades, there has been an increasing 
tendency in the outsourcing of maintenance where some or all the maintenance is 
carried out by an external service agent under a maintenance service contract (MSC). 
Effective maintenance requires proper data management – collecting, analyzing and 
using appropriate models for making decisions. In maintenance outsourcing data is 
needed for different purposes, e.g. contract formulation, monitoring the quality of 
maintenance provided by the service agent, improvements to maintenance, etc.  
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1.8.2 Maintenance Service Contract 

A maintenance service contract (MSC) is a legal manuscript that is binding on both 
parties (the business or customer and the service agent) and it needs to deal with 
technical, economic and legal issues. 

Classification of contracts  

Standard contracts: Mainly in the form of extended warranties for consumer 
products and service contracts for commercial and industrial products (e.g., lifts in 
buildings). The terms of the contract are determined by the service provider taking 
into account the marketing aspects.  

Customized contracts: For complex plants and infrastructures where the contract is 
often initiated by the owner and the terms decided jointly. 

Technical Issues 

 Types of maintenance tasks (PM and/or CM) to be carried out 

 The details of the tasks to be carried out  

 Types of the component/piece parts used for maintenance (standard part, Part 
manufacturing approved part, etc.) 
Turnaround time  

Documentations 
 

Economical/Financial Issues 

 Payments  

 Penalties  
 Risks  

 Insurance 

Legal Issues 

 Terms of contract  

 Contract duration  

 Dispute resolution  
 Guaranty/warranty  

 Force major issues  
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Unless the contract is written properly and relevant data (relating to the object and 
collected by the service agent) are analyzed properly by the customer the long-term 
costs and risks will increase. 

1.9 Optimum Maintenance Cost 

Every engineered object (product, plant or infrastructure) needs preventive and 
corrective maintenance. The cost of maintenance can vary from 5% to 30% 
(Campbell, 1995) of the operating budget depending on the industry sector. This 
implies that businesses need to manage maintenance effectively to ensure minimum 
costs. This requires proper data management to assist in building models for effective 
decision making.Obtaining the solution to the problem involves building a model and 
deciding on the optimal age for PM action requires an objective function. The 
objective function is the asymptotic expected cost per unit time. Note that every time 
instant an exchanged product is put into operation can be viewed as a renewal point 
for a renewal process characterizing the replacements of products over time. The time 
between two successive renewal points defines a cycle. The asymptotic expected cost 
per unit time can be obtained as the ratio of the expected cycle cost (ECC) and the 
expected cycle length (ECL). 

The time to failure for a product, X, is a random variable with distribution function 
F(x). A PM action results if X T  in which case the cycle length is T  with 
probability R(T). A CM action results when X T  and the cycle length is X . As a 
result ECL is given by 

0 0

( ) ( ) ( )
t T

ECL tf t dt TR T R t dt        (1.1) 

Let us consider the following additional notations: 

fC : Average cost of a CM replacement 

pC : Average cost of a PM replacement  

nC : Sale price for new item (Given by the owner) 

rC : Cost (charged by the service agent) for reconditioning an item under CM or PM 

action 

 : Additional cost (due to downtime, loss in revenue, etc.) resulting from CM action 
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Now the value of ECC consists of the cost of preventive maintenance in addition to 
the cost of corrective maintenance, which is given by 

( ) ( )f pECC C F T C R T       (1.2) 

From (1.1) and (1.2) we have the asymptotic average cost per unit time given by 

0

( ) ( )
( ; (.))

( )

f p
T

C F T C R T
J T F

R t dt





    (1.3) 

Let we denote the optimal ofT by *T , this is the value that yields a minimum for

  .;FTJ .The optimal T depends on the average cost of each CM and PM.  

A maintenance action involves replacement by a new item or a reconditioned item 

with probabilities q  and  q1  respectively. As a result, the average cost of a PM 

action is 

  rnp CqqCC  1      (1.4) 

And of a CM action is  

 pf CC       (1.5) 

The optimal *T  is obtained using (1.3) with thecdf,(ݐ)ܨ and the optimal expected 

cost per unit time is given by   *; .J T F .Here we can see that, the optimal *T  

depend on the additional cost  . The optimal *T and optimal expected cost per unit 

time  *TJ  on various values of  for the different models can be estimated. 

1.10   Mean Time to Failure 
Mean time to failure (MTTF) describes the expected time to failure for a non-
repairable product. That is, MTTF is the average time that an item will function 
before it failswith the modeling assumption that the failed system is not repaired. It is 
the mean lifetime of the item.With censored data, the arithmetic average of the data 
does not provide a good measure of the center because at least some of the failure 
times are unknown. The MTTF is an estimate of the theoretical center of the 
distribution that considers censored observations.The MTTF can be used in several 
ways; for example: 
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 To determine whether a redesigned system is better than the previous system 
in demonstration test plans. 

 As a measure of the center of the distribution when the distribution fits the 
data satisfactorily. 

Suppose we tested 3 identical systems starting from time 0 until all of them failed. 
The first system failed at 10 hours, the second failed at 12 hours and the third failed at 
13 hours. The MTTF is the average of the three failure times, which is 11.6667 hours. 
If these three failures are random samples from a population and the failure times of 
this population follow a distribution with a probability density function (pdf) of f(t), 
then the population MTTF (denoted by μ or E(T)) can be mathematically calculated 
by: 

 
 


0 00

)()](1[)()( dttRdttFdtttfTEMTTF  

1.11 Fractile 

Fractiles are numbers that divide an ordered data set into equal parts. Fractiles are of 
various types: 

 Quartiles divide a data set into 4 equal parts 
 Deciles divide a data set into 10 equal parts 
 Percentiles divide a data set into 100 equal parts 

The p-fractile of a sample is denoted by the value ݐ௣ such that at least a proportion p 

of the sample lies at or below ݐ௣  and at least a proportion 1–p lies at or above 

 ௣.Where p takes the value from 0 to 1, that is 0 <p < 1.  If the continuous cdf F(t) isݐ

strictly increasing, then there is a unique value ݐ௣ that satisfies ܨ൫ݐ௣൯ =  and the ,݌

estimating equation for ݐ௣ can be expressed as  

௣ݐ =  (݌)ଵିܨ

whereିܨଵ(݌) denotes the inverse function. For example, ift denotes the lifetime of an 
item, ݐ௣ is the time at which 100p% of the units in the product population will have 

failed. ݐ௣ is also known as 100ܤ௣(e.g., ݐ.ଵ଴  is also known as B10). The median is 
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equal to item, ݐ଴.ହ. The fractile for p= 0.25 is called ‘1stquartile’ or ‘25th percentile’ 
and p = 0.75 is called ‘3rdquartile’ or ‘75th percentile’.  

1.12   Review of the Literature 

Mathematical models have been used in solving real-world problems from many 
different disciplines. This requires building a suitable mathematical model.Over the 
last several years, a number of new models have been proposed that are either derived 
from, or some way related to the distributions like Weibull, Exponential, Normal etc. 
Meeker and Escober (1998b), discussed various models and methods for estimating 
product reliability.Titterington et al. (1985) mention that mixture distribution models 
have been used for a long time and give a comprehensive reference list of the 
applications of such models. The earliest reference (dating to 1886) involves a normal 
mixture. Earliest Weibull mixture models can be traced to the late 1950s [see, 
Mendenhall and Hader (1958) and Kao (1959)]. Since then the literature on Weibull 
mixture models has grown at an increasing pace and with many different applications 
of the model. Jiang and Kececioglu (1992) proposed the principle of the maximum 
likelihood estimate through the EM algorithm, applied to both postmortem and non-
postmortem censored data, grouped, as well as suspended data. They also indicated 
that some of the log-likelihood functions of the mixed-Weibull distributions have 
multiple local maxima; therefore, the algorithm should start at several initial guesses 
of the parameters set. The searching of the largest local maximum can stop when a 
good fit has been found. They recommended the graphical examination method for 
this purpose.Tarum (1999) presented a method of bathtub equation that allow for 
analysis and prediction of failure rates where infant mortality, chance, and wear out 
failures are combined. The bathtub curve help to model mixed failure modes. They 
used rank regression and maximum likelihood estimation method to fit the curve. 
They proposed to use either a competing risk mixture or a competing risk, when there 
is an apparent mixture of two failure modes. 

Marín, Bernal and Wiper (2003) applied the Bayesian method using birth-death 
MCMC algorithm, to fit the Weibull mixture model for unknown number of 
components to heterogeneous, possibly right censored survival data. They proposed it 
as appropriate models for the analysis of clinical trial data with several sub-
populations showing different behavior and for the observed data consist of both 
complete and right censored lifetimes. Jiang and Murthy (2003) presented an n-fold 
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Weibull competing risk model and applied the WPP (Weibull probability paper) plot 
to estimate the model parameters. They also presented different possible shapes for 
the density and failure rate functions. 

.According to Murthy, Xie, and Jiang (2004), many standard probability distributions 
have been used as models to model data exhibiting significant variability.A variety 
class of statistical models have been developed and studied extensively in the analysis 
of the product failure data. Literatures on mixture models including the graphical 
method of estimation based on the WPP plot can be found in Murthy et al. (2004). 

Bucar, Nagode and Fajdiga (2004) discussed that the reliability of an arbitrary system 
can be approximated well by a finite Weibull mixture with positive component 
weights only, without knowing the structure of the system, on condition that the 
unknown parameters of the mixture can be estimated. It can be concluded that the 
suggested Weibull mixture with an arbitrary but finite number of components is 
suitable for lifetime data approximation. They considered the data modeling and 
parameter estimations when a set of grouped complete data is available. All described 
methods for parameter estimation of the Weibull mixture distribution are applied in 
five examples, four simulated and one from literature. They presented four different 
numerical methods for the estimation of unknown parameters of a Weibull mixture: 
EM algorithm, Alternative algorithm, Minimax algorithm and Multivariate regression 
and suggested that the EM algorithm is the most suitable method for determining the 
Weibull mixture distribution of failure times. Though, the EM algorithm has some 
weaknesses as well. The result and convergence of the iterative procedure for an 
estimation of unknown parameters of the mixture distribution of failure times 
frequently depends on the initial conditions of iteration. It turned out that the 
application of multivariate regression method for estimation of unknown mixture 
weights provides a useful model for representing failure data if the specific form of 
the mixture model is determined in advance. 

Bertholon et al. (2004) proposed a simple competing risk distribution corresponds to 
the minimum between exponential and Weibull distributions in analysis of both 
accidental and aging failure lifetime data. The distribution parameters are estimated 
through MLE and Bayesian inference. They observed that the competing risk model 
fits both the real life and simulated data well, than that of the Exponential and Weibull 
models.   
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Park and Kulasekera (2004) developed maximum likelihood estimators for the 
competing risks analysis of data from multiple groups, with both failure time and 
failure cause censorings under multivariate exponential distributions. Kundu and 
Sarhan (2006) presented competing risks among several groups to analyze incomplete 
data.  They extended the work of Park & Kulasekera (2004); considered the same 
latent failure times model formulation assuming Weibull distribution failure times, 
rather than the exponential distribution, and it is assumed that the latent failure times 
are independent Weibull random variables with the same shape parameter within a 
particular group, but different scale parameters. It is observed that, instead of the 
exponential distribution, the Weibull distribution may be used in this case. 
Asymptotic distributions of the maximum likelihood estimators of the different 
parameters are obtained and asymptotic confidence intervals are also proposed. 

Li et al.(2007) proposed a hierarchical mixture of software reliability models 
(HMSRM) for software reliability prediction to develop general prediction models in 
current software reliability research. They illustrated that their approach performed 
quite well in the later stages of software development, and better than single classical 
software reliability models. They also indicated that the method can automatically 
select the most appropriate lower-level model for the data and performances are well 
in prediction.Elfaki et al. (2007) applied EM Algorithm on Cox's model with Weibull 
distribution and Cox's with exponential distribution and found that with a large 
sample size based on expectation maximization (EM) algorithm, both models give 
similar results and the modification of the two models showed better results compared 
with Crowder et al., especially for the second causes of failure. 

Li and Lin (2009) studied a semi-parametric mixture model for the two-sample 
problem with right censored data using simulation and proposed EM algorithm for the 
semi-parametric maximum likelihood estimates of the parametric and nonparametric 
components of the model that provided a useful alternative to the Cox (1972) 
proportional hazards model for the comparison of treatments based on right censored 
survival data.Alwasel (2009) presented competing risks model for incomplete and 
censored data when the causes of failures follow modified Weibull distributions. Two 
cases were tested: The first was, when the causes of failure follow exponential against 
modified Weibull and the second was, when the causes of failure follow Weibull 
against modified Weibull distribution. Method of maximum likelihood was applied to 
obtain the point estimations and asymptotic confidence intervals of the parameters. 
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Castet and Saleh (2010) suggested to use mixture of Weibull distributions, to analyze 
the satellite reliability data with censored observation. They compared the results 
obtained from mixture model with a single Weibull distribution and found that the 
mixture Weibull distribution provides significant accuracy in capturing all the failure 
trends in the failure data for nonparametric satellite reliability. The model parameters 
were estimated by MLE method. 

Erişoğlu et al. (2011) proposed a mixture of two different distributions such as 
Exponential-Gamma, Exponential-Weibull and Gamma-Weibull to model 
heterogeneous survival data and indicated that, mixture of the different distributions 
are appropriate for the heterogeneous survival times.Nielsen (2011) discussed three 
different estimation methods: maximum likelihood estimation (MLE), method of 
moments estimation (MME) and median rank regression (MRR). Overall, he found 
that MLE is the best among these three. Both MLE and method of moments required 
iterative algorithms, which was not necessary for the median rank regression method. 
Again for any true values of the parameters, all the three estimators provide 
approximately the same accuracy. 

Lee and Scott (2012) presented expectation–maximization (EM) algorithms for fitting 
multivariate Gaussian mixture models to data that are truncated, censored or truncated 
and censored. They indicated that these two types of incomplete measurements are 
naturally handled together through their relation to the multivariate truncated 
Gaussian distribution.Bordes and Chauveau (2012) discussed several iterative method 
based on EM and stochastic EM methodology, that allow to estimate parametric or 
semi parametric mixture model for randomly right censored lifetime data, provided 
they are identifiable. They consider different levels of completion for the (incomplete) 
observed data, and provide genuine or EM-like algorithms for several situations. The 
censored semi parametric situations, a stochastic step is the only practical solution 
allowing computation of nonparametric estimates of the unknown survival function. 
The effectiveness of the new proposed algorithms is demonstrated in simulation 
studies.Assuming dependence for failure modes, Ancha and Yincai (2012) used 
copula as the dependence link function to assess competing risk models in accelerated 
life testing. They used the simulated data and found that the usual independence 
assumption would have a crucial effect on the reliability assessment for constant 
stress ALTs when the failure modes of the series system were dependent. 
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Razali and Al-Wakeel (2013) used two-fold and three-fold mixture of two and three 
parameter Weibull distribution to analyze failure time data. They found that, for the 
two-fold Weibull mixture distribution, the values of ܴଶ and ܴ஺ௗ௝ଶ were high while the 

values of SSE and MSE were low but for three-fold Weibull mixture distribution the 
values of ܴଶ and ܴ஺ௗ௝ଶ decrease. Hence they deduced that as the number of parameters 

increase, the accuracy of the model decrease. They also indicates that as two-fold and 
three-fold mixture Weibull distributions has uni-modal, bi-modal and tri-modal 
shapes, they provide better fits than that of the single Weibull distribution with  uni-
modal shape.Barabadi (2013) used the WPP plot in order to select the appropriate 
Weibull distribution for a historical data of power transformer. Through a flow 
chart,they provided a guideline for the selection of an appropriate model from the 
Weibull family of distributions for failure data.Zhang and Dwight (2013) used the 
graphical approach, WPP plot to choose an optimal model for a given data set and to 
model the data. Their proposed model selection procedure was based on the shapes of 
the fitting plots. They discussed the characteristics of Weibull-related models with 
more than three parameters including sectional models involving two or three Weibull 
distributions, competing risk model and Weibull mixture model. According to Zhang 
and Dwight (2013), the initial estimate of model parameters through the graphical 
approach yields certain degree of subjectivity but they think other more accurate 
statistical methods such as: MLE, Least Squares estimation, etc. are necessary to be 
applied. While estimating the parameters of the sectional models, they suggested 
applying the recursive method to solve a set of equations that involve several 
parameters.He et al. (2013) proposed a new mixed Weibull distribution model to 
evaluate the overall reliability of paper-oil insulation. The model represents the 
relationship between the overall reliability and states of eight characteristic 
parameters of paper-oil insulation. They presented their model as an effective one to 
evaluate the reliability of paper-oil insulation and also the reliability of insulation of 
power transformer in service.Noor and Aslam (2013) presented the Bayesian 
inference for the two Inverse Weibull mixture models for modeling the complex 
failure data set for type-I censoring. They considered two cases: when the shape 
parameter is known and when all parameters are unknown. Bayesian analysis was 
carried out using informative (Gamma) and non-informative (Jeffrey’s) priors.Sarhan, 
Alameri and Al-Wasel (2013)  discussed the competing risks model with generalized 
Weibull distribution for incomplete and censored data. Method of maximum 
likelihood was used to investigate both the point and asymptotic confidence interval 
estimators. They studied hypothesis tests for a real data from Lawless (2003) and 
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found that the generalized Weibull distribution fits the data better that the exponential, 
generalized exponential and Weibull distributions. 

Ateya (2014) analyzed a real data set by using a finite mixture of two Generalized 
Exponential (GE) distributions and a 2-fold Weibull mixture distribution and found 
that the GE mixture model fits the data better. MLE of the model parameters were 
estimated using EM algorithm based on right censored failure observations and 
indicated that the results are specialized to type-I and type-II censored samples.Ateya 
and Alharthi (2014) used EM algorithm to find out the MLEs of the model parameters 
of a finite mixture of modified Weibull distributions for type-I and type-II censored 
data. They applied a two-fold modified Weibull mixture and a two-fold Weibull 
mixture distribution to analyze a real life data set to emphasize that the modified 
Weibull mixture model fits the data better than the other mixture model.Benaicha and 
Chaker (2014) presented the maximum likelihood algorithm for a two-fold Weibull 
mixture distribution. The impact of traditional Weibull distribution was compared 
with 2-fold Weibull mixture distribution for historical failure time data of power 
transformers of National Society for Electricity and Gas (SONELGAZ) in Western 
Algeria. Zhang, Hua and Xu (2014) proposed a mixture Weibull proportional hazard 
model (MWPHM) to predict the failure of a mechanical system with multiple failure 
modes. They selected the MWPHM over the Weibull proportional hazard model 
(WPHM), because, MWPHM includes all the contribution of different failure modes 
and also provides more detailed information on the lifetime distribution. They used a 
set of simulated data and estimated the model parameters by combining historical 
lifetime and monitoring data of all failure modes.Considering the effects of failure 
modes on competing risks model, Yáñez, Escobar and González (2014) introduced 
two different competing risks models: (a) a model with independent risk (b) a model 
derived from a bivariate Weibull with dependence. They found that the characteristics 
of these two models are very similar. They considered two and more than two risks in 
their work.   

Elmahdy (2015) compared the fitted reliability functions of the 3-parameter Weibull, 
competing risk and 2-fold Weibull (2 parameter) mixture models and indicated as an 
efficient approach for moderate and large samples with a higher censored and few 
exact failure times. They proposed to apply this approach for complete, censored, 
grouped and ungrouped samples. The parameters estimated by both graphical and 
numerical methods, such as WPP plot, MLE, Bayes estimators, non-linear Benard’s 
median rank regression. The parameters of finite Weibull mixture distributions were 
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estimated through EM algorithm.Ruhi (2015) applied 2-fold mixture models and 
estimated the parameters by MLE.  Ruhi, Sarker and Karim (2015) applied 2-fold 
Weibull-Weibull mixture model for analyzing failure data and used the EM algorithm 
to estimate the model parameters. They indicated the maximum likelihood estimate 
procedure performs well than the graphical procedure given in Murthy et al. 
(2004).Feizjavadian and Hashemi (2015) used a Marshall–Olkin bivariate Weibull 
distribution to investigate dependent competing risks for progressively hybrid 
censoring (can be produced by combining Type-I and Type-II censoring) condition. 
Maximum likelihood and approximated maximum likelihood estimators are applied to 
estimate the unknown parameters.Balakrishnan, So and Ling (2015) analyzed the one-
shot devices with two competing risks model (corresponding to the failure of each 
device) assuming that the lifetime distribution is exponential and that there are no 
masked causes of failure. EM algorithm had been developed for the estimation of 
model parameters. While comparing the proposed method with the Fisher-scoring 
method, they found the robustness of EM algorithm over the Fisher-scoring 
method.Balakrishnan et al. (2015) extended the work of Balakrishnan and Ling 
(2013) by introducing the analysis of a one-shot device testing using competing risks 
model under an ALT setting. They confined their attention to the case of two 
competing risks corresponding to the failure of each device, assuming that the lifetime 
distribution is Weibull with no masked causes of failure in the data set and found their 
model more flexible when compared to the exponential distribution. The EM 
algorithm was developed to estimate the model parameters. They noticed the 
robustness of EM algorithm to the choice of initial values than that of the Fisher 
scoring method. 

El-kelany (2015) considered a competing risks model with three independent causes 
of failure for complete and incomplete observations under Type-I censoring. They 
assumed the competing risk with two parameter Weibull, exponentiated Weibull and 
Rayleigh distribution. The MLEs of different parameters with different sampling 
schemes and their properties are studied under these assumptions.Ünal et al. (2015) 
discussed statistical inference for Weibull distribution based on competing risks data 
under progressive Type-I group censoring. The maximum likelihood procedure is 
used to get point estimates and asymptotic confidence intervals for unknown 
parameters. 

Feroze (2016) was the first, who developed the Bayesian inference of inverse Weibull 
mixture distribution based on doubly type II censored data. They used both simulated 
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and real life data for this purpose.Iskandar and Gondokaryono (2016) investigated the 
application of the Bayesian estimation analyses with Weibull distribution model to 
competing risk systems. They used the simulation data and indicated that, for perfect 
information on the prior distribution and with smaller sample sizes, the estimation 
methods of the Bayesian analyses are better than those of the maximum likelihood. 
They also showed the robustness of the Bayesian analysis within the range between 
the true value and the maximum likelihood estimated value lines.Iskandar (2016) 
expressed the basic concepts that constitute Bayesian approach with Gamma 
distribution, to analyze the competing risks models in reliability. There are some 
limitations with their models: causes of failure are independent, only the scale 
parameter is a random variable, and prior distribution that used is uniform. 

Bedford (2005) discussed the problems with dependent competing risk model, 
specifically in the reliability context. They expressed the problems of identifying the 
joint distribution or marginal distributions without making nontestable assumptions. 
They discussed the way in which the assumption of independence usually gives an 
optimistic view of failure behavior, possible models for maintenance, and 
generalizations of the competing risk problem to nonrenewal system. 

1.13   Purpose of the Research 

The purpose of this research is to apply some complex lifetime models for analysis of 
product reliability data in order to select suitable lifetime models and to assess and 
predict the reliability and maintenance cost of the products which are useful for 
managerial implications in manufacturing industries. 

1.14   Objectives 

The specific objectives of this research are to: 
 

 Compare graphical (Weibull Probability Paper(WPP) plot) and statistical 
parametric (Maximum Likelihood Estimation (MLE)) methods for analyzing 
product reliability data.  

 Investigate the effects on the estimated reliability if the information on 
maintenance action is unknown in the database. 
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 Find the suitable models for a product reliability data set and to trace the 
possible hidden sub-populations and their distributions. 

 Find the suitable distributions for different failure modes.  
 Estimate the optimal maintenance period and cost of a product.  
 Investigate the overall performances of the proposed models and methods by 

simulation study. 

1.15 Research Questions 

In order to fulfill the above-stated objectives, the following research questions (RQ) 
have been raised:  

 RQ 1. Which of the methods, graphical (WPP plot) or statistical parametric 
(MLE), perform well for analyzing product reliability data? 

 RQ 2. What would be the effects on the estimated reliability if the information 
on maintenance action is unknown for all observations in the database? 

 RQ 3. What are the suitable 3-fold lifetime models of hydraulic pump? What 
are the possible three hidden sub-populations and their distributions for this 
pump?  

 RQ 4.What are the suitable distributions for the pumps with assembly errors 
and the pumps without assembly errors? 

 RQ 5. What would be the effect on optimal maintenance policy according to 
the selected models?  

 RQ 6. What are the overall performances of the proposed models and 
methods?  

1.16 Layout of the Study 

The chapter wise summary of this thesis is given below: 

The present chapter provides some basic concept of reliability, review of the literature 
and summary of the rest of the chapters of this thesis.  

In chapter 2, we introduce the basic concepts and preliminaries of some widely used 
lifetime models for product reliability data, including Weibull, Exponential, Normal, 
Lognormal, Mixture models, Competing risk models and Model for effect of quality 
variation. The important characteristics of these models on reliability are also given. 
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In chapter 3, we describe various statistical methods for reliability data analysis. This 
includes both nonparametric and parametric estimation procedure, and different 
model selection methods. 
 
Chapter 4 introduces three sets of real data (Aircraft windshield failure data, Battery 
failure data and Hydraulic pump failure data) that are analyzed in this thesis.  This 
chapter also discusses about field reliability data and it’s limitations. 
 
Chapter 5 presents, the results of data analysis.  
 
Chapter 6 contains the results of simulation methods for 2-fold and 3-fold mixture 
models, which is used to investigate the property of the population. 

Finally Chapter 7 presents the conclusion of this thesis. This includes the main 
contributions of the thesis and future research. 

R codes of 2-fold and 3-fold mixture models are presented in the Appendix portion. 
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Chapter 2  
Lifetime Models for Product Reliability Data 

 

 

2.1 Introduction 
In the real world, problems arise in many different circumstances. Models have been 
playing an important role in problem solving for a long time, beyond the recorded 
history of the human race. Many different kinds of models have been used,that 
include: physical (full of scaled) models, pictorial models, analog models, descriptive 
models, symbolic models and mathematical models. The applications of mathematical 
models are relatively new (roughly the last 500 years). Initially, mathematical models 
were used for solving problems from the physical science (e.g., predicting motion of 
planets, timing of high and low tides), but over the last few hundred years,  
mathematical models have been used broadly in solving problems from biological and 
social sciences. This is hardly any discipline where mathematical models have not 
been used for solving problems.  

Different class of statistical models have been established and studied extensively in 
the analysis of the product reliability data. In this thesis, the lifetime models are 
divided into two categories: 

1. Standard Lifetime Models 

2. Complex Lifetime Models 

2.2 Standard Lifetime Models 

In empirical modeling, the type of mathematical formulations needed for modeling is 
dictated by a preliminary analysis of data available. If high degree of variability exist 
in the data set, then appropriate models are needed that can capture this variability. 
This requires probabilistic and stochastic models to model a given data set. Some of 
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the standard lifetime distributions that are used in analyzing product failure data in 
this thesis are as follows: 

 Two parameter Weibull distribution.  
 Exponential distribution. 
 Normal distribution. 
 Lognormal distribution. 

2.2.1 Two Parameter Weibull Distribution 
When the random variableT has a Weibull distribution with two parameters, we 
indicate this by   ,Weibull~T . We shall refer to this as the ‘Standard Weibull 

Model’ with  0  and  0  being the scale and the shape parameters, 

respectively.  

The probability density function,  f(t) for twoparameter Weibull model is given by    
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The shape of the density function depends on the model parameters.  

The cdf of two parameter Weibull distribution is  
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The reliability function R(t), of a lifetime distribution is defined as the probability of 
survival beyond age t, and is given by 
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The hazard function h(t) is given by : 
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The p-th percentile of two parameter Weibull distribution is given by 
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The mean and variance of this distribution are respectively, 
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The median is given by  
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When 1 , there is a single mode, etmod  ,and it is given by  
 






/1

mod
11 







et  

 
When 1 , the mode is at t = 0 . 
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Weibull distribution can be used to model the minimum of a large number of 
independent positive random variables from a certain class of distributions. This 
distribution also can be used to model failuretime data with a decreasing or an 
increasing hazard rate. 

2.2.2 Exponential Distribution 
When the random variable T has single or one parameter Exponential distribution 
with scale parameter 0 , we indicate this by  EXP~T .  

The f(t) for one parameter Exponential model is given by 

  )exp(; ttf   0t                    (2.6) 

The cdf of the Exponential distribution is  
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The reliability function, R(t) is 
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The hazard function  th  is given by:  
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The p-th quantile pt  of the Exponential distribution is the solution of   
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This is the p-th quantile of the Exponential distribution. 

Mean and variance of Exponential distribution are: 
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Exponential distribution is the simplest distribution that is commonly used in the 
analysis of reliability data. This distribution has the important characteristic that its 
hazard function is constant (does not depend on time t). It is popular for some kinds of 
electronic components (e.g. capacitors or robust highquality integrated circuits). But 
this distribution would not be appropriate for a population of electronic components 
having failure-causing quality defects. 

2.2.3 Normal Distribution 

When T has a Normal distribution, we indicate this by  ,NOR~T . Where  >0 
is a scale parameter and    is a location parameter. As a model for 
variability, the Normal distribution has a long history of use in many areas of 
application. 
 
The f(t) for Normal model  is given by   
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 is the pdf of the standard Normal distribution. 

 
The cdf of the Normal distribution is  
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where    dtttz
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The reliability function is   
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The hazard function  th  is given by: 
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The p-th quartile pt  of the Normal distribution is the solution of   
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where pzp   )(1  is the p-th quantile of the standard Normal distribution. 

Therefore  pp zt    is the p-th quantile or 100 p-th percentile of Normal 

distribution. 

The mean and variance of Normal distribution are: 

(ܶ)ܧ = (ܶ)ݎܸܽ				and					ߤ =  ଶߪ

In reliability data analysis, the use of the normal distribution is less common. It is 
useful for certain life data, for example, electric filament devices (e.g., incandescent 
light bulbs, toaster heating elements) and strength of wire bonds in integrated circuits. 

2.2.4 Lognormal Distribution 
When T has a Lognormal distribution, we indicate this by  ,LOGNOR~T , then 

 ,~)log( NORTY  . The median )exp(5. t  is a scale parameter and 0  is 

a shape parameter. The Lognormal distribution is a common model for failure times. 
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The probability density function, f(t) for Lognormal model is given by  
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Hence, the pdf of the Lognormal distribution is: 
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The cdf of  y is  
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is the cdf of the Lognormal distribution. 
 
The reliability function is   
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The hazard function,  th  is given by  
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The p-th quantile pt  of the Lognormal distribution is: 
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Mean of Lognormal distribution is: 

(ܶ)ܧ = ߤቆ݌ݔ݁ +
ଶߪ

2 ቇ 

Variance of Lognormal distribution is: 

(ܶ)ݎܸܽ = ߤ2)݌ݔ݁ + (ଶߪ)݌ݔ݁](ଶߪ − 1] 

Hazard function of the lognormal h(t) start at zero, increases to a point in time, and 
then decreases eventually to zero. This distribution is often used as a model for a 
population of electronic components that exhibits a decreasing hazard function. The 
lognormal distribution is a common model for failure times.The distribution is useful 
in modeling failure time of a population of electronic components with a decreasing 
hazard function (due to a small proportion of defects in the population). It is also used 
to describe the failure-time distribution of certain degradation processes. It can be 
justified for a random variable that arises from a product of a number of identically 
distributed independent positive random quantities. 



   

 

36

2.3 Complex Lifetime Models 

Because of quality variation, the failure times do not follow standard distributions and 
must be modeled by more complex model formulations. Complex models involve two 
or more simple models. The following Complex lifetime models have used in this 
thesis: 
 

 Mixture model 
 Competing risk model 
 Effect of quality variation in manufacturing (includes both Mixture & 

Competing risk model) 

2.3.1 Mixture Models 
A general m-fold mixture model involves m subpopulations and is given by  
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j
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(2.22) 

 
whereܨ௝൫ݐ; ௝൯ߠ  is the cdf associated withj-th sub-population with parameters ߠ௝ , 

݆ = 1,2,… ,݉and jp is the mixing probability of the j-th sub-population.  

Mixture of distributions can model the variability resulting from parts being bought 
from m different suppliers with ܨ௝(ݐ)  denoting the failure distribution for parts 
obtained from j-th supplier, ݆ = 1,2, … ,݉. 
 
The probability density function of m-fold mixture model is given by: 
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(2.23)                                                    

where )(tf j is the density function associated with ܨ௝(ݐ). 

The reliability function of m-fold mixture model is: 
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(2.24) 

The hazard function h(t) is given by
  



   

 

37

 thtw
tF

tfth j

m

j
j







1

)(
)(1

)()(
    

 (2.25) 

 
Where ℎ௝(ݐ) is associated with j-th subpopulation, and 
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We see that the failure rate for the model is a weighted mean of the failure rate for the 
subpopulations with the weights varying with t. 

2.3.1.1   Special Case: 2-fold Weibull Mixture Model (m=2) 

Let us suppose that,  
 

,ଵߚ)Weibul	~(ݐ)ଵܨ ,ଶߚ)Weibull~(ݐ)ଶܨଵ)andߟ  (ଶߟ

Putting m=2 in eq.(2.22) we get the cdf of the 2-fold mixture model, which is: 

 )()1()()( 21 tFptpFtF     (2.27)  

For the 2-fold two parameter Weibull mixture model, the model is characterized by 
five parameters: the shape and scale parameters for the two subpopulations and the 
mixing parameter p (0<p<1). 

The cdf of Weibull distribution is obtained from eq. (2.2). Putting this value in 
eq(2.27) we get the cdf of the 2-fold Weibull mixture model, which is:  
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The density function of 2-fold mixture model is:  
  

  )(1)()( 21 tfptpftf     (2.29) 

Putting this value of the pdf of Weibull distribution from eq.(2.1), in eq.(2.29) we get 
the pdf of the 2-fold Weibull mixture model, which is:  



   

 

38























































































 2211

2

1

22

2

1

1

11

1 exp)1(exp)(






 ttpttptf

       (2.30) 
The reliability function of 2-fold mixture model is:  

  )(1)()( 21 tRptpRtR     (2.31) 

We get the reliability function of Weibull distribution from eq.(2.3). Applying this 
value in eq.(2.31), we obtain the reliability function of  2-fold Weibull mixture model: 
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And the hazard function of 2-fold mixture model is:  
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From eq.(2.4) we get the hazard function of Weibull distribution.  
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Now, from equation (3.33),the hazard function of 2-fold Weibull mixture model is 
given by:  
 













































































21

11

21

1

11

1

1

exp)1(exp

exp

)(











tptp

ttp

th  

 













































































21

22

21

1

22

2

2

exp)1(exp

exp)1(












tptp

ttp

 



   

 

39

 














































21

21

21

exp)1(exp

)()1()()(



tptp

tfptpfth  

 
Finally, 
 












































21

21

exp)1(exp

)()(



tptp

tfth   (2.34) 

2.3.1.2 Special Case: Weibull-Normal-Exponential Mixture Model (m=3) 

Let us suppose that,  
,ߚ)Weibul	~(ݐ)ଵܨ ,(ߟ ,ߤ)Normal~(ݐ)ଶܨ  (ߜ)Exponential~(ݐ)ଷܨ		݀݊ܽ		(ߪ

Putting m=3 in eq.(2.22) we get the cdf of the 3-fold mixture model is given by: 
 

 )()1()()()( 3212211 tFpptFptFptF     (2.35)  

 
For the 3-fold mixture model, the model is characterized by the original model 
parameters for the three subpopulations and the mixing parameters ݌ଵ		and	݌ଶ , 
(0 < ଶ݌ଵand݌ < 1). 

The distribution function for Weibull, Normal and Exponential distributions are 
obtained from eq. (2.2), (2.12) and (2.7), respectively. Putting these values in eq(2.35) 
we get the cdf of the Weibull-Normal- Exponential mixture model, which is:  
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The density function of 3-fold mixture model is given by:  
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The pdf of Weibull, Normal and Exponential distributions are obtained from eq. (2.1), 
(2.11) and (2.6), respectively. Hence the pdf of the Weibull-Normal- Exponential 
mixture model is:  
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(2.38)                            

Again the reliability function of 3-fold mixture model is given by:  
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From eq. (2.3), (2.13) and (2.8), we get the reliability functions of Weibull, Normal 
and Exponential, respectively. Hence the ܴ(ݐ) of the Weibull-Normal- Exponential 
mixture model is:  
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And the hazard function of 3-fold mixture model is: 
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From eq.(2.4), eq.(2.14) and eq.(2.9), we get the hazard functions of Weibull, Normal 
and Exponential, respectively.  
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And   )(3 th  

 
Hence, putting the values of ௝ܴ(ݐ)s		andℎ௝(ݐ)s in equation (2.41),we get the hazard 

function of Weibull-Normal-Exponential mixture model. Where j =1, 2, 3. 
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2.3.2 Competing Risk Models 

A Competing risk model involvesm distributions and is derived as follows. Let 

Tdenote an independent random variable with a distribution function )(tFj , ݆ =

1,2,… ,݉. Then the cdf for a general m-fold competing risk model is given by 
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here  jj tF ;  are the distribution functions of the j-th sub-populations with parameters 

݆ ,௝ߠ = 1,2,… ,݉. This model is commonly referred as the Competing Risk Model. It 

has also been called The Compound Mod, Series System Model and Multirisk Model. 
The risk model has a long history and Nelson (1982, pp. 162-163) traces its origin to 
200 years ago.  

This is called a competing risk model because it is applicable when an item 
(component or module) may fail by any one of m failure modes, i.e., it can fail due to 
any one of the m mutually exclusive causes in a set ܥଵ, ,ଶܥ … ,  .௠ܥ
 
Note that (2.42) can be written as     
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Where )(1)( tFtF   and  )(1)( tFtF jj   for݆ = 1,2,… ,݉ . 

The density function of a general m-fold competing risk model is given by: 
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and can be written as      
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Again we know, )()( tRtF  and )()( tRtF jj  . So, from eq.(2.43), we get the 
reliability function of m-fold competing risk model is: 
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The hazard function of m-fold competing risk model is given by: 
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where )(thi  is the hazard function associated withj-thsubpopulation. 

2.3.2.1  2-Fold Weibull Competing Risk Model (m=2) 

Suppose that,  
,ଵߚ)Weibul	~(ݐ)ଵܨ ,ଶߚ)Weibull~(ݐ)ଶܨଵ)andߟ  (ଶߟ

Putting m=2 in eq.(2.42) we get the cdf of the 2-fold competing risk model is given 
by: 

)()()()()( 2121 tFtFtFtFtF     ( 2.47)                                      

Using the cdf of Weibull distribution from eq.(2.2), we get the cdf of 2-fold Weibull 
competing risk model, as:  
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(2.48) 

The probability density function,f(t) of the 2-fold competing risk model is:   
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Using the pdf of two parameters Weibull distribution given in eq.(2.1), we get: 
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Now,from eq.(2.49), the pdf for 2-fold Weibull competing risk model is :  
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Again the reliability function, R(t) of 2-fold competing risk model is: 

(ݐ)ܴ = ܴଵ(ݐ)ܴଶ(ݐ)     (2.51) 

Using the reliability function of Weibull distribution from eq.(2.3) in eq.(2.51), we 
achieve the reliability function of 2-fold Weibull competing risk model as: 
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The hazard function )(th  of 2-fold competing risk model is: 
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Hence, the hazard function of 2-fold Weibull competing risk model is given by: 
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2.3.3   Effect of Quality Variation in Manufacturing 

In the thesis, we propose to use a complex lifetime model for modeling the effect of 
quality variation inmanufacturing process. It is a general model in the sense that it 
contains both mixture and competing risk model.  

Herefollowing two main causes are considered for making variation on the quality of 
the manufactured items:  

 Assembly error: new mode of failure (detected soon after put in to operation), 
and 

 Component non-conformance:resulting in some items having inferior 
reliability (higher failure rate, shorter mean time to failure, etc.) 

The following notations are used for modeling the effect of quality variation: 

• Designed reliability : ܴ଴(ݐ) 
• Conforming item’s cdf : ܨ଴(ݐ) 
• Reliability function associated with assembly error (new failure mode): 

ܴଵ(ݐ) 
• cdf associated with assembly error (new failure mode): ܨଵ(ݐ) 
• Reliability function associated with non-conforming component item:  

ܴଶ(ݐ) 
• cdf associated with non-conforming component item:  ܨଶ(ݐ) 
• Probability that an item has an assembly error : ݍ 
• Probability that an item has an non-conforming component : ݌ 
• Probability that the item has no non-conforming component : (1 −  (݌

Under assembly errors situation, the reliability of produced items can be modeled by a 
modified competing risk model (Murthy et al. 2003) given by 

ܴ௔(ݐ) = ܴ଴(ݐ)[1 − ݐ				,[(ݐ)ଵܨݍ ≥ 0       (2.55) 

Under component non-conformance situation, the reliability of the produced items 
can be expressed as  

ܴ௡(ݐ) = (1 − (ݐ)଴ܴ(݌ + ݐ			,(ݐ)ଶܴ݌ ≥ 0       (2.56) 

With both assembly errors and problems with component non-conformance, that is, 
having combined effects, the reliability function of the produced item becomes: 
 

ܴ௤(ݐ) = [(1 − (ݐ)଴ܴ(݌ + 1][(ݐ)ଶܴ݌ − ݐ			,[(ݐ)ଵܨݍ ≥ 0  (2.57) 
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The cdf of the model with effect of quality variation in manufacturing is given by: 

(ݐ)௤ܨ = 1 − ܴ௤(ݐ) 

(ݐ)௤ܨ = 1 − [(1 − (ݐ)଴ܴ(݌ + 1][(ݐ)ଶܴ݌ −  (2.58)   [(ݐ)ଵܨݍ

= (1 − (ݐ)଴ܨ(݌ + (ݐ)ଶܨ݌ − (1 − (ݐ)ଵܨ(ݐ)଴ܴݍ(݌ +  (2.59) (ݐ)ଶܴ(ݐ)ଵܨݍ݌
 
Now, with both assembly errors and problems with component non-conformance, the 
probability density function of the item produced is: 
 

௤݂(ݐ) =
(ݐ)௤ܨ݀
ݐ݀ =

݀
ݐ݀
ൣ1 − [(1 − (ݐ)଴ܴ(݌ + 1][(ݐ)ଶܴ݌ −  ൧[(ݐ)ଵܨݍ

 

௤݂(ݐ) = (1 − (݌ ଴݂(ݐ) + ݌ ଶ݂(ݐ) + (1 − ݍ(݌ ଵ݂(ݐ)ܴ଴(ݐ) − (1 − ݍ(݌ ଴݂(ݐ)ܨଵ(ݐ) +
ݍ݌ ଵ݂(ݐ)ܴଶ(ݐ) − ݍ݌ ଶ݂(ݐ)ܨଵ(ݐ) (2.60) 

 
It can be easily seen that, this pdf contains three distributions with pdfs ଴݂(ݐ)	 , 

ଵ݂(ݐ)and ଶ݂(ݐ), and two additional parametersp and q.  
 
Based on the reliability function for the combined model effects (2.57), the following 
three Cases can be considered:  
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Case-1: 
If the product has neither component non-conformance error nor assembly error i.e., if 
we put ݌ = 0 and ݍ = 0in eq. (2.57), eq. (2.59) and eq. (2.60), respectively,then we 
get: 

ܴ௤(ݐ) = ܴ଴(ݐ)     (2.61) 
 

(ݐ)௤ܨ =  (2.62)     (ݐ)଴ܨ
 

௤݂(ݐ) = ଴݂(ݐ)     (2.63) 

These are the equations of the reliability function, cdf and pdf, respectively, when 
there exists no quality variation in the produced items. In this case, the field reliability 
remains the same as of design reliability of the product.  
 
Case-2: 
If the product has no assembly error but only component non-conformance i.e., if we 
put ݍ = 0  in eq.(2.57), eq.(2.59) and eq.(2.60), respectively, then the reliability 
function, cdf and pdfbecome: 
 

ܴ௤(ݐ) = (1 − (ݐ)଴ܴ(݌ +  (2.64)   (ݐ)ଶܴ݌
 

(ݐ)௤ܨ = (1 − (ݐ)଴ܨ(݌ +  (2.65)   (ݐ)ଶܨ݌
 

௤݂(ݐ) = (1 − (݌ ଴݂(ݐ) + ݌ ଶ݂(ݐ)   (2.66) 

These equations indicate the reliability function, cdf and pdfof a 2-fold mixture 
model, respectively. 
 
Case-3: 
If the product has no non-conformance component but only assembly error i.e., if we 
put ݌ = 0  and ݍ = 1  in eq.(2.57), eq.(2.59) and eq.(2.60), respectively, then the 
reliability function, cdf and pdfbecome: 
 

ܴ௤(ݐ) = ܴ଴(ݐ)ܴଵ(ݐ)    (2.67) 
 

(ݐ)௤ܨ = 1 − ܴ଴(ݐ)ܴଵ(ݐ)   (2.68) 
 

௤݂(ݐ) = ଴݂(ݐ)ܴଵ(ݐ) + ଵ݂(ݐ)ܴ଴(ݐ)   (2.69) 

These givethe reliability function, cdf and pdfof a 2-fold competing risk model, 
respectively. 
 
The models under Case-2 and Case-3 are the main models applied in this thesis 
extensively for modeling the product reliability data. 
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Chapter 3  
Statistical Methods for Reliability Data Analysis 

 

 

3.1   Introduction 
This chapter discusses how to fit a suitable probability model to a given dataset. It 
presentsthe following statistical methods to address the issue. 

3.2 Nonparametric Estimation of cdf 
Probability plots are commonly used to identify an appropriate model for fitting a 
given dataset. To present the data on a plotting paper, the empirical cdf for each 
failure time must be first estimated using a nonparametric method. Some parameter 
estimation methods such as the graphical and least square methods also require 
estimating the empirical cdf. 

A nonparametric analysis provides an intermediate step toward a more highly 
structured model allowing more precise or more extensive inferences, provided that 
the additional assumptions for such model are valid. Nonparametric analysis allows 
the analyst to characterize life data without assuming an underlying distribution. 
There are several methods for conducting a nonparametric analysis; we have used the 
Kaplan-Meier method discussed below:          

3.2.1 The Kaplan-Meier Estimate of Reliability Function 

Exact failure times arise from a continuous inspection process (or, perhaps, from 
having used a very large number of closely-spaced inspections). In the limit as the 
number of inspection increases and the width of the inspection intervals approaches 
zero, failures are concentrated in a relatively small number of intervals. Most intervals 

will not contain any failures. )(ˆ tF is constant over all intervals that have no failures. 

Thus with small intervals F̂  will become a step function with gaps over the interval, 
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where, there were failures and with jumps at the upper endpoint of the intervals. In the 
limit, as the width of the intervals approaches zero, the size of the gaps approaches 
zero and the step function increases at the reported failure times. This limiting case of 
the interval-based nonparametric estimator is generally known as the Product Limit or 
Kaplan-Meier Estimator (Kaplan and Meier (1958)). 

A useful way of portraying ungrouped univariate survival data is to compute and 
graph the empirical survivor function or, equivalently the empirical distribution 
function. This also provides a nonparametric estimate of the survivor or distribution 
function for the life distribution under study. 

If there are no censored observations in a sample of size n, the empirical survivor 
function (ESF) is defined as  
 

(ݐ)ܵ = ௡௨௠௕௘௥	௢௙	௜௡ௗ௘௩௜ௗ௨௔௟௦	௦௨௥௩௜௩௜௡௚	௟௢௡௚௘௥	௧௛௔௡	௧
௧௢௧௔௟	௡௨௠௕௘௥	௢௙	௜௡ௗ௜௩௜ௗ௨௔௟௦	௦௧௨ௗ௜௘ௗ

  (3.1) 

 
This is a step function that decreases by 1/n just after each observed lifetime, if all 
observation is distinct. More generally, if there are d lifetimes equal to t, the ESF 
drops by d/n just pass t. 
 
When dealing with censored data, some modifications of equation (3.1) is necessary, 
since the number of lifetime is greater than or equal to t will not be generally known 
exactly. The modification of (3.1) described here has come to be called the “Product-
Limit” (PL) estimate of the survivor function or, sometime the Kaplan-Meier 
estimate, from the authors who first discussed it’s properties (Kaplan and Meier, 
1958). 

 The Kaplan–Meier estimator (also known as the product limit estimator) 
estimates the survival function from life-time data. 

 The Kaplan-Meier estimator can be used to calculate values for 
nonparametric reliability for data sets with multiple failures and 
suspensions. 

 Product limit estimate of S(t) is the MLE of  S(t).                

This is an estimator used as an alternative to the median ranks method for calculating 
the estimates of the unreliability for probability plotting. The Kaplan–Meier estimator 
estimates the survival functions from life-time data. In medical research, it might be 
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used to measure the fraction of patients living for a certain amount of time after 
treatment. An economist might measure the length of time people remain unemployed 
after a job loss. An engineer might measure the time until failure of machine parts. An 
ecologist may use it to estimate how long fleshy fruits remain on plants before they 
are removed by frugivorous.           

Assumptions 

 Censored individuals have the same prospect of survival as those who 
continue to be followed. This cannot be tested for and can lead to a bias that 
artificially reduces S. 

 Survival prospects are the same for early as for late recruits to the study (can 
be tested for). 

 The event studied (e.g. death) happens at the specified time. Late recording of 
the event studied will cause artificial inflation of S. 

 
Suppose that, an initial sample of n units start operating at time zero. If a unit does not 
fail in the interval i. It is either censored at the end of the interval i or it continuous 
into interval (i+1). Information is available on the status of the units at the end of each 
interval. The intervals may be large or small and need not be of equal length, as long 
as the intervals for different units do not overlap. 
 
Suppose that, there are observations on n individuals and that there are   nkk   

distinct times kttt  ...21  at which deaths occurs. The possibility of there being 

more than one death at it  is allowed. Let id  denote the number of units that died or 

failed in the i-th interval ],( 1 ii tt  . In additions to the lifetimes ktt ,...,1 ,there are also 

censoring times iL  for individuals, whose lifetimes are not observed. Also let, ir  

denote the number of units that survive interval i and are right-censored at it . The 

units that are alive at the beginning of interval i are called the ‘risk set’ for interval i 
(i.e., those at risk to failure) and the size of risk set at the beginning of interval i is 

 



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
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1

0
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i
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i

j
jji rdnn i = 1,2,...,m (3.2) 
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Where m is the number of intervals and it is understood that, 00 d and 00 r . An 

estimator of the conditional probability of failing in the interval i, given that a unit 
enters this interval, is the sample proportion failing   

 
i

i
i n

dp ˆ  ,      i = 1,...,m                             (3.3) 

Now the Product-limit estimate of the survival function )( itS  is defined as 
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Let T be the random variable that measures the time of failure and let F(t) be its 
cumulative distribution function. Note that 

  )(1][1)( tFtTPtTPtS   
  

Hence,           )(ˆ1)(ˆ
ii tStF                              (3.5) 

 

Consequently, the right-continuous definition of )(ˆ tS  may be preferred in order to 

make the estimate compatible with a right-continuous estimate of F(t). 
 

Here ip̂  is the maximum likelihood (ML) estimator of the conditional probability ip . 

This implies that, )(ˆ
itF is the ML estimator of )( itF . The nonparametric estimator 

)(ˆ
itF  is defined at all it  values (endpoints of all observation intervals). Additionally, 

if interval i is known to have zero failures, then )(ˆ)(ˆ
1 ii tFtF for ii ttt 1 . If 

interval i is known to contain one or more failures, )(ˆ tF  increases from )(ˆ
1itF  to 

)(ˆ
itF in the interval  ],( 1 ii tt   but, as before, )(ˆ tF  is not defined over the interval.  

The product-limit estimate possesses several desirable large sample properties, a main 

one being that, )(ˆ tS  is a consistent estimate of )(tS , under suitable assumptions about 

censoring. A through study of the properties of the PL estimate is rather involved; 
work in this area has been done by Breslow and Crowley (1974), Meier (1975), Efron 
(1967), Kaplan and Meier (1958), Peterson (1977), Johansen (1978) and others. We 
shall merely outline a few pertinent results and refer the reader to these papers for 
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more details. The important points are that, )(ˆ tS  is a consistent estimate of  )(tS  

under quite broad conditions. 

A rigorous approach can be taken by discretizing the time axis and then passing to a 

limit. Suppose that, the time axis is partitioned into intervals  jjj aaI ,1  ,   

j=1,…,k+1, with 00 a  , Tak   and 1ka . Once again T is an upper limit on the 

observation time; asymptotic results about )(ˆ tS will refer to the interval [0,T). The PL 

estimate (3.3) can be viewed as the left continuous limit that the standard life table 

estimates give in estimating the saS j )'(  when  k while   0max 1  jj aa . 

Here we suppose, as before, that censoring times are never equal to lifetimes.  

To study properties of )(ˆ tS , it is necessary to make specific assumptions about 

censoring. For example, Breslow and Crowley (1974) adopt the independent random 
censorship model. Meier (1975) assumes that, the censoring times are fixed but that 
the sequence of censoring times has certain properties as the sample size n . In a 
careful treatment of this problem, it is necessary to verify the conditions under which 
the two limiting operations n  and k  can be interchanged. Breslow and 
Crowley (1974) and Meier (1975) give rigorous discussions of this. 

Nonparametric analysis allows the user to analyze data without assuming an 
underlying distribution. This can have certain advantages as well as disadvantages. 
The ability to analyze data without assuming an underlying life distribution avoids the 
potentially large errors brought about by making incorrect assumptions about the 
distribution. On the other hand, the confidence bounds associated with nonparametric 
analysis are usually much wider than those calculated via parametric analysis, and 
predictions outside the range of the observations are not possible. Some practitioners 
recommend that any set of life data should first be subjected to a nonparametric 
analysis before moving on to the assumption of an underlying distribution. 

3.3 Parameter Estimation Method 

For a given set of data and a given parametric model, the parameter estimation deals 
with determining the model parameters. There are several methods to estimate the 
parameters and different methods produce different estimates. We have used the 
Maximum Likelihood Estimation (MLE) Method to estimate the model parameters. A 
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well-known iterative procedure; the ExpectationMaximization (EM) Algorithm is 
used to estimate the MLE of the parameters. 

3.3.1 Maximum Likelihood Estimate of Parameter 
3.3.1.1 MLE for Complete Data 

For the case of complete data, the likelihood function L is given by    

 



n

i
itfL

1
;)(                                                              (3.6)                                              

Here ߠ  are the values of the model parameters. The maximumlikelihood estimate 

(MLE) of   is the value of ̂ , that maximizes the likelihood function given by (3.6). 

As a result the estimate is a function [say,  ],...,, 21 nttt  of the data. The expression 

 nTTT ,...,, 21  is called the maximumlikelihood estimator and plays an important role 

in study of the estimate.  

Under certain regularity conditions,maximumlikelihood estimators are consistent, 
asymptotically unbiased, efficient and normally distributed. Asymptotic efficiency 
here means that, as n , the covariance matrix of the estimator achieves the lower 
bound of the Cramer-Rao inequality. For a rigorous treatment of the theory of 
maximum likelihood, asymptotic results and related topics see Stuart and Ord (1991).  

3.3.1.2 MLE for Random Censored Data 

The general likelihood with failure and left, right and interval censored data, is the 
total likelihood or joint probability of the data for n independent observations, can be 
written as 
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where li, di, ri, and ni represent the numbers of left censored, interval censored, right 

censored and uncensored observations, respectively, and 1

1
( )m

j j j jj
n l d r n


    . 

C is a constant depending on the sampling inspection scheme but not on θ. So we can 
take C=1. 
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For Random censored data, the likelihood function is given by 
 

(ߠ)ܮ = ∏ ఋ೔[1[(௜ݐ)݂] − ଵିఋ೔௡[(௜ݐ)ܨ
௜ୀଵ    (3.7) 

           

where 1i , if the i-th observation is uncensored or failure at the time it  and  0i  

if the i-th observation is censored at the time it . We want to find the parameter vector, 

θ, so that L(θ) becomes maximum. 

3.3.2 Expectation Maximization Algorithm 

The general form of Expectation Maximization (EM) algorithm was given in 
Dempster, Laird, and Rubin (1977), although essence of the algorithm appeared 
previously in various forms. The EM algorithm is a broadly applicable iterative 
procedure for computing maximum likelihood estimates in problems with incomplete 
data. The EM algorithm consists of two conceptually distinct steps at each iteration: 

 Expectation-step or E-step and 
 Maximization-step or M-step 

3.3.2.1 Formulation of the EM Algorithm 

Suppose we have a model for a set of complete data Y, with associated density݂(ܻ|ߠ), 
where ߠ = ,ଵߠ) ,ଶߠ … ,  ௗ)ᇱ is a vector of unknown parameters with parameter spaceߠ
Ω. 

Here the complete data,ܻ = ( ௢ܻ௕௦	, ௠ܻ௜௦). That means, Y indicates all the observations 
that we wish to have. ௢ܻ௕௦represents the observed part of Y i.e., these all are the values 
of the observations that we have and ௠ܻ௜௦  denotes the missing values i.e., the 
incomplete or unobserved observations. 

The EM algorithm is designed to find the value of ߠ, which is denoted by ߠ∗, that 
maximizes the incomplete data log-likelihood 

log(ߠ)ܮ = log݂( ௢ܻ௕௦|ߠ) 

That is, the MLE of  ߠ based on the observed data ௢ܻ௕௦. 
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The EM algorithm starts with an initial value ߠ(଴) ∈ Ω. Suppose that ߠ(௞) denotes the 
estimate of ߠ at the k-th iteration; then the (k+1)st iteration can be described in two 
steps as follows: 

 E-step: 

Find the conditional expected complete-data log likelihood given observed data 
and ߠ =  .(௞)ߠ

ܳ൫ߠ|ߠ(௞)൯ = ,ߠ൫ܮ൫logܧ ܻ| ௢ܻ௕௦	, ߠ = ൯൯(௞)ߠ

= 	න log(ܻ|ߠ)ܮ	݂൫ ௠ܻ௜௦| ௢ܻ௕௦	, ߠ = ݀	൯(௞)ߠ ௠ܻ௜௦ 

This, in the case of linear exponential family, amounts to estimating the sufficient 
statistics for the complete data. 

 M-step 

Determine ߠ(௞ାଵ) to be a value of  ߠ ∈ Ω that maximizes ܳ൫ߠ|ߠ(௞)൯. 

The MLE of ߠ  is found by iterating between the E and M steps until a 
convergence criterion is met.  

Details can be found in Hartley (1958), Dempster et al. (1977), Little and Rubin 
(1987) and McLachlan and Krishnan (1997).  

3.3.2.2   Estimation of Mixing Proportions Using EM Algorithm 

Suppose that the pdf of a random vector has am-component mixture form 

   



m

j
jjj tfptf

1

     (3.8) 

and the reliability function of T has the form 

   
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jjj tRptR
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     (3.9) 

where the parameters  mmpp  ,....,,,...., 11 are such that 0jp  for (j=1,…,m) 

and 



m

j
jp

1

1 . Constant jp  is called mixing parameters and jf  a component density 
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function parameterized by j . Generally speaking, a mixture distribution can be 

composed of m component distributions jf , each of a different type. Estimating 

unknown parameters of a mixture in its different underlying components is a difficult 
undertaking. 

We let  Tntty ,...,1  denote the observed random sample obtained from the 

mixture density (3.8).  

The log-likelihood function for random censoring that can be formed from the 
observed data y is given by 

       
 i

i

itR
n

i
itftL
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 

1

1
,   (3.10) 

where i  is the censored indicator .i.e., if i =1, then the observation is failure & if 

i =0, then the observation is censored. The log-likelihood function can be expressed 
as: 

       



n

i
iiii tRtfL

1

ln)1(lnln   (3.11) 

We now introduce as the unobservable or missing data the vector 

 TT
n

T zzz ,...,1  

where iz  is a m-dimensional vector of zero-one indicator variables and where ijz is 

one or zero according to whether it  arose or did not arise from the j-th component of 

the mixture (i = 1, . . . , n ; j = 1, . . . , m). The EM algorithm handles the addition of 
the unobservable data to the problem by working with the current conditional 
expectation of the complete-data log likelihood given the observed data. On defining 
the complete-data vector x as 

 TTT zyx ,  

The complete-data log-likelihood for   has the form: 
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         
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(3.12) 
 

As eq.(3.12) is linear in the unobservable data ijz , the Estep (on the ( k + 1)th 

iteration) simply requires the calculation of the current conditional expectation of ijZ

given the observed data y, where ijZ is the random variable corresponding to ijz . Now  

  
        k

ijij zyZE k 


 

Where by Bayes Theorem 
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The evaluation of this expectation is called the E-step of the algorithm. The second 
step (the M-step) of the EM algorithm is to maximize the expectation we computed in 

the first step with respect to the parameters to obtain new parameter estimations  1 k

. To maximize eq. (3.12), we can maximize the term containing jp  and the term 

containing j  independently since they are not related. To find the expression for jp ; 

we introduce the Lagrange multiplier   with the constraint that 



m

j
jp

1

1 ; and taking 

the derivative of eq. (3.12) with respect to jp  equal to zero: 
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Summing both sizes over j and using  

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ijz 1; we get that n  resulting in: 
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For some distributions, it is possible to get analytical expressions for j  as a function 

of everything else. For example, if we assume j  contains the scale parameter j & 
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shape parameter j , of subpopulation j ; 0j , 0j . i.e.,  jjj  , . Then eq 
(3.8) & eq (3.9) become  

       
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jjjj tfptf
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,    (3.16) 

and 
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,    (3.17) 

Taking the natural logarithm of eq. (3.16) & (3.17) and substituting into the right side 
of eq. (3.12), we get: 
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Taking the derivative of eq (3.18) with respect to j & j ; set them to 0, we get: 
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(3.20) 

 

Eq. (3.15), (3.19) & (3.20) for the estimation of the new parameters  1 k  in terms of 

the old parameters  k  perform both the expectation step and the maximization step 
simultaneously. The algorithm proceeds by using the newly derived parameters as the 
guess for the next iteration. The E and M steps are iterated until the algorithm 
converges.  
 
Finally, the algorithm for the MLE of the parameters of a mixture distribution with 
censored data can be summarized: 
 

1. Begin with an initial guess of   0
jp ,  0

j &  0
j . 
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2. Using the initial values of   0
jp ,  0

j &  0
j  to calculate the k -th 

conditional expectation of ijz , i.e.,  k
ijz using eq. (3.13) 

3. In iteration k , find the MLEs of  1k
jp ,  1k

j &  1k
j  as follows: 

a. Find the MLE for  1k
jp  using eq. (3.15). 

b. Use eq.(3.19); calculate  1k
j . 

c. Use eq.(3.20); calculate  1k
j . 

4. Repeat steps 2 & 3 until the desired accuracy is reached. 
 
Although the principal reasons for the popularity of the EM algorithm are its easy 
implementation and stable convergence, various attempts have been made to speed it 
up, for it can converge quite slowly in some applications.Details on the application of 
EM algorithm for mixture models with censored data can be found in Ateya (2012), 
Bordes and Chauveau (2012) and Ruhi, et al. (2015). 

3.3.2.3 Applications of EM Algorithm 

EM algorithm is frequently used for – 

 Data clustering (the assignment of a set of observations into subsets, called 
clusters, so that observations in the same cluster are similar in some sense) 
used in many fields, including machine learning, computer vision, data 
mining, pattern recognition, image analysis, information retrieval, and 
bioinformatics. 

 Natural language processing (NLP is a field of computer science and 
linguistics concerned with the interactions between computers and human 
(natural) languages). 

 Psychometrics (the field of study concerned with the theory and technique of 
educational and psychological measurement, which includes the measurement 
of knowledge, abilities, attitudes, and personality traits.) 

 Medical image reconstruction, especially in positron emission tomography 
(PET) and single photon emission computed tomography (SPECT). 

 Multivariate Data analysis with Missing Values. 
 Analysis of Least Squares with Missing Data. 
 Multinomial with Complex Cell Structure. 
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 Analysis of PET and SPECT Data. 
 Analysis of Mixture distributions. 
 Analysis of Grouped, Censored and Truncated Data. 

3.3.2.4 Advantages of EM Algorithm 

 The EM algorithm is numerically stable, with each EM iteration increasing the 
likelihood 

 Under fairly general conditions, the EM algorithm has reliable global 
convergence (depends on initial value and likelihood!). Convergence is nearly 
always to a local maximizer 

 The EM algorithm is typically easily implemented, because it relies on 
complete data computations 

 The EM algorithm is generally easy to program, since no evaluation of the 
likelihood nor its derivatives is involved 

 The EM algorithm requires small storage space and can generally be carried 
out on a small computer (it does not have to store the information matrix nor 
its inverse at any iteration) 

 The M-step can often be carried out using standard statistical packages in 
situations where the complete-data MLEs do not exist in closed form 

 By watching the monotone increase in likelihood over iterations, it is easy to 
monitor convergence and programming errors 

 The EM algorithm can be used to provide estimated values of the missing data 

3.4   Model Selection Criterion 

A statistical hypothesis test is a method using observed samples to draw a statistical 
conclusion. Generally, it involves a null hypotheses and an alternative hypothesis 
about the distributions of the observations or about some statistical property (e.g., 
trend or independence). 

In this section we focus on a number of model selection criterions for selecting the 
suitable models for a data set among a set of competitive models. Most statistical 
methods assume an underlying distribution in the derivation of their results. However, 
when we assume that our data follow a specific distribution, we take a serious risk. If 
our assumption is wrong, then the results obtained may be invalid. 
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There are two main approaches to checking distribution assumptions. One involves 
empirical procedures, which are easy to understand and implement and are based on 
intuitive and graphical properties of the distribution that we want to assess. Empirical 
procedures can be used to check and validate distribution assumptions. 

There are also other, more formal, statistical procedures for assessing the underlying 
distribution of a data set. These are the goodness of fit (GoF) tests. They are 
numerically convoluted and usually require specific software to perform the lengthy 
calculations. But their results are quantifiable and more reliable than those from the 
empirical procedure. Here, we are interested in Akaike Information Criterion (AIC), 
Anderson-Darling (AD) test statistic, the Kolmogorov-Smirnov (KS) test statistic and 
the root mean squareerror (RMSE).  

3.4.1    Akaike Information Criterion 
Akaike's information criterion (AIC), developed by Hirotsugu Akaike under the name 
of ‘an information criterion’ (AIC) in 1971, is a measure of the goodness of fit of an 
estimated statistical model . This is the most widely used criterion for selecting the 
best model for a given data set.In the general case, the AIC is 

)ln(22 LkAIC  (3.21) 

wherek is the number of parameters in the statistical model, and L is the                        
maximized value of the likelihood function for the estimated model.  

AIC not only rewards goodness of fit, but also includes a penalty that is an increasing 
function of the number of estimated parameters. This penalty discourages overfitting. 
The preferred model is the one with the lowest AIC value. The AIC methodology 
attempts to find the model that best explains the data with a minimumoffree 
parameters. By contrast, more traditional approaches to modeling start from a null 
hypothesis. The AIC penalizes free parameters less strongly than does the Schwarz 
criterion. 

The AIC is not a test of the model in the sense of hypothesis testing; rather it is a test 
between models-a tool for model selection. Given a data set, several competing 
models may be ranked according to their AIC, with the one having the lowest AIC 
being the best. From the AIC value one may infer that e.g. the top three models are in 
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a tie and the rest are far worse, but it would be arbitrary to assign a value above which 
a given model is 'rejected'. 

3.4.2 Anderson-Darling Test Statistic 

The Anderson-Darling (AD) test (Stephens, 1974) is used to test if a sample of data 
came from a population with a specific distribution. The Anderson-Darling test makes 
use of the specific distribution in calculating critical values. This has the advantage of 
allowing a more sensitive test and the disadvantage that critical values must be 
calculated for each distribution. Currently, tables of critical values are available for 
the normal, lognormal, exponential, Weibull, extreme value type I, and logistic 
distributions. 

The Anderson - Darling test statistic is defined by 

ଶܣ = −ܰ − ܵ 

where 

ܵ =෍
2݅ − 1
ܰ

ே

௜ୀଵ

ൣlnܨ( ௜ܻ) + ln൫1 − )ܨ ேܻାଵି௜)൯൧ 

F is the cumulative distribution function of the specified distribution. Note that the 

௜ܻare the ordered data. 

The critical values for the Anderson-Darling test are dependent on the specific 
distribution that is being tested. Tabulated values and formulas have been published 
(Stephens, 1974, 1976, 1977, 1979) for a few specific distributions (normal, 
lognormal, exponential, Weibull, logistic, extreme value type 1). The test is a one-
sided test and the hypothesis that the distribution is of a specific form is rejected if the 
test statistic, A, is greater than the critical value. 

3.4.3 Adjusted Anderson Darling Test Statistic 

For a given distribution, the Anderson-Darling statistic may be multiplied by a 
constant (which usually depends on the sample size, n). These constants are given in 
the various papers by Stephens. In the sample output below, this is the adjusted 
Anderson-Darling (AD*) statistic. This is what should be compared against the 
critical values. Also, be aware that different constants (and therefore critical values) 
have been published. One just needs to be aware of what constant was used for a 
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given set of critical values (the needed constant is typically given with the critical 
values). 

Minitab calculates an AD* statistic for the distribution ID plot and for reliability/ 
survival analysis. These AD* statistic are equivalent and are represented in the output 
as Anderson-Darling (adj) or AD*. 

AD* is used because p-values for the Anderson-Darling statistic could not be 
calculated for multiply censored or arbitrary censored data. Unlike the standard 
Andersn-Darling statistic, the AD* is generalized to account for different plot-point 
methods the user can choose for constructing the probability plot.  

Using the plot points and the probability integral transformation described in 
D’Agostino and Stephens (1986), Minitab calculates the AD* as: 

∗ܦܣ = ݊∑ ௜ܣ) ௜ܤ	+ + ௜)௡ାଵܥ
௜ୀଵ    (3.22) 

Here        ܣ௜ = −ܼ௜ − ln(1 − ܼ௜) + ܼ௜ିଵ + ln(1 − ܼ௜ିଵ) 

௜ܤ   = 2ln(1 − ܼ௜)ܨ௡(ܼ௜ିଵ) − 2ln(1 − ܼ௜ିଵ)ܨ௡(ܼ௜ିଵ) 

௜ܥ   = ln(ܼ௜)ܨ௡(ܼ௜ିଵ)ଶ − ln(1 − ܼ௜)ܨ௡(ܼ௜ିଵ)ଶ − ln(ܼ௜ିଵ)ܨ௡(ܼ௜ିଵ)ଶ + 

							ln(1 − ܼ௜ିଵ)ܨ௡(ܼ௜ିଵ)ଶ 

ܼ௜is the fitted estimate of the cdf for the i-th plot point 

 ௡(ܼ௜)is the non-parametric estimate of cdf for the i-th plot pointܨ

ܼ଴ = 0 

௡(ܼ଴)ܨ = 0 

ܼ௡ାଵ = 1 − ܧ1) − 12) 

The AD* test statistic provides arelative measure of GoF. When comparing the GoF 
of multiple distributions for a given data set, the distribution with the smallest AD* 
offers the best fit. This comparative technique is valid only when comparing the fit of 
multiple distributions for a single data set. 
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3.4.4 Kolmogorov–Smirnov Test Statistic 

Consider a complete dataset. The Kolmogorov–Smirnov test statistic (KS test) is the 
maximumdifference between the empirical cdf and theoretical cdf given by 

௡ܦ =		ଵஸ௜ஸ௡௠௔௫ ൜݉ܽݔ ൬ฬ(ݐ)ܨ −
݅
݊ฬ , ฬܨ

(ݐ) −
݅ − 1
݊ ฬ൰ൠ 

If the sample comes from distribution  (ݐ)ܨ, then ܦ௡ will be sufficiently small. The 
null hypothesis is rejected at level ߙ, if  ܦ௡ > ݇ఈ, where ݇ఈ is the critical value at 
significance level of ߙ. According to Jiang (2015) the critical value of the test statistic 
can be approximated by 

݇௖ =
௔
√௡
ቀ1 − ௕

௡೎
ቁ    (3.23) 

 
The coefficient set (a,b,c) is given in Table 3.1. 

Table 3.1: Values of a, b and c at different values of α 
 

 0.01 0.05 0.1 ߙ
a 1.224 1.358 1.628 
b 0.2057 0.2593 0.3753 
c 0.6387 0.7479 0.8858 

 
The AD statistic is a modification of the KS test statistic and gives more weight to the 
tails than does the KS test. The KS test is distribution free in the sense that the critical 
values do not depend on the specific distribution being tested (note that this is true 
only for a fully specified distribution, i.e. the parameters are known). But the AD test 
makes use of the specific distribution in calculating critical values. The AD test is an 
alternative to the chi-square and KS GoF tests. 

3.4.5 Root Mean Square Error 
The rootmeansquareerror (RMSE) or rootmeansquare deviation (RMSD) is a 
frequently used measure of the differences between values (sample and population 
values) predicted by a model or an estimator and the values actually observed. The 
RMSE represents the sample standard deviation of the differences between predicted 
values and observed values. 
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The RMSE of an estimator ߠ෠with respect to an estimated parameter ߠ is defined as the 
square root of the mean square error: 

෠൯ߠ൫ܧܵܯܴ = ටܧܵܯ൫ߠ෠൯ = ටܧ ቀ൫ߠ෠ − ൯ߠ
ଶ
ቁ   (3.24) 

For an unbiased estimator, the RMSE is the square root of the variance, known as 
the standard deviation. 
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Chapter 4  
Product Reliability Data 

 

 

4.1    Introduction 

In recent years many manufacturers have collected and analyzed field reliability data 
to assess the quality and reliability of their products and to improve customer 
satisfaction. There are many sources of reliability- related data of a product. To 
analyze and model, reliability data are mainly collected from the laboratory or field, 
and sometimes from the published literature and experts’ judgments. The test data are 
observed and obtained under controlled conditions and the field data are usually 
recorded and stored in a management information system. Warranty claim data is 
used as an important source of field failure data which can be collected economically 
and efficiently through repair service networks and therefore, a number of procedures 
have been developed for collecting and analyzing warranty claim data (e.g. Karim and 
Suzuki, 2005; Karim et al., 2001; Lawless, 1998; Murthy and Djamaludin, 2002; 
Suzuki, 1985a,b; Suzuki et al., 2001. 

4.2 Field Reliability Data 

Manufacturer use the field information as a feedback to learn about the reliability 
problems of a product and to improve the quality of future generations of the same or 
similar products. Consumers can be used the field information to optimize the 
maintenance activities and spare part inventory control policy. Many enterprises use a 
management information system to store the maintenance-related information. Most 
of such systems are designed for the purpose of management rather than reliability 
analysis. As a result, the records are often ambitious and some essential information 
useful for reliability analysis is missed. 



   

 

66

Failure data may be obtained from a reliability or life test led in a controlled 
environment, the purpose of which is to operate units to failure in order to obtain data 
for reliability analysis. Preferably, to gain a set of complete data, where all of the units 
put on the test should be operated until they fail. Sometimes this is not possible due to 
time and budgetary restrictions and there will be accumulated test time for units that 
did not fail. But since, in field failure data, the units under analysis were operated 
under actual use conditions. Hence, while analyzing field failure data, the problem of 
operating conditions is not a matter of concern. Again field failure data is superior to 
laboratory test data in the sense that it contains valuable information on the 
performance of a product in actual usage conditions. 

4.3 Limitations of Field Reliability Data 

One of the drawbacks of field reliability data is that it may consist primarily of 
suspended data. Another one of the drawbacks of field reliability data is that it may be 
contaminated or incomplete. For example, many times field data gained for reliability 
analysis may have originally been collected for another purpose, such as financial 
warranty purposes. In some cases, the data may not contain all of the necessary 
information, required to achieve a good reliability analysis. Also, there may be large 
portions of essential information missing, that is, large segments of the field 
population which are unaccounted for. Have they failed? How long have they been 
running? Are they still in operation? The answers to these questions are very 
important to analyze the field data and if this information cannot be delivered for a 
large segment of the product's population, a field data analysis may provide erroneous 
results. It is generally a good idea to involve a reliability professional to develop the 
field data collection systems in order to avoid some of these drawbacks. 

This thesis analyses the following three data sets for estimating and predicting product 
reliability.   

 Data Set 1: Aircraft windshield failure data (secondary data) 
 Data Set 2: Battery failure data (primary data) 
 Data Set 3: Hydraulic pump failure data (secondary data) 

The following three sections of this chapter present these three data sets. 



   

 

67

4.4 Data Set 1: Aircraft Windshield Failure Data 
The windshield on a large aircraft is a complex piece of equipment, comprised 
basically of several layers of material. Aircraft windshield contains a very strong 
outer skin with a heated layer just beneath it, all coated under high temperature and 
pressure. Failures of the items are not structural failures. Instead, they typically 
involve damage or delamination of the nonstructural outer ply or failure of the heating 
system. These failures do not damage the aircraft but need replacement of the 
windshield.  

All the windshield data are routinely collected and analyzed. At any specific point in 
time, these data will include failures to date of a particular model as well as 
service/censored times of all items that have not failed. These types of data are known 
as incomplete data in the sense that not all failure times have as yet been observed. 
Data on failure and service times for a particular model windshield are given in Table 
4.1taken from Murthy, Xie and Jiang (2004), originally given in Blischke and Murthy 
(2000). The data consist of 153 observations of which 88 are classified as failed 
windshields, and the remaining 65 are service time (censored time) of windshields 
that had not failed at the time of observation. The unit for measurement is 1000h.   

Table 4.1:  Aircraft Windshield Failure Data 
 

Failure Times Service Times 
0.04 1.866 2.385 3.443 0.046 1.436 2.592 

0.301 1.876 2.481 3.467 0.14 1.492 2.6 
0.309 1.899 2.61 3.478 0.15 1.58 2.67 
0.557 1.911 2.625 3.578 0.248 1.719 2.717 
0.943 1.912 2.632 3.595 0.28 1.794 2.819 
1.07 1.914 2.646 3.699 0.313 1.915 2.82 

1.124 1.981 2.661 3.779 0.389 1.92 2.878 
1.248 2.01 2.688 3.924 0.487 1.963 2.95 
1.281 2.038 2.823 4.035 0.622 1.978 3.003 
1.281 2.085 2.89 4.121 0.9 2.053 3.102 
1.303 2.089 2.902 4.167 0.952 2.065 3.304 
1.432 2.097 2.934 4.24 0.996 2.117 3.483 
1.48 2.135 2.962 4.255 1.003 2.137 3.5 

Continued… 
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Failure Times Service Times 
1.505 2.154 2.964 4.278 1.01 2.141 3.622 
1.506 2.19 3 4.305 1.085 2.163 3.665 
1.568 2.194 3.103 4.376 1.092 2.183 3.695 
1.615 2.223 3.114 4.449 1.152 2.24 4.015 
1.619 2.224 3.117 4.485 1.183 2.341 4.628 
1.652 2.229 3.166 4.57 1.244 2.435 4.806 
1.652 2.3 3.344 4.602 1.249 2.464 4.881 
1.757 2.324 3.376 4.663 1.262 2.543 5.14 
1.795 2.349 3.385 4.694 1.36 2.56  

4.5 Data Set 2:  Battery Failure Data 

This data set represents the failure of the battery used in two different products, IPS 
and private cars,consist of both failure and censored lifetimes of the battery. This data 
set is primary data and collected from the users in Rajshahi region. The IPSs were 
used in residence or offices. Some batteries were maintained regularly and some were 
not maintained. The batteries of this data set are from different manufacturing 
companies broadly characterized into three categories denoted by ‘R’, ‘L’ and 
‘O’.The information regarding the names of the manufacturing companies are not 
disclosed here to protect proprietary nature of the information. 

The data set gives 192 observations of the battery and presented in Table 4.2. As can 
be seen the data consists of 107 failure data and 85 censored data. The column, 
characterized ‘Time’ indicates the age (in months) of the item at the data collection 
period. The column ‘Type’ specifies whether the data is a failure (denoted by 1) or 
censored data (denoted by 0). The column ‘Maint.info’ indicates that whether the 
battery was maintained regularly or not, here ‘1’ means the battery was maintained 
and ‘0’ means the battery was not maintained. Among the 192 observations 150 are 
found as maintained regularly by the user and 42 observations are found as non-
maintained. The column labeled ‘Product’presents the products in which the battery 
was used and finally the column labeled ‘Brand’indicates the name of the 
manufacturing company of the battery.  
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Table 4.2: Battery Failure Data 

Time Type Maint. info Product Brand Time Type Maint. info Product Brand 
2 0 0 IPS L 24 0 1 IPS L 
3 0 1 IPS O 24 1 1 IPS L 
3 0 1 IPS O 24 1 1 IPS L 

4 0 0 Car R 24 0 1 IPS L 
5 0 1 Car R 24 0 1 IPS R 
6 0 0 IPS O 24 0 1 IPS O 
6 0 1 IPS R 24 0 1 IPS O 
6 1 1 IPS L 24 1 1 IPS O 
6 0 0 IPS L 24 0 1 IPS R 
6 0 0 Car R 24 0 1 IPS R 
6 1 0 Car O 24 0 1 IPS R 

6 0 0 Car O 24 0 1 IPS L 
6 0 0 Car R 24 1 1 IPS O 
6 1 0 IPS L 24 0 1 IPS R 

7 0 1 IPS L 24 1 1 IPS R 
7 0 1 IPS O 24 0 1 IPS R 
7 0 0 IPS L 24 1 1 IPS O 
7 0 0 Car R 24 1 1 IPS L 
7 0 0 IPS L 24 0 1 IPS O 
7 0 0 Car R 24 1 1 IPS O 
7 1 0 IPS L 24 0 1 IPS R 
8 1 1 IPS R 24 1 1 Car R 
8 0 1 IPS R 25 0 1 IPS L 
8 0 1 IPS O 27 0 1 Car R 
8 0 0 IPS L 29 1 1 IPS L 
8 0 1 Car R 30 1 1 IPS L 
8 0 1 Car O 30 1 1 IPS O 
8 1 0 IPS L 30 1 1 IPS L 
9 0 0 IPS O 30 1 1 IPS L 
9 0 1 IPS L 30 0 1 IPS L 
9 1 1 Car R 30 1 1 IPS R 

10 0 1 IPS O 30 0 1 IPS L 
10 0 1 IPS R 30 0 1 IPS R 
10 0 1 IPS L 30 1 1 IPS R 
10 0 0 IPS L 30 0 1 IPS O 
10 0 1 Car R 30 1 1 IPS O 
10 1 0 IPS L 30 1 1 IPS R 
10 1 0 IPS L 30 0 1 IPS R 

Continued… 
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Time Type Maint. info Product Brand Time Type Maint. info Product Brand 
10 0 0 Car R 30 0 1 IPS O 
11 0 1 Car R 30 1 1 IPS L 
11 0 0 Car R 30 1 1 IPS O 
11 1 0 IPS L 30 1 1 IPS O 
11 1 1 Car R 30 1 1 IPS R 
11 1 0 IPS L 30 1 1 IPS L 
11 1 0 IPS L 30 1 1 Car R 
12 0 1 IPS R 31 1 1 IPS L 
12 1 1 IPS O 31 1 1 IPS O 
12 0 1 IPS O 33 0 1 IPS L 
12 1 0 IPS O 33 1 1 Car R 
12 0 1 IPS R 34 1 1 Car R 
12 1 1 IPS L 34 1 1 IPS L 
12 0 1 IPS L 36 1 1 IPS L 
12 0 1 IPS R 36 0 1 IPS R 
12 0 0 IPS O 36 1 1 IPS O 
12 1 0 IPS R 36 1 1 IPS R 
12 0 0 IPS L 36 1 1 IPS O 
12 0 1 IPS L 36 1 1 IPS O 
12 0 1 IPS O 36 0 1 IPS R 
12 0 1 IPS R 36 1 1 IPS R 
12 1 0 Car R 36 1 1 IPS R 
12 0 1 Car R 36 1 1 IPS L 
12 0 1 IPS L 36 0 1 IPS R 
12 1 0 IPS L 36 1 1 IPS L 
13 1 0 IPS L 36 1 1 IPS L 
13 1 0 Car R 36 0 1 IPS O 
13 0 0 IPS L 36 1 1 IPS R 
13 1 0 IPS L 36 1 1 IPS O 
13 1 0 IPS L 36 1 1 IPS R 
14 0 1 IPS L 36 1 1 IPS R 
14 0 1 IPS L 36 1 1 IPS R 
14 1 0 Car R 36 1 1 Car R 
15 1 0 IPS L 38 0 1 Car O 
15 0 1 IPS L 40 1 1 Car R 
15 1 0 IPS O 42 0 1 IPS R 
15 1 0 IPS L 42 1 1 IPS R 
17 0 1 Car R 42 1 1 IPS R 
18 0 1 IPS R 42 1 1 IPS L 
18 1 0 IPS L 42 1 1 IPS R 
18 1 1 IPS R 42 1 1 IPS O 

Continued… 
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Time Type Maint. info Product Brand Time Type Maint. info Product Brand 

18 1 1 IPS O 42 0 1 IPS R 

18 1 1 IPS O 42 1 1 IPS R 

18 1 1 IPS O 42 1 1 IPS O 

18 0 1 IPS O 42 1 1 IPS R 

18 1 1 IPS R 42 1 1 IPS R 

19 1 1 Car R 42 1 1 IPS L 

19 1 1 Car R 42 1 1 IPS L 

20 0 0 IPS O 42 1 1 IPS O 

20 1 1 IPS O 44 1 1 IPS L 

20 1 1 IPS L 45 1 1 IPS L 

20 1 1 Car R 50 1 1 Car R 

21 0 1 IPS L 52 1 1 IPS L 

22 0 1 IPS R 53 1 1 IPS O 

23 1 1 IPS R 53 1 1 IPS L 

23 0 1 IPS R 55 1 1 Car O 

23 1 1 Car R 56 1 1 Car O 

24 0 1 IPS O 76 1 1 Car O 
 

4.6 Data Set 3: Hydraulic Pump Failure Data 

This data set deals with the maintenance of Hydraulic pumps used in Excavators by a 
mining company. The data had been collected by the owner (mining company) and 
carried out an analysis and building models for pump failures. The data given in 
Murthy, Karim and Ahmadi (2015) and Karim, Ahmadi and Murthy (2015) contain of 
both failure and censored lifetimes of the pump. 

The hydraulic pumps considered here used in excavators by a mining company. In 
open cut mines, coal and overburden are transported using excavators and dump 
trucks. Hydraulic system is one of the important among the several systems that 
included in an excavator. The hydraulic system is comprised of several hydraulic 
pumps (for linear and rotational motions), hydraulic oil filters and several hydraulic 
lines. A pump is known as failure, if it cannot provide the required flow rate at the 
specified pressure. The data have recorded by the maintenance department, consist of 
the failure times (for units that have failed and required Corrective Maintenance 
action) and service times (for units that have not failed yet and sent for Preventive 
Maintenance action) for 102 units and presented in Table 4.3. As can be seen the data 
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consists of 45 failure and 57 censored observations. The column, labeled ‘Age’ means 
the age (in hours) of the item at the end of the data collection period and the column 
labeled ‘Type’ indicates whether the data is a failure data (denoted by 1) or censored 
data (denoted by 0). More detail description of the data can be found in Murthy, et al. 
(2015) and Karim, et al. (2015). 

4.6.1 Pump Failures 

A pump is considered to have failed if it cannot provide the required flow rate at the 
necessary pressure. Pump failure is detected by sensors and relayed to the operator. 
The pump failure is happened because of failure of one or more components of the 
pump. There can be one or more failure modes for each component and several causes 
leading to the failure. 

4.6.2 Pump Maintenance 

The mine operates 3 identical excavators on site with 2 engines per excavator and 4 
hydraulic pumps (variable displacement axial piston pumps) per engine. The mine has 
a small maintenance department which carries out the PM and manages the 
outsourcing of pumps for CM actions (when a pump failure occurs) and PM actions 
involving the overhaul of pumps. 

The mining company used an age based policy for pump maintenance. Under this 
policy a pump is subjected to a replacement (PM action) after being in operation for 
specified period (T hours) or on failure (CM action) should it occur earlier. The pump 
used in the replacement may be either new or reconditioned. Based on the condition 
of the pump removed (under either PM or CM) it is either scrapped or subjected to an 
overhaul which results in a reconditioned pump. The general accepted notion is that a 
reconditioned pump is as-good-as a new pump. The maintenance was outsourced to a 
maintenance service agent (Karim, et al., 2015).  
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Table 4.3: Hydraulic Pump Failure Data 

Age 
(hrs) 

Type Age 
(hrs) 

Type Age 
(hrs) 

Type Age 
(hrs) 

Type 

81 0 3333 1 9334 1 12198 0 
149 1 3569 1 9368 1 12198 0 
245 1 3837 0 9729 1 12198 0 
340 1 3837 0 9751 0 12198 0 
407 1 4150 0 10299 1 12236 0 
461 1 5123 1 10389 0 12236 0 
629 1 5258 1 10413 0 12236 0 
856 0 5662 0 10557 1 12236 0 
947 0 5923 1 10944 1 12236 0 
1460 1 6333 1 10970 1 12236 0 
1513 1 6717 1 11647 0 12394 0 
1670 1 7207 1 11678 1 12459 0 
1688 0 7265 1 11686 1 13097 0 
2093 0 7624 1 11798 0 13497 0 
2242 0 7625 0 11869 0 13497 0 
2242 0 7973 1 11869 0 13497 0 
2242 0 8183 1 11923 0 13497 0 
2242 0 8217 1 12005 0 13497 0 
2242 0 8390 1 12082 0 13497 0 
2607 1 8462 1 12090 0 13497 0 
2668 1 8728 1 12136 0 14407 1 
2806 1 8817 1 12141 0 15536 1 
3132 0 8870 1 12143 0 16289 1 
3132 0 8884 0 12163 0 17517 1 
3132 0 9055 1 12198 0 
3132 0 9182 1 12198 0 
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Chapter 5 
Data Analysis 

 

 

5.1 Introduction 
As discussed before, product reliability data collected from the field can have a 
number of special features related to censoring, non-homogeneity of the population, 
and lack of information on explanatory variables and multiple failure modes. These 
special features lead to difficulties in applying ordinary statistical models and 
methods for data analysis and thus they require the use of complex statistical models 
and special statistical methods.  

This chapter analyses the three data sets (presented in previous Chapter) for 
estimating and predicting products reliabilities.   

5.2   Aircraft Windshield Failure Data Analysis 

Murthy, Xie and Jiang (2004) proposed the 2-fold Weibull mixture model for the 
Windshield data. They indicated that WPPPlot method give good estimate of the 
model parameters. We have applied the EM algorithm, to find the maximum 
likelihood estimates of the parameters for the 2-fold Weibull mixture model and 
investigate the performance of the proposed method over the method of Murthy et al. 
(2004).  

The aims of the analysis are to check whether the graphical estimation method or 
maximum likelihood estimation method fit the data well and to estimate the reliability 
of the Windshield. R programming codes are written for the computations of the MLE 
of the model parameters by using EM algorithm of this data set. Programming codes 
for analyzing the data with 2-fold Weibull mixture model are given in section A.1 in 
the Appendix. The given codes can be used for other 2-fold mixture models after 
simple modifications. 
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5.2.1 Nonparametric Estimate of Reliability Function 

Figure 5.1 is the reliability (or survival) plot for the component. The plot appears to 
be reasonable; it shows the estimated MTTF is 3.03549 thousand hours or 
approximately 127 days. The nonparametric estimate of median lifetime is 2964 h, 
indicates that 50 % of the Windshield fails at 2964 h. The nonparametric estimate of 
cdf, known as empirical distribution function (edf) is one minus the estimated 
reliability function. 
 

 
 

Figure 5.1: Non-parametric reliability plots of Windshield failure data 

5.2.2 Parametric Estimate of Reliability Function 

Murthy et al. (2004) assumed the 2-fold Weibull mixture model for this data set and 
estimated the model parameters based on WPP plot method. In this thesis we have 
applied the EM algorithm, to find the maximum likelihood estimates of the 

parametersߠ = ൫ߚଵ	, ,	ଵߟ ,	ଶߚ ,	ଶߟ ,	݌ (1 − -൯ for the 2-fold Weibull mixture model. 2(݌
fold Weibull mixture model is discussed in Section 2.3.1.1. Also this model can be 
derived in Case-2 from the general model for quality variation (2.3.3).We investigate 
the performance of the proposed method over the method of Murthy et al. (2004). A 
comparison between the estimates of the parameters obtained by two different 
methods is given in Table 5.1.  
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Table 5.1: Estimates of parameters of 2-fold Weibull mixture model 

Parameters 
Estimates based 

on WPP 
Estimates based 
on EM algorithm 

1̂  0.429 1.2390 

1̂  8.230 0.2481 

2̂  2.990 2.7787 

2̂  3.210 3.4852 

p̂  0.136 0.0176 

 p̂1  0.864 0.9824 

Table 5.1 indicates that two methods give reasonably different estimates for the model 
parameters.  

5.2.3 Model Selection 

This section applies the graphical approach for selecting the best fitted model for the 
data set. We have estimated the cdfs and reliability functions of 2-fold Weibull 
mixture model based on both nonparametric (by Kaplan–Meier method) and 
parametric (by EM Algorithm) approaches. The cdf and reliability function are also 
estimated by using the WPP plot method [estimates are taken from Murthy et al. 
(2004)]. Figures 5.2 and 5.3 compare the estimated reliability functions and cdfs, 
respectively to find out the best approach for the data set. 

 

Figure 5.2: Comparison of reliability functionsof Windshield failure data 
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From Figure 5.2, we observe that the reliability function obtained by the EM 
algorithm method is much closer to the Kaplan-Meier estimate than that of the 
reliability function estimated by the WPP plot method. The plots of cdfs shown in 
Figure 5.3 conclude the same. These indicate that the method of maximum likelihood 
estimation with the EM algorithm procedure is better than the WPP plot procedure. 

 

Figure 5.3 Comparisons of cdfs of Windshield failure data 
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Some of the reliability related important characteristics such as mean time to failure 
(MTTF), B10 lifetime, B50 (median) lifetime of the Windshield obtained by two 
methods are displayed in Table 5.2: 

Table 5.2:Estimates of reliability characteristics of Windshield 

Quantities EM algorithm method WPP Plot method 
MTTF 3.0519 5.5782 

B10-Lifetime 1.5240 1.3125 
B50-Lifetime 3.0040 2.9298 

 
Table 5.2 indicates that the estimates of MTTF obtained from maximum likelihood 
method via the EM algorithm and from WPP plot method are 3.0519 (thousand hours) 
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algorithm is very close to the nonparametric estimate of MTTF (3.03549 thousand 
hours) given in Figure 5.1. The WPP method overestimates the MTTF in this case. 
From the estimates of B10-lifetime and B50-lifetime, we may conclude according to 
EM algorithm method that, 10% of the total Windshield fail at 1524 hours and 50% of 
Windshield fail approximately at 3004 hours. These estimates would be useful to the 
manufacturer and users for fixing the proper warranty period and/or replacement 
period of Windshield. 

5.3 Battery Failure Data Analysis 

In the battery failure data set, there is a variable named ‘Maint. info’ which indicates 
whether the battery was maintained regularly or not. This information is known for all 
observations and among 192 observations 150 are found as maintained regularly by 
the user and 42 observations are found as non-maintained. 

To analyze this data set, let us assume following two cases:  

 Case-1:Information on Maintenance action is known for all observations in 
the database. 

 Case-2:Information on Maintenance action is unknown for all observations in 
the database. 

The aim of analysis is to compare the estimated reliabilities of the batteries for two 
different Cases. That is, what would be the performance of the method if it is assumed 
that information on maintenance action is not given in the database? 

5.3.1 Nonparametric Estimates of Reliability Functions 

First we estimate the reliability functions for the batteries that were maintained 
regularly and for the batteries that were not maintained regularly. Figure 5.4 shows 
the nonparametric estimate of reliability function for batteries that were maintained 
regularly by the users. The figure shows the nonparametric estimate of MTTF is 
35.0772 months (or approximately 1052 days or 2.88 years). The nonparametric 
estimate of median lifetime is 36 months, indicates that 50 % of the battery fails at 
approximately 1080 days. 
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Figure 5.4: Non-parametric reliability plot for regularly maintained batteries 

Figure 5.5 shows the nonparametric estimate of reliability function for batteries that 
were not maintained regularly by the users. The figure shows the estimated 
nonparametric MTTF is 12.7807 months (or approximately 383 days or 1.05 years). 
The nonparametric estimate of median lifetime is 13 months, indicates that 50% of the 
battery fails at approximately 390 days. 

 

 

Figure 5.5: Non-parametric reliability plot for non-maintained batteries 
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5.3.2 Parametric Model Selection 

This section applies the graphical and statistical approaches for selecting the best 
fitted models for the data set for two cases, Case-1 and Case-2. First we present the 
results for Case-1, when maintenance information is known. Under this Case, since 
the maintenance information is known, the observations can be grouped into two 
groups – maintained and non-maintained items. Different lifetime models are applied 
and corresponding cdfs are estimated for both groups. It is found that single Normal 
and single Weibull distributions give comparatively better fit among all the other 
models, for both the groups: maintained batteries and non-maintained batteries. The 
results of these two groups are displayed in Figures 5.6 and 5.7, respectively. 

 

Figure 5.6: Comparison of cdfs for regularly maintained batteries 

 

Figure 5.7: Comparison of cdfs for non-maintained batteries 

20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cdf for Maintained Data

 Time (hours)

cd
f K-M cdf

cdf of Weib
cdf of Norm

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

cdf for Non-maintained Data

 Time (hours)

cd
f K-M cdf

cdf of Weib
cdf of Norm



   

 

81

Based on the comparisons with non-parametric cdfs, both of the Figures 5.6 and 5.7 
indicate that Weibull or Normal can be considered as the best fitted models. 

The estimated values of different model selection criterions, such as, Akaike 
Information Criterion (AIC), adjusted Anderson Darling (AD*) value and root mean 
square error (RMSE) for maintained and non-maintained groups are given in Tables 
5.3 and 5.4, respectively. 

Table 5.3: Estimates ofAIC, AD*and RMSE for maintained items 

 
 
 
 
 
From Table 5.3, we found that the Normal distribution contains the lowest values for 
AIC, AD* and RMSE. Hence Normal distribution can be selected as the best fitted 
model for the batteries that were maintained regularly. 

Table 5.4: Estimates ofAIC, AD*and RMSE for non-maintained items 

 
 
 
 
 
 

Table 5.4 indicates that Normal distribution contains the lowest value for AIC, AD* 
and RMSE and hencethe Normal distribution can be selected as the best model for the 
batteries that were not maintained regularly. 

By utilizing the above information and based on the ideas of mixture distributions, the 
cdf of the battery, say ܩଵ(ݐ), can be estimated as 

(ݐ)ଵܩ = (ݐ)ଵܨଵ݌ +  (5.5)    (ݐ)ଶܨଶ݌

Here, the cdf for maintained batteries ܨଵ(ݐ)  follows Normal distribution with 
parameters (ߤଵ,  also follows Normal(ݐ)ଶܨଶଵ),the cdf for non-maintained batteriesߪ
distribution with parameters (ߤଶ, ଵ݌ ,(ଶଶߪ  is the probability of batteries belong to 

Models AIC AD* RMSE 

Normal 699.674 1.624 0.0339 

Weibull 700.336 1.714 0.0378 

Models AIC AD* RMSE 

Normal 131.706 5.604 0.0539 

Weibull 132.482 5.638 0.0628 
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maintained subpopulation (=150/192) and ݌ଶbe the probability of batteries belong to 
non-maintained subpopulation (= 42/192). 

Next we consider modeling for the Case-2, where information on maintenance action 
is unknown for all observations in the database.To do this, we put ݍ = 0  in the 
general model in eq.(2.60) and obtain the pdf of 2-fold mixture model as given in 
eq.(2.66). To select the best fitted model for this data, we have applied a group of 
mixture models (combination of different standard lifetime models). The EM 
algorithm, discussed in section 3.3.2, is applied for finding the MLEs of the 
parameters of the 2-fold mixture models. It is observed that the 2-fold Weibull and 
Weibull-Normal mixture models give comparatively better fit than all the other 
mixture models. Results are displayed in Figure 5.8 to identify the model that fits best 
for the data set for Case-2. 

 

Figure 5.8: Comparison of cdfs when maintained information is unknown 

 

From the above figure 5.8 we can see that both the mixture models (2-fold Weibull & 
Weibull-Normal mixture) give approximately same result and give a good fit. So, 
both the models (2-fold Weibull mixture and Weibull-Normal mixture) can be 
selected as the best fitted model for this data set, when information on maintenance 
action is unknown. 

The estimated values of different model selection criterions are given in Table 5.5 for 
selecting the best fitted mixture models for Case-2.  
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Table 5.5: Estimates ofAIC, AD* and RMSE when maintained information unknown 

 

 

 

 

Table 5.5 shows that the 2-fold Weibull mixture distribution has the lowest AIC value 
and Weibull-Normal mixture model contains the lowest values for AD* and RMSE. 
Hence, we may conclude that any of the two mixture models can be selected as the 
best fitted model for Case-2.  

5.3.3 MLEs of the Parameters 

The MLEs of the parameters of the models for Case-1 are displayed in table 5.6. Note 
that, in this Case, the estimates of  ݌ଵ and ݌ଶ are (150/192= 0.7812) and (42/192= 
0.2187), respectively.  

 

Table 5.6: MLEs of the Parameters for Case-1(Maintenance information known) 

 

Models MLEs of Parameters 

Normal (ߤଵ	, ,	ଵߤ) (ଵߪ (ଵߪ = (34.6410	, 11.6502)	

Normal (ߤଶ	, ,	ଶߤ) (ଶߪ (ଶߪ = (12.7456	, 3.3523)	

Similarly, the MLEs of the parameters of the models for Case-2 are displayed in table 
5.7. Note that, in this Case, the MLEs of the parameters are obtained via the EM 
algorithm.  
  

Models AIC AD* RMSE 

2-fold Weibull mixture 907.4917 0.8585 0.0350 

Weibull-Normal mixture 908.0093 0.8349 0.0344 
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Table 5.7: MLEs of the Parameters for Case-2 (Maintenance information unknown) 

 

Models MLEs of Parameters 

ଵߚ)݈݈ݑܾܹ݅݁ , (ଵߟ ଶߚ)݈݈ݑܾܹ݅݁− , ଵߚ) (ଶߟ , ,ଵߟ ,ଶߚ ,ଶߟ ,ଵ݌ (ଶ݌ = (9.5796	,
39.3209	, 2.1019	, 33.0784	,0.2696,	0.7304) 

,	ߚ)݈݈ݑܾܹ݅݁ (ߟ − ,	ߤ)݈ܽ݉ݎ݋ܰ ,	ߚ൫ (ߪ ,	ߟ ,	ߤ ,	ߪ ଶ൯݌,	ଵ݌
= (2.0920	, 33.1085	, 37.1120	, 4.7752	,
0.7261	, 0.2739) 

Therefore, the fitted model for Case-1 is: 

(ݐ)෠ଵܩ = 0.7812	Norm(ߤଵ = 34.6410	, ଵߪ = 11.6502) + 

    0.2187	Norm(ߤଶ = 12.7456	, ଶߪ = 3.3523) 

and for Case-2 is: 

(ݐ)෠ଶܩ = 0.2696	Weib(ߚଵ = 9.5796	, ଵߟ = 39.3209) + 

0.7304	Weib	(ߚଶ = 2.1019	, ଶߟ = 33.0784) 

For 2-fold Weibull mixture model, or 

(ݐ)෠ଶܩ = 0.7261	Weib(ߚ = 2.0920	, ߟ = 33.1085) + 

0.2739	Norm(ߤ = 37.1120	, ߪ = 4.7752) 

For Weibull-Normal mixture model. 

5.3.4 Measures of Lifetime Quantities 

To compare the Case-1 and Case-2, this section presents the measures of some 
lifetime quantities (such as, MTTF, median, B5-lifetime and B10-lifetime) of the 
batteries for Case-1 and Case-2.  These results are shown in Table 5.8. 
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Table 5.8: Comparison of lifetime quantities for Case-1 and Case-2 

 
 Maintenance information 

known (Case-1) 
Maintenance information unknown 

(Case-2) 
 Normal-Normal Mixture 2-fold Weibull 

Mixture 
Weibull-Normal 

Mixture 
MTTF 29.85 31.47 31.46 
Median 29.85 30.50 30.34 
B5 life 13.67 13.66 13.83 

B10 life 17.25 16.66 16.69 
 

Table 5.8 shows that all the measures of lifetime quantities for Case-1 and Case-2 are 
very close to each other. So, from this analysis we can conclude thatdata without 
maintenance information provides approximately similar result with the data having 
maintenance information. 

5.4 Hydraulic Pump Failure Data Analysis 

Karim, et al. (2015) applied single Weibull, 2-fold Weibull mixture and 3-fold 
Weibull mixture models for this data set and suggested the 3-fold Weibull mixture 
model as the best fitted model on the basis of various graphical and statistical 
approaches. While analyzing this data set, first we assume that the data contain only 
mixture but no failure mode information. So, we put ݍ = 0 in eq.(2.60), which gives 
the form of the pdf of a mixture model. Again assuming the data do not contain any 
mixture but only failure mode information, we put݌ = 0	and	ݍ = 1in eq.(2.60) and 
obtain the pdf of a competing risk model. Various graphical and statistical methods 
have been applied to find out the best fitted models. 

Firstly let us assume thatthere exists only mixture in the data. In addition to 3-fold 
Weibull mixture model, here we assume two other 3-fold mixture models (Weibull-
Normal-Exponential and Normal-Lognormal-Weibull) for the data. Our aim is to find 
out whether any other 3-fold mixture models fit this data set better than the 3-fold 
Weibull mixture model or not. And if the distribution changed, what would be its 
effect on optimal maintenance policy. R programming codes are written for the 
computations of thisdata set. Programming codes for analyzing the data with Weibull-
Normal-Exponential mixture model are given in section A.2 in the Appendix. The 
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given codes can be used for other two 3-fold mixture models after simple 
modifications, mainly related to the functions dweibull(), pweibull(), dnorm(), 
pnorm(), dexp() and pexp() and the parameter vector theta.  

Secondly, assuming the data contain only failure mode information, we apply a set of 
2-fold competing risk models to find out the distributions for two different failure 
modes - existenceof assembly errorsand no assembly errors. 

5.4.1 Model Selection 
This section applies the graphical and statistical approaches for selecting the best 
fitted model for the data set among three competitive 3-fold mixture models listed in 
Table 2. A relatively straightforward approach to select a tentative model is to utilize 
the plotting methodology where the cdfs obtained from parametric estimates are 
compared with the empirical distribution function. More detail about this comparison 
can be found in Blischke, Karim and Murthy (2011). The cdfs of 3-fold Weibull, 
Weibull-Normal-Exponential and Normal-Lognormal-Weibull mixture modelsare 
compared with the empirical distribution function (nonparametric estimate of cdf 
from Kaplan-Meier (KM) estimate) and the resultsare displayed in Figure 5.9. 

 

Figure 5.9: Comparison of parametric and nonparametric estimates of cdfs 
 

Figure 5.9 indicates that all the cdfs obtained from the three different mixture models 
give approximately same result, except at the right tail of the figure of cdfs, where the 
cdfs of Weibull-Normal-Exponential and Normal-Lognormal-Weibull mixture models 

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of cdfs

 Time (hours)

cd
f

K-M cdf
cdf of 3 fold Weib
cdf of Weib-Norm-Expon
cdf of Norm-Lnorm-Weib



   

 

87

belong slightly closer to the nonparametric estimate of cdfthan that of the cdf of 3-
fold Weibullmixture model. Hence we may consider both theWeibull-Normal-
Exponential and Normal-Lognormal-Weibull mixture models for the data set. 

The statistical approaches provide a more rigorous method for model selection and 
validation. Various statistics (such as AD, KS test statistic, AICand RMSE) are 
applied here for model selection and validation. The estimates of AIC, AD*, KS test 
statistic and RMSE for the three competitive models are given in Table 5.9. 

Table 5.9: Estimates ofAIC, AD*, KS test statistic and RMSE for the models 

From Table 5.9, we found that the Weibull-Normal-Exponential mixture model 
contains the smallest values of AIC& RMSE and the Normal-Lognormal-Weibull 
mixture model contains the smallest value of AD* test statistic among all of the 
mixture models. Hence, it can be concluded that, among these mixture models, 
Weibull-Normal-Exponential mixture model can be selected as the best model for 
hydraulic pump failure data according to the values of AIC andRMSE. 

We have also applied the Kolmogrov-Smirnov (KS) test statistic as a goodness-of-fit 
test for these3-fold mixture models.At the 5% level of significance, with n =102, the 
critical value of the Kolmogorov-Smirnov one-sample test can be estimated from eq. 
(3.23), which is 0.1333. Since the observed value of the KS test statistic for all the 3-
fold mixture models (given in Table 5.9) are less than the critical value, we cannot 
reject the null hypothesis, H0, that the observed data are from a population specified 
by these 3-fold mixture distributions.But we may consider that among all these three 
mixture models the Weibull-Normal-Exponential mixture model gives the smallest 
value for the KS test statistic. 

Secondly, let us assume that the data contain only failure mode information. Aset of 
2-fold competing risk models are applied and it is found that, the reliability functions 
of Weibull-Normal, Weibull-Lognormal and Normal-Lognormal competing risk 
modelsgo relatively close through the empirical distribution function (nonparametric 
estimate of cdf from Kaplan-Meier (KM) estimate), see Figure 5.10. 

3-fold Mixture Models AIC AD* KS test statistic RMSE 

3-fold Weibull 965.5942 0.6272 0.1068 0.0247 

Weibull-Normal-Exponential 963.2531 0.5278 0.0876 0.0209 

Normal-Lognormal-Weibull 964.6492 0.4781 0.0877 0.0217 
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Figure 5.10: Comparison of R(t)s of competing risk models 

 
The estimates of AIC, KS test statistic and RMSE for the three competitive models 
are given in Table 5.10. 

Table 5.10: Estimates of AIC, KS test statistic and RMSE for competing risk models 

Competing risk Model AIC KS test statistic RMSE 
Weibull-Normal 985.4092 0.0924 0.0294 

Weibull-Lognormal 971.5454 0.2228 0.0459 
Normal-Lognormal 975.0428 0.1953 0.0421 

From Table 5.10, we found that the Weibull-Normal competing risk model contains 
the smallest values of RMSE and the Weibull-Lognormal competing risk model 
contains the smallest value of AIC among all of the models.  

At the 5% level of significance, with n =102, the critical value of the Kolmogorov-
Smirnov one-sample test can be estimated from eq. (3.23), which is 0.1333. Since the 
observed value of the KS test statistic for only Weibull-Normal competing risk model 
(given in Table 5.10) is less than the critical value, we cannot reject the null 
hypothesis, H0, that the observed data are from a population specified by the Weibull-
Normal competing risk model. 

Hence according toFigure 5.10 and Table 5.10we may select the Weibull-Normal 
competing risk model as the best model. 

Figure 5.11 shows the estimated reliability functions of Weibull and Normal models 
separately to identify the distribution of two different failure modes for this data set. 
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Figure 5.11: Comparison of R(t)s of failure mode distributions 
 
Since, R(t) of Normal distribution shows lower values than that of R(t) obtained from 
Weibull distribution, hence we may conclude thatpumps with the problem of 
assembly error follow Normal distribution and the pumps with no assembly error 
follow Weibull distribution. 

5.4.2 MLEs of the Parameters of Mixture Models 

This section gives the MLEs of the parameters of different mixture models. The 
parameters of the three mixture models are estimated by applying maximum 
likelihood method via the Expectation-Maximization (EM) algorithm. The MLEs of 
the parameters are displayed in Table 5.11. In Table 5.11, the parameters ݌ଵ,  ଷ݌ଶand݌	
represent the mixing probabilities of the 1st, 2nd and 3rd sub-populations, 
respectively. 
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Table 5.11: MLEs of the Parameters of Assumed Mixture Models 

3-fold Mixture Models MLEs of Parameters 

Weibull(β1,η1)- Weibull(β2,η2)- Weibull(β3,η3)  

0.5120}0.3220,0.1659, ,16535.503916.6426,
9481.8351,5.5758,2364.0191,1.0191,{

,,,,,,,, 321332211 ppp

 

Weibull(β,η)-Normal(μ,σ)-Exponential(δ)  

}1674.0,5076.0,3249.0,0004.0
,821.1073,11.15991,83.9527,5391.5{

,,,,,,, 321 ppp

 

Normal(μ1,σ1)-Lognormal(μ2,σ2)-Weibull(β,η)  

}3180.0,1872.0,4947.0,0899.9497,4782.5
,3759.1,5063.7,7513.1072,0308.15992{

,,,,,,,, 3212211 ppp

 

5.4.3 Mean Time to Failure (MTTF) 

 For Weibull(β1,η1)-Weibull(β2,η2)-Weibull(β3,η3) mixture model, the mean for 

 333 ,; tF = 16018.005> mean for  222 ,; tF  = 8760.457> mean for 

 111 ,; tF  = 2345.628.  

 For Weibull(β,η)-Normal(μ,σ)-Exponential(δ) mixture model, the mean for 

 ,;2 tF = 15991.110> mean for  ,;1 tF = 8799.642> mean for  ;3 tF  = 

2500.000.  
 For Normal (μ1,σ1)-Lognormal(μ2,σ2)-Weibull (β,η) mixture model, the mean 

for  111 ,; tF  =15992.031> mean for   ,;3 tF  =8765.749> mean for 

 222 ,; tF  = 4688.418. 

5.4.4 New Intuitions 

Note that the data is a mixture from three sub-populations. Each of these sub-
populations can be interpreted in terms of the characterisation of the real world 
relevant to the pump. Here we discuss a new situation associated with this pump.This 
situation is based on the following assumptions (Murthy, et al., 2015): 
 
1. All new pumps are statistically identical. 
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2. Some of the items replaced during PM and CM action (or service exchange) are 
scrapped (as they are deemed to be repairable) and others reconditioned.  

3. All reconditioned pumps are also statistically identical.  
4. The reliability characteristics of a new pump are different from that of a 

reconditioned pump. 
5. A pump used during service exchange (under PM or CM action) can be either 

correctly or incorrectly installed.  
 
We use the following notations: 

q : Probability that the pump is scrapped and replaced by a new one under service 

exchange. 

q1 : Probability that the pump is not scrapped and reconditioned under service 

exchange. 

p : Probability that the item used in service exchange is installed correctly. 

p1 : Probability that the item used in service exchange is not installed correctly. 

( )NF t : Failure distribution of new item installed correctly. 

( )RF t : Failure distribution of reconditioned item installed correctly. 

( )IF t : Failure distribution of incorrectly installed item (new or reconditioned). 

As a result, the probabilities of the different outcomes after a service exchange are as 
indicated in Table 5.12. 

Table 5.12: Probabilities of different outcomes 

 

 Installation 
Correct Incorrect 

p  (1 )p  

Scrap/repair Scrap (new) q  qp  (1 )q p  

Not scrap (recondition) 1 q  (1 )q p  (1 )(1 )q p   

It is easily seen (using the conditional approach) that the time to failure of an item 
used in service exchange is given by a distribution function  

(ݐ)ଷܩ = (1 − (ݐ)ூܨ(݌ + (1 − (ݐ)ோܨ݌(ݍ +  (5.1)   (ݐ)ேܨ݌ݍ
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The distribution function given in eq.(5.1) can be treated as the cdf of a 3-fold mixture 
model. 

As discussed in table 5.12, we also get the following from eq. (5.1): 

(1 −  .is the probability that the item was incorrectly installed : (݌

(1 −  .is the probability that a reconditioned iten installed correctly : ݌(ݍ

 .is the probability that a new item installed correctly : ݌ݍ

Note that the MTTF (mean time to failure) for a new item installed correctly > MTTF 
for a reconditioned item installed correctly > MTTF for an item (new or 
reconditioned) installed incorrectly. 

If we select the Weibull(β,η)-Normal(μ,σ)-Exponential(δ) mixture model as the best 
model for the data, then for the Weibull-Normal-Exponential mixture model we found 
MTTF of Normal distribution = 15991.110> MTTF of Weibull distribution 
=8799.642> MTTF of Exponential distribution = 2500.000.  

Again for the best fitted mixture model (Weibull-Normal-Exponential), we estimate 
the reliability function of Weibull, Normal and Exponential models, respectively for 
this data and the results are presented in figure 5.12: 

 

Figure 5.12: Comparison of R(t)s for Weibull, Normal and Exponential model 
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This figure indicates that R(t) of Normal distribution > R(t) of Weibull distribution > 
R(t) of Exponential distribution. This means, new and correctly installed items follow 
Normal, recondition and correctly installed items follow Weibull and incorrectly 
installed items follow Exponential distributions, respectively. 

From eq. (2.36) we found that the cdf of 3-fold Weibull-Normal-Exponential 
distribution is  
 

 )exp(1)1(exp1)( 2121 tpptptptF 













 



































 

Which means 
(ݐ)ܨ = ;ݐ)ଵܨଵ݌ ,ߚ (ߟ + ;ݐ)ଶܨଶ݌ ,ߤ (ߪ + ;ݐ)ଷܨଷ݌  (5.2)   (ߜ

 
Hence comparing eq (5.1) and eq (5.2), and from the above discussion we can write 

   3 11 , 1p p p q p    and 2p qp     (5.3) 

       3 1; , ; ,I RF t F t F t F t    and    tFtF N,;2    (5.4) 

Using the estimates of p1, p2 and p3 from Table 5.11 in equation (5.3), we get the 
estimates of p = 0.8326 and q =0.6096. i.e., the probability of installation an item 
correctly is 0.8326 and the probability of installation of a new item is 0.6096. 

5.4.5 Optimum Maintenance Cost 

Like Karim et al. (2015), we use the followingadditional notations and assumptions. 

nC : Sale price for new pump is $80,000 (Given by the owner). 

rC : Cost (charged by the service agent) for reconditioning a pump under CM or PM 

action ($60,000). 

 : Additional cost (due to downtime, loss in revenue, etc.) resulting from CM action. 

We look at values of   = $70,000, $90,000,$110,000 and $130,000.  

The optimal *T  is obtained using eq. (1.3) with 3-fold mixture cdf (ݐ)ܨ and the 

optimal expected cost per unit time is given by   *; .J T F . 
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Here we can see that, the optimal *T  depend on the additional cost  . The optimal 
*T and optimal expected cost per unit time  *TJ  on various values of  for the three 

different 3-fold mixture models has been estimated.These results are given in 

Table5.13, from where it can be seen,for every model, the optimal *T decrease and 

optimal  *J T increasing with  increases, as to be expected. 

Table 5.13:Optimal *T  and  *TJ for different values of   

Model 
Optimal 
Values 

Additional Cost 

 =70000  =90000  =110000  =130000 

3-fold 
Weibull 

*T  14631 14484 14377 14295 

 *TJ  10.4048 11.4324 12.4516 13.4656 

Weibull-
Normal-
Exponential 

*T  14466 14360 14285 14228 

 *TJ  10.3174 11.3151 12.3066 13.2943 

Normal-
Lognormal-
Weibull 

*T  14476 14368 14291 14234 

 *TJ  10.3261 11.3187 12.3186 13.3078 

 

This table indicates that the 3-fold Weibull mixture model gives a bit larger optimal 

maintenance period *T than other two models, however the Weibull-Normal-
Exponential model shows a reduction in the maintenance cost than the other two 
models for all  .  

Now for the additional cost ߦ = $90000, the figure of time T and cost J(T) for these 
three mixture models are presented in Figure 5.13: 
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Figure 5.13: Comparison of T Vs J(T) atߦ = $90000 

We may also calculate and represent the results of T Vs J(T) at the other additional 
costs. 
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Chapter 6  
Simulation 

 

 

6.1 Introduction 
In this chapter, we have used computer simulation to evaluate the performance of the 
methods numerically. 2-fold and 3-fold mixture data were generated numerically are 
used to develop two different special cases of 2-fold and 3-fold mixture models, to 
find the ML estimates of model parameters under right censored data. Using 
simulated data, the ML estimates of the model parameters, the mean squared errors 
(MSEs) and the amount of bias of estimates are computed. Simulation programming 
codes are written using statistical software package R. 

6.2 Steps of Simulation Study 

Here we describe the step-by-step algorithm for simulation of the mixture model and 
estimation of model parameters via the EM algorithm. 

Step 1:  We consider a set of true value for the parameters, say, ߠ of the 
mixture model. Under this set of parameter, we generate ݊ = ∑ ௝݊௝  samples 

from the mixture model using the software R-Language (version-3.2.2). Here 
j is the sub-populations of the mixture model. A desired percent of the largest 
generated sample out of  n, are considered as the right censored observations 
and remaining are assumed as failed lifetime. Again considering a certain 
observations as right censored, a set of different sample sizes were generated. 

Step 2:  Based on the generated right censored data, we estimate the 
parameters via the EM algorithm assuming that the mixing sub-populations 
are unknown. The methodology of EM algorithm is discussed in section 
3.3.2.2. 
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Step 3:  The above Steps 1 and 2 are repeated 1000 times under two Cases: 

Case (i): for a variety percent of censored observations and 
Case (ii): for different sample sizes. 

We compute the mean squared errors (MSEs) and the amount of Bias of the 
estimates for the both Cases (i) and (ii). 

Steps 4: Summarize and discuss the simulation results based on 1000 repetition. 

6.3 Bias, Variance and MSE 

Bias is defined as the difference between the true parameter value and the parameter 
estimate. Mathematically this is defined to be: 

Bias = ܧ൫θ෠൯ − θ          (6.1) 

whereߠ෠ is our estimated parameter and θ is the true parameter value. This is computed 
by finding the average of each of the 1000 parameter estimates and subtracting the 
true value, which was used to generate the data. 
 
Variance is defined to be the deviation about the mean. In this case, it is the sample 
variance for each of the parameters and sample sizes. This is computed by finding the 
sum of squared deviances of each data point from the data’s average value and 
dividing by (n – 1) 

Variance = ଵ
௡ିଵ

∑ ௜ݔ) − ଶ௡(ݔ̅
௜ୀଵ    (6.2) 

Once we have the measures for bias and variance we can compute the mean square 
error as defined below: 

ܧܵܯ = ଶݏܽ݅ܤ +  (6.3)    ݁ܿ݊ܽ݅ݎܸܽ

6.4 Simulation Output Analysis 

The simulation studies are performed for two different mixture models: 

1. Simulation for 2-fold mixturemodel 
2. Simulation for 3-fold mixturemodel 
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6.4.1 Simulation for 2-fold Mixture Model 

We consider a set of true values for the 5 parameters  p,,,, 2211    of a 2-fold 

Weibull mixture model. Under this set of parameters, we generate  21 nnn   

samples from the 2-fold Weibull mixture model. The steps described in section 6.2are 
repeated1000 times for a variety percent of censored observations (10%, 20% and 
30%) andfor different sample sizes (n = 200, 400 and 600). 

Tables 6.1, 6.2, 6.3 and 6.4 represent the summary results of the simulations based on 
1000 repetitions under the given true values. 

Table 6.1 presents the Mean Square Error (MSEs) at different percent of censored 
observations (10%, 20%, 30%) when sample size is 200. And table 6.2 shows MSEs 
at 20% percent of censored observation for different sample sizes (200, 400, 600). In 
these tables, the first column shows the parameters of the model and second column 
shows the true values of the parameters. Tables 6.1 and 6.2 give the MSEs of the 
MLEs of parameters obtained by the EM algorithm. 

 

Table 6.1:  MSEs for n= 200 at different percent of censored observations 

Parameters 
True 

values 
Mean squared errors (MSEs) of MLEs 

10% cens obs. 20% cens obs. 30% cens obs. 

1̂  3.50 2.17953 2.6223 4.2156 

1̂  700.00 3232.01855 4873.0835 9777.0312 

2̂  1.20 0.15011 0.0619 0.0711 

2̂  850.00 87452.76431 1614229.0410 269062.7034 

p̂  0.30 0.00114 0.0391 0.0500 

 p̂1  0.70 0.03382 0.0391 0.0500 
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Table 6.2:  MSEs at 20% percent of censored observation for different sample sizes 

Parameters 
True 

values 
Mean squared errors (MSEs) of MLEs 

n=200 n=400 n=600 

1̂  3.50 2.6223 1.9544 1.5033 

1̂  700.00 4873.0835 1907.8766 1574.6524 

2̂  1.20 0.0619 0.0294 0.0210 

2̂  850.00 1614229.0410 25655.13287 10622.3852 

p̂  0.30 0.0391 0.0242 0.0159 

 p̂1  0.70 0.0391 0.0242 0.0159 

From the above tables 6.1 and 6.2, we found that for all of the sets, if the percent of 
censored observations decrease (i.e., if number of failures increase), the MSEs of the 
MLEs of the parameters are also decrease for all most all parameters, as expected. 
Similarly, the MSEs of the MLEs of parameters decrease for increasing sample sizes. 

The results obtained from Table 6.1 and Table 6.2 has been expressed in Figure 6.1 
and Figure 6.2, respectively: 

Figure 6.1: MSEs for n= 200 at different percent of censored observations 
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Figure 6.2: MSEs at 20% percent of censored observation for different sample sizes 

Again Table 6.3 presents the amount of bias at different percent of censored 
observations (10%, 20%, 30%) when sample size is 200. And Table 6.4 shows the 
amount of bias at 20% percent of censored observation for different sample sizes 
(200, 400, 600).  

Table 6.3:  Amount of Bias for n= 200 at different percent of censored observations 

Parameters True 
values 

Amount of Bias of MLEs 
10% cens obs. 20% cens obs. 30% cens obs. 

1̂  3.50 0.2945 0.4587 0.6968 

1̂  700.00 -0.6464 0.1768 5.3863 

2̂  1.20 -0.0399 -0.0546 -0.0291 

2̂  850.00 94.5603 205.9218 62.0363 
p̂  0.30 0.0737 0.0692 0.0732 

 p̂1  0.70 -0.0737 -0.0692 -0.0732 
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Table 6.4:  Amount of Bias at 20% percent of censored observation for different n 

Parameters 
True 

values 

Amount of Bias of MLEs 

n=200 n=400 n=600 

1̂  3.50 0.4587 0.3619 0.3365 

1̂  700.00 0.1768 3.0983 2.2486 

2̂  1.20 -0.0546 -0.0336 -0.015 

2̂  850.00 205.9218 41.5291 23.1364 

p̂  0.30 0.0692 0.0398 0.0192 

 p̂1  0.70 -0.0692 -0.0398 -0.0192 

The amount of bias of the MLEs of parameters for different percent of censored 
observations and for different sample sizes are given in Tables 6.3 and 6.4, 
respectively. The amount of bias decrease for decreasing of the percent of censored 
observations (i.e., for increasing the number of failures) for all most all of 
parameters.Similarly, the amount of bias decrease for increasing of the sample sizes.  

All of these comparisons from Tables 6.1, 6.2, 6.3 and 6.4 indicate that the proposed 
method of estimation is applicable for analyzing 2-fold mixture model for censored 
data. 

6.4.2 Simulation for 3-fold Mixture Model 

In this Section, we conduct simulation studies with a 3-fold Weibull-Normal-
Exponential mixture model under right censored data. 

We consider a set of true values for the 7 parameters ߠ = ,ߚ) ,ߟ ,ߤ ,ߪ ,ߜ ,ଵ݌ -ଶ) of 3݌
fold Weibull-Normal-Exponential mixture model. Under this set of parameters, we 
generate ݊ = ݊ଵ + ݊ଶ + ݊ଷ  samples. The steps of simulation analysis described in 
section 6.2are repeated 1000 times for a variety percent of censored observations (0%, 
10%, 20% and 30%) andfor different sample sizes (300, 600 and 900). 

Table 6.5 presents the Mean Square Error (MSEs) at different percent of censored 
observations (0%, 10%, 20%, 30%) when sample size is 300. Table 6.6 shows MSEs 
at 20% percent of censored observation for different sample sizes (300, 600, 900).  



   

 

102

Table 6.5:  MSEs for n = 300 at different percent of censored observations 

Parameter True 
Value 

Mean Square Error (MSEs) of MLEs 
0% cens 

obs. 
10% cens 

obs. 
20% cens 

obs. 
30% cens 

obs. 
 6.1823 8.6121 3.6161 1.8408 1.5 ߚ

 52402705 36182067 34915543 40312754 16500 ߙ

 25029653 18942191 13747737 4652303 12500 ߤ

 9672087 8610976 5102398 2080092 6500 ߪ

 1.3717e-05 5.5011e-05 3.4801e-05 0.0007 0.0009 ߜ

 ଵ 0.35 0.0547 0.0531 0.0536 0.0447݌

 ଶ 0.25 0.1163 0.1021 0.0567 0.0631݌

 ଷ 0.40 0.0629 0.05854 0.0426 0.0473݌
 

Table 6.6:  MSEs at 20% percent of censored observation for different sample sizes 

Parameter True Value Mean Square Error (MSEs) of MLEs 
n=300 n=600 n=900 

 0.7183 2.7287 8.6122 1.5 ߚ

 21827666 32752424 36182067 16500 ߙ

 3828475 11046977 18942191 12500 ߤ

 1365859 3657922 8610976 6500 ߪ

 3.4802e-05 3.8230e-06 3.9624e-06 0.0009 ߜ

 ଵ 0.35 0.0536 0.0460 0.0425݌

 ଶ 0.25 0.0567 0.1026 0.0951݌

 ଷ 0.40 0.0426 0.0656 0.0712݌

From the above Tables 6.5 and 6.6, we found that for all most all of parameters, if the 
percent of censored observations decrease (i.e., if number of failures increase), the 
MSEs of the MLEs of the parameters are also decrease, as expected. Similarly, the 
MSEs of the MLEs of parameters decrease for increasing sample sizes. 

The results obtained in Tables 6.5 and 6.6 are presented in Figures 6.3 and 6.4, 
respectively. 
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Figure 6.3: MSEs for n= 300 at different percent of censored observations 
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Figure 6.4: MSEs at 20% percent of censored observation for different sample sizes 

Again Table 6.7 presents the amount of bias at different percent of censored 
observations (0%, 10%, 20%, 30%) when sample size is 300 and Table 6.8 shows the 
amount of bias at 20% percent of censored observation for different sample sizes 
(300, 600, 900).  

Table 6.7:  Amount of Bias for n= 300 at different % of censored observations 

Parameter True 
Value 

Amount of Bias of MLEs 
0% cens 

obs. 
10% cens 

obs. 
20% cens 

obs. 
30% cens 

obs. 
 1.0014 1.1043 0.8131 0.2612 1.5 ߚ
 461.0324- 501.8605- 680.8534- 591.0491- 16500 ߙ
 525.2763 241.6512 209.2456 367.1699 12500 ߤ
 545.7877- 804.4014- 513.345- 348.3239- 6500 ߪ
 0.0011 0.00053 0.00081 0.00049 0.0009 ߜ
 ଵ 0.35 -0.0606 0.00019 0.0362 0.0011݌
 ଶ 0.25 0.2508 0.1945 0.1089 0.1180݌
 ଷ 0.40 -0.1902 -0.1947 -0.1451 -0.1517݌

Table 6.8:  Amount of Bias at 20% percent of censored observation for different n 

Parameter True Value Amount of Bias of MLEs 
n=300 n=600 n=900 

 0.2288 0.6080 1.10434 1.5 ߚ
 698.2374- 511.7068- 501.8605- 16500 ߙ
 114.9425 214.2128 241.6512 12500 ߤ
 100.7139- 169.5012- 804.4014- 6500 ߪ
 0.00029 0.00033 0.00052 0.0009 ߜ
 ଵ 0.35 0.0361 0.0035 0.0261݌
 ଶ 0.25 0.1089 0.2089 0.2092݌
 ଷ 0.40 -0.1451 -0.2124 -0.2354݌

For all most of all situations, the amount of bias decrease for decreasing of the percent 
of censored observations (i.e., for increasing the number of failures). Also the amount 
of bias decrease for increasing of the sample sizes, as expected. Therefore, we may 
conclude that the proposed method of estimation is applicable for analyzing 3-fold 
mixture model for censored data. 
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Chapter 7  
Conclusion 

 
 
 

7.1 Main Contributions 
There are situations where variations in product quality and reliability can be occurred 
for a variety of reasons. Two of such reasons are the component nonconformance and 
assembly errors, which occur frequently in manufacturing. In such situations, the 
complex lifetime models are required for analyzing product reliability data. Proper 
data collection and analysis are very important for effective analysis of product 
reliability. Data is critical for building and selecting suitable statistical models and 
model provides new insights for improvements to maintenance and management 
operations in manufacturing industries.  

This thesisproposes a general model for modeling the effects of quality variation. The 
mixture model and competing risk model are the special cases of this general model. 
The thesis applies these models for analysis of three sets of product reliability data.  
 
According to the research questions, the main contributions of the thesis are as 
follows: 
 
RQ 1.Which of the methods, graphical (WPP plot) or statistical parametric (MLE), 
perform well for analyzing product reliability data? 
 

 For the Aircraft windshield failure data, we observed that the reliability 
function obtained by the MLE method (via the EM algorithm) is much closer 
to the nonparametric Kaplan–Meier estimate of reliability function than that of 
the reliability function estimated by the graphical (WPP plot) method.  

 Therefore, the results indicate that the method of estimation with the EM 
algorithm procedure is betterthan the WPP plot procedure. 
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RQ 2.What would be the effects on the estimated reliability if the information on 
maintenance action is unknown for all observations in the database? 
 

 For Battery failure data, we considered two-fold mixture models assuming two 
unknown sub-populations and EM algorithm is applied for estimating the 
models parameters. Based onthe measures of lifetime quantities, we can 
conclude thatdata without maintenance information provides approximately 
similar results with the data having maintenance information. 

 
RQ 3. What are the suitable 3-fold lifetime models of hydraulic pump? What are the 
possible three hidden sub-populations and their distributions for this pump?  

 According to the graphical representation and estimated values of different 
model selection criterions, we found that the 3-fold Weibull-Normal-
Exponential mixture model can be selected as the best model for the hydraulic 
pump failure data.  

 The possible three sub-populations are (i) new item installed correctly, (ii) 
reconditioned item installed correctly, and (iii) item (new or reconditioned) 
installed incorrectly. 

 The distributions for (i) new item installed correctly is Normal ߤ) =
15991.11, ߪ = 1073.821) , (ii) reconditioned item installed correctly is 
Weibull(ߚ = 5.5391, ߟ = 9527.83) , and (iii) item (new or reconditioned) 
installed incorrectly is Exponential(ߜ = 0.0004). 

 
RQ 4.What are the suitable distributions for the pumps with assembly errors and the 
pumps without assembly errors? 
 

 The selected distribution for pumps with assembly errors is Normal and the 
distribution for pumps without assembly errors is Weibull. 

 
RQ 5.What would be the effect on optimal maintenance policy according to the 
selected models?  

 Based on the optimization of the proposed objective function, we see that the 
3-fold Weibull mixture model gives a bit larger optimal maintenance 
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periodthan other two models, however the Weibull-Normal-Exponential 
model shows a reduction in the maintenance cost than the other two models.  

 That is, the proposed model suggests the optimum maintenance period for the 
pump that reduces the maintenance cost. 

RQ 6. What are the overall performances of the proposed models and methods?  

 The simulation studies indicate that the proposed models and methods of 
estimation are applicable for analyzing 2-fold and 3-fold mixture models for 
censored product reliability data. 

 
Finally, the results presented in this thesis would be useful for managerial 
implications in assessing and predicting the reliability and maintenance cost of the 
product more accurately. 

7.2 Future Research 

A number of research areas listed below have been identified for future research that 
might be stimulated by extending the present research. 

 Estimation of the parameters of the general model for the effect of quality 
variation in manufacturing that includes both assembly errors and problems 
with component non-conformance jointly would be useful. This requires a 
suitable data set and the extensions of the EM algorithm with two types of 
posterior probabilities – one for assembly error items and another for 
component non-conformance items.  

 A scope of the futureresearch with various types of censored data would 
beinteresting. 

 Development of a R-package with the written R-codes will be useful to 
manufacturers and product reliability researchers. 
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Appendix:Computer Program in R 
 

A.1 R codes for estimating parameters of 2-fold Weibull mixture 
model via the EM algorithm 

# ----- Weibull-Weibull Mixture model - parameters estimation - via EM algorithm 
# The program requires package “survival”. In these codes- 
# t: Failure time or right censored time 
# d: Failure/Censored indicator, 1=failure, 0=censored 
# theta: Parameter vector, {beta1, alpha1, beta2, alpha2, p1, p2} 
# 
# ----------------- Observed data log-likelihood function ----- 
loglik.obs <- function(t, d, theta){ 
sum(d*log(theta[5]*dweibull(t, shape=theta[1], scale =theta[2], log = FALSE) 
+ theta[6]*dweibull(t, shape=theta[3], scale =theta[4], log = FALSE)) 
+(1-d)*log(theta[5]*(1-pweibull(t, shape=theta[1], scale=theta[2], lower.tail=TRUE, log.p=FALSE)) 
+ theta[6]*(1-pweibull(t, shape=theta[3], scale =theta[4], lower.tail = TRUE, log.p = FALSE)))) 
} 
# -- Function for MLEs of the parameters of Weibull-Weibull mixture model ---- 
# t: Failure time or right censored time 
# d: Failure/Censored indicator, 1=failure, 0=censored 
# theta:  Initial values of Parameter vector, {beta1, alpha1, beta2, alpha2, p1, p2} 
# em.tiny: A small value to stop EM iteration 
#---------------------------------------------------------------------- 
WeibWeibMix <- function(t, d, theta, em.tiny){ 
n <- length(t) 
K <- 2 
change.lik <- 0.05 
maxi.em.rep <- 500 
em.rep <- 1 
fjti<- matrix(0, nrow = n, ncol = K) 
loglik.obs <- array() 
loglik.obs.old <- loglik.obs(t, d, theta) 
#--------------------------------- Iteration for EM algorithm ------------------------------------------- 
while(change.lik > em.tiny && em.rep <= maxi.em.rep) { 
# ----------------------------------- E-step: Computation of f(ti|j) as matrix or say pij --------------- 
tempj1.f <- dweibull(t, shape=theta[1], scale =theta[2], log = FALSE) 
tempj2.f <- dweibull(t, shape=theta[3], scale =theta[4], log = FALSE) 
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tempj1.c <- (1-pweibull(t, shape=theta[1], scale =theta[2], lower.tail = TRUE, log.p = FALSE)) 
tempj2.c <- (1-pweibull(t, shape=theta[3], scale =theta[4], lower.tail = TRUE, log.p = FALSE)) 
fjti[ , 1] <- (theta[5]*tempj1.f/(theta[5]*tempj1.f + theta[6]*tempj2.f))^d* (theta[5]*tempj1.c/ 
(theta[5]*tempj1.c + theta[6]*tempj2.c))^(1-d) 
fjti[ , 2] <- (theta[6]*tempj2.f/(theta[5]*tempj1.f + theta[6]*tempj2.f))^d*(theta[6]*tempj2.c/ 
(theta[5]*tempj1 .c + theta[6]*tempj2.c))^(1-d) 
#-------------------------------------- M-step --------------------------------------------------------- 
p1 <- sum(fjti[, 1])/n # MLE of p1 
p2 <- sum(fjti[, 2])/n # MLE of p2 
# -------- To change if f(j|ti) is zero -------------- 
small.value <- 10^(-8) 
for(ii in 1:n){ 
if(fjti[ii, 1] < small.value){ 
fjti[ii, 1] <- small.value; fjti[ii, 2] <- 1 - small.value 
} 
} 
for(jj in 1:n){ 
if(fjti[jj, 2] < small.value){ 
fjti[jj, 2] <- small.value; fjti[jj, 1] <- 1 - small.value 
} 
}p 
i1 <- fjti[ , 1] 
pi2 <- fjti[ , 2] 
# --------------- MLEs of main parameters, except p, via survreg command --------------- 
fit1 <- survreg(Surv(t, d) ~ 1, weight = pi1, dist='weibull') # Fit of Weibull for sub-population 1 
beta1.hat <- 1/fit1$scale 
eta1.hat <- exp(fit1$coefficient) 
fit2 <- survreg(Surv(t, d) ~ 1, weight = pi2, dist='weibull') # Fit of Weibull for sub-population 2 
beta2.hat <- 1/fit2$scale 
eta2.hat <- exp(fit2$coefficient) 
theta<- c(beta1.hat, eta1.hat, beta2.hat, eta2.hat, p1, p2) # Updated MLEs 
loglik.obs[em.rep] <- loglik.obs(t, d, theta) # Updated observed data log-likelihood 
change.lik <- abs(loglik.obs[em.rep] - loglik.obs.old) 
loglik.obs.old <- loglik.obs[em.rep] 
em.rep <- em.rep + 1    
}      
if(em.rep >= maxi.em.rep) {print("Algorithm did NOT converge")} # warning message if do not 
converge 
#------- End of E & M-steps ---------------------------- 
return(list(beta1=theta[1], alpha1=theta[2], beta2=theta[3], alpha2=theta[4], p1=theta[5],p2=theta[6])) 
} 
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A.2 R codes for analyzing pump failure data with Weibull-Normal-

Exponential mixture model. 

A.2.1 Function for estimating parameters ---- 

library(splines) 

library(survival) 

 

#  Observed data log-likelihood function -----  

#  t: lifetime variable,  d: failure/censored indicator;  theta: parameter vector  

loglik.obs <- function(t, d, theta){ 

sum(d*log(theta[6]*dweibull(t, shape=theta[1], scale =theta[2], log = FALSE) 

   + theta[7]*dnorm(t,mean=theta[3], sd =theta[4], log = FALSE) 

   + theta[8]*dexp(t, rate=theta[5], log = FALSE)) 

   + (1-d)*log(theta[6]*(1-pweibull(t, shape=theta[1], scale=theta[2], lower.tail=TRUE, log.p=FALSE)) 

   + theta[7]*(1-pnorm(t, mean=theta[3], sd=theta[4], lower.tail = TRUE, log.p = FALSE)) 

   + theta[8]*(1-pexp(t, rate=theta[5], lower.tail = TRUE, log.p = FALSE)))) 

} 

 

# em.tiny: a small value - convergence criterion for EM algorithm 

WeibNormExpMix <- function(t, d, theta, em.tiny){ 

n <- length(t);  K <- 3;  tiny <- 10^(-8);  change.lik <- 0.05;  maxi.em.rep <- 500;  em.rep <- 1 

fjti<- matrix(0, nrow = n, ncol = K);  loglik <- array() 

 

loglik.old <- loglik.obs(t, d, theta) 

# ------- Iteration for EM algorithm  

while(change.lik > em.tiny && em.rep <= maxi.em.rep) { 

# ----- E-step  

  tempj1.f <- dweibull(t, shape=theta[1], scale =theta[2], log = FALSE)  

  tempj2.f <- dnorm(t, mean=theta[3], sd =theta[4], log = FALSE)  

  tempj3.f <- dexp(t, rate=theta[5], log = FALSE)   

  tempj1.c <- (1-pweibull(t, shape=theta[1], scale =theta[2], lower.tail = TRUE, log.p = FALSE)) 

  tempj2.c <-(1-pnorm(t, mean=theta[3], sd=theta[4], lower.tail = TRUE, log.p = FALSE)) 

  tempj3.c <- (1-pexp(t, rate=theta[5], lower.tail = TRUE, log.p =  FALSE)) 

 

p <- c(theta[6], theta[7], theta[8]) 

fjti[ , 1] <- (p[1]*tempj1.f/(p[1]*tempj1.f + p[2]*tempj2.f+ 

p[3]*tempj3.f))^d*(p[1]*tempj1.c/(p[1]*tempj1.c + p[2]*tempj2.c+ p[3]*tempj3.c))^(1-d) 
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fjti[ , 2] <- (p[2]*tempj2.f/(p[1]*tempj1.f + p[2]*tempj2.f+ 

p[3]*tempj3.f))^d*(p[2]*tempj2.c/(p[1]*tempj1.c + p[2]*tempj2.c+ p[3]*tempj3.c))^(1-d) 

fjti[ , 3] <- (p[3]*tempj3.f/(p[1]*tempj1.f + p[2]*tempj2.f+ 

p[3]*tempj3.f))^d*(p[3]*tempj3.c/(p[1]*tempj1.c + p[2]*tempj2.c+ p[3]*tempj3.c))^(1-d) 

 

# ----- M-step  

p1 <- sum(fjti[, 1])/n;    p2 <- sum(fjti[, 2])/n;   p3 <- sum(fjti[, 3])/n;   p <- c(p1, p2, p3)    

  

t1.new <- array();    t2.new <- array();  t3.new <- array() 

d1.new <- array();  d2.new <- array();  d3.new <- array() 

fj1.new <- array(); fj2.new <- array(); fj3.new <- array() 

 

# ----- To omit observation from LF if its weight is very small, less than tiny 

j <- 0 

for(i in 1:n){ 

if(fjti[i,1] >= tiny){ 

  j <- j+1;    t1.new[j] <- t[i];    d1.new[j] <- d[i];    fj1.new[j] <- fjti[i,1] 

  } 

} 

 

j <- 0 

for(i in 1:n){ 

if(fjti[i, 2] >= tiny){ 

  j <- j+1;    t2.new[j] <- t[i];    d2.new[j] <- d[i];    fj2.new[j] <- fjti[i, 2] 

  } 

} 
 

j <- 0 

for(i in 1:n){ 

if(fjti[i, 3] >= tiny){ 

  j <- j+1;    t3.new[j] <- t[i];    d3.new[j] <- d[i];    fj3.new[j] <- fjti[i, 3] 

  } 

} 
 

# ----- MLEs of main parameters, except p  

fit1 <- survreg(Surv(t1.new,  d1.new) ~ 1, weight = fj1.new, dist='weibull')   

beta1.hat  <- 1/fit1$scale;  eta1.hat <- exp(fit1$coefficient) 

fit2 <- survreg(Surv(t2.new,  d2.new) ~ 1, weight = fj2.new, dist='gaussian')   

mu.hat <-  fit2$coefficient;   sigma.hat  <- fit2$scale 

fit3 <- survreg(Surv(t3.new,  d3.new) ~ 1, weight = fj3.new, dist='exponential')   
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delta.hat <- 1/exp(fit3$coefficient) 

 

theta<- c(beta1.hat, eta1.hat, mu.hat, sigma.hat, delta.hat, p)      # Parameter vector  

 

loglik[em.rep] <- loglik.obs(t, d, theta) 

change.lik <- abs(loglik[em.rep] - loglik.old);   loglik.old <- loglik[em.rep];   em.rep <- em.rep + 1                                                          

}                                                                         # end-loop for EM iteration 

if(em.rep >= maxi.em.rep){print("Algorithm did NOT converge")}    # warning message if not  

converge 

return(list(theta.hat=as.numeric(theta), likelihood=loglik.old)) 

} 

 

A.2.2 Pump failure data in text format as given in Table 4.3 ---- 

Age <- c(81, 149, 245, 340, 407, 461, 629, 856, 947, 1460, 1513, 1670, 1688, 2093, 2242, 2242, 2242, 

2242, 2242, 2607, 2668, 2806, 3132, 3132, 3132, 3132, 3333, 3569, 3837, 3837, 4150, 5123, 5258, 

5662, 5923, 6333, 6717, 7207, 7265, 7624, 7625, 7973, 8183, 8217, 8390, 8462, 8728, 8817, 8870, 

8884, 9055, 9182, 9334, 9368, 9729, 9751, 10299, 10389, 10413, 10557, 10944, 10970, 11647, 11678, 

11686, 11798, 11869, 11869, 11923, 12005, 12082, 12090, 12136, 12141, 12143, 12163, 12198, 

12198, 12198, 12198, 12198, 12198, 12236, 12236, 12236, 12236, 12236, 12236, 12394, 12459, 

13097, 13497, 13497, 13497, 13497, 13497, 13497, 13497, 14407, 15536, 16289, 17517) 

 

Type <- c(0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 

1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1) 

 

theta.ini <- c(1.522,  16500, 12500.5, 6500, 0.0009, 0.35, 0.25, 0.40)     # Assumed initial values of 

parameters 

WeibNormExpMix(Age, Type, theta.ini, 10^(-6))                                    # Execution of estimation-

function 

A.2.3 Function for estimation of Adjusted Anderson-Darling value ------ 

AD.adj.KM <- function(t, d, theta){ 

n <- length(t);    Pr <- array();     tt <- array();     new.Pr <- array() 

for(i in 1: n){ 
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  temp.prod <- 1 

for(j in 1: i){ 

    temp.prod <- temp.prod * ((n-j)^d[j]/(n-j+1)^d[j]) 

  } 

  Pr[i] <- 1- temp.prod  

} 

nf<- 0                     

for(i in 1: n){ 

if(d[i]==1){ 

nf<- nf + 1 

tt[nf] <- t[i] 

new.Pr[nf] <- Pr[i]    # cdf corresponding to failed observations 

   } 

} 

max.t <- max(t) 

for(i in 1: n){ 

if((t[i] == max.t) && (d[i]==1)){ 

new.Pr[nf] <- new.Pr[nf-1]+(1-new.Pr[nf-1])*0.90    # if largest observation is failure, re-estimate 

   } 

} 

Fnz <- new.Pr         # Nonparametric cdf  (KM estimate) 

Fnz[nf+1] <- 1 

# ---- Parametric estimates of CDF   

beta.hat <- theta[1];   eta.hat <- theta[2];   mu.hat <- theta[3];   sigma.hat <- theta[4];    delta.hat <- 

theta[5] 

p1.hat <- theta[6];   p2.hat <- theta[7];   p3.hat <- theta[8] 

mle.F1 <- pweibull(tt, shape = beta.hat, scale = eta.hat, lower.tail = TRUE, log.p = FALSE) 

mle.F2 <- pnorm(tt, mean=mu.hat, sd =sigma.hat, lower.tail = TRUE, log.p = FALSE) 

mle.F3 <- pexp(tt, rate=delta.hat, lower.tail = TRUE, log.p =  FALSE) 

mle.F  <- p1.hat*mle.F1 + p2.hat*mle.F2 + p3.hat*mle.F3 

 

MLE.CDF <- mle.F 

mle.F[nf+1] <- 0.999999999999                    # a value close to 1 

mle.F.lag <- array()      # z[i-1] 

mle.F.lag[1] <- 0 

for(i in 1: nf){ 

mle.F.lag[i+1] <- mle.F[i] 

} 
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Fnz.lag <- array()         # Fnz[i-1] 

Fnz.lag[1] <- 0 

for(i in 1: nf){ 

Fnz.lag[i+1] <- Fnz[i] 

} 

A <- array();   B <- array();   C <- array() 

A <- - mle.F- log(1-mle.F) + mle.F.lag + log(1-mle.F.lag) 

B <- 2*log(1-mle.F)*Fnz.lag - 2*log(1-mle.F.lag)*Fnz.lag  

C <- log(mle.F)*Fnz.lag^2 - log(1-mle.F)*Fnz.lag^2 - log(mle.F.lag)*Fnz.lag^2 + log(1-

mle.F.lag)*Fnz.lag^2 

C[1] <- 0       # Replace the missing value in the first row of 'C_i' with a zero. 

AD.adj <- nf*sum(A,B,C) 

return(list("f.time"=c(tt), "KM.F"=c(new.Pr), "MLE.F"=c(MLE.CDF), "AD.adj.value"=AD.adj)) 

} 

 

theta.hat <- WeibNormExpMix(Age, Type, theta.ini, 10^(-6))$theta.hat       # MLE of parameters 

AD.adj.KM(Age, Type, theta.hat)        # Estimation of AD value  

A.2.4 Function for the estimation of AIC, KS test statistic and RMSE ---- 

AIC.KS.RMSE <- function(t, d, theta.hat){ 

theta.ini <- c(1.522,  16500, 12500.5, 6500, 0.0009, 0.35, 0.25, 0.40) 

loglik<- WeibNormExpMix(t, d, theta.ini, 10^(-6))$likelihood 

n.para <- 7       # change No. of independent parameters 

AIC <- -2*loglik + 2*n.para             # AIC value  

KS.ts <- max(abs(AD.adj.KM(t, d, theta.hat)$KM.F - AD.adj.KM(t, d, theta.hat)$MLE.F))                  # 

Kolmogorov-Smirnov test statistic 

RMSE <- sd(AD.adj.KM(t, d, theta.hat)$KM.F - AD.adj.KM(t, d, theta.hat)$MLE.F)      

  # Root Mean Squared Error 

return(list("AIC.hat"=AIC, "KS.hat"=KS.ts, "RMSE.hat"=RMSE)) 

} 

 

AIC.KS.RMSE(Age, Type, theta.hat)   # Execution of the function 
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A.2.5 Codes for creating figure ---- 

plot(AD.adj.KM(Age, Type, theta.hat)$f.time, AD.adj.KM(Age, Type, theta.hat)$KM.F, main="EDF 

and Weibull-Normal-Exponential mixture cdf", xlab=" Time (hours)", ylab="cdf", col=1, lty= 1, 

type="s", lwd=1) 

lines(AD.adj.KM(Age, Type, theta.hat)$f.time, AD.adj.KM(Age, Type, theta.hat)$MLE.F, col=2, 

lty=2, type="l", lwd=2) 

legend("topleft", c("KM cdf", "Weib-Norm-Expn mixture cdf"), col=c(1,2), text.col=c(1,2), lty=c(1,2), 

lwd=2) 

A.2.6  Codes for estimating optimal maintenance age by minimizing J(T) 

q <- 0.6096       # value of q in the formula 

Cn <- 80000;  Cr<- 60000;  Cp <- q*Cn+(1-q)*Cr 

opt.T.JT <- function(zeta){ 

Cf <- Cp + zeta 

TT = seq(4000, 20000, 1)     # Possible values of T, opt T would be within TT  

JT <- function(T.value){        # ---- J(T)star function  

WNE.F1 <- pweibull(T.value, shape=theta.hat[1], scale=theta.hat[2], lower.tail = TRUE, log.p = 

FALSE) 

WNE.F2 <- pnorm(T.value, mean=theta.hat[3], sd=theta.hat[4], lower.tail = TRUE, log.p = FALSE) 

WNE.F3 <- pexp(T.value, rate=theta.hat[5], lower.tail = TRUE, log.p =  FALSE) 

WNE.F <- theta.hat[6]*WNE.F1 + theta.hat[7]*WNE.F2 + theta.hat[8]*WNE.F3 

WNE.R <- 1-WNE.F 

  fun.t <- function(t){ 

  WNE.f1 <- dweibull(t, shape=theta.hat[1], scale=theta.hat[2], log = FALSE) 

  WNE.f2 <- dnorm(t, mean=theta.hat[3], sd=theta.hat[4], log = FALSE) 

  WNE.f3 <- dexp(t, rate=theta.hat[5], log = FALSE) 

WNE.f  <- theta.hat[6]*WNE.f1 + theta.hat[7]*WNE.f2 + theta.hat[8]*WNE.f3 

return(t*WNE.f) 

  } 

 

 int.part <- integrate(fun.t, lower=0, upper = T.value)$value 

 JT.value <- (Cf*WNE.F + Cp*WNE.R)/(int.part + T.value*WNE.R) 

return(JT.value) 

 } 

TT.no <- length(TT);  JT.out <- array() 

for(j in 1:TT.no){ 
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   JT.out[j] <- JT(TT[j]) 

} 

JT.star.opt <- min(JT.out) 

for(i in 1:TT.no){ 

if(JT.out[i] == JT.star.opt) {T.est <- TT[i]} 

} 

return(list(zeta.value=zeta, opt.T=T.est, opt.JT=JT.star.opt)) 

} 

 

opt.T.JT(130000) 
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