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Abstract

A topological space is a non-empty set X together with a collection 7 of

subsets of X satisfying the conditions:

(i) X, e,

(if) the union of any class of sets in 7 belongs to 7,

(iii) the intersection of a finite number of sets belongs to 7,
T is called a topology on X.

The thesis is a study of several variants of topology obtained by
generalizing some its aspects, viz, the conditions (ii) and (iii). The variants

which have been considered here are the following:
(1) a U-structure, (a topology in which the condition (iii) is omitted),
(2) an I-structure, (a topology in which the condition (ii) is omitted),

(3) a CU-structure, (a U-structure in which ‘any class’ in (ii) is replaced

by ‘a countable class’),

(4) a CUlI-structure, (a topology in which ‘any class’ in (ii) is replaced

by ‘a countable class’ ),



(5) an FU-structure, (a U-structure in which ‘any class’ in (ii) is

replaced by ‘a finite class’),

(6) an FUlI-structure, (a topology in which ‘any class’ in (ii) is replaced
by ‘a finite class’).

X together with the above structures (1) - (6) have been called a U- space,
an I-space, a CU-space, a CUl-space, an FU-space and a FUI-space

respectively.

Among these, U-spaces and I-spaces have been defined and studied
earlier by others and have been called supratopological spaces and
infratopological spaces respectively. Our studies of these spaces in this thesis

have considerably larger breadth and depth.

The thesis has been divided into seven chapters. The first six chapters
give detailed study of general properties, different kinds of compactness and
compactification, several kinds of connectedness, various separation properties,
projectives in some categories of U-spaces. The U-space version of most of the
well-known and the important theorems for topological spaces have been
proved to be valid. Very many suitable examples and counter examples have
been constructed. In the last chapter the other kinds of the above-mentioned
spaces have been dealt with. A few properties have been established and a few
examples have been provided. Most of the properties proved for U-spaces do
hold for these spaces as well. But these have not been stated and proved to

avoid monotony or repetitions.
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CHAPTER -1

U-spaces and U-continuous Functions

Introduction

The concept of a U-space in a less general form had been considered
earlier by some authors as a supra- topological space in [4], [9], [27], [28],
[38]. In this chapter we have introduced the notions: U-spaces and three types
of continuous functions for these spaces. We have obtained some
characterizations and proved some properties of U-spaces and continuous
functions. While some of the properties of U-spaces studied here have been
studied by the above-mentioned authors for supra-topological spaces, we have
probed deeper and proved newer properties for the more general set-up,
namely, U-spaces. We have also defined compact U-spaces, Hausdorff

U-spaces and studied their properties.

Semi-open sets, pre-open sets, a-open sets, B-open sets, d-open sets,
locally open sets and locally closed sets play an important part in the
researches of generalizations of continuity in topological spaces. The
collections of some these sets form U-structures while the others do not. We
have verified these facts.



Preliminaries

Definition 1.1 A topology on a set X is a collection 7 of subsets of X having

the following properties:

(i) ®and Xarein T
(it) Any union of members of & isin .
(iii) Any intersection of finite members of & isin .

The ordered pair (X, & ) is called a topological space. Shortly we can write X.
The members of 7 are called open sets and the complement of an open set is

called a closed set.

Example 1.1 Let X={a, b, c}, 7, ={{a}{a b}, X, d}, T, ={X, &, {a, b},
{b, c}, {b}}. Then &7, and 7, are topologies on X.

Example 1.2 Let X = R, the set of all real numbers, and 7 = { R, @, all
unions of intervals}. Then & is a topology on R, called the usual topology on

R. R, together with the usual topology, will be called the real line.
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Definition 1.2 For a topological space X and a subset A of X, the closure of
A and the interior of A denoted by CIA and IntA respectively are defined by
CIA = the intersection of all closed supersets of A, IntA = the union of all open

subsets of A.

Definition 1.3 [28] A subset A is said to be pre-open if A c Int (CI(A)).

Every open set is pre-open but the converse is not true.

Example 1.3 Let X be the real line R and A = Q, the set of all rational
numbers. Then Q is not open in X, but Q < Int (CI(Q)) = R. So that Q is
pre-open.

The family of all pre-open sets in X is denoted by PO(X).

Definition 1.4 [19] A subset A is said to be semi-open set if Ac CI(Int(A)).

Clearly, every open set is semi-open. However, the converse is not true.

Example 1.4 X =Thereal line R and A= (0, 1] or [0, 1) or [0, 1]. Then A is
not open. Now CI (Int(A)) = [0, 1], and so, A is semi-open.

The family of all semi-open sets in X is denoted by SO(X).

11



Definition 1.5 [34] A c X, Aisan a-open set if Ac Int(CI(Int(A))).

Every open set is a.-open set but the converse is not true.

Example 1.5 LetX={a, b,c,d}and 7 ={X, @, {a, b}, {a, b, c}} and let
A ={a, b, d}. Then A is not open but Int (CI (Int(A))) = X and so

A c Int (Cl (Int(A))), i.e. A'is an a.-open set.

Example 1.6 Let X = The real line R, A = (0, 1] u (1, 2) is not open but
Int (CI (Int(A))) = (0, 2) = A. Therefore A is an a-open set.

The family of all a-open set in X is denoted by a(X).

Definition 1.6 [34] A subset A is said to be B-open set if Ac Cl Int (CI(A))).
Every open set is 3-open set but the converse is not true.

Examples 1.7, 1.8 and 1.9 prove this statement.

Example 1.7 A is open = A = Int(A) = Ac Int(CI(A)) < CI (Int(CI(A))).

= A'is -open.

Example 1.8 If X =The real line R and A = (0, 1], then A is not open.

However, since CI (Int(CI(A))) = [0, 1] & (0, 1] < [0, 1], A is 3-open.

12



Example 1.9 Let X ={a, b, c, d}, 7 = {X, &, {a, b, c}} and let A= {a, d}.
Then A is not open, but CI (Int(CI(A))) = X 2> A and A is a 3-open set.

The family of all B-open set in X will be denoted by B(X).

Definition 1.7 [40] A < Xis ad-open set if Int(CI(A)) < Cl(Int(A)).

Every open set is 3-open but the converse is not true.

Example 1.10 Let X =The real line R and let A = (0, 1]. Then A is not open.
However, CI(Int(A)) = [0, 1] and Int(CI(A)) = (0, 1).
Therefore Int(CI(A)) < CI(Int(A)). Hence A is 5-open.

The family of all 5-open set in X is denoted by d(X).

Definition 1.8 [23] Let X be a topological space with topology 7 and A be a

subset of X. A is said to be locally open if A =G U F, for an open subset G and

a closed subset F of X.

Every open set is locally-open set but the converse is not true.

Example 1.11 Let X =The real line R and let A = (0, 2]. Then A is not open,
but A=(0,1) u[l, 2], and so, A is locally open. Also, If A = (0, 1], then A is
not open, but A = (0, 1) U [*2, 1], then A is locally open.

The family of all locally-open set in X will be denoted by LO(X).

13



Definition 1.9 [17] A subset A of a topological space X is said to be b-open
(resp. *b- open, b**- open, **b- open) set if A < CI(Int(A)) v Int(CI(A)) (resp.
AcCI(Int(A)) ~ Int(CI(A)), A c Int(CI(Int(A))) u CI(Int(CI(A))),

Ac Int(CI(Int(A))) ~ CI(Int(CI(A)))).

Definition 1.10 [6] A c X, A'is said to be locally closed if A = GNF, for

some open subset G and closed subset F of X.

Every open set is locally-closed set but the converse is not true.

Example 1.12 Let X =The real line R and let A = (0, 2]. Then A is not open,
but A = (0, 3) n[-1, 2], and so, A is locally closed. Also, If A =(0, 1], A is not
openin R, but (0, 1] = (0, 2) n [-1, 1], Ais locally closed set.

The family of all locally-closed set in X will be denoted by LC(X).

Definition 1.11 [36] A subfamily M of the power set P(X) of a nonempty set
X is called a minimal structure (briefly M-structure) on X if, ® € M and

X e M.

By (X, M), we denote a nonempty subset X with a minimal structure M
on X and call it M-space. Each member of M is said to be M-open and

complement of an M-open set is said to be M-closed set.

Example 1.13 Let X = {a, b, ¢, d}, 7= {X, ®, {a, b}, {b, c}}.Then (X, 77")

isan M - space.

14



U-space

Definition 1.12 A U-structure on a nonempty set X is a collection ¢ of

subsets of X having the following properties:

(i) ®and Xarein T,
(i) Any union of members of ¢/ isin .

The ordered pair (X, @) is called a U-space. A U-space which is not a
topological space is called a proper U-space. The members of ¢/ are called

U-open set and the complement of U-open set is called U- closed set.

A U- structure and a U-space have been called a supratopology and

a supratopological space respectively by some authors (see [4], [9], [27],

[38])

In general we have
Topological space = U-space = M-space

Topological space <;é U-space < M-space

Example 1.14 Let X = {a, b, ¢, d}, &= {X, ®, {a, b}, {a, c}, {a, b, c}}.

Here (X, &) is a U-space but not a topological space.

15



Example 1.15 Let X={a, b, ¢, d} and 77~ = {X, @, {a, b}, {b, c}}. Then

(X, ") is an M- space but not U-space and also not a topological space.

Example 1.16 Let X be a totally ordered set with an order relation < and &/
Is the set of all unions of the form {xeX: x < a} and {xe X: x > b}. Then % is

called order U-structure on X.

Example 1.17 Let R denote the real numbers and let ¢ consist of the empty
set, all open rays and their unions, then (R, &) is a U-space. This U-space will
be called the usual U-space R. We note that ¢ is not a topology on R, since

2,3)= (- 0, 3)" (2, ©)¢ .

Definition 1.13 If (X, ) is a U-space and ®=AcX .

Let ¢,={AnG | Ge ¢ } is a U-structure in A. For, U(AnG,) =An(UG,)and
UG, € ©. Then (A, ¢ ,) is a U-space and is called a U-subspace of (X, &).

Also, we say that A is a U-subspace of X.

Examplel.18 Let X =(0,1) and £ the union of the sets{(0,b) :beR,0<b <1}
and {(a,1) : acR, 0<a<1}. Then (X, ) is a U-space but not a topological

16



space , since (%,1}{0, gjz(% %)e‘a. In fact this is the U-space obtained by

considering (0, 1) as a U-subspace of R with the usual U-structure.

In the usual U-space R, every singleton set {a} is closed in R, since

{a} = (- »,a]n[a, »). However, every finite set need not be closed.

Definition 1.14 A sub collection .5 of 7 (X) is called a U-base of a
U-space X if any U-open set of X can be written as a union of members of ..

In this case we called the U-space X is generated by .5.

Examplel.19 Let X ={a, b, c,d,e}, &={X, o, {a}.{a b}{b, c}.{a, b, c}}.

Then g ={ X, o, {a},{a, b} {b, c}}.

Remark 1.1 Let X be a topological space. Let the classes of all b-open (resp.
*b-open, b**-open, **b-open) sets in X be denoted by b(X) (resp. *b(X),
b**(X), **b(X)). We shall now consider which of (X, PO(X)), (X, SO(X)),
(X, B(X)), (X, LO(X)), (X, LC(X)), (X, (X)), (X, &(X)) and (X, b(X)),
(X, *b(X)), (X, b**(X)), (X, **b(X)) are M-spaces and which are U-spaces,

where the notations are usual:

(1): (X, a(X)) is a topological space, [34]. So, it is both an M-space and

U-space.

17



(if):- (X, PO(X)) is a U-space but not a topological-space, [12].

(ii):- (X, SO(X)) is a U-space but not a topological-space, ([23],
Them.15(i), (ii)).

(iv):;- (X, B(X)) is a U-space, but not a topological space, ([23],
Them.18(i)).

(V):- (X, LO(X)), (X, LC(X)), (X, 8(X)) are not U-spaces but are
M-spaces, ([23], Them. 16(i), 17(i), 19(i)).

(vi) (X, b(X)), (X, *b(X)), (X, b**(X)), (X, **b(X)) are U-spaces, [17].

Remark 1.2 Let (X, %@ ) be a U-space. Let 7 denote the topology
generated by £ on X. This will be called the topology induced by . Also,
for any sub-collection or super-collection 7£ of & in & (X) which is closed
under union is a U-structure on X. (X, 7 ) is supratopology on X, associated
with 7 . A. S. Mashhour and others have considered and studied these

supratopologies associated with a topology. We have dealt with U-spaces in

general.

Definition 1.15 Let (X, &) be a U-space. For a subset A of X, the U-closure
of A (uCI(A)) and the U-interior of A (ulnt(A)) are defined as follows:

UCI(A) = N{F:ACF, F° c %}, uInt(A) = {U:Uc A, U c %}

Clearly, we have yCI(A) is U- closed and uInt(A) is U- open.

18



Lemma 1.1 Let X be a U-space and A a subset of X. Then xeyCI(A) if and

only if GnA = @, for every U-open set G containing X.
Proof:

Necessity: Suppose that there exists a U-open set G containing x such that
GNA = ®@. Then A < G° Since G is U-open, G° is U-closed. Therefore
uCI(A)cGE.

Hence x ¢ yCI(A).

Sufficiency: Suppose that x¢yCI(A). There exists a U-closed set F in X such
that AcF and xgF. Thus there exists a U-open set F¢ in X which contains x

and is such that F°nA = @.

Lemma 1.2 Let X be a U-space. For subsets A and B of X, the following
hold:

(1) uCI(A®) = (uInt(A))%, ulnt(A)*= (uCI(A))°
(ii) uCI(®) = @, yCI(X) = X, yInt(®) = @ and yInt(X) = X
(iii) If AcB then yCI(A) < (CI(B) and yInt(A) < uInt(B)
Proof:
(i) 1% Part:

Let xeyCI(A®). This implies that for every neighborhood V of X,
VNA®*x ® =VZA.

So x is not in yInt(A). This implies that x e (uInt(A))".

19



Therefore, yCI(A%c (uInt(A))°.

Again let xe(yInt(A)) = x¢ulnt(A) So there does not exist any U-open
set V containing x such that VcA. This implies that for every V containing X,

VNA*2D. Hence xeyCI(A°).

Therefore (yInt(A))¢ = yCI(A°).

(i) 2" Part:

xeylnt(A°). There exists U-open set V such that xeVCA® = VNA = @
which means x¢ yCI(A). Therefore xe (yCI(A))°.

Hence ulnt(A%)c (uCI(A))°

Again let xe (uCI(A))* = x¢g yCI(A). Hence there exists U-open set V
such that VA= ® = xeVcA®" Hence xeylnt(A°

Therefore, (uCI(A))¢ = yInt(A)C.

Proof (ii) is Obvious.

Proof (iii) is Obvious.

20



Continuous functions

As in the case of supratopological spaces [27], we define 3 types of

continuity in the following.

Definition 1.16 Let (X,7/) and (Y, /") be two U-spaces. A function f: X —»Y

Is said to be U-continuous if for each U-open set H in Y, f*(H) is a U-open

set in X.

Example 1.20 Let X={a, b,c,d }, @ ={X, @, {a}, {a, b}, {a, c, d},{b, c, d}}

Y={p,q,r} &' ={Y, 0, {p}{p, a}.{p, r}.{q, r}}. Let f: X =Y be defined
by f(a) = p, f(b) = q, f(c) =r, f(d) =r. Then f is U-continuous.

Definition 1.17 Let (X, 7)) be a U-space and (Y, 7 ) a topological space. A

function f: X =Y is said to be U -continuous if for each open set H in Y,
f~*(H) is U-open set in X.

Example 1.21 Let X={a, b, c}, & ={X, &, {a},{b,c}{a, c}}. Y ={p, q, r},

7 ={Y, O, {p}, {p, a}, {p, r}}. Then (X, &) is a U-space and (Y, 7 ) isa
topological space. The function f: X —Y is defined by f(a) = r, f(b) = q,

f(c) = g. Then f is U -continuous.
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Definition 1.18 Let (X, &) be a topological space and (Y, ?£) be a U-space.

A function f: X —Y is said to be U*-continuous if for each U-opensetHinY,

f*(H) is open set in X.

Example 1.22 Let X = {a, b, ¢, d}, & = {X,®{a}{b}.{c}{a b}{b, c},
{a, c}.{c, d}.{a b, c}, {a c, d}{b, c, d}}. Then (X, 77) is a topological space.
Y={p,q,r} @={Yo{p}{p a}{p r}. {a r}}

(Y, ) is a U-space but not a topological space.

The function f: X —Y is defined by f(a) = p, f(b) = q, f(c) =, f(d) = .

Then f is U*-continuous.

Theorem 1.1 [ 27, p-503]. Let (X, &) and (Y, ') be two U-spaces. For a

function f: X —Y the following properties are equivalent:
1) fis U-continuous ;
2) T (H) =ylnt(f*(H)) for every H ¢ &’;
3) f (UCI(A)) < uClI (f (A)) for every subset A of X;
4) yCI(f*(B)) < f*(uCI(B)) for every subset B of Y ;
5) 7 (uInt(B)) < uInt(f*(B)) for every subset B of Y;

6) uCI(f*(K)) = f*(K) for every subset K of Y such that K°e 7.
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Proof:
(1)=(2)

LetH e & 'and x € T (H). Then f(x) eH. There exists Ge &

containing x such that f(G) cH. Thus xe G f~(H). This implies that
Xeylnt(f~(H)).

This shows that f*(H) < ylInt(f(H)). By Lemma 1.2, we have
ulnt(f*(H)) < f*(H). Therefore, f*(H) =uInt(f*(H)).

2)= @)

Suppose that A is any subset of X and x eyCl(A)) and H ¢ &'
containing f(x). Then x e f*(H) = yInt(f™*(H)).There exists Ge ¥ such that
X eGc f*(H). Since x eyCl(A)), by Lemma-1.1 GnA=zdand
O£ f(GNAcT(G)NF(AcVnT(A). Since He ¢ ' -containing f(x),
f(x) euCI(f(A)) and hence f(uCI(A)) < LCI(f(A)).

3)=(4)

Let B be any subset of .

Then we have f(uCI(f~ (B))) < uCI(f(f* (B))) c uCI(B).

Therefore, we obtain ¢CI(f* (B)) <f*(uCI(B)).

(4)=(5)

Let B be any subset of Y .Then we have
uint(f*(B))* = CI(F*(B?) < f*(CIB°)) = T (uInt(f(B)" =
(F*(uInt(B)))*.

23



Therefore, we obtain f* (yInt(B)) < uInt(f*(B)).
(5) = (6)
Let K be any subset of Y such that K¢ e 7. by (5), we have (f*(K))® =
f(uInt(K*)) < ulnt(f (K*)) = uInt(f*(K)) © = (LCI(f*(K))) °.
Therefore, we have (CI(f*(K)) cf*(K) < oCI(f*(K)).
Thus, we obtain yCI(f* (K)) = f*(K).
6)=(1)
Let xe X and He ¢ 'containing f(x). By (6),

We have (f*(H)) ¢ =f*(H®) =yCI(f*(H®)) = CI(f* (H)) °= (uInt(f*(H))) °.
Hence we have xef™(H) = yInt(f* (H)). Therefore, there exists Ge ¢ such
that xe G T (H).

Thus xe Ge @ and f(G)cH. This shows that f is U-continuous.

24



Compact and Hausdorff U-spaces

Definition 1.19 Let (X, 7)) be a U-space. A U open cover of a subset K of
Xis a collection {G , } of U-open sets such that Kc |J G, .

Definition 1.20 A U-space X is said to be compact if for every U-open cover

of X has a finite sub-cover.

A subset K of a U-space X is said to be compact if every U-open cover

of K has finite sub-cover.

Example 1.23 Let X =N, &#={2 N, 4 N, 8N, 16N, ....... 2"N, ...... N, O}

Then X is a compact U- space.

Let ® A cX and G be a U-open cover of A. Let n be the smallest
+ve integer such that 2" IN ¢ G. Then Ac2™N. So {2™ N} is a finite

sub-cover of G. Therefore every subset of X is compact.

Example 1.24 Let X = N and & = {m N: me N }u{®}. Then X is a

compact U- space.
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Heine-Borel Theorem is an important result for compactness in Topology.

This states that a subspace A of the real line R is compact if and only if A

Is closed and bounded.

However, the corresponding theorem does not hold for the usual U-space

R. For, N is a compact subspace of the usual U-space R but it is neither

U-closed nor bounded.

As for topological spaces, we have

Theorem 1.2 Let (X, 7 ) and (Y, % ') be two U-spaces. If f: X Y is a

U-continuous function and B is a compact subspace of U-space X, then f(B) is

compact.

Proof: Let{H.iel} beany U-open cover of f(B). For each xe B, there exists
I(X) el such that f(x) Hix. Since f is U-continuous, there exists U-open set
G(x) containing x such that f(G(x)) = H,,, . The family {G(x): x eB} is a
U-open cover of B. Since B is compact, there exists a finite number of points,

say X1, X2, X3,....... ,Xn 1N B such that B {G(x,):x, € B,1<k <n}. Therefore, we
have f(B) = {f (G(x,)):x, €Bl<k<n}c{H,,,:x €B,1<k<n}.Thus f(B) is

compact.

We can similarly prove that the following two results:
Theorem 1.3 Let (X, ) be a U-space and (Y,7 ) a topological space. If

f: X Y is a U -continuous function and B is a compact subspace of U-space
X, then f(B) is compact.
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Theorem 1.4 Let (X, 7) be a topological space and (Y, 7/ ) be a U-space. If

f: X =Y is a u*-continuous function and B is a compact subspace of U-space

X, then f(B) is compact.

Theorem 1.5 Every closed subspace of a compact U-space is compact.

Proof: Let X be a compact U-space and F be U-closed subspace of X. Let
{V.} be U-open cover of F. Therefore Fcwv, and V.= G,.~nF, where G.is a

U-open set of X. Therefore F°*{G,}is a U-open cover of X. Since X is a

compact U-space, there exists iy, Iy, I,........ JIn such that

X=F°UG, UG, U........ UG, ~FgV, uV, u...wV, . Therefore F is compact.

i i i

Definition 1.21 A U-space X is Hausdorff U-space if for each x, y € X, with
X =Y, there exists disjoint U-open sets G and H in X such that xeG, yeH.

Example 1.25 Let X ={a, b, ¢, d}, @ = {{a},{d}.{b, c}.{b, d}, {a, d},
{a, c}{a, b, c}{b, c, d}{a, c, d}, {a, b, d}, X, ®}.
Then (X, ) is a Hausdorff U-space.

Example 1.26 The usual U-space R is Hausdorff , for any x, y € R, with x=y
(say X <), there exist two disjoint U- open sets (- oo,XLzy) and ( XLzy,oo)

containing x and y respectively.
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Example 1.27 (Example of a U-space which is not Hausdorff )

Let X be an infinite set and &/ = {X, ®, {G<=X |G° is asingleton set}} . Then

(X, ) is a proper U-space which is not Hausdorff.

Theorem 1.6 Every subspace of a Hausdorff U-space is Hausdorff.

Proof: It is trivial.

In topology we have

Theorem 1.7 Every compact subspace of a Hausdorff space is closed.

However, we note that the following.

Remark 1.3 A compact subset of a Hausdorff U-space need not be closed.

Its truth is proved by the following example:

Example 1.28 Let A ={1,2,3}cR, then clearly A is a compact U-space, but it
Is not closed. Because every U-closed set in R is of the form [b, «), or (-o, a]

or their intersection.
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Definition 1.22 Let (X,7¢) and (Y, ') be two U-spaces. A function f: X —»Y

Is said to have a strongly U-closed graph (resp. U-closed graph) if for each

(X, y) e(XxY) - G(f), there exists Ve 7 containing x and We 74 'containing
y such that [V x yCI(W)]~ G(f) = @ (resp. [V x W]~ G(f)) = D).

Lemma 1.3 Let (X, &) and (Y, ?') be two U-spaces. A function f: X -»Y

has a strongly U-closed graph (resp. U-closed graph) if and only if for each
(X,y) e (XxY) - G(f), there exist Ve & containing x and We £ 'containing y

such that f(V) ~yCI(W) = @ (resp. f(V) n W = D).

Proof: It is clear from the above definition. Since f(x) ¢ CI(W) for any X V.
Therefore, f(V) n yCI(W) = ®.

Theorem 1.8 Let (X, 7/ ) and (Y, ") be two U-spaces. If a function f: X -Y
Is a U-continuous function and (Y, 7 ’') is a Hausdorff U-space, then G(f) is
strongly U-closed.

Proof: Suppose that (X, y) e(XxY) - G(f). Then y =f(x). Since Y is a
Hausdorff U-space, there exist disjoint sets V and W in ¢/ containing y and

f(x) respectively. By Lemma-1.1 we have (CI(V) nW = ®. Since f is

U-continuous, there exists Ue 74 containing x such that f(U)cW.

This implies that f(U) ~ yCI(V) = @ and by Lemma-1.3 G(f) is strongly
U-Closed.
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Theorem 1.9 Let (X, &) and (Y, ") be two U-spaces. A function f: X -Y
Is a surjective function with a strongly U-closed graph, then (Y, 7/ ) is a

Hausdorff U-space.

Proof : Let y; and y, be any distinct points of Y. Then there exists x;e X such
that f(x;) = y1.Then we have (X1, ¥2) € (XxY) - G(f). Since G(f) is strongly
U-closed, there exists Ve 7/ containing X, and We ¢’ containing y, such that
f(V) ~ oCI(W) = ®. Therefore, we have y;= f(x1) € f(V) <(uCI(W))°. By
Lemma-1.3 there exists K € 7' such that y;e K and KnW = ®. Moreover,

we have y,eW. This shows that (Y, 7/ ) is a Hausdorff U-space.
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CHAPTER - 2

Separation and compactness in U-spaces

Introduction

In this chapter we have generalized to U-spaces the concepts of
To-space, Ti-space, T,-space, completely Hausdorff space, regular space,

completely regular space, T ,-space, normal space, Ts-space, completely
3=
2

normal space, locally compact space, compactification, and some results on
topological spaces occurring in Munkres [33] and Majumdar & Akhter [24].
We have defined product of U-spaces, and given an example of a U-space
which is regular but not Hausdorff and of a Hausdorff U-space which is not

regular. We have generalized Tychonoff’s theorem to U-spaces.
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Separation in U-spaces

Definition 2.1 A U-space X is To-U-space if for each x, ye X, with x = vy,
there exist two distinct U-open sets G and H in X such that xe G, yeH.

Example 2.1 Let X = {a, b, c, d}, @ = {{a}, {d}, {b, c}, {b, d}, {a, d},
{a,c}, {a, b,c} {a b, d}, {b,c,d}, {ac,d}, X, ® }. Then (X, &) isa

To- U-space.

But (X, %) is not a topological space.

Definition 2.2 A U- space X is T1-U-space if for each x, ye X, with x = vy,
there exist two U-open sets G and H in X such that xeG, y¢ G and xeH,

yeH.

Example 2.2 Let X be an infinite set. Let ¢/ consist of the sets {a}*, for each
ae X, and their unions. Clearly, X, ® e . Then (X, & ) is a Ti-U-space.
However, (X, ) is not a topological space. Since {a}*~{b}° = {a, b}‘e .

Example 23 Let X = {a, b, c}, @ = {{a, b}, {a, b, c}, {a c}, @}
Then (X, ) is a To-U-space but not T;-U-space.

Here T;-U-space = T,-U- space, but T, -U- space 3L>T1—U—space.
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Theorem 2.1 [24]( Theorem-1.3, p. 100)

A U- space X is T;-U-space iff every subset of X which consisting of

exactly one point of X is U-closed.

Proof: Let X be a T;-U-space and xe X. We shall show that X — {x} is
U-open. Let ye X — {x}. Since X is a T;-U-space, for each ye X, y=X, there
exist U-open set G suchthatye G, but x ¢ G,. So, G, ¢ X —{x}. Therefore

X —{x} is U-open.

Conversely let every subset containing one point of X be U-closed and
let X, ye X and x = y . Since {x} and {y} are U-closed, G = X — {y},
H = X — {x} are U-open and xeG, y¢ G and xeH, yeH. Therefore X is

a T1-U-space.

Definition 2.3 A Hausdorff U-space is called a T»-U-space.

Example 2.4 Let X={a, b, c}, &={X, &, {a}, {b}{b, c}{a c}, {a, b}}.

Then ( X, ) is U-space not a topological space. Here a and b are separated

by {a} and {b, c}, b and c are separated by {b} and {c, a}, ¢ and a are
separated by {a} and {b, c}. Here ( X, 7/) is a T,-U-space.

(X, &) in Ex.-2.2 is a T1-U-space but it is not a T,-U-space.

Hence every T,-U-space is a T1-U-space, but not conversely.
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Definition 2.4 Let (X, ©x) and (Y, £ vy) be U- spaces. (XxY, T ), where &/
Is a collection of subsets of XxY, is called the product of X with Y if ¢/ is

the U-structure on XxY generated by(U{zr;lGx}ju(U{zry_le}], 7.0 XxY X,

xeX y

7, XxY =Y are the projection maps.

Hence if (XxY, @ ) is the product of (X, @x) with (Y, &),
then 7/ is the smallest U-structure on XxY such that the projection maps

m: XxY>Xandz,: XxY Y are U-continuous.

In general, let {X _, £, }be any non-empty family of U-spaces. Then,

is called the

a )

(ITX.., ¢ ), where 7 is a collection of subsets of J]X
product of {X,, %, } if & is the U-structure on]]X, generated by
U{;z;l(ua)|ua e U,}, where z,: ][ X, — X, s the projection map.

a

It follows therefore

Theorem 2.2 (XxY, ) is the product of (X, ¢4) with (Y, 74) if and only
If ¢/ is the U-structure generated by {GixY: G1 € @h}u{XxG,: G, € U2}
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Our next theorems are generalizations of (Theorem- 2.2- 2.4, p. 102-103)
in [24]

Theorem 2.3 The product of any nonempty class of Hausdorff U-space is
Hausdorff.

Proof: Let {X;} be the product of a nonempty class of Hausdorff U-spaces X
and X =[] X,. Suppose x, ye X, x = y. If x = {xi} and y = {yi} are two

distinct points in X, then we must have x, =y, for at least one index io. Since

X. is a Hausdorff U-space, there exist two disjoint U-open sets U and V of

lo

X, suchthatx, eUandy, eV.LetG=]]GandH=]]H,, where U= G,

and V = H, and for i=ip, GiuHi = Xi. Thus G and H are two disjoint U-open
sets of X and x eG and yeH.

Therefore X is Hausdorff.

Definition 2.5 Let (X, 7/ ) be a U-space and R an equivalence relation on X.

Foreach Ue 7, let U'= {cIs x |xe &}. Let ©'={U’ |Ue &}. Then &' is

a U-structure on %. (%,‘ZJ’) will be called the usual U-space %, unless

otherwise stated, % will denote this U-space.
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Theorem 2.4 Let X be a U-space and R is an equivalence relation of X. If R

Is a U-closed subset of the product space Xx X, then % Is Hausdorff.

Proof: Letp: X—>% be a projection mapping i. e. p(x) = clsx. Let z, z'e %.

So z = p(x), 2’ = p(x’), where x, x'e X. Since R is a U-closed subset of Xx X,
there exist two U-open sets U and V such that (x, X' ) eUxV cR'. Since p is a

U-open mapping, p(U), p(V) are U-open. Clearly, z € p(U), z’e p(V).

Since UxV cR’, p(U)~p(V) = ®. Hence % Is Hausdorff.

Theorem 2.5 Let X be a U- space and Y a Hausdorff U-space and let

f: X->Y bea U-continuous mapping. Then % Is Hausdorff.

[Here R(f) is an equivalence relation of X, given by (X, X') € R(f) =
f(x) = f(x) 1
Proof: Let clsx and clsy be two distinct elements of %. So f(x) and f(y) are

two distinct elements of Y. Since Y is Hausdorff, there exist two disjoint
U-open sets G and H of Y such that f(x)eG and f(y) H. Since f is
U-continuous, f 1(G) and f-1(H) are disjoint U-open sets of X. Hence xe f 1(G)
andy e f1(H).
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Againp : X a% is a projection mapping, this implies that p(f 1(G))
and p(f 1(H)) are two disjoint U-open sets of % containing clsx and clsy

respectively. Hence % Is Hausdorff.

Definition 2.6 A U-space X is said to be U-Tz% space or, completely

Hausdorff if for each x, ye X, with x = y, there exist U-open sets G and H

suchthatx eGandyeHand G nH= .

Example 2.5. LetX={a, b,c,d}, w={X, O, {a, b}, {a, c} {a d}, {b,c},
{b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}. Then X is a proper

completely Hausdorff U-space.

Definition 2.7 A U-space X is called regular if for any U-closed set F of X
and any point xe X, such that x¢F there exist two disjoint U-open sets G and
H such that x G and FcH.

For U- spaces ‘Hausdorff’ and ‘regular’ are independent concepts.
Example 2.6 (A proper U-space which is regular but not Hausdorff).

Let X ={a, b, ¢, d}, &% = {X, o, {a}{d}{a, d}{a, b, c}, {b, c, d}}.
Then (X, ¢) is a proper U-space. Here the U-closed sets are X, @, {a},{d},
{b, c}{a, b, c}{b, c, d}. We easily see that X is a regular but it is not
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Hausdorff, since b and ¢ cannot be separated by disjoint U-open sets. Also

(X, ) is not a topological space.

Example 2.7 (A proper U-space which is Hausdorff but not regular).

Let X = R and ¢/ is a structure generated by ¢4 v T, where T is
the usual space on R and 7, = {Q°}, where Q is the set of all rational

numbers.

Then (X, /) is a Hausdorff U- space, since ¢/ 1c .

If F = Q and x is an irrational number, then F is U-closed, since

Q° e ?; and x¢F. But x and F can not be separated by disjoint U-open sets.
Here (X, T£) is not regular.

Thus a Hausdorff U-space need not be regular.

We now generalize theorems of [24](P. 104- 106).

Theorem 2.6 Any U-space X is regular iff for each xe X and each U-open

set G containing X, there exists a U-open set H of X such that xeHc H < G.
Proof: Let X be regular U-space and let F = G’ . Then F is U-closed and x¢F.
Since X is regular, there exist U-open sets V1, V, such that xe V1, Fc V; and

VinV, = @. This implies that Vi< V' < F'. Therefore U V2'= Vy < G If
we write V; = H. Then we get xeHc H < G. Now let for every xe X and for

every U-open set G, there exist U-open sets H, such that xeHc H < G.

38



Let F is U-closed and x¢ F. =F' is U-open and xeF’. According to the

condition there exist U-open set H, such that xeHc H < F'. Let (H)' = W.

Then W is U-open, Fc Wand WnH = .

Theorem 2.7 The product of collection of nonempty regular U-space is

regular.

Proof: Let {Xi} be collection of nonempty regular U- space and X = JX; .

We shall show that X is regular. Let xeG, G is a U-open set of X. Then
x = {x} and G is a U-open basic subset containing [ [G, where xe [ ]G, .

Therefore G; is a U-open set of X; containing x;. Since X; is regular,

there exist U-open set Vi, where xeV;, V; cGi. Now let V =]]Vi. Then xe V
andV =[]V, c[]6G <G.

Hence X is regular.

Theorem 2.8 Every subspace of regular U-space is regular.

Proof: Let X be a regular U-space and Yc X. Let yeY and B is a U-closed
set of Y, such that y¢B. Since B is U-closed in Y, there exist a U-closed subset
F of X such that B = FnY. So, yeF. Since X is regular, there exist disjoint
U-open sets G and H such thatye Gand FcH. LetV1=GnY,V,=HANY.

Therefore V1 and V; are disjoint U-open sets where ye Vi and B c V..

Hence Y is regular.
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Theorem 2.9 Let X be regular T1-U-space. R is an equivalence relation of X.

If the projection mapping p : X—>% Is U-closed, then R is U-closed subset of
XxX.

Proof: We shall show that R’ is U-open. Let (X, y)e R’. It is sufficient to show
that there exist two U-open sets W; and W, of X such that xeW; and ye W,
and WixW, cR'.

This implies that p(W1)~p(W2) = @ . Since (X, ¥) € R’, p(x)=p(y),
i. e. Xxep(p(y)), again since {y} is U-closed and p is U-closed mapping. So
p(y) is U-closed. Since p is U-continuous, then p™*(p(y)) is U-closed. Thus
there exists disjoint U-open sets Wy and V such that x e Wy and p*(p(y)) < V.

Since p is a closed mapping, there exist U-open set G containing p(y) such that
p*(p(y)) < pP*(G) < V.

If we consider p(G) = W, then W;xW, is a U-open set of R'.

Theorem 2.10 Let X be regular T;-U-space. R is an equivalence relation of
Xand p: X—>% is U-closed and open mapping. Then % Is Hausdorff.
Proof: Sincep: X—>% is U-closed, R is a U-closed subset of Xx X.

Let p(x), p(y) e %. So, X, yeR. Since R is a U-closed set of Xx X, there exist

two U-open sets V and W of X such that xeVV and ye W and VxW cR'.
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Therefore p(x) € p(V), p(y) € p(W). Since p is U- open, p(V) and p(W)

are U-open set of % and VxW <R’ provides p(V) np(W) = .

Hence % Is Hausdorff.

Definition 2.8 A U-space X is said to be completely regular if and if for any
U-closed subset F of X and x e X which does not belongs to F, there exists a
U-continuous function f: X — [0, 1] such that f(x) = 0 and f(F) = 1. Here [0, 1]

Is considered as a subspace of the usual U-space R.

Example 2.8. Let X =[0, 1] and 7= {X, ®,{{[(a, 1)], [(0, b)] | O< &, b < 1}

and their unions}}. Then the U-open sets of X are X, @, and the sets of the
form [(0,b)].[(a.1)] and [(0,b)] v [(a,1)], b <a.

Hence, the U-closed sets of X are of the form X, @, [(0, a)], [(b, 1)] and
[(a, b)], a < b. Here [(a, b)] stands for any of (a, b), (a, b], [a, b) and [a, b].

Clearly, (X, ) is a proper U-space.
Let F be a proper U-closed set, i.e., ®= F= X. Letce X, ceF.
Then,(i) F=[(a, b)], forsome 0< a, b< 1,a<b;or,
(i)  F=[(0, b)], or, (iii) F=[(a, 1)], 0< a, b< 1.

We now consider Y = [0, 1] as a subspace of the usual U-space R. We first

consider case (i) Define f: X>Y by

(a) f(x) =1, xe(c, 1],
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=0, xe[0, c], if c is on the left of F;
(B)  fx)=1xelc 1),
=0, xe(c, 1], if c is on the right of F.
Then in both the cases of («) and (), f is U-continuous and f(F) = 1, f(c) = 0.
Next, we consider the case (ii)
Define f: XY by
f(x) =1, xe[c, 1],
=0, xe(0, ¢);
Then fis U-continuous and f(F) = 1, f(c) = 0.
Finally, we consider the case (iii)
Define f: XY by f(x) =1, xe[0, c],

=0, xe(c, 1].
Here again f is U-continuous and f(F) = 1, f(c) = 0.

Hence (X, &) is completely regular.

Comment 2.1

The above U-space X of Example 2.8 is also Hausdorff, normal and regular.

We prove these below:

x+y)

(i) Let x, ye X, x=Yy. Then for the disjoint U-open sets G; = [0, =

and G; = (%, 1], xe Gy, ye G,. Thus, X is Hausdorff.
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(i) Let F; and F; be two disjoint U-closed sets in X. We shall show that
there are disjoint U-open sets G;, and G, such that F;c G;, Foc G,. We see that
F, is the form [0, a)], or [(b, 1], or [(a, b)].

If F,=[0, a)], F2is the form  (a, 1], or [(c, 1], or [(c, d)], for some ¢ > a. In the

first two cases, both F; and F, are U-open sets also, we take G1= F1, G, = F».
If F» = [(c, )], we take G1 = Fy, G, = (%,11.

Here X is normal.

(it) Similarly, we can prove that X is regular.

Definition 2.9 A regular U-space X is called Ts-U-space if for each singleton

subset of X is U-closed.

Definition 2.10 A T;-U-space X is said to be Tg% -U-space if X is

completely regular.

Theorem 2.11 [24](Theorem- 3.8, p. 107)
Every completely regular U-space is regular.

Proof: Let X be a completely regular U-space. F is a U-closed set of X and
xe X which does not belongs to F, there exists a U-continuous function f: X —
[0, 1] such that f(x) =0 and f(F) = 1.
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Let a, b [0, 1] and a < b. Then [0, a] and [b, 1] are two disjoint
U-open set of [0, 1]. .. x ef [0, 1] and F <f [b, 1].

Therefore X is regular.

One can prove that a subspace of regular (a completely regular) U-space
and a product of regular (a completely regular) U-spaces is regular

(completely regular).

Definition 2.11 A U-space X is said to be normal if for each pair disjoint
U-closed sets F; and F, , there exist U-open sets G; and G, such that F; < Gy,

Forc G and GinGy=o.

Theorems in U-spaces corresponding to the standard theorems regarding
regular, normal and completely regular topological spaces can be shown to be
valid. In particular, Urysohn's Lemma and Tietze Extension Theorem have

their analogues for U-spaces.

We shall give here examples to show that proper regular and normal

U-spaces exist and are distinct.

Example 2.9 (A proper U-space which is normal and regular.)
Let X={a, b,c,d}, “={X, o, {a}, {d}, {a, d}, {a, b, c},{b, c, d}}.

(X, ) is a proper U-space , since {a, b, c}~{b, ¢, d} ={b, c}¢ .
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Closed sets are X, @, {a}, {d}, {b, c}, {b, c, d}, {a, b, c}.
Here {b, c}<={a, b, c} and {d}={d}. {b, c} and {d} are U-closed and disjoint

and there exist disjoint U-open sets containing {b, c} and {d} respectively.
Similarly, we can show that for any pair of disjoint closed sets, there exist

disjoint U-open sets containing them respectively. Hence X is normal.

Here {b, c, d} is a closed set, ag{b, c, d} and there exist disjoint
U-open sets containing a and {b, c, d} respectively. The other cases being

trivially satisfied, X is regular.

We note that the U-space X in the above example is regular but not a

T3-U-space.

Example- 2. 10 (A proper U-space which is normal and regular.)
Let X ={a, b, c}, w={X, o, {a}, {c}, {a, b}, {b, c}, {a, c}}.
(X, ) is a proper U-space , since {a, b}~ {b, c} = {b}e¢ .
Closed sets are X, @, {a}, {b}, {c}, {b, c}, {a, b}.
Here {a}c{b, c} and {b, c}<={b, c}. {a} and {b, c} are U-closed and disjoint

and there exist disjoint U-open sets containing {a} and {b, c} respectively.
Similarly, we can show that for any pair of disjoint closed sets, there exist

disjoint U-open sets containing them respectively. Hence X is normal.

Here {b, c} is a closed set, a¢ {b, c} and there exist disjoint U-open sets

containing {b, c} and {a} respectively. So, X is regular.
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Example - 2.11 (A proper U-space which is normal but not regular.)

Let X={a, b,c, d}, @={X o,{a b} {a c} {a b, c}}
(X, T) is a proper U-space , since {a, b}~ {a, c}={a}¢ .

Closed sets are X, @, {a}, {c, d}, {b, d}, {d}.

Here be {c, d}, ag{c, d} but none of these can be separated by disjoint U-open

sets. Hence (X, /) is not regular.

However, (X, ) is normal, since there are no pair of disjoint U-closed sets.

We give below another such example.

Example 2. 12 Let X ={a, b, c, d, e}, @ ={X, o {a b}{c, d, e}, {b, d, e},
{a, b, d, e}}. (X, &) is a proper U-space , since {a, b}~ {b, d, e}={b}¢ .

Closed sets are X, @, {c}, {a, c}, {a, b}, {c, d, e}.

Here be{a, c}, de{a, c} but none of these can be separated by disjoint U-open

sets. Hence (X, &) is not regular.

Here {a, b}~ {c} = @ {a, b}={a, b} and {c}={c, d, e}; {a, b}~ {c, d, e} = @,
{a, b}c={a, b} and {c, d, e} ={c, d, e}. So, (X, &) is normal.

Example - 2.13 (A proper U-space which is not normal and not regular.)

Let X={a, b,c,d e}, “={X, o, {d, e} {a b,c,d}}
(X, &) is a proper U-space but not topological space.

Closed sets are X, @, {e}, {a, b, c}.
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(X, &) is not normal, since {a, b, c} & {e} are disjoint U-closed sets which
can not be separated.

Here be{e}, de{a, b, c} but none of these can be separated by disjoint U-open

sets. Hence (X, 7/) is not regular.

Theorem 2.12 [24]( Theorem- 3.10, p. 108)

A U-space X is normal if and if for each U-closed set F and each

U-open set G containing F, there exists a U-open set H of X such that
Fg H C ﬁ C G.

Proof: Let X be a normal U-space and F a U-closed set of X and G a

U-open set containing F. Then G’ is U-closed set in X disjoint from F.

Since X is normal, there exist disjoint U-open sets V and H such that G'c V

and F cH. Therefore Hc V'. Again since V' is U- closed, H c V',

Hence Fc Hc H cG.

Again let F be a U-closed set of X and for each U-open set G containing
F, there exists a U-open set H such that FcHc H < G. let A and B be two

disjoint U-closed set of X. So, AcB' and B’ is a U-open set. Therefore there

exists a U-open set V suchthat A ¢« Ve V < B'. LetW=(V ).

This implies that VV and W are two disjoint U-open sets such that AcV
and Bc W.

Hence X is normal.
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Definition 2.12 A normal U-space with T; property is called Ts-U-space.
Every T,-U-space is T3-U-space but Ts-U-space may be or not T,-U-space.

A normal U-space may be or not T,-U-space and T,-U-space may be or

not normal U-space.

Example — 2.14 (A U-space X is T2-U-space but not regular and normal.)

LetF, ={geQ :q<3}and F, ={geQ : q > 3}. Then F; and F; are
U-closed subsets of X and F1~F, = @. F; and F, can not be separated as a

disjoint U-open set.

Hence the U-space X is not normal.

We now generalize theorems of [24]( p. 110- 120)
Theorem 2.13 Every second countable regular U-space is normal.

Proof: Let X be a second countable regular U-space and g be a countable

base of X. Let A and B are two disjoint U-closed set of X. Since X is a regular

U-space, for each xeA there exist U-open sets G and H of X such that
XeHc H < Gand GAB = @. For U-open set V, there exist a U-open sets with

S basis containing x and contained in V. {G.} is a countable collection of

U-open sets covering of A, and foreachn, G, AB = ®.

Similarly, {H,} is a countable collection of U-open sets covering of B,
and for each n, H, ~A = @. Let G = UG, and H = UH,. Then AcG,

B <H but may not be GAH = @ (they need not be disjoint).
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Therefore for each n, suppose G', = G, - OH_i and H', = H,, - 05
i=1 i=1

From the definition of G,, H, and G'y,, H',.. It is clear that the collection {G',}
and {H'n} are U-open cover of A and B respectively, where G', and H’, are
disjoint to each other. Let G' = uG',;and H' = UH',,, then A <cG’''BcH' and

G'~H' = @. Because if xe G’ ~H' then for any i, j; xe Gi' ~Hi’ . Here i< j or,
J <. Leti< . Since Hf = H;j - UG_k Gi'~Hj = @. This is contradiction. A
k=1

similar contradiction arise if j < i. Therefore X is a normal U-space.

Theorem 2.14 (The generalized form of Urysohn lemma)

Let X be a normal U-space and A, B be disjoint U-closed subsets of X.
Then there exists a U-continuous function f : X—[0, 1] such that
f(A) =0, f(B) = 1.

Proof: Since A and B are disjoint U-closed subsets of X, AcB’, B’ is U-open.

Since X is normal. According to the Theorem 2.12, there exist a U-open set U,
2

suchthat A c U cB'.

-

N |-
N

Again A and U, are U-closed sets and U, and B’ are U-open sets
2 2

respectively containing A and U, . So there exist two U-open sets U, and U,
2 3 :

such that A c U cU, cU, cU,cuU, B

=

BN
FNE
N |-
N |~
~low
Slw

If we continue this process, for each rational number of the form
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zzmn; {m=1,23, - (2"-1),and n=1, 2, 3, --------- }. We have an

U-open set of the form U such thatt; <t;. = A cU, ¢ U_t cU,cU, cB.

We now define a function f : X [0, 1] ; f(x) =0, if for each t, xe U
=sup{t:x = Ui}
It is clear that f(A) = 0 and f(B) = 1.

Now we show that f is U-continuous. All intervals of the form [0, a) and
(a, 1], where 0 < a < 1, constitute a U-open sub base for [0, 1]. It is easy to see
that f(x) < a iff xe U, for t<a;i.e. f ([0, a)) = {x: f(x) <a} = |JU,, which is

an U-open set. Again {x : f(x) < a} = (JU, = U,

!

Therefore f 1((0, a]) = {x : f(x) >a} = (UU‘J , Which is an U-open set.

t>a

Hence f is U-continuous.

Theorem 2.15 If A and B are two disjoint U-closed sets of a U-space X and
if there is a U-continuous function f : X—[0, 1] such that f(A) = 0, f(B) =1,

then X is normal.
Proof: Let A and B are two disjoint closed sets of a U-space X. Then there is a

U-continuous function f : X —[0, 1] such that f(A) = 0, f(B) =1. Let a, be[0, 1]
and a < b. Then [0, a) and (b, 1] are two disjoint U-open sets. Since f is
U-continuous, f ([0, a)) and f ((b, 1]) are two disjoint U-open sets of X and
A c £Y(]0, a)), B< f((b, 1]).
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Therefore X is normal.

Theorem 2.16 (The generalized form of the Tietze extension theorem.)
Let X be a normal U-space and F be a U-closed subspace of X and

f . F—[a, b] is a U-continuous real function. Then f has a U-continuous

extension f : X—s[a, b], i.e. there is a U-continuous function f : X—[a, b]

suchthat f |F=f.

Proof: If a = b then f is constant function and in this reason f is also constant

function with the same value. So let a < b. We may clearly assume that [a, b] is
the smallest U-closed interval which contains the range of f. Furthermore, the
device used in the proof of theorem enables us to assume thata=-1and b = 1.
l.e.f:F—>[-1, 1] and [- 1, 1] is the smallest closed interval which contains the

range of f.
Let fo = fand Ag = {x : fo(X) < - % Y and By = {x : fo(X)> %}. Then Ao

and By are disjoint nonempty closed subsets of F. Since F is a U-closed subset
of X, then Ay and By are U-closed subsets of X. According to the Theorem

2.14, there exists a U-continuous function
) 1 1 1 1
go: X —>[- 3 §] such that go(Ap) = - 3 and go(Bo) = 3

Let f, =fo—go (herego | F=go).Then f; : F—[- 1, 1] is U-continuous function

and |1,(x)| s% DA = x| fi(X) < (-%)(%)} and B;= {x | f,(x) > (%)(%)}.
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Then A; and B; are two non-empties disjoint U-closed subsets of F.
Then in the same way as above there exists a U-continuous function

g X >[- % %] such that ga(A1) = (-%)(g) = g and g1(B1) = (%)(%) - é

Let f, = f1-gy = fo— (o + g1). Then |f,(x) g@ |

With the help of this process we get {f.} sequence function on F and {g.}

sequence function on X, where |f_ (x)| g@j 19, () S@j@j and

fo = fo— (go +g1 + g2+ ------- + On-1).

For this subtraction consider gi | F. Assume that s, = go +01 + g2+ ------- + Ona .

Since |g,(x)| < (%)(3 and zw: (%) (%) = 1, {sn} converges uniformly.

Therefore, limit of {s,} is fand f : X—R is a U-continuous function and
|s(x)| <1.

2

Again since for each x, |fn(x)|s(§] , then f,(x) —0. So s,—f, on F.

i. e. the value of f and f are equal on F.

Hence f is a U-continuous extension of f.
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Theorem 2.17  Let X be U-space and Y be Hausdorff U-space and let A be
a subspace of X. If f : A->Y is a U-continuous mapping, then f has no more

than one U-continuous extension A —Y.
Proof: If possible, let g, h: A —Y be two U-continuous extension of f.

Then A has a limit point x such that g(x) =h(x). Since Y is a Hausdorff
U-space, there exist two disjoint U-open sets G and H of Y such that g(x)eG
and h(x)eH. Since g, h are continuous, so g }(G) and h* (H) are U-open sets of
Aand x e g }(G)nht (H).

Now X is a limit point of A, (g *(G)~ht (H)) nAx @.

Let ae(g H(G)nh? (H)) ~A, then g@ G and h(a) eH. Since
g|A=h|A, g(@ =h(a) eG~H which is contradicts.

Theorem 2.18 Letf: X —Y be a U-continuous mapping, where X is a

U-space and Y is a Hausdorff U-space. Prove that graph of f i.e.
{(x, f(x)), xe X} is a U-closed subspace of product space Xx Y.

Proof: Let A = {(x, f(x)), xe X}. We shall show that A is U-closed. i.e. A" is
U-open. Suppose (X, y) €A’, then y= f(x). Since Y is a Hausdorff U-space,
there exist two disjoint U-open sets G and H such that ye G and f(x) H.

So (x,y) ef 1(H) xG.
It is enough to show that f 1(H) xG < A’ for showing A’ is U-open.
Let f 1(H) xGg A", then (Xo, Vo) ef 2(H) xG. But (Xo, Yo) & A’ .

I. e. (Xo, Yo) €A.
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Then yo = f(xo) and xo f H(G) = xo ef L(H) ~ fXG). i. e. f(xo) cH G

which is contradicts.

Therefore f 1(H) xG < A"

Theorem 2.19 If X is Hausdorff U-space and pe X, then the intersection of
all U-closed sets of X containing p equal to {p} and the intersection of all

U-open sets of X containing p is equal to {p}.

Proof: Let X be a Hausdorff U-space. Since {p} is a U-closed set of Hausdorff

U-space. Therefore, intersection of all U-closed sets containing p is {p}.
Again let the intersection of all U-open sets containing p is A. Obviously, peA.

If A ={p}, then g €A where p=q. Since X is Hausdorff, there exist
disjoint U-open set G, H such that peG and qeH. But qe A =qeG which is
contradicts. Hence A = {p}.

Theorem 2.20 Letf: XY, g:Y —XbeU-continuous and gf = 1,. If Y is
a Hausdorff U-space, then X is a Hausdorff U-space and f(X) is U-closed of Y.

Proof: Let X3, Xoe X and X1 # Xo. Since g.f = 1y, fis 1-1. This implies that

f( X1 )= f(x2). Since Y is a Hausdorff U-space, there exist disjoint U-open set
G and H of Y such that f(x;)eG and f(xz)eH. Since f is U-continuous, f 1(G)
and f 1(H) are disjoint U-open sets of X and x; € f 1 (G) and x,e f 1 (H).

Hence X is Hausdorff.
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Theorem 2.21  Every infinite Hausdorff U-space has countable infinite

discrete U-subspaces.

Proof: Let X be an infinite Hausdorff U-space. Let x; and X, be distinct two
points of X. Then there exist two disjoint U-open sets G; and G, of X such that

X1 eGi and Xoe Go.

Let x5 e X which is separate from x; and X,. Then there exist U-open sets
H1, Hz, Hz and H, such that xie Hy X € Ha Xse Hz and Xse Hq and HinHs =
®. Let HonHy = @. Suppose Hz~H4 =U3 Hi= U and H, = U,. Then U, U;
and Us; are disjoint U-open sets. Since X is an infinite, by using induction
principle, we have for every n> 1, Xy, X2, X3, ------- , Xn e X and Uy, Uy, Uz -----

--, Unare U-open sets such that for each xje Ui and for i=], X; =x; and U; nU;=

Let Y = { X1, Xo, X3 --—----- }. Then Y is a countable infinite

U-subspace whose U-open sets are {xi} = Y ~Ui.

Definition 2.13. Let X be a U-space and let {x,} be a sequence in X. An
element xe X is called a limit of {x»} if, for each U-open set G of X with xeG,
then there exists a positive integer no such that for each positive integer n > no,

XnEG.

Theorem 2.22 The limit of every convergent sequence of Hausdorff U-space

IS unique.

Proof: Let X be a Hausdorff U-space and {x,} be a convergent sequence of X.

Assume that X,— X, X,— Yy and X=Y. Since X is a Hausdorff U-space, there
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exist two disjoint U-open sets G and H of X such that. x eG and ye H. Since
X1 and X, are limits of {x,}, there exist two natural numbers n;, n; such that
n > max {ni, ny}, then x,eG and x, eH. Therefore GAH = ® which is

contradicts.

Definition 2.14 A U-space X is said to be completely normal if every

subset of X is normal.

Theorem 2.23 A U-space X is completely normal iff for any two subsets A
and B, AnB= @ and An B = @, then X is separated by two disjoint U-open
sets A and B.

Proof: Let X be completely normal. Assume that A and B are two subsets of
U-space X such that AnB=® and AnB = ®.LetY =X- An B, then

A, B cY.Since AnY and B nY are two disjoint closed subsets of Y, there
exist disjoint U-open sets G, H of Y such that AnGcGand B nYcH.
Clearly, AcG, BcH. Since Y is a U-open set of X, G and H are also U-open
sets of X.

Now let for two subsets A and B of X, AnB = ® and A~ B = @, then
X is separated by disjoint U-open sets A and B.

Let Y be a U-subspace of X and A, B are two disjoint U-closed subsets
of Y. Since A and B are U-closed of Y, theninY, AnB=® and AnB = ®.
Since A and B are U-closed subsets of Y, if closure of A and B are A and B

respectively, then AnB=® and An B = @.

56



According to the condition there exist disjoint U-open sets G and H such
that A <G and BcH. Therefore in Y, A and B are separated by disjoint
U-opensets YAG and Y ~H.

Theorem 2.24 LetY be a Hausdorff U-space and for each pointy of Y, the

closure of every U-open set containing y is regular. Then Y is regular.

Proof: Let F be a U-closed subset of Y andyeY, andyeF. Since Y is a
Hausdorff, for each feF there exist disjoint U-open sets Usand V¢ such that

ye Us and fe V+. Since every V, such that f e Ws cW, < Vs.
Therefore there exists a U-open set Gs of Y such that Ws = G~ V, = Gf N V4.

So, WrisaU-opensetinY.

Now let W = | Jw, . Then W containing F and W'containing Y are

feF
U-open sets of Y. Clearly, W and W'are disjoint. It is enough to show that W’
containing Y for completing the proof. If ye W', then yew . Therefore for
every U-open set G of Y containingy, GAW=®.i.e.forany f,Gn W; zd.

i. €., yeW, V¢ which is contradiction.

Theorem 2.25 If X isanormal and A is a U-closed subset of X. G is a
U-open set of X containing A. Then there is a open F & set V such that
AcVcG.
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Proof: Since G is a U-open set containing U-closed set A, X is normal there

exist U-opensetV, suchthat A cV, cv

2

c G. Againsince A cV, and

1
2 2

N

V, c G, there exist U-open sets V, and V, |

2 4 4

cV,cV, cV,cV.,.cV, cG.

3
4

where A <V

NI
FN
N |-
N~
~lw

Repeatedly we use this process and we get a sequence {\7t } of closed sets of X,

where t = Zﬂn,nzl, 2,3, -—----- ym=1,2, 3, ------ ,(2"—1) and if t; < t, then

>
N
<
N
=<
N
<
N
=
N

G.LetV=|JV,.ThenVisaFs setV and

Now we shall show that V is U-open. Let xe V then for any t,, xeV, .

So, xeV,  .i.e.xisainterior point of V. Therefore V is a U-open set.

Compact U-spaces

Theorem 2.26. Let (XxY, &) be the U-product of (X, 1) with (Y, %>).
Then XxY is compact if X and Y are compact.

Proof: Let C = {G_},_,be a U-cover of XxY. Then for each «,

aehA
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G,= UG, x")uJ(XxG,, ) forsome G,,, ‘sin TZ1and G,, ’sin .

iel jeld
Therefore,

XxY = UIUG,., xNIuIUX %6, )=IJUG.., xNIVIUUX %G, )]

aeA iel jeld achAiel acAjel

Is a U,-cover

acA,iel

Then C1 = {G, .} is a Us-cover of X and C; = {G,, }

aeA, jel

of Y. Since X and Y are compact, C; and C, have some finite sub covers, say

{Gl,ar,is}lgrgu,lsssv and {Gl,arr,isl}lérléul,1SS/SV/ then {Gl’ar XGZ,ar/ }lSI’Su,]SI'ISUI IS a. flnlte

sub cover of C. .. XxY is compact.

Definition 2.15 A U-space X is said to be locally compact if for each xe X

there exists a U-open set G containing x of X whose closure is compact.

Example 2.15 The U-space R is locally compact. Because, for a
neighborhood of any real number x of the form Sy(x) = (-0, x + a), a> 0. S, (X)

= [-o, x + a] is compact. However, R is not a compact U-space, since the

U-open cover {(-o, a) | ae R } of R does not have a finite sub cover.

Every compact U-space is locally compact but locally compact U-space

need not be compact.

Theorem 2.27 Every locally compact Hausdorff U-space is regular.

Proof: Let X be a locally compact Hausdorff U-space. Then X has one point

compactification X, and it is Hausdorff and compact U-space.
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Since every compact Hausdorff U-space is regular, X _ is a regular U-space.

Since the U-subspace of regular U-space is regular.

Therefore X is regular U-space as X is U-subspace of X.

Definition 2.16 If Y is a compact Hausdorff U-space and X is a proper
U-subspace of Y whose closure equals to Y, then Y is said to be a

compactification of U-space X.

Two compactifications Y; and Y, of U-space X are said to be equivalent if

there is a U-homeomorphism h: Y1 —Y such that h(x) = x for every xe X.

If Y - X equals to a single point, then Y is called the one-point-

compactification of X.

Theorem 2.28 A U-space X has a one- point-compactification if and only if

X is locally compact but not itself compact.

Proof: To see this, let X be a U-locally compact U-space but not itself
compact, and let Y = {y}, where y¢ X. Let Z= XU Y. Declare a subset V to be
U-open in Z if either V is U-open in X or V is the K¢ the complement of a
compact U-space K in X. Then Z becomes a compact U-space, and is the
one-point-compactification of X. Z will be denoted by X« (as in topology) and

y denoted by oo
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Example 2.16 ([33], p. 185)

The one-point-compactification of the wusual U-space R is
homeomorphic with the circle. The one-point-compactification of R? is

homeomorphic to the sphere S*.

Let S* denote the unit circle {(x, y) e R? x? + y? = 1} regarded as a
U-subspace of the product R xR of the usual U-space R with itself. The
imbedding h: (0, 1) —S* given by h(t) = (cos2 zt) x (sin2 zt) induces a
compactification. This is equivalent to the one-point-compactification of the

U-space X.

Theorem 2.29 [24]( p. 93) If X is a Hausdorff U-space then X« is also a
Hausdorff U-space.

Proof: For proving this theorem it is enough to show that for any point x of X
there exist two U-open sets G and H of Xwsuch that xeG, »<H and
GAH=o.

Let xe X, then there exists a U-open set G such that xeG and G is a compact
of U-space X. Let H =Y - G, then G and H are U-open sets of Y and xeG,
weHandGAH=o.

Definition 2.17 [24]( p- 134) . Let A and B be two U-spaces and h: A—»B is a
U-continuous, open and one-to-one map. Then h(A) is a U-homeomorphic
subspace of A contained in B. Here A is called U-imbedded in B with
U-imbedding h.
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If A and h(A) are identified with each other, then A is a U-subspace of B.

Definition 2.18 A compact Hausdorff U-space Y is equivalently called a
compactification(see p-60 ) of a U-space X if there is a U-imbedding
h: X—=Y such that h(X) is U-dense in Y. i. e. if Y is an extension U-space of
h(X).

Example 2.17 Let Y be the U-space [0,1] obtained by regarding (0,1) as a
U-subspace of the usual U-space R. Then Y is a compactification of

(0,1) obtained by adding one point at each end.

Example 2.18 LetY =[-1,1]x [-1,1] be a U-subspace of R2 . Here R? is the
product R xR of the usual U-space R. Let h: (0,1) —»Y be a map defined by
h(x) = xxsin(1/x). Then h: X — h(X) is a U-homeomorphism and h(X) is
the topologist's sine curve. The U-imbedding h gives rise to a compactification
of (0,1) quite different from the one-point-compactification and the above two-
point-compactification of (0,1). It is obtained by adding one point at the right-
hand end of h(X), and an entire line segment of points at the left- hand end.

h(X) is compact and Hasusdorff U- space .

Therefore (h(X), h) is a compactification of the U-space X.

Remark 2.1 Let X =(0, 1) and let X be a U-subspace of the usual U-space R.
A bounded U-continuous function f: (0,1) — R is extendable to the one- point-

compactification of U-space if and only if the limits
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lim f(x) and lim f(x) exist and are equal.

X—0+ X—1-

We conclude the paper with generalization of a theorem in Munkres [33]
(p- 237)

Theorem 2.30. Let X be a U-space. Let h: X— Z be a U-imbedding of X in
the compact Hausdorff U-space Z. Then there exists a corresponding
compactification Y of U-space X; which has the property that there is a
U-imbedding H: Y — Z that equals h on X.

Proof: Given h, let X, denote the U-subspace h(X) of Z, and Y, denote its

closure in Z. Then Y, is a compact Hausdorff U-space and X, = Y, therefore,

Y, is an compactification of X,.

We now construct a U-space Y containing X such that the pair (X, Y) is
U-homeomorphic to the pair (X,, Y,). Let us choose a set A disjoint from X
that is in bijective correspondence with the set Y, - X, under some map
ki A>Y, - Xo. Define Y = XUA, and define a bijective correspondence
H: Y — Y, by the rule H(x) = h(x) for xe X, H(a) = k(a) for a €A.

Make Y into a U-space by declaring V to be U-open in Y if and only if H(V) is
U-open in Y,. The map H is automatically a U-homeomorphism; and the
U-space X is a U-subspace of Y because H equals the U-homeomorphism h
when restricted to the U-subspace X of Y. By expanding the range of H, we

obtain the required U-imbedding of Y into Z.
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Chapter- 3

Connectedness in U-spaces

Introduction

In this chapter, we have introduced the concepts of connectedness in
U-spaces. The concepts of a component, total disconnectedness, local
connectedness, path-connectedness, local path-connectedness, connectedness
im kleinen in the topological spaces ([24], [33]) have been generalized to the

case of U-spaces.

We have constructed many examples and proved a number of theorems

involving these concepts.

Definition 3.1 Let X be the usual U-space R. A U-space X is said to be

connected if X can not be written as a disjoint union of two nonempty U-open
sets. i.e. if there do not exist nonempty U-open sets G and H such that

GNH=0® andGUH =X.
If X is not connected U-space then, it is called disconnected U-space.
Let A be a nonempty subset of X. Then A is said to be connected if A is

connected as a U-subspace of X. Thus, A is connected if there do not exist

U-open sets G and H in X such that
ANG D, AnH D, (AnG)N(AnH)=d and (AnG)U(AnH)=AO0r,(AcGuUH)
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The empty set @ and singleton sets {p} are always connected U-space.

Example 3.1 We consider IN as a U-subspace of the usual U-space R. Let
NnoeN. Let G ={reN : -o<r<no+1}andH={re N:ng<r< o} ThenG

and H are U- open subsets of N and GUH = N. NN is a disconnected U-space.

Similarly we can prove that Z is a disconnected U-space.

We prove here that Q is disconnected.

Example 3.2 Let A = Q. Since 2 is irrational, G =(—0,+/2)and H =(~/2,)

are U-open in the usual U-space R. Now,
PG NA={qeQ:q<v2 }, d=xHNA={qeQ: q>2}.

S0 (GNANHNA)=® and (GNA)U(HNA)= Q. Therefore Q is a

disconnected U-subspace of R.

Example 3.3 R, (-», a), (b, ») and (a, b), (a, b], [a, b) and every interval in
R are connected subsets of usual U-space R. In fact, these are the only

connected U-subspace of R.

65



The following theorems generalize the corresponding theorems about
topological spaces [24]( p. 70 - 78). Here we only give the statements of the
theorem. The proofs are almost exactly similar to those for topological spaces.
The proof of Theorem 3.10 (Theorem 1.9, [24]) has been given to show that
the arguments really hold. Also we have proved the proofs of the theorems
about the continuous images, since these are different here from those in

topology.

Theorem 3.1 If (X, ) is a U-space and A and B are connected U-subspace

of X such that AnB = @, then Au Bis connected.

Theorem 3.2 Let (X, 7 ) be a U-space and {A, },., a collection of connected

iel

U-subspace of X . If NA=®, then U A IS connected.

Theorem 3.3 The U-space R and each interval of R is connected and these

are the only connected U-subspace of R.

Theorem 3.4 A U-continuous image of a connected U-space is connected.

Proof: Let X be a connected U-space and Y a U-space and f: X— Y is a
U-continuous mapping. We shall show that f(X) is connected. If f(X) is not
connected, let f(X) = (f(X) nG) U (f(X) nH) be separation of f(X). G and H
be nonempty U-open sets of Y and f is a U-continuous function.

Therefore f -1(G) and f - (H) are U-open sets of X and
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X = (X FYG)) X AF YH)) = YG) Uf Y(H), f XG) =, f (H) = ®
and f"1(G) ~fY(H) = o.

Hence X is disconnected, contradicting the assumption.

Therefore f(X) is connected.

Theorem 3.5 A U-continuous image of a connected U-space is connected.
Proof: Let X be a U-space and Y a connected space and f: X — Y isa

U-continuous mapping. We shall show that f(X) is connected. If f(X) is not
connected, let f(X) = (f(X) nG) u (f(X) ~H) be separation of f(X). G and H

be nonempty open sets of Y and f is a U-continuous function.
Therefore f-1(G) and f -1(H) are U- open sets of X and

X = (X fYG)) (X ~fI(H)) =f XG) U L(H), f1GC) =@, f1(H) = ®
and f"(G) ~f Y(H) = o.

Hence X is disconnected, contradicting the assumption.

Therefore f(X) is connected.

Theorem 3.6 A U*-continuous image of a connected U-space is connected.
Proof: Let X be a connected space and Y a U-spaceand f: X — Y isa

U*-continuous mapping. We shall show that f(X) is connected U-space. If f(X)
is not connected, let f(X) = (f(X) nG) U (f(X) ~H) be separation of f(X). G

and H be nonempty U-open sets of Y and f is a U*- continuous function.

Therefore f -1(G) and f -1(H) are open sets of X and
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X = (X FHG)) U(X ~FL(H)) =FYG) U X(H), F XG) =@, f }(H) = ®
and f1{G)~f I(H) = .

Hence X is disconnected, contradicting the assumption.

Therefore f(X) is connected.

Theorem 3.7 Let X be a connected U-space. Then there exists no U-closed-

open subsets of X except X and @.

Theorem 3.8 Let X be a U-space and A is a connected U-subspace of X .If

B is a U-subspace of X such that AcBc A, then B is connected:;

in particular A is connected.

Theorem 3.9 A U-space X is disconnected if and only if there exists a

U -continuous mapping X onto the discrete two point space {0,1}.

Proof: Let X be a U-space and E is the discrete two point space {0, 1}.
Suppose that X is disconnected. Then X has two disjoint U-open sets G and H
such that X = GuUH.

Let us defineamap f: X— E suchthat f(x) =0,x ¢ G
=1,xeH

Also G and H are U-open sets. This implies that f is U -continuous.
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Conversely, suppose that there exists a U -continuous map f: X — E.
Then f 1({0}) and f *({1}) are disjoint U-open sets of X and
X=f1{0}pu f1{1}). So X is disconnected.

Theorem 3.10 A finite Cartesian product of connected U-spaces is connected.
Proof: Let X;, Xz, X3, ------- , Xn be connected U-spaces and

X = Xix Xox Xz x--=-=-- x Xp.

We shall use induction rule.

Let n = 2, then X = X;xX,. Let (a, b)e XixXz. Since X;x{b} and X;
and for each x;eXi, {Xi}x X; and X, are homeomorphic. So X;x{b} and
{x1}x X are U-connected.

Again since (X1, b) € (Xix{b})~ ({X1}x Xz).
This implies that U x, = (Xix{b})u ({X1}x X2 ) is connected.

Let U = Uy,. This union is connected because it is the union of a

X e Xy
collection of connected U-spaces that have the point (a, b) in common. Since

this union U = X3 x X, the space X;x Xz is connected.

Now let X1x Xox X3 x===---- x Xn.1 be connected for n > 2.

Theorem 3.11 Let {Xi}.., be collection of nonempty connected U-space and

iel

X =TI X;, then X is connected.
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Theorem 3.12 (The generalized form of the Intermediate value theorem).

Let f: XY be a U -continuous map, where X is a connected U-space
and Y is an ordered set with the order U-structure. If a and b are two points of
X and if ris a point of Y lying between f(a) and f (b), then there exists a point c
of X such that f(c) =r.

Proof: Let A=f(X)~n{yeY:y<r}and B=1f(X)n{yeY:r<y}. So,

AnB = o and A=, B=® because f(a) A and f(b) B. Since A and B are
U-open, if there were no point ¢ of X such that f(c) = r, then f(X) = AuB and
f(X) is disconnected, contradicting the fact that the image of a connected

U-space under a U -continuous map is connected.

Definition 3.2  Let X be a U-space. A subset M of X is said to be
U-component or connected component if (i) M is connected, (ii) if Ais a
connected subset of X such that Mc Ac X,then A=MorA=X,ie.Misa

maximal subset of a U-space X.

Example - 3.4 Let X =[3, 5) u(6, 9) be a subspace of the usual U-space R.
Here X is a disconnected U-space and [3, 5) and (6, 9) are two components of

U-space.

Example- 3.5 N, Z, Q are subspaces of usual U-space R. Singleton subsets

are the only components of the above U-subspaces.
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Example 3.6 LetX={a, b, c,d, e}, & ={X, o {e}{a b} {c d}, {a b, c},

{a, b, e}, {c, d,e}{a b, c, d}, {a, b, c, e}}. Then X is a disconnected U-space
and {a, b}, {c, d}, {e}, are the components of X.

Theorem 3.13 Let X be a U-space.
(i) Every connected U-closed-open subset of X is a component of X.
(i1) Every component of X is U-closed.
(iii) Every element of X is contained in a unique component of X.

(iv) Every connected subset of U-space X is contained in a unique

component of U-space X.

Definition 3.3 Let X be a U-space. A U-space X is called totally
disconnected U-space if for every pair of distinct points x and y (x =Y), there
exists a non-empty disjoint U-open set A, B such that X = Au B with xe A and

y €B.

Example 3.7 The U-subspaces IN, Z, Q and Q' (the set of irrational
numbers) of the U-space R are totally disconnected U-spaces.

We shall prove the truth of the statement here.

(i) Letm,n e N withm<n.
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{m+1m+2 m+3,.... }=Nn (m+ % w) are U-open subsets of N
which contain m and n respectively.
Thus N is totally disconnected.

(if) The proof that Z is totally disconnected is similar.

(iii) Let a, be@Q with a < b. Then there exists an irrational number X

suchthata<x <b. Then, AuUB, where A={yeQ : y<x}and
B={yeQ :y>x}isadisconnection of Q. Then acA, beB, and

A=Q n(-o,x),B=Q n(X, «).So that A and B are U-open in Q. Hence

Q is totally disconnected.

(iv) We can prove similarly that Q' is totally disconnected.

Example 3.8 Every discrete U-space consisting of more than one element is

totally disconnected. This is obvious.

Theorem 3.14 The U-components of totally disconnected U-spaces consists

of exactly one element.

Proof: Let X be a totally disconnected U-space. It is enough to prove that
every U-subspace of X with two distinct elements is disconnected. Let x, ye X

and x =Y. Since X is totally disconnected, there exist X = AuB such that xe A
and yeB. Thus {x, y} = (An{X, YD) u(Bn{Xx, y}).

Hence {X, y} is disconnected.
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Definition 3.4 A U-space X is said to be locally connected if for every
xe X, and for every neighborhood G of x, there is a connected U-open set V of
X, such that xeVcG. X is a locally connected U-space if and only if X is

locally connected U-space at each of its points.

Our Theorems 3.15-3.22 are generalizations of theorems in ([24], P-123-131)

Theorem 3.15 Every U-open subspace of a locally connected U-space is

locally connected.

Proof: Let X be a locally connected U-space and G be a U-open subspace of
X. Let H be a U-open set containing a point x of G. Since G is U-open, so H is
a U-open set of X. Since X is locally connected, there exists a connected
U-open set V in X which contains x and is contained in H. Also V is a U-open
set of G.

Hence G is locally connected.

Theorem 3.16 The image of a locally connected U-space under a mapping

which is both U-continuous and U-open is locally connected.

Proof: Let X be a locally connected U-space and Y be a U-space. Let f: XY
be U-continuous, U-open and onto mapping. Let yeY and G be a U-open set of
Y containing y. For each xeX, y = f(x) and f }(G) is U-open set of X

containing X.

Since X is locally connected, there exists a connected U-open set V of

f 1(G) containing x. i.e. xe V¢ f (G). Since f is U-open and U-continuous.
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f(V) is a connected U-open set of Y and f(x) =y = f(V). Since Vc f (G),
f(V) <G.

Hence f(X) = Y is locally connected.

Theorem 3.17 The product space of two locally connected U-spaces is

locally connected.

Proof: Let X and Y be locally connected U-space. We shall show that XxY is

locally connected.

Let (X, y) e XxY and G be a U-open set of XxY containing (X, y). Since
projection mapping =, : XxY —Xis U-open, =, (G) is a U-open set containing
X. Since X is locally connected, so there exists a connected U-open set V; of X

containing x of =, (G).

Again z, (G) is a U-open set and there exists a connected U-open set V,
of Y containing y of a locally connected U-open set 7, (G). Therefore VixV; is

a connected U-open set of XxY containing (x, y) and VixV,c G.

Hence Xx Y is locally connected.

Theorem 3.18 A U-space X is locally connected if and only if for each

U- component of every U-open set of X is U-open.

Proof: Let X be a locally connected U-space and let G be a U-open set in X.
According to the above Theorem 3.15 G is locally connected. Let C be a

component of G and let acC. Since G is a locally connected U-space, there
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exists connected U-open set V of G containing a. i.e. VcG. Since C is a

component and acC, Vc C. Therefore C is U-open in X.

Conversely, suppose that U-components of U-open sets in X are open.
Suppose xe X and a neighborhood G of x. Let C be the U-component of G
containing x. C is U-open in X by hypothesis. So C is a connected U-open set

of G containing X.

Hence X is locally connected.

Definition 3.5 Let X be a U-space and let f : [0,1] - X be a U-continuous
mapping.
If f(0) = x, f(1) =y, then fis called path from x to y.

Definition 3.6 Any U-space X is called path connected U-space if there is a

path in X from x to y.

Definition 3.7 [24]( p. 131)

A U- space X is said to be locally path connected U-space at x if for
every open set G of x have a open subset V which is path connected U-space

containing X.

If X is locally path connected at each of its points, then it is said to be locally

path connected U-space.

75



Example 3.9 Each interval and each ray in the usual U-space R are
connected, locally connected, path-connected and locally path-connected
U-spaces.

Each of the subspaces [-1, 0) v (0, 1] and [1, 2] u [3, 4] of R is neither
connected nor path-connected but each is both locally connected and locally

path-connected.

Example 3.10 Let C = ([0,1] x{O})u({%:neZ}x[O,l])u({O}x[O,l]) be a
U-subspace of R* and let D = C - {0}x(0,1) be a U-space. Here C is the union

of connected U-subset |, where I = [0,1] x{0}, {%}X[O,l] or {0}x[0,1].

Since each | is connected and | m[U |ﬁ}¢q>. Therefore C is a connected
a#f

U- space and also D is a connected U-space and D= C. If p is any point on

{0}x[0,1], then for any open sphere S_(p) with centered at p there exist a
U-open set G= S_(p) such that G is disconnected. Therefore, C is not locally

connected U-space. If we consider p is (0,1), then similarly we can show that D

Is locally disconnected.

Theorem 3.19 Every path connected U-space is connected.

Proof: Suppose X be a path connected U-space and X, € X. Then for any x e X
there is a path from X, to x. That means there exists a U-continuous mapping
f : 1> X such that f(0) = X, , f(1) = X,. Since | is a connected U-space, f(l) is
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connected U-subset of X. Therefore x, and x are contained in same component

of X. Since for any x e X true that X has only one component.

Therefore X is connected.

Theorem 3.20 The image of a U-continuous mapping of path connected

U-space is path connected.

Proof: Let X be a path connected U- space and Y be a U-space. Let ¢ : XY

be a onto U-continuous mapping. We shall show that Y is a path connected

U-space. Let y; and y, are two points of Y. Then there exists X;, X, € X such

that ¢ (1) =y and ¢ (X2) = Yo.

Since X is a path connected U-space, there exists a U-continuous mapping
f: 1 -X such that f(0) = x1 and f(l) = x,. Then ¢ (f(0)) =vy1, ¢ (f(1)) = y2.

So ¢f: 1Y is a U-continuous mapping i.e. Y is path connected.

Theorem 3.21 The product space of any finite number of path connected

U-spaces is path connected.

Proof: Let Xy, Xy, X3, --------- , Xn be path connected U-spaces and
X = Xyx Xox Xgx ======-- x Xn. Suppose X, ye X, then x = (X1, Xz, X3, ------- , Xn)
and y = (Y1, Y2, Y3, ---—----- , Yn), Xi, Vi €Xi. Since each X; path connected, there

exists a U-continuous mapping fi : [0, 1] —X; such that fi(0) = x;, fi(1) = V..

If f: [0, 1] X defined by f(a) = (fi(t), f2(t),~----- (D),
then f(0) = (X1, X2, X3, ------- , Xp) = x and f(1) = (y1, Y2, Y3, -------- , Yn) =Y.
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We shall show that f is U-continuous. Let G be a U-open set of X, then
7, (G) = Gi, Gj is a U-open set of X;, where r (G): X—X; is a projection
mapping. Since f; is U-continuous, f;1(G;) is a U- open set of [0, 1].
Now 1 (G) = f;1(Gy) n £2HG2) n-------- A t(Gy).

Therefore 1(G) is U-open. i.e. f is U-continuous.

Remark 3.1 The closure of a path connected subsets of U-space may not be

path connected.

Example 3.11 Let S = {(x, sin%) : 0 <x < 1} be a subset of the product

U-space RxR. Then it is a path connected U-space but the closure S is not a

path connected U-space.

Here, we see that S is connected but not path connected.

Definition 3.8 Let X be a U-space and a and b be two separate point of X. A
finite sequence of subsets A;, Ay, Asz, ------ , A of X is called simple chain
from a to b if a only belongs to A; and b only belongs to A, and Ain Aj= @ iff
li-j|<1.

Theorem 3.22. If a and b are two separate points of connected U-space X

and {U _ } is a U-open cover of X, then there exists a simple chain of U , from

atob.
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Proof: Let {U_} be a U-open cover of X and let Y be a collection of points y

of X and there exists a simple chain of U from atoy. Then Y is U-open.

Because if yeY and U;, U,, Uz, ----- , Uy (Uie{U_}) from a to y is a simple
chain, then U,, Uy, U3, ------ , Up or Uy, Uy, Ug, ------ , Un.s from atoy for each

y eU,is asimple chain. So,y €Y and U, c Y. Therefore Y is a U-open set.

Now we shall show that Y is closed. Suppose y be a limit point of Y.

Then there isa pointy (y =Yy) of Y in each U-open set U containing y.

Therefore the exists a simple chain Uy, Uy, Us, ...... , Uy fromatoy.

Now we can consider y is a point of Y in which n is the smallest.

Since UnnU=d, Uy, Uy, Us, ... , Uy, U from a to y will be simple chain if for

eachi<n, UinU = @. Because if UynU=® (ip<n)andlety e U, nU. Then
y eYand Uy, Uy, U, ..., U, fromatoy" isasimple chain. Since i,< n which

Is contradictory to the smallest n. So Uy, Uy, Us, ...., Uy, Ufromatoyisa

simple chain. i.e.yeY.

Hence theorem is proved.

Definition 3.9 Let X be a U-space and xe X, X is said to be connected im
kleinen at x if , for each U-open set V of X with xeV, there exists WcV
which containing x and is such that, for each yeW, there is a connected subset
C of Wwith x,y eC.

If a U-space X is locally connected at x, then it is connected im kleinen at x.
However, the converse need not be true.
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pThe example given by the following figure of the U-subspace of Xx X, where

X is the usual U-space R, is connected im Kleinen at X1, X2, X3, X4, ++erees but it is

not locally connected at these points.

80



CHAPTER -4

Paracompact U-spaces

Introduction

The concept of paracompactness for topological spaces was defined by

Dieudonne [10]. This concept has been proved to be very important and useful.

In this chapter the notion of paracompact U-spaces has been introduced and a
number of sufficient conditions for paracompactness for such spaces have been

established.

In connection with paracompactness of U-spaces, we have generalized
the concepts of refinement, locally finite, countably locally finite, star and
barycentric refinements in U-spaces, and proved the U-space-versions of a few
theorems concerning paracompact topological spaces ([11], [24] and [33]). A

few relevant examples have been provided.
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Paracompactness in U-spaces

We start with a few necessary definitions in U-spaces which generalize

the corresponding topological concepts.

Definition 4.1 Let G be a collection of subsets of the U-space X. A collection
B of subsets of X is said to be a U-refinement of & ( or is said to be refine &)
if for each element B of .3, there is an element Ge &, such that BcG. If the
elements of .5 are open sets, we call .3a U-open refinement of & ; if they are

closed sets, we call .5 a U-closed refinement of &

Definition 4.2 A collection & of subsets of a U-space X is locally finite if

every point of X has a neighborhood that intersects only finitely many elements
of &

Thus, for a U-space X and a collection {A,} of subsets of X, {A.} is locally

finite if, for each xe X, there exists a U-open set G containing x such that

G~A, = ® foronly a finite number of «’s.

Locally finite collections are also called neighborhood- finite.

Example - 4.1 Let X = N and let ¢ consist of X, ® and all subsets of N of
the form G, ={n, n + 1, n + 2, n + 3} and their unions. Then (X, & ) is a

proper U- space, since Gi1nG; = {2, 3, 4}¢ . Let G denote the family of
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sets Ck = {ne N |n>k}, ke IN. Let xeX. Then x = n,, for some n,e N. For

the neighborhood, G, = {neno +1, ne+ 2, ne+ 3} of X, G, NC, =@, only for

k=1,2,3, -, ne+ 3.

Hence G is locally finite.

Definition 4.3 A collection G of subsets of a U-space X is said to be

countably locally finite if G is a countable union of locally finite collections

Gn i, G=|J Gn

Example - 4.2 Let (X, & ) be the proper U-space of example 4.1. For each
positive integer k and m, let G m = {ne N |n z%}, Let G, ={Ckml}y-
For each m, G is locally- finite.

Therefore G=|J G, is countably locally- finite.

Definition 4.4 A U-space X is paracompact if X is Hausdorff and every

U-open cover G of X has a locally finite U-open refinement of ‘G that covers

X.

Clearly, any compact Hausdorff U-space is paracompact.
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We now give a non- trivial example of a paracompact U-space.

Example 4.3 Let X = Z and & = The collection of all A,'s and their unions,
where for ne Z, Ap={XxeX :n <x <n + 3}. Then, ¥ is a U-structure but not

a topology, since A; A, = {xe X : 2 < x < 4} which does not belong to Z.

Also, (X, &) is Hausdorff. For, if m, ne Z, m = n,thenletm<n, m e Ans,
ne A, and Anz NA, = ©.

We shall now show that every U-open cover of X has a locally finite
refinement. Let G be a U-open cover of X. For each xe X, Xe Anx <Gy, for
some AnxeAn, Where Gy is a member of G. ( Such Anx and Gy exist. Gy exists
because Gis a U-open cover of X. And, by definition, G4 is a union of a class

of A,'s at least one of which must contain x. Call this A, Anx).

Let % = {Anx: Xe X}. Then & is a refinement of G which covers X.
Let xoeX and let G = A, . Then G is a U-open set containing Xo and G

intersects only seven members of

A A A A

n-1,xq? nsx ! n+1sx?

VIZ’An—3|x0 ! n-21X% ! An+21x0’An+3vx0'

Thus, & is locally finite refinement of ‘G which covers X.

Hence X is a paracompact U-space which is not a topological space.

It is clear that an infinite number of such proper paracompact U-spaces can be

similarly constructed.
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Our next example is a proper U-space which is not paracompact but in

which every U-open cover has a locally finite refinement that covers X.

Example 4.4 Let X = Z, fix X, Z. For each xe Z, let Ax ={Xo, X, X + 1,x + 2}.
Let ¢/ be the collection of @, all As’s, xe Z and their unions. Then (X, &) is

U-space, but not a topological space. Since A, , nA, .. ={Xo}¢ .

Let 'G be an U-open cover of X. Let xe X. Then there is a Gxe G such
that xe Gx and so x €Ay, for some ye X. Let D be the collection of all sets B,’s

such that for some y,, B, = A, and for each y=Y,, By = Ay — {Xo}.

Then D is a refinement of G and covers X. Now Ay is a U-open set
containing x and it is clear that A, intersects only a finite number of By’s.
Thus D is a locally finite refinement of G.

We now note that (X, &) is not Hausdorff, since for each x, y e Z,
AxnAy = @.

Hence X is not paracompact.

We recollect that the usual U-space R is R with the U-structure consisting of

all subsets of R of the forms (-o0,a) and (b, o ) and their unions.

Remark - 4.1 R with the usual topology is paracompact. But the usual

U- space R is not paracompact. We prove its truth below:
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For G = {(-», a)laec R } is an open cover of R. If xe R, and xeG with G is

U-open, then G is the form| J[(-,a;,)u(b;,»)], for some a&’s, by’s, and x

i]
belongs to some (-o0,a;) or, some (bj, ).
If 2D is a refinement of ‘G which covers R, then D is a collection of sets
of the form (-0, ), where ¢ < a, for each a with (- o, a) € G. Clearly, D is an
infinite collection of U-open sets, and G meets infinitely many members of D.

So Dis not locally finite.

Thus G has no locally finite refinement.

Let (X, & ) be a U-space and 7 = 7 be the topology generated by 7/ on X.
Then we have the following theorem.

Theorem 4.1 If (X, &) is paracompact, then (X, T)= (X, T )is
paracompact.

Proof: Clearly (X, &) is Hausdorff if (X, &) is Hausdorff. Let G be an open
cover of X in (X, & ). For each xe X, there exists Gy in G such that xeGx.

Then G, contains a set Hy such that xe Hy and Hy is the intersection of a finite

collection of sets Ui x, Uzx,....,Urx IN T Choose any Ui and call it Uy.
Let D = {Uy: xeX}. Then, D is a U-cover of X.

Since (X, %) is paracompact, & has a locally finite refinement say D’

which covers X. Foreachy in X, letyeVy e D. Let Hy = Gy nV,.
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Then G’ ={H,: yeX} is a open cover of X. G’ is a locally finite
refinement of G, since D' is a locally finite refinement of 0. Thus (X, 7 is

paracompact.

Our next theorems are generalizations of theorems for topological spaces.
Theorem 4.2 ([24], Theorem 9.1, p. 160,161)

Every paracompact Hausdorff U- space X is normal.

Proof: Let X be a paracompact U-space. Firstly, we shall show that X is
regular. Let xe X and B be a U-closed subset of X, where xe¢ B. Since X is
Hausdorff, for every beB there exist two disjoint U-open sets U, V,, such that
Xe Upand be Vp.SoxeV, .Then G ={Vp}esu{X - B} is a U-open cover of
X. Since X is paracompact, there exists a locally finite refinement D of G
which is a U-open cover of X. Let % be the subcollection of & consisting of all

those members of D which intersect B. Then % is a U-open cover of B. Since

for every beB, x¢V, ,so forevery Eec %, X ¢ E .

Let W = [ JE, then W is U-open set of B. We shall now show that

Eeg

W=| JE. Obviously, [JEcW . If possible, suppose xeW . Then for every

Ee& Eed
U-open set G containing X, GAW= @. since E is locally finite, G intersects

only a finite number of members say E;, E,, E3,------ ,Er Of E.

Let Wi=E;UE,UE3 U ------- uErand W, = UE

e s TN P E,
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So, GAW, = @. This implies that x ¢W, . Since W = WiUWy,

XEW1:E1UE2UE3U ------- UEr. SO,V_VQUE

Eeg

Thus, W c| JE. But this is a contradiction, since x¢ E for each E. So, XxeW .
Ee&

Hence W'is a U- open set containing x. Therefore X is regular.

Now let A and B be two U-closed subsets. Since X is regular, for every
acA and for B there exist disjoint U-open set U, and V, such that a<U, and
B<Va. One merely repeats the same argument, there exists a U-open set

W= JE containing A, where (i) % is a locally finite U-open cover of A and (ii)

Eeé

Every E ~B =a. Since % is locally finite, W:UE, and BcWw .Hence X is

Eeg

normal.

Theorem 4.3 ([24], Theorem 9.2)
Every U-closed subspace of a paracompact U-space is paracompact.

Proof: Let X be a paracompact U-space and Y a U-closed subspace of X.
Obviously, Y is Hausdroff. Let G’ = {C'. } be a U-open cover set of Y. Then

for each C'.=C,NY where C.is a U-open set of X. Now suppose

G={C.}.

Then D = {C.}V{Y} is a U-open cover of X. Since X is
paracompact, there exists a locally finite U-open cover % of X which is a

refinement of O . & is the subcollection of those members of Z which are not
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subsets of Y€ and & is refinement of G. For this reason & is a U-open cover of

Y and a refinement of G'. Since % is locally finite, G is locally finite.

Hence Y is paracompact.

Remark- 4.2. A U-subspace of a paracompact U-space need not be

paracompact.

Since this statement is true about topological spaces (€€ [24], p. 108,161), it is

also true about U-spaces.

For proof, we need to define a special U-structure on R which is called the

lower limit U-structure. This U-space is denoted by R,.

Definition 4.5 Let G be the collection of subsets of the form

[a, b) = {n |a<x<b}, where a < b, the U-structure generated by G is called the

lower limit U-structure on R.

Theorem 4.4 Product of two paracompact U-spaces need not be

paracompact.

Proof: As for topological spaces one can be shown that the U-space R, is

paracompact, but R; x R, is not normal, and hence, not paracompact.
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Our next theorems generalize a few more results for topological spaces. The
proofs however are almost similar to those for topological spaces. So, we omit

proofs of some of these theorems in some cases.

Theorem 4.5 ([24], Lemma 9.3) Let X be a regular U-space and let G be a
U-open cover of X. Consider the following conditions on G: G has a
refinement which is

(i) a U-open cover of X and countably locally finite,

(i) a cover of X and locally finite,

(iii) a U-closed cover of X and locally finite,

(iv) a U-open cover of X and locally finite.

Among the above four conditions on G, the following implications hold,;
(iii) = (iv)= (i) = (ii).
Proof: Itis trivial that (iv) = (i).
(i) = (i)

Let & be a U-open cover of X. Let .5 be an U-open refinement of & that
covers X and is countably locally finite i.e. .5 = v .5, where .S is a |ocally

finite. Let VV; = [JG and for each n ¢ N and each Ge .5, define

UeB

Sn(G) = G'Uvi .

Let Gn = {Sy(G)|G < B, }. Then G, is refinement of -5Gn. because
SK(G) <G, for each G€ . Let G = Y, We shall show that G is a locally
finite collection refinement of &, covers X. Suppose x X . We shall show that

for any Sp(G), xeSn(G) a neighborhood of x that intersects only a finite
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elements of ¢ . Since .5 covers X, there is a smallest positive integer number

no such that x eGe .5, . Since x does not belong to any member of .5, for
i <np Xe S, (G) e ¢ Since each collection .5, is locally finite, we can
choose for eachn =1, 2, 3, ........ N a neighborhood W, of x that intersects
only finitely many members of .53, .Now if W, intersects the member S,(V) of

G, W, must intersect the member V of .3, , since S,(V)c V.

Therefore, W, intersects only finitely many members of G -

Furthermore, because Ge .5,, G does not intersect any element of ¢z, for

n > no. As a result, the neighborhood W;~W;~W3~ AWh, G of x

intersects only finitely many elements of ¢.

(iii) = (iv)
Let G be a U-open cover of X. Using (iii) Choose .5 a refinement of &

that is locally finite and a U-closed cover of X. Now we consider for every
Be .5 a U-open set D(B) oB that the collection {D(B)|B< -5 }is also locally

finite refinement of G. Since B is locally finite. For every xe X, there exist a
neighborhood Ny of x that intersect finite members of .. Then {Ny | xe X} is a

U-open cover of X.

According to (iii) There is a refinement G of {Ny | xe X} which is a
U-closed cover of X. Clearly, for every Ce G intersects finite members Be .3.

ForeachBe .53, let G(B)={C:C ¢ G and C cX - B}.
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Again let, E(B) = X - UC . Then UC is closed by a lemma 8.1 of [24]

Ceé(B) Ce&(B)

which has the following statement:
“Let {A} be locally finite collection of subsets of X. Then

(a) Any subcollection of {A,} is locally finite.
(b) 1A} is locally finite.
©) UA. =UA. ~»

So E(B) is an U-open set. According to the definition E(B)=2B. The
collection {E(B)}is a U-open cover of X. For each B€.5 , F(B)<€ &, where

F(B)=>B.
Let :D = {E(B) ~F(B)|Be .5 }. Then the collection D is refinement of &

and U-open cover of X. Since Bc E(B) ~F(B) and B is a U-open cover of X.

Suppose xeX. Now we shall show that D is locally finite. Since ¢ is locally

finite, there exists a neighborhood W of x that intersects only a finite number

of members of C, (say) Ci, C,, Cs, ------ , Cn. Since G is U-cover of X, so,
Wc CiuCy uCau------ uC,.

Now if any member C of G intersects the set E(B) ~F(B), then

C « X - B. Therefore C intersects B. Since C intersects a finite number of

members B, so C will intersect at most this number of members of D.

Therefore W will also intersect finite number of members of D .

Now if we write E(B) ~F(B), the collection 0 = {D(B)|Be .5} is

refinement of & and is a locally finite open cover of X.
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Comment 4.1 The properties (i) - (iv) of the above Theorem 4.5 can also be

stated as :

(a) Each U-open covering of X has a U-open refinement that can be
decomposed into an at most countable collection of locally finite families of

U-open sets.

(b) Each U-open covering of X has a locally finite refinement, consisting

of sets not necessarily either U-open or U-closed.
(c) Each U-open covering of X has a U-closed locally finite refinement.
(d) X is paracompact.

Dugunji [11] uses these properties in ( [11], Theorem 2.3)

Theorem 4.6 ([24], Theorem 9.5) If a locally compact Hausdorff U-space X

Is a countable union of compact U-spaces then X is paracompact.

Proof: Let X be a locally compact Hausdorff U-space and X = | JC, , where Cj,

Is compact. Let for each n, C,, < Cy+1 (We can assume this, for otherwise we

can consider C’,, instead of C,, where C", = Oci ). At first we shall show that

i=1
X = UW,, where W, is U-open, W, is compact and W, cWn+1. Let xeC,
and let G, be a neighborhood of x, where G, is compact. Then {G,},. is a

U-open cover of C;. Since C; is compact, there is a finite U-open subcover

G }ofCyLetw: =], .

i=1

{c,.

X !
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Therefore w, is compact, this implies that C, W, is compact. Suppose
W, is a U-open set of C, uW, obtained in the same way as the U-open set W;
of C1. So W, is compact, CocW; and W, =«W,. Let, for each m< n, the U-open
set Wi, be defined in a similar member such that C, cWm, W,, is compact and
W, <Wnm+ 1. Proceeding as before we get for each positive integer n>2 a

U-open set W, of C, UW_, , where W, is compact and W, , cW, .

Let 9° = {G_,} be a U-open cover of X and K, =W, -W,.1. Then K, is
compact. Now for every xe K, , there is a neighborhood Vy of x such that for
anya, Vx =G .Assume that VycWis, since W, cWis1 and Vxn W2 =0,

since W__, W, _,.Since K, is compact, so there is a finite cover

Dn={V, .V, ————- v, } of K,. We denote by 77 the union of the finite covers

D, of K, for all n. Then 77 is a U- open cover of X and since Vye 77 is
contained in a G, e#°. 77 is refinement of %7 Suppose xe X. Then there

exists a least natural number n such that x e W, . Since xg W, -1, S0, X eK,. As
a result there is a neighborhood Ve 77 which intersect only finite member of

those members of 72 which covers Ky.,, Kp.1,K, and Kp+1.

Theorem 4.7 ([24], Theorem 9.6) A locally compact Hausdorff U-space
with a countable basis is paracompact.
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To prove the next theorem we need a lemma.

Lemma 4.1 ([11], Lemma 3.3) If X, Y are U-spaces with X normal, and

p: X— Y is a U-continuous U-closed surjection, then Y is too normal.

Proof: Let A and B be two disjoint U-closed sets in Y. Since p is
U-continuous, p~*(A) and p*(B) are disjoint U-closed sets in X. X being
normal, there are disjoint U-open sets G and H in X such that p~*(A) <G,
p*(B) cH. Since p is U-closed, p(G) and p(H) are disjoint U-open sets in Y
whith Acp(G), Bep(H). Thus Y is normal.

Theorem 4.8 ([11], Theorem 2.6) Every U-continuous closed image of a

paracompact U-space is paracompact.

Proof: Let X and Y be U-spaces with X paracompact, and let p: X—>Y be
U-continuous U-closed surjection mapping. Let {G, |x e #} be any U-open

covering of Y. Since X is normal and p is U-continuous, U-closed and
surjection, Y is normal. By Theorem 4.5 and comment 4.1it suffices to show

that{G, |« e &} has an U-open refinement which can be decomposed into at
most countably many locally finite families. We assume &% is well-ordered and
begin by constructing a U-open covering {V,, [(a,n)e #& x Z*} of X such
that:

(i). Foreach n, {V , |a € 5} is a U-covering of X and a precise locally

finite refinement of {p *(G,) |« € ##}.

(ii). If p>a thenp(V , ... )PV an)=0.
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Proceeding by induction, we take a precise U-open locally finite refinement of

{p*(G,)} and shrink it by normality of X to get {V ,,}. Assuming {V,,} to

be defined for all i< n, let W, ., =p*@G,)-p*p(|JV ,,). Each W ,is

A< a

U-open, since by local finiteness | JV , ,is U-closed and p is a U-closed map.

A<a

Furthermore,{ W la e 7} is a U-covering of X: given xeX, let

a,n+1

a,be the first index for which xe p7*(G,); then x « W since

a,,n+11

p'p (V ,.)cp™(G,)for each 1. Taking a precise, U-open locally finite

refinement of { W e e 5% }, shrink it to get {V....}. Clearly, condition

a,n+1

(i) holds, and since V ... is not in the inverse image of any p(V...) for o <z,

condition (ii) is also satisfied.

For each n and «, let H, =Y — p(|Jv,,) which is an U-open set.
L*a

We have

cp(Van)cG, foreach nand «. Indeed,

n

@H,

P (H,.)=X-p'p(UV,n )X -p'p(X-Van)c Van = p*(G,).

pPra
(b)H,, nH, = for each n whenevera = 3.
In fact,y eH,, =y e p(V.n)andisin no other p(V s n).
c) {H,, [(ain)e & x Z*} is an U-open covering of Y. Let yeY be

given; for each fixed n there is, because of (i), a first o with yep(V., »);
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choosing now «, =min{e, [nez*}, we have yep(Vq.«). If g<a,, then the
definition of o, shows yep(V«a); if g>a,, then by (ii), we find that y¢

P(V 4 «+1); therefore we conclude thatye H

o k+1 "

To complete the proof, we need only modify the H_  slightly to assure

locally finiteness for each n. Choose a precise U-open locally finite refinement

of { p™ (H,,)(a.,n)e o x Z*}, and shrink it to get an U-open locally finite
covering {K, ,} satisfying p(K...)cH,, . For each n, let S, = {y |some nbd
of y intersects at most one H,_ }; S,is U-open and contains the U-closed

Up(Kan) =p (I Kean)so by normality of Y we find an U-open G, with
Up(Ken)cG, =G, c S,.The U-open covering {G, nH,, [(a@.n)e 5&x Z*},

with the decomposition { G, nH, , [ae £} forn=1, 2, 3, ------- satisfies the

conditions of Theorem 4.5 and Comment 4.1 for the given {G }.

Definition 4.6 Let G ={G, |« < s} be a covering of U-space X. For any
BcXthe set u{ G, [BNG, =@} is called the U-star of B with respect to &,

and is denoted by St (B, &).

Definition 4.7 A U-covering .5 is called a U-barycentric refinement of a

U-covering & whenever the covering {St (X,.5) |xe X } refines &.
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Theorem 4.9 ([11], Theorem 3.2) Let X be normal U-space, and
G ={G, |« e #£} alocally finite U-open covering. Then & has an U-open

barycentric refinement.
Proof: Shrink & to an U-open covering .5 ={V, |« c s} suchthat V. c G,
for each o clearly, .3 is also locally finite. For each xe X, define
W)= {G, [xeVarn[) {TV, [xeV,}.

We show that .5*= {W(x) |xe X} is the required U-open covering.
Note that each W(x) is U-open: the locally finiteness of .3 assures that the first

term is a finite intersection and that the last term, G wV ;4 is a U-open set.
Next, .55*is a U-covering, since x e W(x) for each xe X. Finally, fix any x e X
and choose a V. containing x ,. Now, for each x such that x | e W(x), we must
have xe V. also, otherwise W(y)= G V. ; and because xe V.., we conclude

that W(x) <G, . Thus, St(x_,.5*)c G, and the proof is complete.

Definition 4.8 A U-covering.5={V, | .~} is called a U-star refinement
of the U-covering & whenever the U-covering {St (V ,, .5 | <.~} refines
G.

Theorem 4.10 ([11], Theorem 3.4) A U-barycentric refinement .5*of a

U-barycentric refinement .3 of & is a U-star refinement of .
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Theorem 4.11 ([11], Theorem 3.5) A T;-U-space X is paracompact if and

only if each U-open covering has an U-open barycentric refinement.

Proof: Only the sufficiency requires proof. We first show that any U-open

covering & = {G,, |« € #£} has a refinement as in Theorem- 4.5 and Comment
4.1.
Let &* be an U-open star refinement of G and let { G, |n>0} be a

sequence of U-open coverings, where each & ., U-star refines G, and G o

n+1

U-Star refines G*. Define a sequence of U-covering inductively by .5:= G 1,

Br={SUV, Go) V € Bt B = {SUV, G ) V € Brihs oo

Each .B, is an U-open refinement of & _; in fact, each covering
{St(V, Gn ) V € -Bn} refines &, : this is true for n = 1 and, proceeding by

induction, if it is true for n = k — 1, its truth for n = k follows by noting that
whenever V = St(V,, G« ) for some V e .Bx1 , then St(V,, Gk ) =

St[St(V,,Gx), Gx]<=St(V,, Gx1) because Gy is a U-star refinement of G.1 .
ow well-order X and for each (n, X)e Z* xX define
En(X) = St(X, -5Bn) - © {St(z, -Bn+1) |z precedes x}.

Then D= {En(X) |(n,X) eZ"xX }is a U-covering: given pe X, the set

A={z |pe O St(z, .5i )} is not empty, since pe A; if x is the first member of

A, then pe St(x, .5B3,) for some neZ"and pe St(z, -Bn+1 ) for all z preceding X, so

pe En(X). Moreover, since .5, refines & o, we find that D refines &*.
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Each Ge Gn+1 can meet at most one En(x): for, if GAEq(X)= @, then
there is a Ve By with x e V and VNG = @, s0 X eVUGcV, € B and
G = St(X, -Bn+1). Thus, if En(X) is the first set G meets, it cannot meet any En(p)
for p following x. Now let Wy(X) = St(En(X), Gn+2).

Then .5 * = {Wh(X) |(n, X) ez"xX} is clearly an U-open covering of X.

Furthermore, .55 * refines & because D refines G*.

Finally, for each fixed n € Z*, the family {Wn(x) |xe X} is locally finite:
indeed, each Ge G, +2 can meet at most one Wy(X), because GnW,(X)= @,
if, and only if, En(X) nSt(G, Gn+2) = @ and St(G, G+ ) is contained in some

G, € Gn-1 which we know can meet at most one E,(x).

The theorem will follow from Theorem 4.5 and Comment 4.1, once we
show that X is regular U-space. To this end, let Bc X be U-closed and x¢B.

Since in a T;-U-space each point is a U-closed set, G = {X — x, GB} is an
U-open covering. Let .5 be an U-open star refinement. Then St(x, .5) and
St(B, .5) are the required disjoint neighborhoods of x and B: for if there were a
V containing x and a V' meeting B such that V~ V' = @, then St( V, .5 ) would

contain x and points of B, which is impossible. The theorem is proved.

Definition 4.9 Let & = {G, |[ae 5 } be an U-open covering of X. A
sequence {Gn |n eZ"} of U-open coverings is called U-locally starring for
G if for each xeX there exists an nbd V(x) and n eZ" such that
St(V, Gn)c some G, .
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Theorem 4.12 ([11], Theorem 3.7) A T;-U-space is paracompact if and only

if each U-open covering & there exists a sequence {Gn |n Z"} of U-open
coverings that is U-locally starring for & .
Proof: “Only if” is trivial. “If”: We can assume that G, + 1 < G, for each
neZ. Let.5={Vopenin X [3n:VcGe G ]a[ St(V, &n)c some G ]}.
For each Ve .3, let n(V ) be the smallest integer satisfying the condition.
Because {Gn |n €Z'} is locally starring for &, it follows that .5 is a U-open
covering; we will show that .3 is in fact a U-barycentric refinement of .

Let xeX be fixed, let n(x) = min{n(V) |(xe X)A(V e 5 )}, and let

V e .5 be aset containing x such that n(V ) = n(x).

For any Ve .3 containing X, we have n(V)> n(x), and consequently
St(x, -5 )= {St(x, &) [i=n(x)}. Since G +1 < G for each i, this shows
St(x,-8) =St(X, Gnxy) =StV ,, G,y,)= someG,,.

Therefore by Theorem-4.11, X is paracompact.
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CHAPTER -5

Projectives in some categories of Hausdorff U-spaces

Introduction

We have started this chapter with some definitions in the theory of
categories. We have generalized to U-spaces the concepts of projective
topological spaces, Stone Cceh compactification, perfect maps, extremally
disconnected spaces. We have also generalized to U-spaces some results on
topological spaces occurring in [8], [10], [13], [14], [24] , [31], [33], and [37].

These concepts and results have been used later in the chapter.

We have next introduced the notion of projectiveness in some
categories of Hausdorff U-spaces. A few important properties of such U-spaces
have been studied. A number of interesting examples have been constructed to

prove non- trivialness of such results.

For most of the cases the proofs of the above generalizations to
U-spaces run parallel to those for topological spaces. But we have given the

proofs in detail to show that these really do hold in the present cases.

We have constructed 2 examples of proper projective U-spaces which
are locally compact but not compact and two examples of proper projective

compact U-spaces.

In this chapter a U-space will mean a Hausdorff U-space, unless otherwise

mentioned.
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Projectives in some categories of Hausdorff U-space

Definition 5.1 A category consists of
(i) A class C of objects A, B, C,.....

(i1) For each pair of objects A, B a set hom(A, B) whose elements are

called morphism, with the property that

(@ aehom(A, B) and pehom(B, C) implies there exists y ehom
(A, C) which is written y = «;

(b) For each Ae C, there exists 1achom(A, A) such that for each Be
C and for each a ehom(A, B), a=a 1, and a=1g«,

(c) Let a<hom(A, B), pehom(B, C), yehom( C, D) then
y(Ba)=(rBe.
If pa=y a= p= y then « is an epimorphism or, epic (onto);

If o p=a y = B=y, then «is a monomorphism or, monic (one — to — one).

Definition 5.2 [8]( p- 89) Let A and B be groups and C be a subgroup of A
and B. Let two maps be o: A—-C andp: B—C. We consider the different
ways of completing them to a commutative square. We can regard these
commutative squares as objects of another category, a morphism being a map
between the new vertices so as to obtain a wedge with commutative faces. A

final object in this category is called pullback of «, 3.
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P > B

lﬁ' lﬁ

A S > C
Definition 5.3 [8]( p- 90) Let A and B be two groups and C is a subgroup of
A and B, then their pushout is the ‘free product of A and B amalgamating C °.
We note that the product of A and B is a special case of the pullback, obtained
by taking C to be a final object, and the co product is a special case of the

pushout obtained by taking C to be an initial object. Sometimes the pullback is

called ‘fibre product’ and the pushout ‘fibre sum’.
Cc
la
B

Definition 5.4 [14]( p- 3) A U-space P is projective, if for any pair of

[0

v

O<?\>

v

!

(03

U-spaces, X, Y and pair of U-continuous maps h: Y —X and f: P—X, with h

onto, there exists a U-continuous map r: P— Y such that hr(p) = f(p) for every

Y
e
P—F " X

Definition 5.5 [37](p-7) A U-continuous function f: X —Y where X and Y

are arbitrary Hausdorff U-spaces is called U-perfect if f is U-closed and the set

peP.

f1(y) is compact for each y in Y.
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Definition 5.6 [13](p-482) A U-space X is extremally disconnected if the

closure of every U-open set is U-open.

Definition 5.7 A U-space Y is an extension U-space of another space X if X

isdensein .

The generalization of the construction of the Stone- Cech compactification
for a completely regular U-space

Let X be a completely regular T;-U-space. Let {f,} _ be the
collection of all bounded U-continuous real-valued function on X, indexed by
some index set A.
For eacha €A, choose | = (-, sup f_ (X)], J,= [inf f_(X), «) regarded as
U-subspaces of the usual U-space R. Then define h:X—]T]1, by the rule

aehA

h(x)= (f, (x))__, . Since X is completely regular T;-U-space, for two distinct

points X1, X2, {X2} is U-closed and x; ¢ {X»} so there exists f_such that
f (x) =f, (x2).

Hence h(x1) =h(Xz). Therefore h is one-one. Since f_: X—1_is U-continuous,

it follows from the definition of J1, that h is U-continuous.

achA

We shall show that h is U-open. Let V; be a U-open set of X and
Yoe h(V1). Let Xoe V1 such that h(xg) = yo. Since X is completely regular, there
exists f_such that f_ (Xo) e(-o, sup f_ (X)) and f, (X - V1) =sup f_(X). Let
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Vo =x," (-, sup f, (X)). Then V2 is U-open in J]1,,and W =Vanh(X) is a

U-open set of h(X).
We shall show that yoe W<h(V1). Since yoeh(V1)ch(X) and 7, h(xo) =
., (X0), Yo = h(Xo)= ﬂa_lfa (Xo) = V2. Therefore yoe W.

Let yeW. Then for any xeX, y = h(x) and =, (y) e(-», sup f_(X)).
Since z,(y) = »,h(x) = f_(x) and f_(X — V1) = sup f_(X), so xeV;, i.e,
y = h(x) eh(V).

Therefore h: X—]]!,is an U-imbedding. Hence (h(X), h) is a

aeh

compactification of X. h(X) is usually written g(X) and is called the

generalized form of Stone- Cech compactification of X.

Definition 5.8 [37]( p- 8) Let P be the category of all paracompact
U-spaces and perfect U-maps and T be the category of all Tychonoff U-spaces
and perfect U-maps. It is to be noted that both of these categories contain C,
the category of compact U-spaces and U-continuous maps, as a full

subcategory. P is also a full subcategory of T.

Theorem 5.1 [37](p-8) The category P has pullbacks.

Proof: Let f: X—»Z and g: Y —Z be two morphisms in the category P (that is
X, Y, Z be paracompact U-spaces and f, g are perfect U-maps). We have to

show the existence of a pullback diagram for f and g.
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Let P ={(x,y) eXxY: f(x) =g(y)} and p; and p, be the projection on X
and Y respectively. Suppose there exist p'1;: P'—X and p',: P'— Y such that

fp's=gp".
Define h: P’ XxY as follows:
h(t) = (p'1(t), p'2(t)), teP’. Since fp’'1 = gp'z, h(t) P that is, h:P'—P such that

p:h = p’1 and poh = p’,. It is easy to see that the map h is unique. Thus the

diagram

P2 g
L

Y
P1 lg
Z

f.‘ »

X ——T

Is a pullback for f and g. We show that this diagram belongs to P, that is, that

the maps p; and p, are U-perfect.
Consider the pullback diagram

d2

p* > BY
pX > BZ

F

for the maps F: g X — pZ and G: pY — pZ where F and G are the
extensions of the map f and g onto X and gY respectively (pX ,8Y
and g Z are the generalization of Stone- Cech compactifications and 7, ,7, and
n, are reflector maps of X, Y and Z respectively).

We have Fn, = n,f, Gn,=n,9 and P*= {(x*, y*)e g Xx pY: F(X*) =
G(y*)}. g1 and g are projections of P*to g X and 8Y respectively.
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Again, let p1*: gP — g X, p2*: pP — pY be the extensions of p; and p;

onto BP. Hence n, p1 = P1*7,, 17, P2 = P2*n,. Since fp1 = gpz, 1, fp1 = 7, gp..

Note that Fpi*n, = Fnxp1= 7, fprand Gpz*7, = Gy p2= 7, gp2.
Therefore, Fp:* n, = Gp2*7,. Since 5, (P) is U- dense in gP
we have Fp;* = G p,* on gP.

From the definition of pullback there exists a (unique) mapping h: gP—P*

such that p;* = g:h and p,* = gzh. Again, for the maps », pi: P — g X and
7, P2:P = pY , we have Fr, p1 = Gn, p2 (this equality is already noted earlier).

From the definition of pullback once again we get a map k: P —P*such that

7, P1= qzk and 7, p2 = qzK. It is easy to see that the map k is as follows:

KX, y) = (nx P1(X, Y), 1, P2AX, Y)) = (15 (X), 2 (YD), (X, Y) €P. k clearly turns
out to be a U-homeomorphism into P*. Moreover it is not difficult to notice

that k = hz,. Now Kk is a U-homeomorphism of P onto k(P) <P*. From the

property of generalization form of Stone- Cech compactification it follows that
(i)  h(BP- 7.(P)) ck(P)-k(P) =P*.
Now g2k =7, p2, that is,
P b2 > Y
lk lm
> BY

(e}

o

IS a commutative diagram. So we consider the pullback diagram for
J2:P*>pYand n,:Y - pY say
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TT,

W > Y
TTll lﬂY
p* > BY

qz
Where W is given by {(s, y) eP*xY: Qz(s) = n,(y)} andr,, =, are the
respective projections to P* and Y. Since gx(s) = g2(x*, y*) = y*, d2(S) = n, (V)
implies y* = n, (y).
Consequently, W = {((x*, n, (¥)), ¥) eP*xY: n,(y)=y*}
=<, 7y (), y) e(BXx Y ) xY D F(x*) = G(ny (¥))}-

If F(x*) = G(n (y)) then F(x*)= G(n, (y)) = n.9(y). Since f is a
U-perfect map, F(pX - n, (X)) < BZ - n,(Z). As a consequence, X*e n, (X),

that is, x* = 5, (X) for some xe X. So we have

W= {(C nx (), ne(y) ) y) €(BXxpY ) xY 1 F(n, (X)) = G(my (¥))}.
Again 7,9(y) = G(n,(¥)) = F(n, (X)) = n,f(x) and this naturally implies

() = g(y)-
We then get,
(i) W={((nx (), 7y (¥)),y) e(BXxBY) xY :1(x) = g (Y)}
= {k(x, ¥),y): (x,y) ePand pa(x, y) = y}.
Since n, p2 = g2k there exist a unique map j: P—W as follows:

16 y) = (k(x, y), p2(%, ), (X, y)P.

Easy to see from (ii) that j(P) = W. In fact j is a U-homeomorphism of P and
W. Now W is, by construction, a U-closed subset of P*xY which is
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paracompact U-space (as P* is compact U-space and Y is paracompact
U-space). As a result W is paracompact U-space. This makes P paracompact
U-space and J is a U-isomorphism of P and W in the category P. We then

obtain that the diagram

P2

v

2+ <

qz2

iIs a pullback diagram. Note that », is a one-one map, that is, n, is a

U-monomorphism. From the definition of inverse image we see that

P = g2}(Y) as a sub object of P*.In terms of sets this means that
k(P) = g2 X7, (Y)). Asaresult
J2(P*- k(P)) < BY -n, (Y). We know from (i) that
h(sP - np (P)) < k(P) - k(P) =P*- k(P), so that
P2*(BP - ne(P)) = g2 (BP - mp (P)) =
Q2[n(BP - e (P))] =G2(P*-Kk(P)) = Y -n, (Y).

Hence, by the characterization of Henriksen and Isbell mentioned at the

beginning, p, is a U-perfect map. Similarly, p; is a U-perfect map.
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The proof of Theorem - 5.1 also yields the following theorem.

We generalize the theorems, Lemmas and Corollary of [13] ( p- 482- 484)

Theorem 5.2 In any category of U-spaces and maps satisfying conditions
(a) all admissible maps are U-continuous,

(b) if A is an admissible space and {p, q} is a two element space,

then Ax{p, q} and the projection map of this U-space onto A are admissible,

(c) if A is an admissible space and B is a U-closed subspace of A,
then B and the inclusion map of B into A are admissible, a projective U-space

is extremally disconnected.

Proof: Let X be a projective U-space in such a category. Let G be any U-open

subset of X; we must prove G is U-open.
In Xx{p, q} consider the U-closed set

Y = ((X-G) x {pHu (G x{q}), and its inclusion map i. Let = be the
projection of Xx{p, g} onto X. Our hypothesis on the category implies that

7 o 1 1S an admissible map of Y onto X and that the identity ¢ is an admissible
map of X into X. Since X is projective U- space, there is an admissible map y
of X'into Y such that ¢ = 7 oo . Because zol is one -to-one on Gx{q} it is

clear that v (X) = (x,q) for xe G; from the continuity of y follows
w (X) = (x,q) for xe G .Similarly, for xg G, y (X) = (x, p).

Thus we have proved G =y (G x{q}). Since » is U-continuous and G x{q} is

U-openinY, G is U-open in X as required.
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Theorem 5.3 In an extremally disconnected U-space no sequence is

convergent unless it is ultimately constant.

Proof: Suppose that the sequence {x,} converges to p in the extremally
disconnected U-space X. Assume this sequence is not ultimately constant, we

shall deduce a contradiction.

First we construct inductively a disjoint sequence {U;} of U-open sets in
X such that each U; contains a member X, of the given sequence, where {n(i)}
Is an increasing sequence of integers. Let n(1) be an index for which Xna)=p,

and choose a U-open set U; such that Xnqy €U; but pe U, . Suppose we have

chosen disjoint U-open sets U;Uy,Us,........ ,Ux and increasing integers
Ny,N2,N3,........ ;i such that X,q eUi and peU, for i = 1,23,........ k. Then
V=X-(U,uU,uU, u.... .uU, ) is an U-open neighborhood of p, so XqeV

for all sufficiently large g. By a suitable choice of n + 1y we shall have n + 1)>
Nk, Xnk + 1) €V but Xai + 1y =p since the original sequence is not ultimately

constant. Choose an U-open set W such that

Xnk + 1) €W but pew, and let Uk 1 = WA V. This completes the inductive

construction.

Let G =uU,,. Since X is extremally disconnected U-space, G is an

U-open set, and pe G being the limit of {Xnzq}. Thus G is a neighborhood of
p, so x,e G for all large r; in particular, X, e G for some odd integer s. Since
Us is a neighborhood of X¢), Usn G is not empty, contrary to the definition of

G and disjointness of the U’s.
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Definition 5.9 A U-space is said to have a countable basis at x if there is a
countable collection B of neighborhoods of x such that each neighborhood of x

contains at least one of the elements of B.

A U-space that has a countable basis at each of its points is said to satisfy the

first countability axiom, or to be first-countable.

Corollary 5.1 In a category in which all Hausdorff U-spaces satisfy the first

axiom of countability and properties
(a) all admissible maps are U-continuous,

(b) if A is an admissible space and {p, g} is a two-element space, then

Ax{p, q} and the projection map of this space onto A are admissible,

(c) if A'is an admissible space and B is a U-closed subspace of A, then
B and the inclusion map of B into A are admissible hold, then every projective

Hausdorff U-space is discrete topological Hausdorff U-spaces.

Lemma 5.1 Let A and E be U-spaces. Suppose f is a U-continuous map of E

onto A such that f(E,) = A for any proper closed subset E, of E.
Then, for any U-open set GcE, f(G) c A- f(E-G).

Proof: There is nothing to prove if G is empty. Suppose otherwise, let a be any
point of f(G), and let N be any U-open neighborhood of a.

The lemma will follow if we prove that N~ (A - f(E-G)) is not empty. Because
G f1(N) is a nonempty U-open subset of E, f(E — (G~ f1(N))) =A.
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Take xe A - f(E — (G TL(N))); clearly xe A - f(E — G). Since f is onto, x = f(y)
where evidently ye (G~ f1(N)). Therefore x = f(y) ef (F}(N)) = N,

so XeNn (A - f(E - G)), and the latter set is not empty.

Lemma 5.2 In an extremally disconnected U-space, if U; and U, are disjoint

U-open sets, then U, and U, are also disjoint.

Proof: First,u, and U, are disjoint because U, is U-open; then U, and U, are

disjoint because U, is U-open.

Lemma 5.3 Let A be an extremally disconnected Hausdorff compact
U-space, and let E be a compact U-space. Suppose f is a U-continuous map of

E onto A such that f (E,) = A for any proper U-closed subset E, of E.
Then f is a U-homeomorphism.

Proof: We need only show that f is one-to one. Suppose, on the contrary, that
X1 and x; are distinct points of E for which f(x;) = f (x2). Let G; and G, be
disjoint U-open neighborhoods of x; and x, respectively. Both the sets E - G;
and E - G, are compact, so A -f (E - G;) and A - f(E - G,) are U-open.

The latter sets are disjoint because E = (E — G1) u (E — Gy). By the
Lemma- 5.2, A- f(E-G,) and A- f(E-G,) are disjoint. On the other hand, it
follows from Lemma- 5.1 that f(x;) =f (x2) is a point common to these sets.

This contradiction establishes Lemma- 5.3.
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Lemma 5.4 [13]( p- 484) Let A and D be compact Hausdorff U-spaces, and
let f map D continuously onto A. Then D contains a compact U-subspace E
such that f(E) = A but f(E,) = A for any proper U-closed subset E, of E.

Proof: This is a well known consequence of Zorn’s Lemma.

Theorem- 5.4 In the category of compact U-spaces and U-continuous maps,

the projective U-spaces are precisely the extremally disconnected U-spaces.

Proof: To prove that all projective U-spaces in the category are extremally
disconnected U-space, we have only to verify the conditions of Theorem-5.2.

We turn to the opposite inclusion.

Let A be an extremally disconnected compact U-space, let B and C be

compact U-spaces, let f be a U-continuous map of B onto C, and let ¢ be a

U-continuous map of A into C. We must prove that there exists a U-continuous

map v of A into B such thatg = fy .

In the space AxB consider D = {(a, b) |#(a) =f(b)}. This set is clearly

closed and therefore compact U-space. Since f is onto, the projection 7z, of

AxB onto A carries D onto A. By Lemma- 5.4 there is a U-closed subset E of
D such that =, (E) = A but =, (Eo) =A for any proper U- closed subset E, of E.

Let o be the restriction of », to E. Lemma-5.3 asserts that p is a
U-homomorphism. Let v = z, p 1, where z,is the projection of AxB into B;

this is the required map. Suppose aecA; since pi@) eD,
(7, (p (@) = (= (p@))) = ¢ ().

Thus ¢ =fz, pt=fy ; this completes the proof.
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Definition 5.10 A map is said to be U-proper if and only if it is U-continuous

and the inverse image of every compact U- space is compact.

Example- 5.1 (Proper extremally disconected compact U- space).
Let X ={a, b,c,d}, @ ={X, o, {a, b}, {a, c}, {a, b, c}, {d}, {a, b, d},
{a, c, d}}. Since {a, b}~ {a, c}={a}¢ U. & isa U-structure.

Then (X, /) is a proper U-space.

Here {a,b}= {a,c}= {a,b,c}= {a, b, ¢}, {d}= {d}.{a,b,d} = X,{a,c,d} = X.

Hence X is a proper extremally disconnected and compact U-space.

Example - 5.2 (a proper projective compact U-space)
Let X = {a, b, ¢, d} and & = {X,o, {a, b}{a, c}, {a, d}{b, c}, {b, d},
{c, d}{b, c, d}, {a, c, d}, {a, b, d}, {a, b, c}}. Then X is a proper U-space

which is clearly, Hausdorff, compact and extremally disconnected U-space.

Thus X is a proper projective compact U-space.

Example - 5.3 Let X =N be U-space, n, is a fixed element of N and

let 7 ={{ N,o}u{{ne N |n < no}, {neN |n>ne}, {ne N |n<n,+ 3},

{ne N |n=ne+3}, | noe N}} and their unions.

Now {ne N |n<n,+3}~{ne N |[n>n,}={no+1,n+2}e W
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Thus ¢/ is a U-structure but not a topology, and so, (X,?/ ) is a proper
U-space.

(i) Xis clearly compact.

(i) X is Hausdorff. For, if ny, n, € N and ny=zny, say n; < np, then
nieU; ={1,2,3,......... N}, n2eUz={ne N |n>n;}and UinU= @.

(i) X is extremally disconnected U- space, since, for each U-open set
G of X, G =G is U-open.

Hence by Theorem 5.5, X is a proper projective compact U-space.

Definition 5.11 If AcX, a U-retraction of X onto A is a U-continuous map

r: X —A such that r| A is the identity map of A. If such a map r exists, we say

that A is a U-retract of X.

We now generalize the theorems of ([37], p- 11-12)

Theorem 5.5 Let X be any extremally disconnected object from the category
P. Any perfect U-mapping f: A—X of another object A onto X is a

U-retraction.

Proof: We have f: A— X onto. Then we can draw the following diagram

A f
" |
BA

v

Rtz %

v
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Where F is the unique U-continuous extension of f onto g A taking values in
£ X. Since fis a surjection, F is also onto. But g X is extremally disconnected
U-space and F is an onto map. Since g X is projective U-space in the category
C. F is a U-retraction, that is there exists a mapping g: 8 X— g A such that
Fg =1, = the identity map on g X. Since f is a perfect U-map, F(5 A — 1, (A))
= X —nx(X). Therefore, g(n, (X)) < n,(A). Puth=75,%gn, : X >A. Now
fh(x) = 7,797, (X). BUtF (g7, (X)) = n,(x) and  g(1, (X)) € 7, (A), that is,
d(n, (X)) = n,(a) for some ac A. Therefore, n, (X)= F(7,())= n, f(a). So,
a=1n,"(n.(2)) = n."*gn, (x) and x = f(a) and hence, f(a) = f,"gn, (x) = x.
Consequently fh(x) = x for each xe X, that is, fh = 1.Naturally fis a

U-retraction.

Theorem 5.6 The category P has projectives that is any paracompact U-space
Is the perfect U-image of a projective U-space object. In fact, for every object
X there is a projective U-space objects P and an onto U-perfect mapping
p1: P—X such that p; maps no proper U-closed subspace of P onto X. For any

other such object P’ and p’1:P’ —»X there is an U-isomorphism e: P—P’ such

that p, = p1'e.

Proof: Let X be any object of P. Look at gX, the Stone - Cech

compactification of X. There exists an extremally disconnected compact

U-space Y and a U-continuous onto map f: Y — g X such that f(S) = g X for

any proper U-closed subspace S of Y. Consider the pull- back diagram
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P2

v

P1

X<4——T
RDe— <

v

Nx
for the morphisms n,: X - gXandf: Y — g X,

where P = {(x,y) eXxY : 5, (X) =f(y)} and p; and p, are projections to X and
Y respectively. We do not claim that this is a pullback in P. Clearly,
17y P1 = fp2. Since 5, is a U-monomorphism, p, is U-monomorphism. Since f is
onto, p; is onto. Again, P is a U-closed subset of XxY and the latter is
paracompact U-space P is, hence, paracompact U-space. p; is also U-closed so
that p; becomes a perfect U-map. fp, = ., p1 = fp2 (P) = n, (X). Let
W = p,(P). Since f is a U-closed map, f(p,(P)) =fW)=pX. Observe that W is
a U-closed subset of Y and f(w) =g X. From the choice of Y it follows that

W =Y, that is,W = p,(P) is dense in Y. Y is extremally disconnected U-space
rendering W extremally disconnected U-space. Now it is not very difficult to
see that p; is a U-perfect map onto W. Since P is paracompact U-space and p;

Is a U-perfect map onto W, W is a paracompact U- space.

By Theorem-5.5, p, is a U-retraction. Since p, is a U-monomorphism
and a U-retraction also, it is an U-isomorphism, that is p, is a U-
homeomorphism of P and W. Thus P is an extremally disconnected
paracompact U-space. So P is projective U-space due to “In the category P, the
projective objects are precisely the extremally disconnected paracompact
U-spaces”. Since ps is a U-perfect map of P onto X, X is a U-perfect image of a
projection object. Let Q be a proper U-closed subset of P. Then p2(Q) is a
proper U-closed subset of pz(P)= W. Write p2(Q) = W(F) where F is a
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U-closed subset of Y. Since p2(Q) is a proper U-closed subset of W, F is a

proper U-closed subset of Y.

If pu(Q)= X, then 7, (X) = 7,p1(Q)= fpA(Q)=F(W(F)) =f(F). Since f is a
U-closed map of X onto g X, f(F) is a U-closed and hence equals g X. This is a
contradiction. Consequently P enjoys the property that no proper U-closed

subspace of P is mapped onto X by p;.

If possible let P'be a projective paracompact U-space with a U-perfect
map p1": P’—>X such that p,’ (P’) = X and if Q is any proper U-closed subspace
of P’ then p1’ (Q) = X. Then there exist a morphism e : P—P’ and a morphism
e’: P’—P such that p; =pi’e and p;'= p:e’. Then py(P) = X =p;’ (P") = p.'e(P) =
X =p:e’ (P'). Naturally, e and e’ are onto; we shall show that ee’ = 1,, that is, e
Is a U-co-retraction. If ee’ = 1, there exists a proper U-closed subset S of P

such that d*(S) uS = P where d =¢’e.

Obviously, d(d*(S)) =S whence p:d(d*(S)) = pi(S). But p:d = pie'e =
pi'e = p1, hence p1(S) = p:1d(d2(S)) = p1(d(S)); so that pi(S) = p1(P) = X, a
contradiction as S is a proper U-closed subset of P. We thus conclude that e is a
U-co-retraction. Already e is a U-retraction; hence e is a U-isomorphism, that

IS, e is @ U-homeomorphism of P onto P'.

Theorem 5.7 [14](p- 7) Let P be a compact Hausdorff U-space. Then P is
projective if and only if for every compact Hausdorff U-space W and

U- continuous g: W —P, onto, there exists a U-continuous s: P —W such that

gos(p) = p.
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Proof: Assume that P is projective U-space and let s be a lifting of the identity

map on P.

Conversely, assume that P is projective U- space and let X and Y be U-spaces
and h: Y — X and f: P—>X , U-continuous map with h onto. Then there exists a

U-continuous map r: P— Y such that hor(p) = f(p) for every peP.

Let W ={(p,y) ePx Y:f(p) =h(y)} and defineg: W —P by g(p,y) =p
and g: W ->Y by q(p, y) =y. Ifs: P ->W is as above then r = qos is a lefting of
f.

Theorem 5.8 [31](p-70) If Pisa U-retract of P’ and P’ is projective, then P
IS projective.

Proof: Let PP’ P = 15. If A>A" is an U-epimorphism and P —>A"" is any
morphism, then using projectivity of P' we have P>A" = P>P' >P A" =

PP —>A—-A" for some morphism P’ —A. This establishes U-projectivity of
P.

Theorem 5.9 [31] ( p-70) If P is projective U-space in A, then every
U-epimorphism A —P is a U-retraction. Conversely if P has the property that
every U-epimorphism A—P is a U-retraction, and if A ether has projective or

is abelian, then P is projective U- space.

Proof: If P is projective U-space, then given a U-epimorphism A —P there is a
morphism P—A such that P - A —P is 1p. In other words P —A is a

U-retraction.
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Conversely, suppose that every U-epimorphism A —HP is a

U-retraction.

If A has projective then we may take A projective and then it follows
from Theorem 5.8. On the other hand, if A is abelian, then, given an

U-epimorphosm f: A —A" and a morphism u:P—A", we can form the pullback

> P
lu
> A"

we know that g is an U-epimorphism. Then by assumption we can find

diagram

f

h: P —X such that gh = 15. Then we have fvh = ugh = u. This proves that P is

projective U-space.

Theorem 5.10 [37]( p- 12) In the category P, the projective U-space objects

are precisely the extremally disconnected paracompact U-spaces.

Proof: If P is projective U-space, then given a U-epimorphism A —P there is a
morphism P—A such that P - A —P is 1p. In other words P —A is a

U-retraction.

Conversely, suppose that every U-epimorphism A —P is a
U-retraction. If A has projective then we may take A projective U-space and
then it follows from Theorem 5.8. On the other hand, if A is abelian, then,
given an U-epimorphosm f: A —>A" and a morphism u:P—A", we can form the

pullback diagram
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v
>

f

we know that g is an U-epimorphism. Then by assumption we can find
h: P —X such that gh = 15. Then we have fvh = ugh = u. This proves that P is
projective U-space. Therefore the projective U-space objects of P are the

objects for which perfect U-maps onto them are U-retraction.
Hence the theorem follows from theorems 5.5, 5.8 and 5.9.

Let X be any extremally disconnected U-space object from the category
P. By theorem- 5.5 we can prove that any U-perfect mapping f: A—X of
another object A onto X is a U-retraction.

By theorem- 5.8 ‘If P is a U-retract of P’ and P’ is projective U-space,
then P is projective U-space’ And theorem- 5.9 “If P is projective U-space in
A, then every U-epimorphism A —P is a U-retraction. Conversely if P has the
property that every U-epimorphism A—P is a U-retraction, and if A has

projective U- space, then P is projective U- space.” P is projective U-space.

Hence the theorem is proved.
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Examples of proper projective U-spaces which are locally compact but not

compact.
Example- 5.4 Let X = R, % ={X, o, (-oo,% ),[0,1), [%,1), [1.2)...[n, n + 1),

..., and their unions}.

(i)  Then (X, &) is a U-space but not a topological space.

Since (-oo,% ) ~ [0, 1) = [0, % )e .

(i) X is not compact, since G = {(-oo,% ),[0, 1), [1, 2),......[n,n+ 1),.....}
iIs U-open cover of X but it has no finite sub cover.
(iti) X is locally compact. For let x,eX. If xo<%, then (-oo,% ) is a

neighborhood of X, whose closure is (-«,1), which is compact U-space,

since every U-open cover of (-oo,% ) must contain either X or both

(-oo,% ) and [% ,1) and each such cover is clearly finite.

If xz%, Xe[n, n + 1) for some ne{0}uUN. Then [n,n+1) = [n, n + 1)
which is obviously compact, since [n, n + 1) is U-closed.
(iv) All the U-open sets except (-oo,%) and [0, 1) are both U-open and
U-closed & so the U-closure of any union of these is U-open. Also,

(-5 )= €00, 0D= (0, )

Hence the closure of every U-open set is U-open.
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Thus X is extremally disconnected U-space, and so, X is projective

U-space.

Example 55 Let X = Z , % ={X, o {ne Z| - »< n<1}, {0,1,2},
{3,4,5},{6,7,8} and their unions}. X is a proper U-space.

For{ne Z| - «<n<1}n{0,1,2} = {0, 1}¢ .

(i) X is not compact. For the U-open cover

{{ne Z | - ©<n<1},{0,1,2}, {3,4,5},{6,7,8},..ccecveren.n. } has no finite sub

cover .
(if) However, X is locally compact. To sec this, let Xoe X. If X,<1,

the {ne Z| - «< n<1} is a U-open neighborhood of X, and its closure is
{ne Z | - o < n<2} which is clearly compact. If xo >1, then for xo = 2,
{0, 1, 2} is a U-open neighborhood of x, and its closure is

{ne Z| - »<n < 2} which again is U-compact, and for xo = n >2,

xe{3r, 3r + 1, 3r + 2} for some positive r, and this set is a U-open
neighborhood of x,. Also, it is its own closure.

Clearly it is compact.

Thus X is locally compact U-space.

(iii) The sets {3r, 3r + 1, 3r + 2} are both U-open and U-closed for each

rzl, {nezl-o<n<fp={ne Z| -o<n<2}=

{ne Z| -»<n<1}u{0,1,2}
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(iv) which is U-open. Also, {0,1,2}={ne Z | - » <n < 2} is U-open, as
before.
Hence X is extremally disconnected U-space.

Therefore X is projective U-space.

Cover of compact Hausdorff U-space

We now generalize definitions of [14] (p-7-8)

Definition 5.12 Let X be a compact Hausdorff U-space. A pair (C, ) is called
a U-cover of X, provided that C is a compact Housdorff U-space and f: C — X

is a U-continuous map that is onto X.

Definition 5.13 Let X and C be compact Housdorff U-space and f: C »>X a
U-continuous map that is onto X. A pair (C, f) is called a U-essential cover of
X if it is a U-cover and whenever Y is a compact, Hausdorff U-space
h: Y —C is U-continuous and f(h(y)) = X, then necessarily h(Y) = C.
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Definition 5.14 Let X and C be compact Housdorff U-space and f: C ->X a
U-continuous map that is onto X. A pair (C, f) is called a U-rigid cover of X if
it is a U-cover and the only U-continuous map h: C —C satisfying

f(h(c)) = f(c) for every ceC is the identity map.

Theorem 5.11 Let X be a compact Hausdorff U-space and let (C, f) be a
U- essential cover of X. Then (C, f) is a U- rigid cover of X.

Proof: Let h: C —»C satisfy f(h(c)) = f(c) for every ceC. Let C; = h(C) which
IS a compact U-subset of C that still maps onto X. The inclusion map of
I: C;—C satisfies, f(i(C1)) = X and hence must be onto C. Thus h(C) = C.

Next, we claim that if Gc C is any non- empty U-open set, then G h-
Y(G) is non- empty. For assume to the contrary, and let F = C \ G. Then F is
compact U-space and given any ceG there exist yeh*(G) with h(y) = c.
Hence, yeF and f(c) = f(h(y)) = f(y). Thus f(F) = X, again contradicting the
essentiality of C. Thus, for every U-open set G, we have that G ~h™(G) is non-
empty.

Now fix any ceC and for every neighborhood G of c pick
Xxgce Gnh'(G). We have that the net {xc} converges to c. Hence, by
continuity, {h(xg)} converges to h(c). But since h(xs)e G for every G, we also

have that {h(xg)} converges to c. Thus, h(c) = c and since ¢ was arbitrary, C is
U-rigid cover of X.
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Theorem 5.12 Let (C, ) be a U-cover of X with C a projective U-space.
Then (C, f) is a U-essential cover if and only if (C, f) is a U-rigid cover.

Proof: We already have that a U-essential cover is always a U-rigid cover. So
assume that (C, f) is a U-rigid cover. Let h: Y — C with f(h(Y))= X. Since C is
projective, then there exists a map s: C — Y with (foh)os = f. We have
hos : C —C and f(hos(c))= f(c) and so by rigidity, hos(c)= c for every ceC. In

particular, h must be onto and so C is U-essential cover.

Theorem 5.13 Let (Y, f) be a U-cover of X and let C < Y be a minimal,
compact U-subset of Y that maps onto X. Then (C, f) is a U-rigid, essential
cover of X.

Proof: First, we prove U-essential. Given any compact Hausdorff U-space Z
and h: Z —C such that f(h(Z)) = X, we have that h(Z) < C is compact U-space
and hence h(Z) = C by minimality.

Since (C, f) is a U-essential cover of X, by the above results it is also a U-rigid

cover.
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CHAPTER-6

Anti-Hausdorff U-spaces

Introduction

In this chapter the concept of anti-Hausdorff U-spaces has been
introduced and a few important properties of such spaces have been studied. A
number of interesting examples have been constructed to prove non- trivialness

of such results.

We have generalized some results on anti-Hausdorff topological

spaces in [25] to U-spaces.

Definition 6.1 A U-space X with |X|>2is said to be anti-Hausdorff U-space,

if for every pair of distinct points x, y in X and pair of distinct U-open sets G

and H such that xeG, xeH, GAH=®, i.e., if no two distinct points can be

separated by disjoint U-open sets.

Here, |X| denoted the number of elements of X. A anti-Hausdorff

U-space which is not a topological space will be called a non-trivial anti-
Hausdorff U-space. Otherwise it is called trivial. It is easily seen that an anti-

Hausdorff U-space X is non-trivial only |X|> 3.

Example 6.1 Let X = {a, b, ¢}, @ = {X, o, {a b}{a c}} and
WU, ={X, o {b,c}{a c}}
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Then (X, ¢4 ) and (X, ¢, ) are non-trivial anti-Hausdorff U-spaces.

Example 6.2 Let X={a, b, c,d}and ¢4 ={X, @, {a, b, c}{a d}},

wU, ={X, o {a b}{a c}{a b, c}}. Then (X, ¢4 ) and (X, ¢ ,) are non-

trivial anti-Hausdorff U-spaces.

Example 6.3 Let X = N, % ={X, @, {1, 2, 3}.{1, 4, 5}, {1, 2, 3, 4, 5}}.

Then (X, /) is a non-trivial anti-Hausdorff U-space.

Example 6.4 LetX=R, W ={X, o, N, 7,2 7, Nu2/}.

Then (X, ¢ ) is a non-trivial anti-Hausdorff U-space.

Theorem 6.1 A U-subspace of a non-trivial anti-Hausdorff U-space need not

be anti-Hausdorff.
Proof: Let us consider the U-space (X, ¢ ), where X = {a, b, ¢, d} and
w={X, o {a b}{a c}, {a b, c}}.

Then (X, ¢) is a non-trivial anti-Hausdorff U-space, since there is no pair of
disjoint non-empty U-open sets in X. Now let Y = {b, c}.

Then as a subspace of X, Y has the U-structure, ¢ = {Y, o, {b}{c}{b, c}}.

Obviously, Y is not anti-Hausdorff U-space.
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Theorem 6.2 If A and B are two non-trivial anti-Hausdorff U-subspaces of a
U-space X, then the subspace A~ B need not be a non-trivial anti-Hausdorff
U-space.

Proof: Let X={a, b,c,d, e, f}, @ ={X, o, {a, b, c}{ b, c, d}{a b, c, d},
{b, c, d, e, f} }. Clearly (X, ) is a non-trivial U-space. Let A={a, c, d, f}
and B ={a, b, d, f}. Then A and B are U-subspace of X with

wUa={A, o, {a c}{c d}, {a c, d}, {c, d, f}}, %s={B, o {a b}{b, d},
{a, b, d},{b, d, f}}.

Clearly both A and B are non-trivial anti-Hausdorff U-subspaces of X.
Now AnB ={a, d, f } and & a~s ={AnB, @, {a}, {d}{a, d},{d, f}}.

Then A~ B is a trivial U-space, which is not anti-Hausdorff.

Thus A~ B is not a non- trivial anti-Hausdorff U-space.

In the situation of Theorem-6.2, it is also possible that A~nB is a non-

trivial anti-Hausdorff U-space as is shown by the following example.
Example 6.5 LetX={a, b, c,d, e}, &“={X, o, {a b}{a b, c}{a c, d, e}}.
Clearly ( X, ) is a non-trivial U-space. Let A= {a, b, ¢, d} and

B ={a, b, c, e}. Then A and B are U-subspace of X with % = {A, @, {a, b},
{a, b, c}{a, c d}}, wUs ={B, o,{a b}{a b, c}{a c, e}}

Clearly both A and B are non-trivial anti-Hausdorff U-subspaces.

Now A~B ={a, b, c} and @r~s ={AnB, @ {a, b}, {a, c}} which is a non-

trivial anti-Hausdorff U-space.
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Remark 6.1 If A; and A; are two non-trivial subspaces of a non-trivial
U-space X, then the subspace Ai~A, may be non-trivial anti-Hausdorff

U-space even if neither A;nor A; is so.
Proof: Let X ={a, b, c,d, f}, @w={X o {a}, {b, c}{c, d}, {a b, c},

{a,c,d}, {f}, {b,c, f}, {c,d, f} {af} {abc f} {acd f} {bc d},
{a, b, c,d},{b, c,d, f}}.

Clearly U is U-structure on X.

Let A;={a, b,c,d}and A, ={b,c,d, f}.
Then the U-structure 7 a, and %a,on A; and A; respectively are
Una,={A, @, {a}, {b, c}, {c, d}, {a b, c}, {a c, d}, {b, c,d}} and
Un, = {A2, @, {f}, {b, c}, {c,d} {b, c, f}, {b, c, d}, {c, d, T }}.

Clearly both A; and A, are non-trivial subspaces of a U-space X, neither of

which is anti-Hausdorff.

Now A1~ A; ={b, ¢, d} and ﬂAl NA, ={Ain Ay, @, {b, c}, {c, d}}.

Thus A1~ A2 is a non- trivial anti- Hausdorff U-space.

Theorem 6.3 Let A; and A, be two anti-Hausdorff U-spaces with U-structures
«, and ¢, respectively. Then (A1UA; ( ©,v ¥, )) need not be anti-

Hausdorff U-space.Here( ¢, v, )is the U-structure generated by
W, 0 UW,in ALUA,,
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Proof: Let A; ={a, c,d, e} «,={A, o, {a}{a c} {a c, d}{a d, e}}, and
A;={b,c,d e} ,={A, o, {b}{b, c}{b, c, d}{b, d, e}}. Then (A;, )

and (Az, ¢,) are non-trivial anti-Hausdorff U-spaces.

Then A = AiuA; = {a, b, c, d, e}. Let ¢ be the U-structure on A
generated by W, v ¥, , e, & ={A, A, A, o {a}{b}{a, c}{b, c},
{a, c, d}, {a, d, e},{b, c, d}, {b, d, e} {a, b}{a, b, c},{a, b, c, d}{a, b, d, e}}.
So, in (X, ), ac{a}, be{b} with {a},{b}e & and {a}~{b} = ®.

Hence (X, ) is not an anti- Hausdorff U-space.

Theorem 6.4  Every U-continuous image of an anti- Hausdorff U-space is

an anti-Hausdorff U-space.

Proof: Let X, Y be two U-spaces where X is anti-Hausdorff U-space. Let f be
a U-continuous map of X onto Y. Let y; and y, be two distinct points of Y, and
let H;and H, be two U-open sets in Y such that y;eH;, y.eH,. Since f is onto
there exist X, Xz in X such that f(x;) = yi1, f(X2) = y2. Let Gy = f * (Hy),
Gz = f }(Hy). Since f is U-continuous, both G; and G, are U-open sets. Since X

Is anti-Hausdorff U-space, GinG,= ®. Let X €eGi1nG,, then f(X)e HinHo..
Thus H;~H; = @ . So, Y is anti-Hausdorff U-space.

Definition 6.2 Let (X, %) be U-space and R an equivalence relation on X.
The equivalence class for each xe X is denoted by x. We define U-structure 7

on the collection of equivalence classes % of X with respect to R as follows.

Any subset vV of % will be a member of 7/ iff {xeX|xeV }e %, i.e., the
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collection of equivalence classes of every U-open set V of X is U-open in

éand these are the only member of é.

This U-structure £ is called the identification U-structure or the

quotient U-structure on X and (%,"67) is called the identification U-space or

the quotient U-space of X with respect to R.

Example 6.6. The torus (surface of doughnut) can be constructed by taking a

rectangle and identifying its edges together appropriately.

Corollary 6.2. If X is an anti-Hausdorff U-space and R is an equivalence

relation on X, then the quotient U-space % Is anti-Hausdorff U-space.

Proof: It follows from the definition of quotient U-space that the map

f: X—>% given by f(x) = cls x is continuous and onto. The proof is then

obvious.

Definition 6.3 A U-space X is said to be U-irreducible if every pair of non-

empty U-open sets in X intersect.

Thus a U-space X is U-irreducible if, for every pair of non-empty U-open sets
V,WIinX,VArW=d.
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Theorem 6.5 Let X be a U-space. For the statements:

(i) X'is anti-Hausdorff. U-space,

(i) X'is U-irreducible,

(iti) Every non- empty U-open set in X is connected U-space,

(iv) Every non- empty U-open set in X is dense in X,
following implications hold: (i) < (i), (iii) = (ii) and (ii) < (iv).
Proof: We first prove (i) < (ii).

To prove (i) = (ii) let X be a anti- Hausdorff U-space. If possible
suppose that X is not U-irreducible. Then there exist non- empty U-open sets V
and W in X such that VAW = @. Since V and W are non- empty, there exist
xeV and yeW. Since VAW = @, x= y. X being anti-Hausdorff U-space,

this is a contradiction. Therefore X is U-irreducible.

We now prove (ii) = (i). Let X be U-irreducible. If possible, let X be
not anti-Hausdorff U-space. Then there exist X, y X with x= y and U-open
sets V and W in X with VAW = @ and xeV, yeW. Since V and W are non-

empty, this is a contradiction to the fact that X is U-irreducible.
Hence X is anti-Hausdorff U-space.

To prove (iii) =(ii), let every U-open set in X be connected
U-space. If X is not U-irreducible, then there exist non-empty U-open sets V;
and V in X, such that VinV, = @. This implies that the U-open set
V = ViUV, is a disconnected U-open set in X. This is a contradiction to our

hypothesis. Hence X is U-irreducible.

135



We now prove (ii) < (iv). Let X be a U-irreducible space. Let V be a
non- empty U-open set in X and let xe X. Let W be a U-open set in X such that
xeW. Then W= @. Since X is U-irreducible, VAW = @. So, XxeV . Thus X

=V . Thus (ii) = (iv).

Conversely, suppose every non-empty U-open set in X is dense in X.
Let V and W be two non-empty U-open sets in X and let xeV. Since W = X
and V is a neighborhood of x, VAW = @. So X is U-irreducible.

Therefore (iv) = (ii). The proof of the theorem is thus complete.
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Chapter-7

I-spaces, CU-spaces, CUI-spaces, FU-spaces and FUI-spaces

Introduction

In this chapter we have introduced the concepts of I-spaces, CU-spaces,
CUI-spaces, FU-spaces and FUI-spaces as generalization of topological
spaces. I-spaces have been called infratopological spaces by some authors [16],
[29], [30]. The concepts of limit point of a set, Interior point of a set, closure of
a set, three types of continuity, compactness, connectedness, disconnectedness
and Heine-Borel Theorem and separation axioms in the topological spaces

have been generalized to the case of I-spaces.

These concepts can be defined similarly for CU-spaces, CUI-spaces,

FU-spaces and FUI-spaces.

We have constructed many examples and proved a number of theorems
involving these concepts in case of I-spaces. For the other types of spaces some

of these have been dealt with briefly.
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I-spaces

Definition 7.1 Let X be a non- empty set. A collection J of subsets of X is

called an I- structure on X if
(1) X, ®ed,

(II) Gl, Gz, Gs, G4, Gs, ------ , Gn € j, implies
GinG2nG3nGanGs -oeee ~Gne J.

Then (X, ) is called an I-space.

Example 7.1 For a non- empty X, {X, @} is an I-structure. In fact every

topology is an I-structure on X, and so, every topological space is an I-space.

Example 7.2 Let X=2Z,and ={{m Z |me N} A@}}.

ThenmZ ~m'Z =17,wherem, m’e NandIl=Il.c.mofmandm’.

Then (X, ) is an I-space. However, X is not a U-space.

Definition 7. 2 An I-space which is not a topological space is called a proper

I-space.
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Example 7.3 Let X ={a, b, ¢, d}, y={ X,® {a}{a, b}{a, c}{a d}{a, b, d},
{a, c, d}} is a proper I-structure which is not a topology, since {a, b}u{a, c}
={a,b,c}e I

Definition 7.3 Let X = R and 4= {R, ®, all finite intersection of sets of the
form (a, b), a, be R}. Then (X, 4) is an I-space and is called the usual

I-space R of the first kind. Thus, 4 consists of R, ®and the intervals (a, b).

Definition 7.4 The usual I-space R of the second kind is the I-space (R, ),
where 4= The collection of the finite intersection of all rays (-«, b) and (a,«)
together with R and @. Thus, 4 consists of the sets of the form R, @, (-« ,b),
(a,) and (a, b).

We may define the interior points and the interior of a set in an I-space
as in the case of a topological space. The limit points and the closure of a
subset in an I-space may be defined similarly. But in an I-space the interior and
the closure of a subset may not have the properties of those in a topological

space.
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We consider below the following definitions in this situation.
Let (X, ) be an I-space. Let Ac X. We have thus the following definitions.

Definition 7.5 A point xe X such that, for each I- open set G which contains
X, G A contains an element other than X, is called a limit point of A. The set
of all limit points of A is called the derived set of A and is denoted by D(A).

Definition 7.6  The closure of A written A, is the subset of X consists of the
elements x such that for each an I-open set G containing X, G~ A= ®. i.e.,
A={xeX| foreach Ge 4 with xeG, GH A= @.}. Clearly, A= AUD(A)

Definition 7.7 A point xe X is called an interior point of A, if there is an
I-open set G such that xe G and G A.

Definition 7.8 The set of all interior points of A is called the interior of A
and is denoted by IntA. Thus, IntA = { xeX[3 Ge 4 such that xe Gc A}

Comment 7.1
For a subset A of a topological space X,

(i) A is an I-closed set and is the intersection of all I-closed supersets of

(i1) IntA is an l-open set and is the union of all I-open subsets of A.
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But these properties may or may not hold for Aand IntA in I-spaces. The
truth of the comment follows from the following theorems and

illustrations;

1. (i) Let X = The usual I-space R. Let A=Q. Then A =R and R is an

I-closed and is the intersection of all I-closed supersets of Q.

(if) Let X ={a, b, ¢, d} and ¥ ={X, ® {a}{a,b}, {a,c},{a, d}{a, b,d}, {a,c, d}}
IS proper I-structure on X. Then (X, ') is a proper I-space.

The I -closed sets are {c, d}, {b, d}{b, c, d}, {c}, {b}, {b, c}, X, ®.

Let A = {b}. Then A={b}. A is an I-closed and is the intersection of

all 1-closed supersets of A.

2. Let A={d}. Then A={d}. A isnotan I-closed, but is the intersection

of all I-closed supersets of A.

3.(i) Let X be the usual I- space R and let A =N. then A= N, and N is

neither I-closed nor is the intersection of all I-closed supersets of IN.
(i) LetX={a, b, c,d}and gy ={X, o {b} {d}, {a, b} {b,d}} is a proper
|-structure. Then (X, 4°) is a proper I-space.

The I-closed sets are {a, c, d}, {a, b, c}.{c, d}, {a, c}, X, ®.

Let A = {b}. Then A={a, b}. A is neither I-closed nor is the
intersection of all 1-closed supersets of A.
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Theorem 7.1 Let (X, 4 ) be an I-space and let Ac X. Then, A is an I-closed

and A= F,, the intersection of all I-closed supersets of A.

Proof: Suppose that A is an I-closed. Since A is an I-closed, A < Fo. Let xe F,

Then, xe F,, for each I-closed superset of A. Hence xe A. So, Foc A.

4.(1) Let X =Theusual I- space R, A =Q. Then IntA =Int Q = @, and so

IntA is an | - open and is the union of all I- open sets Gc A = Q.
(i) LetX={a, b,c,d}and J ={X o {a}{a, c}, {a, d}{a, b, d}} is a proper

|- structure. The (X, J°) is a proper |- space.

Let A ={a}. Then IntA = {a}, and so IntA is an I-open and is the

union of all I- open sets G A.

5.(1) Let X={ab,c,d}and 9 ={X, o {a}{d}{a, c}{a d},{b,d}}isa

proper l-structure. The (X, J) is a proper I-space.

Let A ={a, c, d}. Then IntA = {a, c, d}, and so IntA is not an I-open

and is the union of all I-open sets G A.
(i)  Let X be the usual I-space R, and Let A =[a, b]u/|c, d],
where a <b <c < d. l-open sets are of the form (-« ,b),(a,»),(a, b).

IntA = (a, b) u(c, d) is not an I-open set but is a union of I-open sets.
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We shall now show that for an I-space the interior of a subset is the

union of all I-open sets contained in the subset.

Theorem 7.2 Let (X, ) be an I- space and let Ac X. Then, IntA =V, the

union of all 1-open sets G in X which are contained in A.

Proof: Let G be an I-open set in X, which is contained in A. Then, by the
definition of IntA, G cIntA. Hence V cIntA.

Now, let xe IntA. Then, there exists an I-open set G such that xe G A.
Hence xe V. Thus, IntAc V.

I-continuity

We define I-continuous, I -continuous and I*-continuous similar to

U-continuous, U -continuous and U*-continuous.

Definition 7.9 If X, Y are I-spaces (resp. X I-space, Y top-space; X top-space,
Y I-space) a map f: X —Y is said to be I-continuous (resp. 1 -continuous,
I*-continuous) if for each I-open set (resp. open, 1-open) Hin 'Y, f1(H) is an
I-open (resp. 1-open, open ) setin X .

Example 7.4 LetX={a,b,c,d}, J ={X, @, {a}, {b}, {d}, {a, b},
{a, d}, {b, c, d}}
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Y={p.a,rs} s ={Y, ® {p}. {a}, {s} {p. a}.{p. s}{a. r, s}}.
Let f: X =Y be defined by f(a) = p, f(b) =q, f(c) =r, f(d) =s.

Then f is I-continuous.

Example 7.5 Let X={a, b, c, d}, 9= {X,®,{a}{b}.{a, b}{a, c}{b, d}}.

LetY ={p,q,r}, 7 ={Y, o, {p} {a}, {p, r}}. Then (X, J) is an I-space and
(Y, J) is a topological space. The function f: X —Y is defined by f(a) = p,
f(b) = q, f(c) =, f(d) = g. Then fis I -continuous.

Example 7.6 Let X ={a, b, ¢, d}, 7 ={X, ®,{b}{c}{b, c}{c, d},{b, c, d}}

Y={p,qrs} J={Y.0 {p} {a} {p, a} {p. r}. {a, s}}. Then (Y, J ) is
an |- space. The function f: X =Y is defined by f(a) = p, f(b) = q, f(c) = q,
f(d) =s.

Then fis J*-continuous.
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Compactness

Definition 7.10 Let (X,4") be an I- space. An I-open cover of K is a

collection {G , } of I-open sets such that Kc|J G, .

Definition 7.11 An I-space X is said to be compact if every I-open cover of

X has a finite sub-cover.

A subset K of a I-space X is said to be compact if every I-open cover of

K has finite sub-cover.

Example 7.7 Let X=N and let A ={neN| n>n_}, 4 ={o,{A, |n, eN}}.

Then (X, 4) is an I-space. In this I-space, IN is compact, because every

I-open cover of IN must contain A; = N,

Comment 7. 2 We note however that

(i)  For I-space (N, 4),

where Sy ={ No}u{n +1,n +2, ..... n,+r| n,,reN} Nisnot
compact.

(i) Inthe usual I-space R, of the first kind, (and also of the second kind) N

IS not compact.
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For, {(n - % n+ %)| ne N} is an I-open cover of IN which does not have a

finite subcover.

Theorem 7.3  Every I-continuous image of a compact I-space is compact.

The proof is similar to that in topology.

The Heine-Borel Theorem of topology, ‘A subset A of the usual space R is
compact if and only if A is closed and bounded’, has the following forms in

the case of the usual I-space R of the first kind:

Theorem 7.4
(1) The compact subsets of R are precisely the finite subsets of R.
(2) No non-empty compact subset is I-closed.
(3) No non-empty I-closed subset is compact.

Proof :

(1) For,if Aiis an infinite subset of R, let A = {a,},_, be a countable subset

neN

of R, and suppose a, < an +1, for each n. Consider the intervals
ln = (an —%”,an +%) where e,=a,, -a,. Then, I, A1, =@, ifn=n". If {I }
covers A, let G be this cover. Otherwise, let {J, } be a collection of I-open sets

such that (i) J, m(U | “J =@, for each k, and (ii) {I.}u {J} is acover of A. In
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this case, let ‘G denote this cover. In both the cases, G does not have a finite

subcover. Thus, the compact subsets of R are finite.

(2) For, the definition of the I-structure on R is shows that every non-empty

I-closed set must contain subsets of the form (- «,a] and [b, ) both of which

are infinite. Hence (2) follows.

(3)  The discussions in (1) and (2) prove (3).

For the usual I-space R of the second kind, the theorem corresponding to

the Heine-Borel Theorem in topology is the following:
Theorem 7.5

(i) acompact subset need not be I-closed,

(i) a compact subset need not be bounded,

(iii) every I-closed and bounded subset is compact.
Proof :

(1) Since the I-closed subsets of R are R,® the I-closed intervals [a, b]

(a <b), and the singleton sets {c}, the subset {1, 2, 3,....... ,n} of the usual
I- space R of the second kind is compact. But it is not I-closed, since the non-

trivial I-closed subsets of R are of the form (-, a], [b, «), [a, b]). This proves
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(2)  Any l-open cover G of IN must contain either R, or an I-open subset of

the form (b, «). Then (i) {R} or (ii) {(b, «)} together with a finite number of

sets in ‘G covers IN. This is because

(i) there exist at most [b] positive integers preceding b, where [b] is the
largest positive integer <b, and

(ii) there exist at most [b] sets in G which cover {1,2,3,---,[b]}. Thus, N
IS compact.

Clearly N is unbounded.

(3) Let F be an I-closed and bounded subset of R. Then F = @ or
F=1[a, b]orF={c} forsomea, b,ce R,a<bh. ® and {c} are obviously
compact. The proof that [a, b] is compact is exactly similar to corresponding

proof in topology.

Definition 7.12 A subset A of an I- space (X, 4') is said to be disconnected

if there exist I- open sets l;and I, of X such that An il = @ and Iy 1, 2A.

A said to be connected if it is not disconnected.

Example 7.8 Let X={a, b,c,d}and 4 = {X, @, {c}, {a, c}, {c, d}, {a, b, c},
{a, c, d}}. Then (X, 4) is an I-space. Let A= {b, ¢, d} and B = {b, d}. Then A

Is connected and B is disconnected.
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Example 7.9  In the usual I-spaces R of the first and the second kinds, all

intervals are connected subsets.

Remark 7.1 As in topological spaces, the closure of a connected subset of

I-space is connected too.

Remark 7.2 Although in the usual topological space R and the usual
U-space R, N, Z, Q are disconnected, in the usual I-space R of the first
kind, the above subsets of R are connected. However, these subsets are

again disconnected in the usual I-space R of the second kind.

A Housdorff (resp. normal, regular, completely regular) I-space is defined as in

topology. The usual I-spaces R of the first and the second kind are Hausforff.

Remark 7.3 A compact subset of a Hausdorff topological space is closed.

But a compact subset of an I-space need not be I-closed.

Its truth follows from (2) of Theorem 7.4 as well as (1) of Theorem 7.5.

Remark 7.4  Unlike the usual topological space R and the usual U-space
R, the usual I-spaces R of the first kind and the second kind are normal

but not regular.

Proof: Let X denote the usual I-space R of the first kind. The I-closed sets of
X are R, @ and sets of the form (-«, a]Ju|[b, «) witha <b.
Let F = (-, a]Jul[b, ») and x¢F. Then xe(a, b). But the only I- open set

containing F is R and it also contains x. Hence X is not regular.
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The only pairs of disjoint I-closed sets of X are {R,® } and {F,® }.
Then the disjoint I-open sets R and @ separate each of these pairs of disjoint

I-closed sets. Thus, X is normal.
Now, let Y denote the usual I-space R of the second kind.
Then the I-closed sets of Y are R, @, and the sets of the form (-«, a], [b, «),

(-0, c]u[d, «) with ¢ < d. As in the case of X, if F = (-«, c]u[d, «) and xeF,
then xe(c, d). The only I-open set of Y which contains F is R which also

contains X. Hence Y is not regular.

The only pairs of disjoint I-closed sets of Y are P; = {(-«, a],
[b, ©)} (@< b), P, ={(-», a]ulb, ©), @}, Ps={R,®}. Then P; is separated
by the each of disjoint I-open sets (— oo,aTH)Jand (a%b,ooj, while P, and Ps is

separated by the disjoint I-open sets R and @ . Hence Y is normal.
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CU - spaces

Definition 7.13 X be a non empty set and let GZZ£a collection of subsets of

X such that
(1) X, e CU
(i) ‘G ¢ is closed under countable unions.

Then G ¢ is called a CU-structure on X and (X, G%) is called a CU-space.
[Clearly, every topology 7 (resp. every U-structure 7 ) on X is CU-structure
on X and (X, &) (resp. (X, ) ) is a CU-space.] A CU-space, which is neither

a topological space, nor a U-space will be called a proper CU-space.

Example 7.10 Let X be an uncountable set and let ‘G consists of X,® and
all countable unions of finite subsets of X. Then (X, G &) is a proper

CU-space.

Example 7.11  The o algebra .5 of Borel sets on R is a proper CU-structure
on R. Hence (R,.53) is a proper CU-space.

To see this, we first note that every singleton subset of R belongs to .. Let A

be a proper uncountable subset of Q°, the set of irrationals. Then A = [ J{x},

xeA

A¢ .. S0, .4 is a proper CU-structure.
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Example 7.12 let X = R, G& ={ R, ®, all countable unions of all closed
intervals [a, b]}. Then (X, G%) is a CU-space. G ¢ properly contains the

usual topology on R.

For,

(i) (a,b)= O O[aJr%,b—ﬂ e 'G T and every proper open set in the usual

m=1n=1

topology of R is a countable union of open intervals (a, b).

(i1) [a, b]e G, but it does not belong to the usual topology of R.

Definition 7.14 The usual U-space R is also a CU- space. It is called the

usual CU-space R.

Definition 7.15 The closure of A written A, is the subset of X consisting of
the elements x such that for each CU-open set G containing X, GnA=®. i.e,
A ={xeX| foreach Ge Gt withxeG,GnA=d}.
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CUI-spaces

Definition 7.16 Let X be a non- empty set. A collection G¢g of subsets of
X is called a CUl-structure on X if X, ® € G4 and G¢d is closed under

countable union, and finite intersection. Then (X, G%£9) is a CUl-space.

Examples 7.10 and 7.11 of CU-spaces are examples of CUI-spaces too.

Example 7.13 Let X =R and G = {R, @, and the infinite countable
subsets of R}. Then (X, G%) is a CU-space. Let A={ne Z |-w<n<5}and

B={ne Z|-7<n<x}.Then A, Be Gt AnB={-6,-5,-4,-3,-2,-1,0,

1,2,3,4}¢ GU. Gtis aproper CU-space but not I-space.

Example 7.14 Let X=R and C={R, @, u{(n,x)jne Z}, u{(-», n)jneZ},
SA[(m,0) U(—o,n), mneZ}}.

Then (R, G) is a U- space and so, a CU-space but not an I-space.

Example 7.15 Let X =N or, Z, and § = {X, @, all finite subsets of X}.
Then (X, &) is an I-space but not a CU-space, and hence, not a U-space.

Definition 7.17 The usual topological space R is defined to be the usual

CUI- space R.
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FU-spaces

Definition 7.18 Let X be a non-empty set and let ¥¢£ be a collection of

subsets of X such that

(i) X, ®eTU
(it) T is closed under finite unions.

Then ¥¢/ is called an FU-structure on X and (X, ¥¢) is called an FU-space.

Example 7.16  Topological spaces, U-spaces and CU-spaces are

FU-spaces.

Definition 7.19 A FU-space which is not a CU-space (and hence neither a

U-space nor a topological space) is called a proper FU-space.

Example 7.17 Let X be an infinite set and let ¥/ be the collection of all

finite subsets of X. Then (X, ¥¢) is a proper FU-space.

Example 7.18 Let X be R and #¢/ the collection of all finite union of sets
of the form (-, a) and (b, »). Then (X, ¥¢) is FU-space.
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Definition 7.20 The usual FU-space R is R with the FU-structure consisting

of R, @, and all finite unions of the sets of the form (-«, a), (b, «) and (c, d).

We thus note:

Remark 7.5 The FU-structure of the usual FU-space R consists precisely
of the sets R, @ and sets of the form (-, a), (b, »), (-«,a)u(b, ») (a<h)
and (a1, b1)u(az, b2)u---u(ar, br), for some positive integer r with a; < b;,

1<i<r.

Definition 7.21  Let (X, ¥) be an FU-space and let A be a subset of X. For

xe X, x is called an interior point of A if xe G A, for some FU-open set G in
X.

Definition 7.22  The set of all interior points of A is called the interior of A,

and is denoted by IntA.

Remark 7.6  Unlike in topological spaces, IntA need not be FU-open in an

FU-space.

To see this, let us consider the usual FU-space R. Let A = O(Zn,Zn +1).

n=1

Then, A = IntA . But A is not FU-open.
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Remark 7.7 However, for every FU-open set A in an FU-space, A = IntA.

The FU-closed sets of X are the complements of FU-open sets.

Definition 7.23  The FU-closure A of a subset A of an FU-space X is defined
by A ={xeX|x <G for some FU-open set G in X with GnA = @}.

Theorem 7.6  Let X be an FU-space,
(i) For every FU-closed set F of X, F=F,
(ii) For a subset A of X, Aneed not be FU-closed.

Proof: (i) Letxe F. If xgF, then xeF®. Now Xxe F and since F® is FU-open,

and xeF¢, F¢* nF= @, a contradiction. Hence xeF.
(i1) Let X be the usual FU-space R and A = (1, 2) U (3, 4).

Then, A=[1, 2] U[3, 4]. But this is not an FU-closed set in X, since the FU-
closed subsets of X are precisely R, @ and sets of the form [a, b] and [- o,

al]u [8.2, bl] U e U [ar, br-l] U [br, OO](al <b;<a,<bh;<--mmmm-- <a, < br)

Definition 7.24 A subset A of an FU-space X is called compact if every

FU-open cover has a finite subcover.
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Example 7.19 In the usual FU-space R,IN and the intervals [a, b] are

compact subsets.
The proof that [a, b] is compact is similar to that in topology.

To see that IN is compact, we note that every FU-open cover of IN must
contain a FU-open set of the form (a, «). Then, at most [a] more FU-open sets
of the cover are needed to cover A, where [a] is the largest positive integer less

than or equal to a. Thus, N is compact.

Theorem 7.7  Every FU-closed subsets of a compact FU-space is compact.

The proof is as in topology.

Remark 7.8  The following is the FU-version of the Heine-Borel Theorem

in topology: Let X be the usual FU-space R.
(i) Every FU-closed and bounded set in X is compact,
(i) A compact set in X may be neither FU-closed nor bounded.

Proof: (i) It follows from the nature of the FU-closed sets in X that every
non-empty FU-closed bounded set in X is of the form [a, b] which is obviously

compact.
(ii) We have proved above (in Example 7.19) that N is compact.

However, NN is neither FU-closed nor bounded.

157



Definition 7.25 A non-empty subset A of an FU-space X is called
disconnected if there exist FU-open sets G; and G, such that
AnG,z0=ANG,, AnG1NnG, = d, AcG, UG,. Alis called connected if it is

not disconnected.

Example 7.20 In the usual FU-space R, the connected subsets are precisely

R, @ and sets of the form (-«, a), (b, «) and (c, d).

As in topology, we have every FU- continuous image of a connected set is

connected.

FUI-spaces

Definition 7.26  Let X be a non-empty set. A collection ¥4 of subsets of X

is called an FUI-structure on X if
(i) X, ®e TUS
(i) g is closed under finite unions and finite intersections.

Then ¢4 is called an FUI-structure on X and (X, ¥¢£ ) is called an

FUI-space.
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Example 7.21 Every topological space and every CUIl-space is an FUI-space.

Example 7.22 Let X be an infinite set and ¥¢J = {R, @ ,all finite subsets of
X}. Then, (X, T¢d) is an FUI-space which is neither a CUl-space nor a

topological space.

Example 7.23 Let X = R and ¥4 = The subsets of R obtained from the

sets of the form (-, a) and (b, «) under finite unions and intersections.

Then, (X, ¥¢9) is an FUI-space. It is called the usual FUI-space R. We
note that here ¥¢J consists of R,® and the sets of the form (-«, a), (b, «)

and (az, by)u (az, by)u ---u(ay, by).Thus, the usual FUI-space is exactly the

same as the usual FU-space R.

Remark 7.9  Let X be a FUI-space. As in the case FU-spaces,
(i) for each FUI-open subset A of X, A = IntA;
but (ii) InA need not always be FUI-open.

The first part is obvious and the second part follows the example in Remark
7.6.
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Remark 7.10  Example 7.18 is an FU-space but not an FUI-space. Thus,

the class of FU-spaces and the class of FUI-spaces are distinct.
heorem 7.8 Let X be an FUI-space,

(i) For every FUI-closed set F of X, F=F,

(ii) For a subset A of X, Aneed not be FUI-closed.
The proof is exactly similar to that of Theorem 7.6.

All the statements about the compact sets and the connected sets proved earlier
for an FU-space, and in particular the statement corresponding to the

Heine-Borel Theorem, hold for an FUI-space.
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