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ABSTRACT

In this thesis hydromagnetic stabilities with respect to both axisymmetric and non-
axisymmetric perturbations of an incompressible perfectly conducting viscous fluid in
presence of a magnetic field has been investigated. In chapter two, we have discussed the
hydromagnetic stability with respect to axisymmetric disturbance of an in-compressible
viscous fluid rotating between two perfectly conducting infinite co-axial cylinders in
presence of a magnetic field by inner product method. The complex characteristic
equation for the growth rate has been simplified and deduce propagation conditions for
unstable, oscillatory and stable modes. In chapter three, hydromagnetic stability of
helical flows in viscous fluid has been discussed. In chapter four, we have studied the
llow of a highly conducting viscous incompressible fluid which is flowing between two
paralled non-conducting planes in a uniform transverse magnetic field perpendicular to
the plane. The result obtained have been discussed with the help ol tables and graphs. In
chapter five, we have investigated the unsteady MHD flow of a visco-elastic Rivlin
Ericksen fluid with transient pressure gradient through a uniform circular cylinder in a
uniform transverse magnetic field. Here, the velocity profile of a fluid element has been

calculated theoretically and graphically.

In chapter six, an attempt has been made to investigate the unstcady flow of an
incompressible visco-elastic Rivlin-Ericksen fluid between two concentric cylinders with
transient pressure gradient in a uniform transverse magnetic field. llere we have

calculated the velocity profile of a fluid element theoretically and graphically.

In chapter seven, we have investigated the unsteady unidirectional flow of an in-
compressible visco-elastic oldroyd type fluid between two concentric cylinders under the
action of a magnetic field with time varying body forces. llere we have calculated
velocity profile of a fluid element theoretically and graphically, we also have discussed
the stability of the velocity profile. In chapter eight, Hyromagnetic Stability of visco-
elastic oldroyd fluid with the time varying body force through a rectangular channel has

been discussed.
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INTRODUCTION




1-1 FLUID

All materials exhibit deformation under the action of forces. If the deformation in the
malerial increases continually without limit under the action of shearing forces, however
small, the material is called a ‘fluid’. This continuous deformation under the action of

forces 1s manifested in the tendency of fluids to flow.

I'luids are usually classified as liquids and gases. A liquid has intermolecular forces
which hold it together so that it possesses volume but no definite shape. The liquids have
definite volume which changes slightly when subjected to external forces or temperature
differences. Thus a liquid may not occupy whole of the space of the container. A gas, on
the other hand, consists of molecules in motion which collide with each other tending to
disperse it so that a gas has no definite volume or shape. The inter-molecular forces are
extremely small in gases. A gas has no definite volume and occupies the whole of the

space of the container.

Newtonian Fluids: Newton, while discussing the properties of fluids, remarked that in a
simple rectilinear motion of a fluid two neighbouring fluid layers, one moving over the
other with some relative velocity, will experience a tangential force proportional to the
relative velocity between the two layers and inversely proportional to the distance
between the layers. That is, if the two neighbouring fluid layers are moving with

velocities u and utdu and are at a distance dy then the shearing stress

ol
5,

This is called Newtonian hypothesis and a fluid satisfying this hypothesis is called a

Newtonian fluid, and the constant of proportionality p is called its coefficient of

viscosity. The constitutive equation for Newtonian fluids is

2
T; = —pSij + Zuvz:ij - Eueuﬁij.
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Non-Newtonian Fluids: The Newtonian hypothesis worked very well in explaining
many physical phenomena in various branches of fluid dynamics. This tempts us to
remark that most of fluids at least in ordinary situations behave like Newtonian [Tuids.
But in the recent years, especially with the emergence of polymers, it has been found that

there are fluids which show a distinct deviation from Newtonian hypothesis. Such fTuids

are called non-Newtonian fluids.

Most of the theories developed in the recent years are formulated purely on the

theoretical bases.

The non-Newtonian fluids are broadly classified into the following three categories:
(1) purely viscous fluids
(11) visco-plastic fluids
and (i11) visco-elastic fluids.

The constitutive equation for non-Newtonian fluids is

= 'ps.j + P>

where p; is the shearing stress tensor, p; is zero when the fluid is at rest, and p, = 0, i

e.=0.

U]

The fluid in which the stress tensor p; is a given function of the strain rate is called a

purely viscous fluid. Mathematically this can be stated as
p,; =f(e;).f(0)=0.
A fluid satisfying the constitutive equation

T, =—pd; +2ue; +p e € +1,0,,
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is called Reiner-Rivlin fluid where p and p,and are called the coeflicient of viscosity
and cross viscosity respectively. When p,p, andp, depends on the invariants of ¢, the

fluid is called generalised Reiner-Rivlin fluid. One of the important observations in the
viscous fluids is that if we apply a certain shearing stress on a fluid, however small it
may be, it causes a continuous deformation in the fluid. But in many materials like
paints, pastes, etc, we find that if we apply a shearing stress less than a certain quantity,
the material does not move at all. But when this shearing stress exceeds a certain value
the material starts moving and the strain rate of the material depends upon the applied
stress. Such materials are called plastics. Plastics behave like solids if the shearing stress
is less than the critical shearing stress, and behave like a fluid if the shearing stress

exceeds the critical shearing stress.

A new general empirical model of visco-elastic fluid has been suggested by P.R.

Sengupta and S.K. Kundu in the following form

T, =—Ppd; +p;

n Bj n Sj
(14 20 =5Ipy =20(1+ 3 1, e
i1

M

€ = ’;'(Vi.j + Vi)
where t; is the stress tensor, p; is the deviatory stress tensor, ¢ the rate of strain
tensor, p is the fluid pressure, A; are new material constants of which the greatest value
A, represent the relaxation time parameterand A, Ay,............. A, are additional material
constants; p; are also new material constants of which the greatest value p, represents
the strain rate retardation time parameter and ,,1t,,.............. u, are additional constants

representing the behaviour of a very wide class of visco-elastic liquids, &, the metric

tensor in Cartesian coordinates and p, the coefficient of viscosity and v, the velocity
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components. The material constant A, and p; designating visco-elasticity satisly the

following conditions

and

1.e. they are arranged in descending order of magnitudes.
1-2 CONTINUUM HYPOTHESIS

In its most fundamental form, at the microscopic level, the description of the motion of a
MMuid involves a study of the behaviour of all the discrete molecules which make up the
fluid. However, when one is dealing with problems in which some characteristic length
in the flow is very large compared with molecular distances, it is convenient to think of a
lump of fluid sufficiently small from macroscopic point of view but large enough at the
microscopic level so as to contain a large number of molecules (for instance, at normal
temperature and pressure a volume of 10"°CC. of a gas contains about 2.7 x 10
molecules) and to work with the average statistical properties of such large number ol
molecules. In such a case the detailed molecular structure is washed out completely and
is replaced by a continuous model of matter having appropriate continuum properties so
defined as to ensure that on the macroscopic scale the behaviour of the model resembles
with the behaviour of the real large compared with molecular distances, the continuum

model is invalid and the flow must be analysed on the molecular scale.
The smallest lump of fluid material having sufficiently large number of molecules to

allow statistically of a continuum interpretation is here called a “fluid particle™. The

material in this thesis will deal primarily with fluids obeying continuum hypothesis.

Introduction 4



1-3 VISCOSITY

Viscosity represents that property of an actual fluid which exhibits a certain resistance to
alteration of form. Although this resistance is comparatively small for many practically
important fluids, such as water or gases, it is not negligible. For other fluids, such as oil,
glycerine etc., this resistance is quite large. In a viscous fluid, both tangential and normal
forces exist. Some of the kinetic energy of flow will be dissipated as heat through the

viscous forces.

We shall consider only the so-called Newtonian fluids, these representing most of the
fluids encountered in ordinary engineering problems. The following discussion is

applicable to such fluids.

Let the fuid be between two parallel plates separated by a distance y, from each other.
Let the lower plate be fixed, while the upper plate is moving uniformly with a velocity U
and in a direction parallel to the lower one. A resistance D is experienced which is given

by the formula,

U
B &=, (3.0

Yo

where A, is the area of the upper plate and p is a constant of proportionality called the

coelficient of viscosity.

It is an experimental fact that for an ordinary fluid the relative velocity at the solid
surface is zero, i.e. there is no slip at the wall. The fluid is displaced in such a manner
that the various layers of the fluid slide uniformly over onc another, the velocity u of a

layer of the fluid at a distance y from the lower plate is then

... 4 o (3.02)
Yo
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Experimental results show that the tangential force per unit area, or the shearing stress t

is proportional to the slope of the velocity, i.e.,

t:pgl—l-_ .....(3.03)

This linear relation is found to be very closely correct. The factor p depends on the
temperature T, but is independent of the pressure p for gasses at ordinary temperature.

Discrepancies from the above law are observed only at very high velocities.

The dimension of the coefficient of viscosity p are easily determined from

equation (3.03)

S 272
" Sheafmg, Slrs:ss _ mL/t°L :_"l, e (3.04)
Velocity gradient L/tL tl

where m is the mass, t is the time and L is the length.

From the simple kinetic theory of gasses, one may show that the coeflicient of viscosity
p is proportional to the square root of the absolute temperature T. In actual fact the
viscosity of a gas does rise with a rise of temperature, but the square-root variation of the
simple kinetic theory of gases is only qualitatively correct. In practice we usually assume

that the coefficient of viscosity is proportional to a power of the absolute temperature,

.!iz(l,]_ . .(3.05)
Ky Ty

The equation (3.03) may be regarded as the definition of viscosity. Thus the coeflicient

e,

of viscosity of fluid may be defined as the tangential force required per unit area to
maintain a unit velocity gradient, i.e., to maintain unit relative velocity between two

layers at unit distance apart.

Introduction 6
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For liquids the viscosity p is nearly independent of pressure and decreases rapidly with
increasing of temperature. In the case of gases, to a first approximation, the viscosity can

be taken to be independent of pressure but it increases with increase of temperature.

The shearing stress of equation (3.03) is only one component of the stress tensor in the

more general case. In a three dimensional flow, the stress tensor has the nine components

s O Tuls e (3.006)
T?‘( If\‘ 0!

where o denotes the normal stress on the surfaces, i.e., the stress perpendicular to the
surface considered. Hence o is the normal stress on the surface perpendicular to the
axis ol x. The shearing stress is denoted by t which is the stress in the surface
considered. The first subscript refers to the direction of the axis perpendicular to the
surface considered and the second subscript refers to the direction of the force in the
surface. Thus 1, denotes the component of the shearing stress in the surface

perpendicular to the x-axis in the direction of the y-axis. It can be shown that, for the six

tangential stresses, those which have the same suffixes but in reversed order are equal.

This result follows from the condition of equilibrium of moments on an element in the

continuum,ie., T, =1 ,etc.

Xy yx 2

For an ideal fluid, the tangential stresses are zero. By definition, the pressure is taken as

the negative value of the normal stress. In an ideal fluid, we have

.(3.07)
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For inviscid fluid Mow, the equations o motion are based on equation (3.07). [tis casy to
show that the x-, y-, and z- components of force per unit volume due to the non-

homogeneous state stresses are respectively:

do, Oty or,
X= + '
ox oy oz
ot do, Ot
Y=—""J+—L+= el 3:08)
Ox oy oz
. ot O, do,
Z= +—
ox dy oz

X=—§B,Y=—— and Z = ——.
ox oy 07

For a viscous fluid, we must express the viscous stresses in terms of the rate of change of
velocity. In a fluid, there is a resistance to the time rate of change of shape, i.e., the
deformation of velocity which may be called the strain in fluid flow. In three-

dimensional flow, there are six quantities for the strain.

_u
Yo%
ov
€. =—,
dy
" oz
ou ov |’ ! & F 0L
“”5 &'
ov oo
Y\7:_+_
- 0z oy
w0
X ax az__
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where € is the normal strain, y is the shearing strains, and u, v, w arc the x, v, and 7

components of velocity respectively. The strains also form a tensor of second order,

namely,
e, Tm Y
' 2 2
ny Y_\z
— e\. r
2 ' 2
Y_Z"._ Y'W' &
2 2 |

= - .. Ou ov
I'he sum of two of the quantities —,—
dy oOx

the difference of two of these quantities gi

ssad el 0

etc., gives the Shearing Strain, where as

ves the angular rotation of the fluid element.

The components of rotation of a fluid element are

| ov du
0, =—(—-—)

2 ox oy
U)x_'l_(%_i‘/_) B
2 0y oz
m, :l(@—a—w)

" 20z ox |

where o, m_ and o, are the average rate

conmzsads T E)

of rotation of the fluid element about the x| v’

and z axes, respectively. These angular rotations do not give internal stress but the strain

does. The vortices is defined as twice the rate of rotation.

To a first approximation, the relations between stress and strain in a viscous (luid are

S ox oy oz Ox
c,=—p+ ﬁg+@+§£ +2p-a—V — . A .y
» TR ox oz o |
du Ov oOw ow
O, =—p+A —+—+— |+2u—
2 ox oy 0z oz
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r“ = HYK\ ’ ty/ = ,"I"Y\f’ r/x = “YH ’

where p is the hydrostatic pressure in a frictionless fluid, p is the ordinary coefficient of
viscosity, and A is the second coefficient of viscosity. The only restrictions on the

existence of two independent coefTicient of viscosity are

n>0 (3013)

2u+3120 o.(3.14)

We conclude that the relationship between the components of the viscous stress tensor

and those of rate of strain tensor is given by

T, =2ue; +he, 5, P

where e, =| e, €,, e, | isa symmetric second order tensor, the diagonal elements
€ €xn €y
of’ which represent rates of normal stains, while the non-diagonal terms represents rates

of shearing strains. The tensor ¢; is, therefore, known as the rate strain tensor.

1-4 DYNAMIC SIMILARITY

We have developed the fundamental equations governing the flow of a viscous
compressible fluid but there are no known general method to solve these equations. The
main reason of the absence of such a general method is the nonlinear character of the
governing equations. Only in few particular cases and that too under restricted conditions
exact solutions of these equations for all ranges of viscosity, exist. However, attempts
have been made to simplify these equations for two extreme case of viscosity, very large
and very small, and we have well established theories for these cases which are known as

“Theory of slow motion” and ‘Theory of boundary layers’, but the cases of moderate
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viscosities can not be interpolated from these two theories. Liven in these two extreme
cases most of the research on the behaviour of viscous [luids has been carried out by
experiments. In experiments, generally, a prototype (geometrically similar but reduced in
size) of the actual body is taken and the flow around it is investigated in the wind tunnel
in order to reduce the cost of the full scale test and to have better control over the
conditions. This always raises the question of ‘dynamic similarity’ of fluid motions
because, naturally, we would like to know that how far the results obtained on the

prototype can be considered the same as on the full scale body.

Two fluid motions are said to be ‘dynamically similar’ if; with geometrically sumilar

boundaries, the flow patterns are geometrically similar.

We now discuss the conditions under which the fluid motions are dynamically similar. In
other words we have to find out those parameters which characterise a flow problem.
There are two methods for finding out these parameters (i) inspection analysis, and (ii)
dimensional analysis. In the inspection analysis, we reduce the fundamental equations to
a non-dimensional form and obtain the non-dimensional parameters from the resulting
equations. In dimensional analysis we form non-dimensional parameters from the
physical quantities occurring in a problem even when the knowledge of the governing
equations is missing. We will now discuss these with particular reference to the flow of a

viscous compressible fluid.

The Navier-Stokes equation of motion of a viscous incompressible fluid in the x-

direction is

du du  du du I op 2’u  d’u  d%u
+w —— V| St +—
ot ox oy 0z p Ox ox° oy° oz

] ceshiM )
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Suppose L, V. P denote a characteristic length, velocity and pressure respectively. Thus

writing

x = Lx’
y =Ly’
z=Lz
u=Vu'
v=Vy'
w=Vw'
p=Pp',

e (4.02)

o (4.03)

........ (4.04)

where all primed quantities are pure numbers having no dimensions. Then, since 1/V 1s

the characteristic time,

u_ a(Vu') _V'au
a oL/vi) L o

du ,0(Vu') V2  au
b—=VU'——==—u elc.

ox aLxy L  ox
Vo _vaw)_ v ay

p Ox —Ba(Lx’) "l ox’

0u B az(Vu')_ iazu'
ox’ aLx) L ox”?

Substituting these results into (4.01) and simplifying gives

ou’
alf

,ou’

,ou’
+v
axl‘ ayl

o LX P oP
W T N Al
oz V° pV®ox

+u
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In equation (4.05), the L.ILS. is entirely dimensionless. Hence the RS, must likewise

be so. It follows that the three quantities

LX P v ; : -
—— must be dimensionless quantities.

27 pV2ITVL

(i) Reynolds number R.. This is the ratio of the inertia force to the viscous force

F_pl’V? LV

N R TAY/ v

The Reynolds number is important when the viscous force predominant. It is generally

used to correlate meter coelTicient, pipe friction coeflicient and drag coelTicient.
(11) Froude number F,,. It is the ratio of the inertia force to the external gravity lorce.

R o pViL: VvV’
" pllg gL

The Froude number is important in open channel flow. it is useful in study of hydraulic

pump, designing of hydraulic structures amd ships.

(11)Eular number E,. It is the ratio of the inertia force to the pressure force

B = pVL? _pV’
" opl? P

The Euler number is important in the flow problems in which a pressure gradient exist.

(iv) Cauchy number C,. It is the ratio of the inertia force to the elasticity force

PV ¥ W

A€ = .
R K (K/p)
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The square root of the Cauchy number is the Mach number

VI
:'M:‘/az(K/p)'

The mach number is also defined as the ratio of the velocity V of the fluid to the velocity

, ; : v
of sound a in that medium, 1.e., M =—.
a

The Mach number is important in compressible fluid flow problems at high velocities,

such as high velocity flow in pipes or motion of high speed projectiles and missiles.

(v) Weber number (W,). It is the ratio of the inertia force to the surface tension force.

Thus

_pVLP  pVL

wn
oL o

The Weber number is important for small jets of liquids, droplet formation and formation

of waves.
Similitude may be summarise as follows.

i)  Models are generally used to study complete flow phenomena which cannot be

solved by mathematical analysis.

1)  For the model to yield useful information about the characteristic of the
prototype, the model must have geometric, kinematics and dynamic similarity with the

prototype.

iif)  For complete dynamic similarity between the model and its prototype (a) the

ratio of the inertia forces of the two systems must be equal to the ratio of the resultant
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lorces, and (b) the ratio of inertia forces of the two systems must also be equal to the

ratio of individual components.

iv) For complete dynamic similarity, the Euler, Reynolds, Froude, Mach and
Weber numbers should be same in the model and prototype. It is impossible to satisfy all
these requirements simultaneously in a model. Fortunately, in most fluid problems, only
two or three types of forces are predominant. A particular state of fluid motion is

usually simulated in a model by considering only the predominant forces.

v)  In most fluid phenomena, the pressure force is taken as dependent variable as it
depends on the motion being studied. Thus the Euler number will be automatically

satisfied if the other relevant numbers are satisfied.

vi) A distorted model is one which is not completely similar to its prototype.
Distorted models are generally used for rivers and open channels in order to get the fTow
characteristics identical to that in the prototype. Experience, judgement and sound
knowledge of the fluid phenomenon are essential for proper interpretation of results from

distorted models, as they are mainly qualitative and not quantitative.

vii) Models are provided with a movable bed in the cases where scour and

deposition are to be simulated.

viit) As it is impossible to achieve simultaneous compliance of all similarity laws,
some discrepancy in extrapolating results to the prototype occurs. This is known as scale

effect.

A valuable means of detecting scale effect is to construct models of different scales and

to compare the results.

1-5 DIMENSIONAL ANALYSIS

In dynamical similarity we reduced the governing equations of a viscous compressible
fluid to a non-dimensional form and obtained the dimensional parameters. An alternative
method, with which the non-dimensional parameters may be formed from the physical

quantities occurring in flow problem is known as dimensional analysis. They are derived
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on the basis of the dimensions in which each of the quantities involved in a phenomenon
is expressed, and hence, must not depend on the units chosen for the calculations.
Dimensional analysis helps in obtaining a systematic form of the variables involved in a
particular fluid phenomenon. It gives a sound and orderly arrangement of the vanables
involved in the problem. However, dimensional analysis does not give the complete
relationship. It gives only a general expression. Investigations have to be done to obtain
the complete expression. The numerical values of the coefficients are usually obtained

from investigations.

In dynamics of viscous compressible fluids there are four fundamental units, viz., length,
mass, time and temperature in which the dimensions of all the physical quantities
occurring in such a flow problem can be expressed. We shall denote the dimensions of

these fundamental units by [L], [M], [T] and [B] respectively.

The methods of dimensional analysis are based on the Fourier’s principle of dimensional
homogeneity. The following two methods of dimensional analysis are commonly used.

(1) Rayleigh’s method (i1) Buchingham’s  method

Rayleigh’s Mehod: In 1899, Lord Rayleigh proposed a method of dimensional analysis.
IHe used this method for determining the effect of temperature on the viscosity of gases.
In this method, the functional relationship is expressed in exponential form; for example,
il 'Y is some function of independent variables X, X3, Xi, ......... elc, the functional

relationship can be written as

VET b T S )

=C, (X8, X8, XS ). f e (5.01)

in which C, is a dimensionless coefficient which can be determined either from the
physical characteristics of the problem or from experiments. Equation (5.01) being a
physical equation, is dimensionally homogeneous. According to the principle of
dimensional homogeneity, the exponents of the dimensions on both sides must be same.

By equating the exponents on both sides, a set of simultaneous equations is obtained.
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The exponents can be determined by solving these simultancous equations. The Rayleigh
method of dimensional analysis is difficult to use when a large number of vanables are

involved. The Buckingham T theorem may be used in such problems.

Buckingham’s 11 theorem: The Buckingham 1 theorem states that if there are n
variables in a dimensionally homogeneous equation and if these variables contain m
fundamental dimensions (such as, L, M, T) they may be grouped mto (n-m) non-
dimensional parameters. Buckingham called these non-dimensional parameters as 17-
terms. Each 11 term contains m primary variables, which are also called the repeating
variables. The repeating variables appear in all T terms. In addition to these m repeating
variables, each T-term contains one more variable of the remaining (n-m) vanables.

Thus, if X,, X,, and X; are taken as repeating variables,
then

&, = XIR0X,
my = XPXDXEX,

e W o Wb mWem
nn-m - xl XZ X} Xn
where indices ay, by, ¢; az, by, ¢z, etc., are constants o be determined as explained later.

In the dynamics of viscous compressible fluid the physical quantities involved are L, U,
p, U, K, g, P.C,, T and the fundamental units in which the dimensions of all these

quantities can be expressed are length, mass, time and temperature.

Let us take 1., U, p and K as base quantitics and
Let

M, = L“IUhlpclelp
Ty= L"I szpcz Kdzg
m, = LYU»p“K4P

etc
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Now [r, ] = kL)‘* (L) (L M) (Lmr e P (LM (LM )J
= [Ln,+h|—lcl+d|—lMc,ﬂj,u’l-——h,-]d,—le—d,]

If =, is dimensionless, then we must have

a,+b,+3c,+d,-1=0
c,+d, +1=0
-b,-3d,-1=0
-d, =0.
therefore, a, =-1,b, =-l,¢c, =-1,d, =0.

I
Hence, 1, =L'U'p'p=-t—=—
' Pl r
N 2 Ls | P |
In a similar manner, we find that 1, = —-= — 1, = —— = —
U E" " pbi* E,

1-6 BASIC CONCEPTS OF STABILITY THEORY

In a theoretical discussion of any realistic flow we have many factors which we may not
be able to account for. Even in any experiment of a fluid flow, there are some inherent
disturbances which we may not be able to avoid. In order to obtain a laminar flow
through a pipe physically we should know the reaction of the flow to such disturbances;
that is, we are interested to know whether such disturbances decay or grow with time. If

these disturbances decay with time, then we shall be able to realize that flow.

In any flow the disturbances contain some kinetic energy and if there is a transfer of
energy from the disturbances into the basic flow then the magnitude of the disturbances
will decrease and thus the flow will be stable. In a dissipative system a flow will be

stable if the dissipative energy exceed the energy transferred to the disturbances from the

main flow.
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Mathematically, a system, whose stability is under some arbitrary perturbations and if
these perturbations decay with time; i.e., the system returns to its original position. Then

the system is said to be stable, otherwise the system is said to be unstable.

In linear stability theory we take the perturbations to be arbitrarily small and so we
neglected those terms in the perturbations and their derivatives as compared to linear
terms. Therefore in linear stability theory, the perturbations either grow exponentially or
decay exponentially or the magnitude of the perturbations remain constant. If the
perturbations decay exponentially then the system is said to be stable and if their

magnitude remains constant then the system is said to be in the marginal state.

There are two main methods for analyzing the stability of any given flow.
i) The energy method

i) The normal mode technique

In energy method we calculate the kinetic energy of the perturbations and if this kinetic

energy decays with time then the flow is stable, otherwise unstable.

The normal mode technique is more widely used. This is because it is applicable to a
wider class of problems. In this method, in linear theory, we assume that the
perturbations are arbitrary small in magnitude so that the non-linear terms in the
perturbations variables and their derivatives can be neglected as compared to the lincar

terms.

Moreover, we assume that the perturbations are regular functions of space variables and
therefore the Fourier analysis of the perturbations is possible. Thus in this system the
arbitrary perturbations are split into some fundamental modes and the reaction of the
system to all such modes is observed. If the system is stable with respect to each mode,
then the flow is stable, and if there is even one mode for which it is unstable then the

flow is unstable, because after some time this mode will dominate over the whole flow.
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1-7 MODES OF INSTABILITY

A number of types of instability have been studied in fluid mechanics. One is that met
when laminar flow past rigid boundaries breaks down at large Reynolds numbers, and
turbulence ensues. A second is the Kelvin-Helmholtz instability, responsible for the
generation of ripples, when a wind blows over the surface of water at rest. A third is

thermal instability leading to convection in a fluid heated from below:

A similar instability is important in the atmosphere. A fourth is the Richardson
instability, induced in a thermally stable atmosphere by a vertical gradient in the
(horizontal) wind velocity. All these, and others, have counter parts in MHD. Theoretical
work on instability is usually based on normal-mode analysis. The basic state of
equilibrium or steady motion is assumed to undergo a small perturbation involving a
time factor e ™, the possible values of ® being determined from the equations of motion
and the boundary conditions. In stability can arise in either of two ways as the
parameters of the problem are varied. The first is when ®” passes from positive to
negative real values; this means that initial oscillatory motion is replaced by a
perturbation which increases exponentially. The second is when o is complex, and its
real part passes from positive to negative values; this leads to a steadily increasing
oscillation. The second case arises when the restoring forces during an oscillation push
the material back towards the undisturbed state with a velocity greater than its original
out word velocity, it is therefore sometime called over stability. It is encountered chiefly

in problems involving dissipation or steady rotation
The normal mode method is not altogether adequate, particularly in discussing the

stability of lamilar flow; a flow may be stable for small disturbances but unstable for

large ones.
1-8 NATURE OF MAGNETO HYDRODYNAMICS

Magneto hydrodynamics (MHD) is the science which deals with the motion of a highly

conducting fluid across the magnetic field. When a conductor carrying an electric current
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moves in a magnetic field it experiences a force tending to move it at right angles to the
electric field. Conversely, when a conductor moves in a magnetic ficld a current is
induced in the magnetic field, a current is induced in the conductor in a direction
mutually at right-angles to both the field and the direction of motion. These two
statements, first enunciated by Faraday, constitute the laws of electromagnetism. The
first is the principle of the electric motor: The second that of the dynamo. There is
nothing in them to suggest that the conductor must be a solid. In fact suggestions have
been made that the motion of the sea may produce perturbations in the earth’s magnetic
field. Further, tidal waves sweeping up the estuary of a river will cut the terrestrial lines
of force and generate a current which can be detected in a cable connecting two

electrodes placed in the river on opposite banks.

In the case when the conductor is either a liquid or a gas, electromagnetic forces will be
generated which may be of the same order of magnitude as the hydrodynamical and
inertial forces. Thus the equations of motion will have to take these electromagnetic
forces into account as well as the other forces. The science which treats these phenomena
is called magnetohydrodynamics (MHD). Other variants of nomencreature are:

hydromagnetics, magneto-fluid dynamics, magneto-gas dynamics, etc.

Most liquids and gases are poor conductors of electricity. As a consequence their motion
can normally be treated by the principles of fluid dynamics which have so far been
studied in this thesis. However, it is possible to make some gases very highly conducting
by ionizing them. For ionization to take effect, the gas must be very hot - at temperatures
upwards of 5000°K or so. Such ionized pases are called plasmas. The material within a
star is a plasma of very high conductivity and it exists with in a strong magnetic field.
Consequently we expect MHD effects to be realized in Star. Further, at the engineering
level, experiments have been made for electric power generation by passing an ionized
gas between the poles of a strong electromagnet so that an electric current would be
generated at right angles to the magnetic field and to the direction of flow of the plasma,
the current being collected by two spaced electrodes at right-angles to the direction of the

current flow. At the present time MHD generators are not a practical possibility owing to
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the difficulties of producing suitably efficient and stable plasmas and sulliciently

refractory materials to withstand the high temperatures of the plasmas.

If an electrically conducting continuum (solid, liquid, gas or plasma) be moving and
placed before a magnetic field, the motion of the continuum is changed by the influence
of the magnetic field and the magnetic field is also perturbed by the motion of the
continuum: one affects the other and vice versa. This is interlocking in character. The
motion of the conducting fluid across the magnetic field generates electric currents which
modify the flow of the fluid. MHD effects in conducting liquids have been studied in the

|.aboratory by Hartmann and Williams.

They described how the viscosity of mercury seems to be enhanced when the flow takes
place across a strong magnetic field. Also, the effects had been exploited in the case of
molten sodium moving in a magnetic field and in the design of electromagnetic pumps

and flow meters.
1-9 THE BASIC EQUATIONS OF MAGNETO HYDRODYNAMICS

Consider a fluid which has the property of electrical conduction, and suppose also that
magnetic fields are prevalent. The electrical conductivity of the fluid and the prevalence
of magnetic fields contribute to effects of two kinds: first, by the motion of the
electrically conducting fluid across the magnetic lines of force, electric currents are
generated and the associated magnetic fields contribute to changes in the existing fields:
and second, the fact that the fluid elements carrying currents transverse magnetic lines of
force contributes to additional forces acting on the fluid elements. It is this twofold
interaction between the motions and the fields that is responsible for patterns of

behaviour which are often unexpected and striking.

We shall now write down the basic equations which express the interactions between the
fluid motions and the magnetic fields. These are, of course, contained in Maxwell’s
equations and in the equations of hydrodynamics suitably modified. There is, however,

one basic simplification which is possible. Since we have not been concerned with
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effects which are related in only way to the propagation of electromagnetic waves, we
can ignore the displacement currents in Maxwell’s equations. Closely related to this
approximation is the further possibility of avoiding any explicit reference to the charge

density. The reason for this is not that it is small in itself, but rather that its variations
l»lz

affect the equation expressing the conservation of charge only by terms of order —- and
C

terms of this order we can legitimately ignored with the displacement currents ignored,

Maxwell’s equations are

div H=0 (9.01)

curl H=4n) i 156 D2)
< oH

curl E=-p—- e (9.03)
H o

where in electromagnetic units, E and H are the intensities of the electric and magnetic
fields, J is the current density, and p is the magnetic permeability. The magnetic
permeability will be taken as unity in all applications; it is retained only to identify the
units. To complete the equations for the field, we need an equation for the current
density. This requires some assumption concerning the nature of the fluid. In this thesis
assumption will be made that the fluid may be considered as continuous and that the
macroscopic properties need be taken into account only directly through the effects of
viscosity and the heat and electrical conductivities. And the coefTicients expressing these

later effects will in tern be defined only phenomenologically.

Consider a fluid element, it has a velocity q, the electric field it will experience is not E,

as measured by a stationary observer, but E+uaxﬁ. If in accordance with our
assumptions we suppose that a coefficient of electrical conductivity ¢ can be defined,

then the current density will be given by

J = ofE +pq, 1) e (9.04)
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Equations (9.01) — (6.04) are the basic equations of the field appropriate for

hydromagnetics.

Through the occurrence of the velocity a in the expression for J, the equations
incorporate the effect of fluid motions on the electromagnetic field. The inverse effect of
the field on the motions results from the force which the fluid elements experience in
virtue of their carrying currents across magnetic lines of force. This is the Lorentz force
given by

c=pIxH (9.05)

or, according to equation (9.02)

c="cul HxH cern(9.06)
4n

In tensor notation L can be written as

Tl oH
L; = H ik €jim ax—,Hk

T JoH
= Z’T‘t"(simsu 8,0, )—ax xH,

¢

o [ pp f O, O, e (9.07)
4n ox, Ox,

Since H; is solenoidal, we an also write

L 0 ‘ﬁr o (nm
= + —HH. L e 908
' ox. ¥ 8n X, (411 ' kj ( )
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L
[Last form for the Lorentz force expresses it as the sum of a hydrostatic pressure, rm
n

—2
 ufH| | |
and a tension, = along the lines of force, or, equivalently as the sum of a pressure

n

2 2
i | L.
S transverse to the lines of force and a tension, == along the lines of force.

n T

Including the Lorentz force among the other forces acting on the fluid, we have the

equation of motion as

p%‘lzdiv"l’+pl_7+pjxﬁ, nn(9.09)

where T is the total stress tensor and F includes the external forces of non-

electromagnetic origin. The term V.T in (9.09) can be written as

- . OX; du,
(V.T)i: 6p+ 5} au,+ X 1| 20 " ,uJ ‘
ox, Ox, ox; 0x, 30x; | ok,

FFor an incompressible fluid, the equation of motion takes the explicit form

=2
ou, ou, MH; oH. P H
L e L ) ﬁ+uU—— +vWi . .(9.10)
ot ox; 4np 0x; ox, | p 8mp

where the form (9.08) for the Lorentz force has been used.

We shall now obtain an equation of motion for the magnetic field.
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According to equation (9.04)
e | P
E=—J-pq,H i %
o
or, making use of equation (9.02), we have

E:Lcurlﬁ—-uaﬂﬁ. e (9.12)
4no

Inserting this expression for E in (9.03), we obtain

%—curl(&ﬂﬁ)=curl(ncurlﬁ), cenn(9.13)
where n= be (9.14)
4npo

we shall call n the resistivity and is of the dimension of cm?®sec™ .

Equation (9.13) 1s entirely general; in particular, it is not restricted to incompressible

fluids. If n is assumed to be a constant, equation (9.13) takes the form

M, o ;
—Y+—W.H, —uH, )=nmV°H.. srasisil B A
St oo )= v, (9.15)

]
The elimination of E to obtain an equation for H represents an important simplification.

Since the Lorentz force is also expressed in terms of H only, it follows that in the
subsequent analysis we need not make, any further electric field.
A new general empirical model of visco-elastic fluid has been suggested by Sengupta

and Kundu in the following form

T, =—pd; +T;
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" a}" ai
1+ A, — |, =2u I+Z,uj¥ ¢,

- o

]
€y = 5(":&;‘ + vr‘.i)’

where 1, is the stresstensor, t;j is the deviatoric stresstensor, ¢; the rate of strain tensor,
p the fluid pressure, A; are new material constants of which the greatest A, represents
the relaxation time parameter and A,,A,.......... A, are additional material constants;
are also new material constants of which the greatest value p, represents the strain rate
retardation time parameter and p,,p,....... p, are additional material constants
representing the behaviour of a very wide class of visco-elastic liquids, &, the metric
tensor in Cartesin co-ordinates and p, the coefTicient of viscosity and v;, the velocity
components. The material constants A; and p; designating visco-elasticity satisfy the
following conditions A, >A, >A;>.... >, >0 and g, >y > Hy > >p, >0.

i.e. they are arranged in descending order of magnitudes.
1-10 DISCUSSION ABOUT PAST RESEARCH RELEVANT TO THIS THESIS

Chao-Hosung [2] studied the stability of a rotating flow in the presence of an axial and a
toroidal magnetic field. He investigated the stability with respect to non-axisymmeltric
perturbations of an inhomogeneous incompressible fluid rotating between two perfectly
conducting, infinite, co-axial cylinders and established sufficient conditions for stability.
We have studied this problem in addition to viscous part and establish sufficient
conditions by separating real and imaginary parts. K. Ganguly and S. Gupta [12] studied
the Hydromagnetic stability of helical flows. They investigated the stability of a steady
non-dissipative MHD helical flow with velocity components (0, rQ(r), W(r) )of an

incompressible and inviscid fluid permitted by a helical magnetic field (0, H(r), H,(r))

between two concentric cylinders. They established sufficient conditions. We have
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investigated this problem in case of viscous fluid and established sufTicient conditions.
Md. S. Islam and A H. Beg [40] studied the invicid stratified parallel flows varying it
two dimensions in presence of vertical magnetic field and established sulTicient
conditions. P.R. Sengupta, Bazlur Rahman and Dipak Kumar Kandar [41] studied
unsteady viscous flow between two parallel flat plates. They considered the time varying
pressure gradient and solved it by using Laplace transformation method. They showed
the velocity profiles in graphically for different Reynolds numbers. We have studied the
flow of a highly conducting (such as mercury) viscous incompressible fluid which 1s
flowing between two parallel non-conducting planes in a uniform transverse magnetic
field perpendicular to the planes. Expression for velocity profiles have been discussed
with the help of tables and graphs for different values of Hartmann numbers. P.R.
Sengupta, Bazlur Rahman and Dipak Kumar Kandar also in 2000 investigated the
hydromagnetic flow of visco-elastic Rivlin-Ericksen fluid flowing down an inclined
plane. In the same year P.R. Sengupta and Shyamal Kumar Kundu and Swarnakamal
Misra [42] investigated the unsteady MHD flow of a visco-elastic Revlin-Ericksen fluid
with transient pressure gradient through a rectangular channel. We have investigated
same fluid through a uniform circular cylinder in a uniform transverse magnetic field.
Here, the velocity profile of a fluid element of the problem has been calculated
theoretically and graphically. P.R. Sengupta and Pijush Basak [43] studied the unsteady
unidirection flow of an electrically conducting visco-elastic fluid of Oldroyd type
between two parallel plates under the action of a transverse uniform magnetic field. They
discussed the stability of the velocity profiles. We have investigated the unsteady MHD
flow of visco-elastic Oldrlyd fluid with time varying body forced through rectangular
channel. Here we have calculated the velocity profile of a fluid element of the problem

theoretically and graphically and also discussed the stability of the velocity profile.

The equations of hydrodynamics allow some simple patterns of flow (Such as between
parallel planes, concentric cylinders or rotating cylinder) as stationary solutions. The
patterns of flow can be realized only for certain range’s of the parameters characterizing
them. Outside these ranges, they can not be realized. The reason for this lies in their
inherent instability, that is in their inability to sustain themselves against small

perturbations to which any physical system is subject. It is in the differentiations of the
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state from the unstable patterns of permissible flows stability originate. The class of such
problems of stability has been enlarged by the interest in hydrodynamic flow of
electrically conducting {luids in the presence of magnetic ficlds. This is the domain of
hydromagnetics. Rayleigh [7], Goldstein [19], Lamb [20], Alfven [26], Milne-Thomson
[21] and Batchelor [24] were the first who started investigating hydrodynamic stability
flows. Also Carslaw and Jaegar [33], Michael [8], Cowling [27], Ferraro [28], Jeffery
[29] and Cabannes [30] discussed hydromagnetic stability flows. Although vast research
materials in hydrodynamic and hydromagnetic flows are now available, yet many

problem in the hydrodynamic and hydromagnetic flows are to be analyzed.

This doctoral thesis is mainly devoted to a consideration of some typical problems in
hydromagnetic stability. The mathematical treatment of problem in stability generally

proceeds along the following lines.
The analysis in terms of normal modes and the analysis in terms of non-linear form.

We start from an initial flow which represent a stationary state of the system and suppose
that the various physical variables describing the flow suffer small increments. In
obtaining these equations from the relevant equations of motion we neglect all products
and powers of the increment and retain only terms which are linear in them. The theory
derived on the basis of such linearized equations is called the linear stability theory in
construct to non-linear theories which attempt to allow for the finite amplitudes of
perturbations. Stability means stability with respect to all possible disturbances. In
practice, this is accomplished by expressing an arbitrary disturbance as a super position
of certain basic possible modes and examining the stability of the system with respect to
each of the modes. And we have mainly investigated those viscous flow problems which

are analytically tractable.
In practical cases, such as arise in the design of ships, air craft, under water projectiles

etc, it is usually necessary to carry out experiments on model and the full scale body

should be geometrically similar, but also as far as possible, one should ensure that the
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two system posses dynamical similarity in the sense that the ratio’s corresponding

dynamical quantities at corresponding stations should be same.

Earlier some works were done in the case of inviscid fluid. One of the most important
contribution in this research work is that the earlier investigations have been extended to
the case of viscous fluid. If the system of hydromagnetic equations of motions have a
time independent solution V(x,y,z), P(x,y,z), H(x,y,z) for the components of velocity,
pressure and magnetic field, then this state is known as basic state. If an infinitesimal
disturbance is superimposed on the basic state and if the solution approaches to the

above steady state solution as time t — oo, we say the system is stable, otherwise it is

unstable. To study the hydromagnetic stability of some flows due to small disturbance,
the resultant linear system of equations contain time t only through derivatives with
respect to t. This then leads us to conclude that any solution in general may be expected
to contain exponential time factor ¢ . If all the characteristic values of @ have positive
real parts only, the motion is stable with respect to infinitesimal disturbance, but even if

only one characteristic value has negative real part then the motion becomes unstable.

The hydromagnetic instabilities of an inviscid flow between two concentric cylinders

which has only swirl velocity component u,(r) in the direction of increasing azimuthal

angle 0 for axisymmetric disturbance has been well understood. Since Rayleigh [7] gave
this criterion that a necessary and sufficient condition for stability that the square
circulation (rV) should no where decrease as r increases from inner to the outer cylinder.
Rayleigh’s remark has a strong analogy with the stability of a density stratified fluid at
rest under the action of gravity so long as only axisymmetric perturbation is concerned.
Chandrasekhar [5] has considered the same problem by considering both axial and swirl
component alone. But if the fluid is taken as perfect electric conductor and subject to a
transverse magnetic field, then in the case of zero axial flow that magnetic field has an

effect similar to that of swirl velocity and that of Rayleigh’s criterion.

Howard and Gupta [4] extended this problem by investigating the hydromagnetic,

instability with respect to axisymmetric disturbances of a steady non-dissipative helical

flows with velocity components (0,uy(r),u,(r)) in the r, 0, z directions respectively of a
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conducting fluid permeated by an axial or azimuthal magnetic field. However enough
investigations have not been done when the disturbance is non-axismmeltry case the
mathematical complexities arise due to non-axisymmetric disturbance in viscous fluid.

In the absence of magnetic diffusion non-axisymmetric disturbances generally twist the
magnetic lines of force and produce an intimate coupling between the hydrodynamic and
hydromagnetic effects. Axisymmetric disturbance on the other hand, only bend the lines
of force and under certain circumstance hydrodynamic effects may dominate over those
due to magnetic forces. Exploiting this idea, Ganguly and Guta [12] investigated the
instabilities of non-dissipative helical flow of an incompressible conducting fluid

permeated by helical field (0,B,(r),B,(r)) for non-axisymmetric disturbances using a

technique due to Barston [6]. Acheson [11] examined a class of hydromagnetic
instabilities in a uniform rotating homogeneous incompressible fluid that arises due to
the variations of the azimuthal magnetic intensity with distances from the axis of
rotation. In a subsequent paper Acheson examined the instability of a radially stratified
fluid rotating between two co-axial cylinders with particular emphasis on the case when

the angular velocity greatly exceeds both buoy and Alfven frequencies.

In non-axisymmetric perturbation for instability and wave like character the magnetic
field should be pre-dominantly azimuthal, various bounds on the phase speeds and
growth rates were derived. We noted that there was a strong tendency to propagate
against the basic rotation. During the same period C.H. Sung [2] derived sufficient

condition for stability for a rotating inviscid fluid when B, #0 and B, =0 and in

particular case like small rotation, rapid rotation and strong magnetic field when

B,#0+B,.

To the best of author’s knowledge the above problems have not been solved for the
rotation of a viscous fluid. The author has successfully investigated these unsolved

problem and produced hydromagnetic instability condition.

We have however used the transformation and the limitations earlier adopted by Sung [2]
who used inner product method for axisymmetric disturbances. He deduced the

characteristic equation in the form

02§—2icF§—Q_§_:O.
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He had shown the inner products <§,il7§> and <§,Q§> were both real due to the

Hermitian property of the operators iF and Q. This led him to deduce the sufTicient
stability condition everywhere which was similar to the condition first derived by

Howard and Gupta [4] for p and B, constant and in the absence of acceleration due to

gravity. But in the present analysis for axisymmetric disturbances of viscous fluid, the
corresponding operators involved are no longer Hermitian and hence the inner products
are not real. Accordingly the stability analysis of viscous fluid becomes a more complex

problem. However, we have overcome this by separating real and imaginary parts of the

inner products.

There are circumstances to consider a large variety of continua in which considerable
impetus is given to the development of study of material properties exhibiting both the
properties of ideal elastic bodies and those of viscous liquids. It constitutes the subjects
of the theory of elasticity and hydromechanics of viscous liquids. In fact, there are
materials, solid or liquid, which exhibit the properties of elasticity of solids and viscosity
of liquids. It gives rise to the discipline of Rheology of continua, the continua may be
solid, liquid or gases. These liquids are some times called as non-Newtonian liquids or
non-Newtonian fluids or visco-elastic fluids. In this analysis we have also investigated
the stability of a visco-elastic Oldroyd fluid between two concentric cylinders in
presence of a uniform transverse magnetic field. The fluid is assumed to be
incompressible and dissipative. But Hurwitz stability criteria for a small disturbing

forces is that of the deviation is small from the initial condition of motion. In case of
application of transient body force X = X, e™ the motion of the fluid will be stable if o

> 0. It means that the motion of the fluid tends to finite value or zero as t tends to infinity
and hence is stable. Both the roots of the characteristic equation in o are to be positive
for motion to be stable. The presence of a negative root would lead to an unstable
transient motion. Also if the roots are complex conjugate with positive real part, the
motion will be stable and damped oscillation, while the complex conjugate roots with

negative real part will generate instability.
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In our problem we have the relation

K,_(l—xw)(m-—Mz)
l—)\.z(r) '

This leads to the characteristic equation as

Ao? —(14+A4,M? +0,K? o+ K2 + M2 =0.

S+4S? — 4%, (K2 + M?)
24, ’

The roots are o =

where S, = 1+A,M? + A, K?.

The transient motion will be stable if

S —4x, (K’ +M?)>0 and

S—4JS? 4L, (K* +M? > 0.
1

These two relations implies

A >A,>0,

and M? <L.

2

These are the conditions of stable of visco-elastic Oldroyd type fluid.
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HYDROMAGNETIC STABILITIES OF A ROTATING VISCOUS
INCOMPRESSIBLE FLUIDS




2-1 INTRODUCTION

We have investigated a magneto hydrodynamics stability with respect to axisymmetric
perturbations of an inhomogeneous incompressible viscous fluid rotating between two
perfectly conducting, infinite co-axial cylinders in presence of an axial and a toroidal
magnetic field. Acheson [1] studied the stability of a uniform rotating cylindrical flow in
the presence of a magnetic field. Sung [2] investigated the stability of a rotating flow of
an inhomogeneous incompressible fluid in presence of an axial and a toroidal magnetic
filed with respect to non axisymmetric perturbation between two co-axial infinite
cylinders and he neglected the viscosity of the fluid and used inner product method for
axisymmetric perturbations and without normal mode assumption Barston [6] deduced

that the sufficient stability conditions.

FFor axisymetric perturbations according to Sung the characteristics equation was

02§—2icp§—Q§ =1
where,

pE = -xe &, —eqe,)
and

Q& =p 'V(dn)+e, [N* +(p—4Q%)~rH JE,

He shew the inner product (€,1p§) and (§,QF) were both real due to the Hermitian

property of the operators ip and Q. This led him to deduce the sufficient condition, first
derived by Howard and Gupta [4] for p and B, constant and in the absence of

acceleration due to gravity. This is known as Howard-Gupta criterion for stability.

In this paper, we have investigated magneto hydrodynamics stability with respect to
axisymmetric perturbation of an inhomogeneous incompressible, viscous fluid rotating
between two perfectly conducting infinite co-axial cylinders in presence of an axial and a
toroidal magnetic field. But in the present analysis with respect to axisymmetric

perturbations of viscous fluid, the corresponding operators involved are not Hermitian
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and so as the inner-product are no longer real. Accordingly, the stability analysis of a

rotating viscous fluid becomes a more complex problem. However, we have overcome

this by separating the real and imaginary parts of the inner products.

2-2 MATHEMATICAL FORMULATION

Let us consider a viscous fluid rotating between two perfectly conducting infinite coaxial
cylinders in the presence of an axial and a toroidal magnetic field. The fluid assumes to
be incompressible but inhomogeneous and the dissipative mechanisms such as magnetic
resisitivity and thermal diffusivity are neglected. The governing equations of motion in

cylindrical co-ordinates (r,0,z) are

a—q+(a.V)a=;|Vn+l([—3.V)§—g+vVZ(_; ........ (2.01)
ot p p

oB - =

—=V (q.B (2,02
ot ~(q,B) (2.02)
V.q=0 e (2.03)
VB=0 (2,04
op -~

—+(q.V)p=0 2.0
=5 (@V)p (2.05)

where, c_l is the velocity of the fluid, p the density, f_; is the gravitational acceleration,
| ==, . o 4
= P+5(B.B) is the total pressure, B is the magnetic field and v the kinetic co-

efficient of viscosity.
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The equilibrium state is derived by

qD = (0’ r!!, W(r)),

By =(0,B,(r), B,(r)),

Po = DO(T)
and
gﬁ = (g, ’an) N
which gives
g, -1 =G, —%r"ll, -2rv} —p,'B,DB,, - (2.06)
where
=l
dr
. B; B2
G,=—p'Dp,Vy =—%, V) =—,
pr

P L
D’Q+3DQ =0 e (2.07)
D*w+DW=0. (2.08)

(2.07) and (2.08) implies

Q=A+rE2 and W=C+ D logr.
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Let us consider an infinitesimal perturbation of the viscous (low represented by the

above stationary state and let the perturbation state be represented by

q,+8q=(U,,QQ+Uy,W+U,),m+3m,
Bo+88=(br,B0 b B, +bz),po+6p

The perturbation quantities are assumed very small. Then the linearized equations of
motion are

ou ou ou 1 h
L+ Q—+W—L-20QU, +—(g -1Q2
6’( m 62 0 (gf )p

0

=__Ii(5n)+_L(P-‘Labf +B, o =D 13"b°J~z~\/(VzlJr -%%—U% ...(2.09)
or r o0 0z r 0

r r

Uy +QaU" +W Y, +2QU, +rU,DQ=—_—Ii(6n)
ot 5,8) oz p,r 0

B, db, +B, b + Byb, +v{ VU, +_22_6_UL—£2"— ...... (2.10)
r o0 ' oz r - do

+i[b,DB0 +
Po

a;z +Qa:9’ +wls —-_—l-g(an)+l(b,DBz+ﬁ% g, %

- +B, )+vV"U,.._(2.II)
0z p, Oz Po r o9 - 0z

In the linearized equations of motion we shall assume that g depends on the

radial distance r, its Eulerian variation may be neglected dg = 0.

Assume a normal mode solution for the Lagrangian displacement

g = é(r,@,z)ei“‘ = &'(r)ei(mmknm; (2 | 2)

and noting that the Larangian operator A and Eulerion operator @ are related by

A=8+EV thatis Aq=58q+(EV)q.
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And considering

U, = i0g, ]

U, = in&, —r, DQ exissonviol Bl )

U, =iof, - § DW |

where

w=0c+mQ+KW.

The linearized equation (2.02) becomes

b, = ‘"‘rB © (14 e,
bn=‘fFﬂu+ﬁmﬂ+(%i—Dan e (2.14)
b, =20 (1P, - (DB, X,
where
rKB,
b= mB,

And the linearized form of equation (2.05) is given by

(oc+mQ+KW)p, +u.p, =0,

g, = acd e (2.15)

r

Po
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With the help of normal mode solution (2.13) and equations (2.14), equations (2.09),
(2.10) and (2.11) respectively becomes

~0’E, - 2I0QE, + {Nz +(p—4Q%) -1l I,}“;, +l§(6‘n)+ m?V,] (14 B)E,
p

2imy(im&,)  2imvDQ
2
:

+2imV, (14 B)E, — VL(in&, )+ E=0. ... (2.16)

r

~ 07, - 200k, +#%(sn) =2im(1+B)VSE, + m?(1+B)* VE, — vL(iwE, - rE, D)

2imv

(Iw€,)=0. en(2.17)

]_2
2 | 0 2 2«12 2 v .
-0k, +552(67r)+ m*(14+B)" Vo€, - vL(iwg, - DW) - —-(in§, —§ DW)=0.
r
The subscript zero used to indicate stationary state in (2.06) has been dropped in (2.16)

and will be dropped here after,

where

2
T

2
M? =(m )+K2, L =DD*-M?.
Rayleigh [7] discriminant ¢ = r*D(r*Q?) and Brunt Vaisala frequency N is given by
N? =—p 'Dp(g, - 12").

Multiplying (2.16), (2.17), (2.18) respectively by e, ,e,,e, and adding we get

©’§-20iBE-CE=0, een(2.19)
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where

iBE = —i[[Q - im—zv)(&"e, ~-&.e, )+ XLE_, + Lzﬁ,e, ]
r Z = 2r

and

CE=p 'V(Bm)+m’ V(I + ﬁ)2§+2imv;(l +B)Eqe, — &)

From (1.14) and using

0q =ik - e,(DQ)E, —¢,(DW)E,,

We get

imB

oB = E {1 +3)E~ eu(DBu - _[%l]gr -¢€,(DB,)g,.

p— %))

el 31

The linearized version of the boundary conditions that radial components U, of velocity

vanish at both wallsie. § =0,at r=r,t,

The linearized continuity equation V.q =0 implies

VE=DE, +l&_,, 335 pikE. =0
- T r

(223

Equations (2.19) — (2.22) constitute the basic equation of the stability analysis.

Since the frequency @ in the rotating frame is constant, the equation of the form

w2§-2im8§_—-C§=O is convenient for the case of uniform rotation. For differential

rotation it is more convenient to rewrite (2.19) as

o’§ - 2icFE - GE =0,
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where
iFE =iBE - (mQ+ KW)E eennl(2.25)
and
GE=CE+2(mQ+KW)iBE—(mQ+KW)*& el 2.26)
2-3 STABILITY OF AXISYMMETRIC PERTURBATION (m=0)

In this case iF§ and G§& in the characteristic equation becomes

iF§:~i,:Q(§Her —§,69)+§L§+2L2§,e,}—kW§ ........ (3.01)
- =2

and

232 &
GE=p'V(on) + Loy &+ i it (E.e: —§,eﬂ)+er[N2 + ((p— 492)— rH,]é,
> p =

pr
~ 2ivKDWE + vL(1E,DQ)e, + vL(&, DW)e, + <252V | oikwe k2 we.
g ; g g

s ik A0D)

2-4 INNER PRODUCT

Here iFF and G are not Hermitian. This property is crucial to mention that stability always
is not straight forward like the one carried out by using in the case of inviscid fluid.

According to Sung [2] we define a inner product for any operation B as

(§,B§):Ip§3§d}(=jp§.8§, e (4.01)
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where R is the region occupied by the fluid in the stationary state, g is the complex

conjugate of § and the last identity is introduced as short hand.

In our problem the stationary state is cylindrical (r,e,z) that the fluid contain between
two cylinders. Accordingly R is taken as the volume between two co-axial cylinders
r=r, and r =r, by a proper length in z direction.

We can therefore write

(€ Be)= [ pEBE rdr e (4.02)

with the help of above definition of an inner product the growth rate of a small

perturbations follows from the roots of the equation.

o2(€.£)- 20(E iFe)- . Gg )= 0. e (403)
Now

1, =(g.2)= oBe,
which is real.
Again
(& irz)= —ijp[sz(gez, -8, )+ S LEE+ -Z-‘riz—_g_z.g,]{pwgg 1y +ily, o (4.04)
where,

and & &, —E,,E(, =iR,, R is real.
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Again

I "B’R +Ip[ ¢ 4Q ~rH ]g[ 21vKIpl)W|§l

(.Ge)=K?[B2)g

+v[ pL(re, DQE, +v[ (€, DWE, + VJD_EL%RW_ =1, +il,. .....(4.07)

where,

I, =

2l 2K | B"rBz R, + [ p[N? +(0-402)-r1 Je [

+ Real ng{g—’ég—[?—w— +Real vIpL(rﬁrDQEG + Real vJ‘(érDWE ,
r -7

Thus we find that (4.03) is a quadratic equation in ¢ with complex co-efficient.

It’s roots are

_Ere)efeiry ool
&)

I +i1_,4_r[|6+i|7]§
ll

where

I, =2-13+11,

and

I, =211, +1,1,

Separating the real and imaginary parts of o we have

I
1, £A2 cos; tan”'y

r ll
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and

I
I, +A2 sin;tanﬁ' y

1 l'

where
IT

A =1 +12 and s
6

2-5 CONCLUSION

For the propagation of unstable mode o, # 0

- I i{l;(—lim)}/u

w=yy? i+ ey’ |

The following are the possible values of o,

where

o, =%[1, +{1;(-| +,ﬁfy_")}/p]
o, =H13 +{AL(—|—W)}/;1]

o, =[l[13 —{A;-(—Hm)}/u}
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From (4.06) it is clear that 1, <0

I. Propagation will be unstable, oscillatory or stable according as

1,?{7&(——)—”@}

< 0
2. o, and o, are always <0, accordingly unstable mode will be propagated in this case.
2 3

3. Again propagation will be unstable, oscillatory or stable according as

>{,; (ll_J_y)}

T
< n

If the fluid is non viscous (v = 0) the characteristic equation (2.24) reduced to
o’t - 2ioF -QE =0,

which is obtained earlier by Sung [2]
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3-1 INTRODUCTIN

We have investigated a MHD stability with respect to axisymmetric perturbations of an
incompressible viscous fluid rotating between two perfectly conducting infinite
co-axial cylinders in presence of an axial and transverse magnetic field. Rayleigh [7]
studied the non dissipative flow of an incompressible fluid with circular streamlines
between two concentric circular cylinders is stable with respect to axisymmetric
disturbances if the square of circulation decreases no where in the radially outward
direction. He found that this problem has a remarkable analogy with that of the stability
of a density stratified fluid at rest under gravity. Michael |8] extended this problem to the
case of a perfectly conducting fluid with an electric current disturbance parallel to the
axis of the cylinders. He observed that in the presence of axisymmetric disturbances,
Rayleigh’s analogy still holds and the magnetic field due to current has an effect similar
to that of the basic velocity. Howard and Gupta [4] studied the stability of steady non
dissipative helical flow of a conducting fluid with an axial volume current. They
observed that such a flow consisting of an azimuthal and an axial component of velocity
would be stable with respect to axisymmetric disturbances if a suitable Richardson

number based on the azimuthal component of the velocity, the circular magnetic field

e : : | ’
due to the current distribution and the shear in the axial flow exceeds P everywhere in

the flow. Agrawal [9] derived a sufTicient condition for stability of the steady non
dissipative helical flow of a conducting fluid permeated by an axial volume current and a
uniform magnetic field for axisymmetric disturbance. In case of hydrodynamics, the
study of stability of a helical flow subject to non axisymmetric disturbances derived by
Pedley [10], he observed that flow in a rigidly rotating pipe becomes unstable with
respect to helical perturbations in the limit of very rapid rotation.
Chandrasekhar [5] studied MHD flows and derived very few general stability criteria for
non-dissipative MHD flows. Acheson [11] showed that undisturbed motion of rigid
rotation between two concentric cylinders permeated by either an azimuthal or an axial
magnetic field, a non axisymmetric unstable mode propagated against the basic rotation.
Acheson [1] also derived a quadrant theorem to localize the complex wave spead for an
unstable mode of slow amplifying waves, the undisturbed state is one of the pure rigid

rotation in the presence of an azimuthal magnetic field. K. Ganguly and A.S. Gupta [12],
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incase of helical magnetic field derived that the phase speed for any disturbance lies
between to bounds which depends on the basic velocity distribution but not on the basic
magnetic field. In absence of basic motion, no unstable mode can propagate in the

system. According to Ganguly and Gupta [12], the characteristics equation

(0)2;) - oA - H};+ F; =0and the operators p, iA, and H are Hermitian. They shew the
inner product (é,iAE) and (éHZ_;) were both real due to the Hermitian property of the

operators. In this paper we have investigated magneto hydrodynamics stability with
respect to axisymmetric perturbation of an incompressible viscous fluid rotating between
two perfectly conducting infinite co-axial cylinders in presence of an axial and a
transverse magnetic field. But in the present analysis with respect to axisymmetric
perturbations of viscous fluid, the corresponding operators involved are not Hermitian
and so as the inner product are no longer real. Accordingly, the extension of the inner
product in the case of perturbations of viscous fluid is a more complex problem. We
have derived sufficient conditions by separating the real and imaginary parts of the inner

product.

3-2 MATHEMATICAL FORMULATION

et us consider a viscous fluid rotating between two perfectly conducting co-axial
cylinder in the present of an axial and transverse magnetic field. The fluid assumes to be
incompressible and non-dissipative. The governing equations of motion in cylindrical co-

ordinates (r,B,z) are,
B2

%+(&.VL-$—%(EVBT =)

=_lgrﬂ+v(v2u—i———z—). e (2.01)
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B,B,

(qV)v————»(BVB _ 2,

— St —f——t—=0

o r ro0 oz

B B 16 JB
L4 br—E=()

or r r oz

oB — =

E:VA(qAB)

...(2.02)

..(2.03)

...(2.04)

(2.5)

..(2.6)

where q = (u,v,w) is the velocity of the fluid, p is the total pressure, B the magnetic field

and v the coefTicient of viscosity.
The equilibrium state is derived by

q,(0,12,0), B, {0, B, (r), B, (1)} .

Let us consider an infinitesimal perturbation of the viscous flow represented by the

above stationary state and let the perturbation state be representation by

q0+aq:(uf?rQ+u0,uz)s
B, +3B =(b,,B, +b,,B, +b,)

and

p+0dp.
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The perturbation quantities are small. So the linearized equations of motions are

du, Qai_m (B ab, B’Gb,_280bu
o0 pL 1t 0 o0z r
1 dop) Vzu,—%-&'—“—"—;. .(2.07)
p or o T
CL LY +(2Q+ DQ)u, -—(B—ﬂ Ny +b,DB, + Bb)
ot o0 pLT "o
2 'a(ap)w(vzu“—%-é—a- 1‘2&] ........ (2.08)
pr o9 . I o
LPROLLE —l(ﬁabz +B,@+b,DB,) Yool oy,
ot 0 plr 00 oz ' p 0z '
..(2.09)
D Do 5 W60 .(2.10)
ot r o0 oz 0
éP—"-:«[-B-"-?—u-‘L+B,«a—ui+(E~'l—DBHJu,+(rDI2)b % o)
ot r o0 ‘ T o
N, By, g L, _%. (2.12)
ot r o oz
ou, U 1o oW, o, (2.13)
o r rd oz
o, b AP B, o (2.14)
o r rd oz
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Analyzing the disturbance into normal modes, we seek solutions of the fore going

equations whose dependence on t, § and Z is given by

f = f{r)e!ltsmovio) e (2.15)

;]

where ¢ is a constant (which may be complex), m is an integer (+ve, -ve, 0) and k 1s the

wave number of the disturbance in the Z direction.

Let u,,u etc now denote the amplitudes of the various perturbations whose t — 0 — Z

dependence is given by (2.15). Equations (2.07) — (2.12) becomes

iou, — 2Qu, -——l—{lmB“ (1+p)b, -%b—"}
p r r

3_1M+V{Lur_ﬂ‘;.‘_uﬂ}. o (2.16)
p or r

i, +(2Q+ DQ)u, —-'-{imBﬂ (1+B)b, +b.DB, + B“bf}
plL T r

=_im(ap)+v{Lu0+_2_i£"_ur}, e 217)

........ (2.18)
it = 00y e (2.19)
r
iob, = 1086 i3, +[E—“~—DBGJu, +(rDQ)b,. e (2.20)
T
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inB,

imb, = (1+pB)u, —u,DB,.
where
w=0+ml),
2
L P )
r
) |
D =D+-
r
and
rkB
p=
mB,
Let
u, =ik, 1

u, =iwé, -, (rDQ)

u, =ing, |

In the light of Lagrangian displacement vector §in (2.22), equations (2.19) - (2.21)

becomes
B
I (14 B)E,
B,
be“’“lm B)&e ( _DBHJé
lmB0

(1+p), —(DB, g,
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In terms of Lagrangian vector éequations (2.16) — (2.18) becomes

(0’p-0iA -BE+F =0,

where
P= 1 00
01 0
0 0 1
iA=[
—vL
-2[0—@)
r
0

B=1 m>2(1+B) - 2imvD02
+1DQ? —tH,

~ 2imv2(1+P)

and
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2imv.(1+p)

mzvg(l +B)2

ee(2.24)




From (2.01) and (2.22) lead to

&Jr‘:_wﬂﬂm; = (). N W W)
o T r '

Clearly the induced magnetic field b with component (b,,b,,b, ) given by (2.23) satisfies
V.b = 0 by virtue of (2.25).

The boundary conditions

u, =0 at r = b becomes on using (2.22)
u, =0¢& (a)=E€.(b)=0
Since the o in the rotating frame is conslant,J the equation of the form
o’ E - 0iAE-BE+F =0,
is convenient for, the case of uniform rotation.
For the case of differential rotation it is more convenient to rewrite (2.24) as

0’ & - 20icE ~GE+F =0, (2.26)

where

cE= (-;—A + ime)é
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and

GL= (inA +B- m2ﬂzp};_

Equations (2.24) and (2.26) constitute the basic equation of the stability analysis.

If the fluid is non viscous, the non Hermitian operators will be reduced to Hermitian

operators which have been obtained earlier by Ganguly and Gupta [12]

3-3 STABILITY OF AXISYMMETRIC PERTURBATION (m=0)

In this iA, C and G in the characteristic equation becomes

A= : I
—vL. -20 0 e 5A
20 —VL O
|
o 0 - V(L _"5_]
r
B ]
And
G=B=| Kav24mQ?-rH, 2iKrv,v, i
iRy, K0
0 0 Kt

3-4 INNER PRODUCT

Here operator iA and B are not Hermitian. This property mention that stability is not
always straight forward like the one carried by K. Ganguly and A.S. Gupta [12] in the

case of inviscid fluid.
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Inner product defined for any operator B as
h_
(@B";);JéBé_';rdr. o (4.01)

With the above definition of inner product

(&,F)=H— E,p'—Ee[*i‘E]—z,(ikp)}dr

r

e+ ol - o M e e i

[ pl+ Ip{li(rﬁﬁmmkg}rdr
| e r

=0 [By dint of (2.25)], e (4.02)
where prime and over bar denote the differentiation with respect to r and complex

conjugate respectively. It can be shown from (2.26) that the operators p, C and G are

defined on the entire Hilbert space H, map H into itself and satisfy

(p&n)= (& pn)for all & n in H.

Thus by the Hellinger and Toeplitz theorem, these operators are all bounded on H. It
follows from (2.26) and (4.02) that |

€. (6’p-26iC-GE)=0

o'(5.8)-20( ice)-.GE)=0, L (4.03)
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where

gice)=1, +il,
and

(5.68)=1,+il,.

Here 1y, 15, I3, 14 and I are real.

Again
¢ R
I, =J[S(¢f +E +¢i)+3’5‘£_'—iaf]rdr,
4 2r
b
L, = [2QR, Jdr,
b
i =J'[x(&_,f +82+82)+(rDQ? —H, Je? -
and
b
Iy = [[4m QR - 2m vDQE? fr,
where
Szulequ
2
X =m’v.(1+B)’ - mQvL -m’Q’,
2
Y:2mv§(l+ﬁ)+2mzﬂv
r
and

RI = lm(érg() ).
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e (4.07)

mQv
> £ +2yR,}rdr, ..(4.06)
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Thus we find that (4.03) is a quadratic equation in ¢ with complex coefTicient.

Its roots are

2(g ict) J4le.icef +ale.2)Je.G ¢)
T 2(¢.£)

L +ily £ 3J(1, +il ) 4101 +ily) L+l £l i

L L

: |
) I, +1l, ilz(cos-;()HSm 29)

I

Separating the real and imaginary parts we obtain

1
I, +A%cos 1 0
2

8. =
lI'
and
. |
I, +A2Sin—0
o, :—_‘—2,
lI
where
M=+,
9=tan"~ll,
l6
lg = l; _[§ it ||I4
and

b= 2L + L.
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3-5§ CONCLUSION

For the propagation of unstable mode o, # 0

ag.

|
_ik (A2 (-1+ 41+ y7)p
lI

where

p:\/yl+(l+‘/1+y2)2 >0.

The following are the possible values of o,

o, :YI—I:IJ HA (=14 41+ Y )} 1

il |
o, = | 1+ a2 -1- 1%y p

1
o, e I, {2 (~1+ 14y )}

L .

T, :%[13 —{flz(—l—a/l+y2)}/#}

From (4.04) it is clear that /,)0
(i) o, and o, are always > 0, accordingly stable mode will be propagated in these cases.

(11) Propagation will be stable, oscillatory or unstable according as

Hydromagnetic Stability of Helical I'lows in Viscous I'luid. 58



1
F a0+ 1 M.
<

(iii) Propagation will be stable, oscillatory or unstable or unstable according as

I
L, 2AZ(=1+1+y?)/p.
<

The object of this paper is to investigate the stability of a steady MHD flow with helical
magnetic field. Non axisymmetric disturbances of this flow generally twist the magnetic
lines of force and produce an intimate coupling between rotational and hydromagnetic
effects. On the other hand axisymmetric disturbances only bent but not twist the
magnetic lines of force. When the swirl velocity is large the hydromagnetic effects
becomes small. These considerations provide the motivation for studying the stability of
non axisymmetric disturbances of MHD helical flow which is likely to be of importance

in problems of controlled thermonuclear reaction.
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. MHD FLOW OF A HIGHLY CONDUCTING VISCOUS FLUID
' BETWEEN NON CONDUCTING PARALLEL WALLS




4-1 INTRODUCTION

If an electrically conducting continuum be moving in the magnetic field, the motion of
the continuum is changed by the influence of the magnetic field and the magnetic field is
also perturbed by the motion of the continuum; one affects the other and vice versa. The
motion of the conducting fluid across the magnetic field generates electric currents which
changes the magnetic field and the action of the magnetic field on those currents gives
rise to mechanical force which modify the flow of the fluid. Stoke’s (Schlichting) [14]
studied the problem of an incompressible viscous fluid flow produced by the oscillation
of a plane solid wall first. Kerczekk and Davis [16] performed the linear stability
analysis of the Stoke’s layers on the oscillating surface. Panton [15] obtained the
transient solution for the flow due to the oscillating plane. Erdagon [18] derived the
analytic solutions for the flow produced by the small oscillation wall for small and large

times by Laplace Transform Method.

Sinha and Chaudhury [13] discussed the periodic movement of the plate in the non-
conducting fluid. Das and Sengupta [17] discussed the unsteady flow of a conducting
viscous fluid through a straight tube. In this problem, our main aim is to investigate the
effects of a transverse magnetic field on the steady incompressible highly conducting

viscous fluid between two non-conducting parallel planes.
4-2 MATHEMATICAL FORMULATION

Let us consider a highly conducting viscous fluid flowing between two non-conducting
parallel planes in presence of an uniform transverse magnetic field perpendicular to the
planes. The fluid assumes to be incompressible and the motion is steady. As the fluid
particles tend to bind themselves to the magnetic field, it is obvious that the field will in
some way inhibit the motion of the fluid. The motion will produce tension in the lines of

force, but because of the finite conductivity they can revert to their initial positions.
Let Ho =(0,0,H,) be the uniform magnetic field. And q, = (0, v(2),0) be the velocity of

the fluid. The Lorentz force on the moving stream will oppose the motion together with

the viscous forces.
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The motion of the fluid across the field will induce electric current at right angles to the

velocity q. The motion of the fluid will produce a perturbation field intensity (O,h(z),o).

Then the total field is H = Ho + hand satisfies V.H = 0. We assume the pressure in the
field to be of the form P =p,(y)+p,(z). The term p,(y) gives rise to a pressure

gradient —?—E‘lin the direction of motion, p,(z)is ascribable to hydrostatic causes. The

governing equations of motion are as follows

(qVE V(p, +p,) pg§+ﬁ(VAE)Aﬁ+pUVZ(_]. ........ (2.01)
V. (q.H)+nv2ii =0, n(2.02)
Vq=0, VH=0. n(2.03)
V,H=4HJ e n(2.04)
where
= ofE +pq, 1]
and
_n
4o

Equation (2.01) becomes

op, . Ip d?v
e W ) k+—— H,h'j— hh'k
6yJ o £ Pk { I~ tpro— J}

Equating corresponding coefficient we get

d’v  pHgh' _ dp,

@ A dy SaRa
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and

“’ ' dpl
~—hh'+—+pg=0 , oennn(2.06)
4n dz R
Equation (2.02) becomes
dv _d’h
H,—+n—5=0. (207
*dz L dz? ( )

Here equations(2.05), (2.06) and (2.07) are the characteristics equations of motions.
Equation (2.05) implies that for steady laminar flow, the pressure gradient in the
direction of motion is constant throughout the liquid.

From (2.06)

P, =C—pgz———h’. .(2.08)
8n

From (2.07) we get
h _
d—+4npoan =(, il 09)
dz
From V,\Fl =4nJand J = G[E+}J.E|Aﬁ] we get

—h'i = dn(j,i+ j,j+ k) = 4mo|E,i+E, j+ E,k+Hpvil

implies
-h'(z) =4y, =4noE, +pH,v) (2.10)
J=0E; =0 ce(2.11)
j3=0E;=0 n(2.12)

MHD Ilow of a Highly Conducting Viscous I'luid Between Non Conducting Parallel Walls 62



From (2.10) we get

3_h+ 4nopH v = —4noE, = C, using (2.09)
z

1 dh C
By = ——+pH,v =2
" 4o dz Ho dner

From (2.05) and (2.13) we get

2
PU:Z_?_ op’H2v = opH E, — p = ¢ (Constant)

or

dy oty _c
dz>  pv po

.. v = ACosh M-z + BSinh Mz - —;:2—
L L op“Hg

where M =pH L 2 Hartmann number.
v pv

Boundary conditions are v =0 at z= + L. implies

G = ¢(Cosh ' z — CoshM)
op’H;CoshM

Now '[h] J,dz =0 implies

E - p(SinhM — MCoshM)
F opH SinhM

(213
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_ = pMCoshM

Le=opH E, ~p= SinhM

pM(CoshM — Cosh l:j—[ z)

SV =

op’HZSinhM
and
e s
So

M(CoshM - Cosh T zZ)

\%
v MCoshM - SinhM

For a weak magnetic field M =0

3- 2z’
SvE—v(l-—
2 ( ER

Using the value of v in (2.07) and integrating we get

42pLSinh i z

h= , +a,z+a,
puH SinhM

at z==*L, h=0 implies

.. M
dnpl. Sinh L-z

uH, | SinhM L

For a weak magnetic field h = 0.

MHD Ilow of a Highly Conducting Viscous I'luid Between Non (‘onducting Parallel Walls 64



Table

Z|cll=

1010 | 1110 | 1110 | 1110 | 1.108 | 1.103 | 1.090 | 1.056 | 960 | .702 0

I
S

Il

1.142 | 1.142 | 1.140 | 1.138 | 1.133 | 1.122 | 1.096 | 1.039 | 912 629 0

1.194 | 1.193 | 1.189 | 1.181 | 1.167 | 1.140 [ 1.091 | 1.001 | 838 541 0

il

1.284 | 1.280 | 1.268 | 1.244 | 1207 | 1.149 | 1.062 | 930 | .733 | 439 0

1.417 | 1.407 | 1376 | 1322 | 1.244 | 1.139 | 1.002 | 827 | 608 | 336 0

Il

1.5 1.485 | 1.440 | 1.365 | 1.260 | 1.125 | .960 765 510 | 285 0

NIZ|IZIZ|=2|=X
Owlc\m

e M=10 +-M=8 —M=6 —+M-=4 |
rEeMEl —s=li=g |
1.6 i
|
1.4
1.2

4L/10-
6L/10-
8LAM D

|
o
~—
~
|
N

Fig 1: Gives a Sketch of the Velocity Profiles for Various Values of

Hartmann Number.
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4-3 CONCLUSION

_ 2
When M = 0 then v = %v(]—lz—}_) which shows that the velocity profile between the

parallel plates in absence of magnetic field is parabolic. When magnetic field is present
(M # 0)then the velocity profile is also parabolic but less concavity. Accordingly

Hartman number increases, the concavity of velocity profile decreases.
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UNSTEADY FLOW OF VISCO-ELASTIC RIVLIN-ERICKSEN
FLUID WITH TRANSIENT PRESSURE GRADIENT THROUGH
A UNIFORM CIRCULAR CYLINDER




5-1 INTRODUCTION

The fluids which exhibit the elastic property of solids and viscous property of fluids are
adequate in nature and the relevant fluids generate visco-elastic fluid mechanics. This
discipline is termed as Rheolog of continua. This types of fluids are also called non-
Newtonian fluids or visco-elastic fluids. The hydro-dynamic flow of different. fluids of
viscous and inviscid types has been presented in the standard informative books of
Goldstein [19], Lamb [20], Milne-Thompson [21], Pai [22], Landau [23], Batchlor [24],
Curle and Davis [25] and others. The corresponding development of hydromagnetic flow
of viscous probléms have been given in the standard books of Alfven [26], Cowling [27],
Chandrasekhar [5], Ferraro and Plumpton [28], Jefery [29], Cabannes [30]. In recent
years, some problems associated with the visco-elastic liquids and fluids have been
considered by Sengupta [31]. He suggested some empirical general models. Sengupta,
SK. Kundu and S.K. Misra [42] studied this problem through rectangular channel. In this
paper, an attempt has been made to study the flow of visco-elastic conducting fluid of
Rivlin-Ericksen type flowing in a circular cylinder in presence of a uniform transverse

magnetic field.

5-2 MATHEMATICAL ANALYSIS

?,z'=0, z'as a boundary wall and z’axis is the

We consider the cylinder x> +y’* =a
axis of the cylinder, direction of motion. Let us assume W'(x’,y’,t") be the axial velocity
of the fluid. B,is the uniform transverse magnetic field perpendicular to the velocity

W'is applied to the fluid. Under these assumptions, the governing equations for the

present problem are as follows

W' -1op’ J B;
—y,—:—-ap,w(np, —6-,)VZW'——°W' e (2.01)
ot p oz ot P
oW’
—=0. conmne 2e02)
oz
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If we introduce the non-dimensional quantities

(x.y')=alxy,2),

W=2Ww,
a
2
. pV
P"grpa
a
2
t'=—t,
Y
a2
P =—Hn
v

and

M =aB, {i (Hartmann number).
pv

Equation (2.01) becomes

ﬂv_:—@ﬂmpl E)WW—MZW
ot 0z ot

with boundary condition W = 0 on the surface x* + y*=1.

W *wW

Here, VW = o ¥ Y
X

W 16W 1 8*W
] +..._ +_
o ror 1t o’

ld( dW] 1 °W

s Lo par
rdr dr r° 0

Unsteady IFlow of Visco-Elastic Rivlin-Ericksen I'luid with Transient
Pressure Gradient Through a Uniform Circular Cylinder

o (2.03)
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2
The symmetric about the origin requires W is a function of r only, so that —-=0.
5,3)

Thus

If we introduce transient pressure gradient —pe “and consider the transient
axisymmetric velocity W is of the form f{r)e™, then equation (2.03) in cylinderical co-

ordinate system becomes

—of =p+(1- pom){li[rgj} - M?*f
rdr\ dr

Subject to the boundary condition f{(1) =0

or
2
%;+%%+K2HN,RI)IU ........ (2.04)
— M2 _p
where K2=w M and N = I
I-po I-py0

To solve equation (2.04) we apply Laplace transformation as
L{fir)} = J:e”""f(r)dr =Fs). . (2.05)

Then we get from equation (2.04)

F(S) = et s

K’ Js2+K?
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~f(n=L"Fs) = ;(N—z TR

where J,(Kr) is the Bessel function of order zero,

-N

fil)=0implies C= ——
() P KZJO(K)

. __‘I_\I___ - Jo(Kr)
& fr)= e {1 ——JO(K) }

(2.006)

We now consider the case where K is very small so that we approximate K as

2.2
O o
and
KZ
Jﬂ(k) =1 “T

Substituting these in (2.06) we obtain

" pll-~17)
e 4—(14+p,)o+M?’
2y -l
W= fie™ = LU=

4—(14+p,)o+M?
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5-3 DEDUCTIONS

Case-l : putting i, =0 in the equation (2.07), we shall obtain the solution for a purely

viscous fluid which is given below

5 p(l = rZ)e—ml

w 2
4-0v+M

Case-11 : When the magnetic field is absent (M=0), the velocity is obtained in the form

-ml

~ p(1-r?)e
C4-(14p)o

5-4 NUMERICAL CALCULATIONS

For numerical calculation of the velocity profile for visco-elastic fluid the following data

are considered in (2.07)
i =008, we=10p=Lar=0758

4375
=—2—-—-—-—--e
M*-6.5

In case-ll for ordinary viscous fluid, p, =0, ® =10, p=1,r=0.75 are considered.

) 75 -1
@ Wi 43 - e
M -6
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For different values of M, the results of W are shown in Table-1 and Table-2

respectively.

Table-1 p, =0.5 Table-2 p, =0
t e—l()r W W

M=3.10 | M=3.10 | M=3.15 | M=3.15
0 l 1407 1212 1115 1278
.05 |.6065 | .0853 0735 0676 0775
A0 ].3679 | .0517 0446 0410 .0470
A5 |1 .2231] 0314 0270 0249 0285
20 |.1353|.0190 0164 0151 0173
25 1.0821.0115 .0099 .0091 .0104
.30 |.0498 | .0070 .0060 .0055 .0063
35 1.0302 | .0042 .0037 .0034 .0038
40 | .0183 |.0026 .0022 .0020 .0023
45 | .0111].0015 0013 0012 0014
50 | .0067 | .0009 .0008 0007 .0008
.55 1.0041 | .0006 .0005 .0004 .0005
60 | .0025 | .0003 .0003 .0003 0003
.65 |.0015 | .0002 .0002 .0002 .0002
.70 1.0009 | .0001 .0001 .0001 .0001
AT .0005 0 0 0 0

Unsteady Ilow of Visco-Llastic Rivlin-Iricksen I'luid with Transient
Pressure Gradient Through a Uniform Circular Cylinder
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| Fig-1(a)

\
- M=3.10 =M= 3.15|

0,15

0,12

0,09

0,06

0,03

o

Fig 1(a): Shows the Variation of Velocity of Rivlin Erickesen Fluid with Time
for Different Values of Hartmann Number (M).
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| Fig-2(a)
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|
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Fig 2(a): Shows the Variation of Velocity for Ordinary Viscous Fluid with
Time for Different Values of Hartmann Number (M).
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5-5§ CONCLUSION

Figure 1 (a): shows that the velocity decreases due to increase of magnetic field that is

the velocity profile is stopped by the influence of strong magnetic field.

Figure 2(a): also shows that the velocity decreases due to increase of magnetic field, but

velocity is higher in Rivlin-Ericksen fluid than ordinary viscous fluid.
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TRANSIENT PRESSURE GRADIENT




6-1 INTRODUCTION

The hydromagnetic flow of visco-elastic fluid, such as organic compounds, oils etc play
a considerable role in technological and engineering fields. The basic development of
magneto-hydromagnetics have been considered by Cowling [27]. Gradual development
in the realm of hydrodynamics has been found to be satisfactory by Sengupta and Ghose
[31] and Sengupta and Bhattacharya [32]. The problems of viscous motion between two
parallel plates under the action of initially applied body force studied by Carslaw and
Jaegar [33]. Sengupta and Roymahapatra [34] studied the flow of two inmiscible visco-

elastic Maxwell fluid through rectangular channel with transient pressure gradient.

The motion of visco-elastic Maxell fluid subject to a uniform or periodic body force was
studied by Pal and Sengupta [35]. Unsteady hydromagnetic flow of two immiscible
visco-elastic Oldroyd fluid between two parallel plates has been studied by Ghose and
Sengupta [36]. In this paper we have studied the unsteady MHD flow of visco-elastic

Rivlin-Ericksen fluid with transient pressure gradient through concentric cylinders.

6-2 MATHEMATICAL FORMULATION

The Rheological equations relating to the stress-tensor t; and the rate of Strain tensor e;

for the slow motion of visco-elastic Rivlin-Ericksen type fluid are

sl ’
T, =p'd; + T

~—

0
T; =2u’(l+k’-a—t)eij (201

1
€ =5(Uaj +u;)
Where 1 is the deviatoric stress tensor, p’ is the pressure, p’ is the viscous parameter
and A is the strain retardation time.
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We consider the mass of electrically conducting visco-elastic Rivlin-Ericksen type fluid
between two concentric cylinders. The fluid initially at rest. A transverse uniform
magnetic field B, has been applied to the fluid. The effect due to induced magnetic and
the perturbation of the magnetic field is neglected. The equations of slow motion of a

conducting visco-elastic Rivlin-Ericksen type fluid in three dimensional form become

' 2 ' 2.t 2
o Lo, (|+;u_)(6 AN (2.02)
ot p OX oy 62’ p
L (203
ox

We are now going to put the equation (2.02) in a non-dimensional form by setting

a f
u=—u',
v

a’
p=—",
pv
\Y%
t=—1t',
a?

Vv
7\':_21"’
a

(Xy,z)— (x,y',z)

and
M =aB, A (Hartmann Number).
V pv
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Thus the governing equation in the non-dimensional form is

du G, a2 6u 2
e B O A = M (204
= il }( ) (2.04)

The boundary conditions of the problem in non-dimensional form are u = 0 on the

surface

y2 42z =1

and

2
y? +2? =b— (b>a)

If we introduce transient pressure gradient —pe ™ and consider the transient
axisymmetric velocity is of the form F(y,z)e ' then equation (2.04) becomes

2
-oF = [)4—(1-7&&0)(%}{—E g) M?F

or
2 2
%YTF+5._§_+I(2F:N ........ (2.05)
z
where
K2 = o-M?
1 - Aw
and
1
I-Am

s F= —kN7+ ACoskS + BSinkS

where S = yCosa + zSina ,
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b
with boundary conditions F=0 when S=1 and S = e

According to boundary conditions

Cos !((b _792 = COSI((S B q_!_ b)
F= N 2a - »)| »
Cos E,_, a)
2a

We now consider the case where k is very small so that we approximate k as

2 2
kb-a) | K(b-a)

C
2a 8a’

and

2

Cosk(S— a+bJ: 1 —lkz[s— a+b) :
2a 2

Substituting these in (2.06) we obtain

B 4pa(S—1)b—aS)
" 8a%(1-Am) — (0 —M?)b-a)

Unsteady MHD I“low of Visco-Elasitic Incompressible I'luid
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For numerical calculation of the velocity profile, A=0.05, o =10, p=1,8=15,a= I

andb=2
e 1
u=
M? -6
Table-1 4 =0.05 Table-2 A1 =0
t c-rm W w
M=3.10 | M=3.15 | M=3.10 | M=3.15
0 1| 2770 2549 .1314| .1262

05 | .6065 .1680 1546 0797 0765
10 | 3679 1019 0938 0483 0464
15 | 2231 0618 0568 0293 0281
201 .1353 0375 0345 0178 0171
251 .0821 0227 0209 0108 0103
.30 | .0498 .0138 0127 .0065 '006%
.35 1.0302 .0083 0077 .0039 0038
40| .0183 .0050 0046 0024 .0029
451 .0111 .0030 0028 0014 0014
50 [.0067 | 0018 | 0017 | .0009 | .0008
.55 1.0041 0011 0010 .0005 .0005
.60 | .0025 .0007 0006 .0003 .0003
.65 | .0015 0004 .0004 .0002 .0002
.70 | .0009 0002 0002 .0001 .0001
.75 | .0005 .0001 0001 0 0
.80 | .0003 0 0 0 0

Unsteady MHD Ilow of Visco-Ilasitic Incompressible I'luid
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Fig 1(a): Shows the Variation of Rvilin Ericksen Fluid Velocity and Ordinary
Viscous Fluid Velocity with Time When M = 3.10.
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| Fig-2(a)

~+1,=0.05 =,=0.00

=3.15)

W(at M

Fig 2(a): Shows the Variation of Rvilin Ericksen Fluid Velocity and Ordinary
Viscous Fluid Velocity with Time When M = 3.16.
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6-3 CONCLUSION
Figl(a) and Fig 2(a) shows the following
(1) Velocity decreases due to increase of magnetic field.

(2) In Visco-elastic Rivlin-Ericksen fluid, the velocity is greater than in ordinary

viscous fluid in the presence of same magnetic field.

(3) Velocities of both kind of fluids are die out as t — o
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UNSTEADY MHD FLOW OF VISCO-ELASTIC OLDROYD FLUID
BETWEEN TWO CONGENTRIC CYLINDER




7-1 INTRODUCTION

In elastic materials the stress depends on the strain only. So we can say that the elastic
materials have memory, i.e., it is capable of recognizing its original shapes. Some fluids
have no memory. But there are some fluids like soap solution, polymers, which have
some elastic properties, besides having fluid properties. Such type of fluids are called
non-Newtonian fluids or visco-elastic fluids. The basic development of hydrodynamic
flow has been presented in the work of Lamb[20] and hydromagnetic problems have
been considered by Cowling [27], Carslaw and Jaeger [33] studied the basic problem of
viscous motion between two parallel plates under the action initially applied body force.
Das [37] studied hydromagnetic flow of viscous conducting fluid through a circular
cylinder. Sengupta and Roymahpatra [34] studied visco-elastic Maxwell fluid through
rectangular channel with transient pressure gradient. The hydromagnetic flow of two
immiscible visco-elastic Walter liquids between two inclined parallel plates has been
investigated by Chakrabarty and Sengupta [39] Ghose and Sengupta [36] studied the
unsteady hydromagnetic flow of two immiscible visco-elastic Oldroyd fluid between two
parallel plates. In this paper we have considered unsteady MHD flow of visco-elastic

fluid of Oldroyd type with time varying body force through a concentric cylinders.

7-2 MATHEMATICAL ANALYSIS

We consider the cylinders x'> +y'?> =a’ and x> +y'> =b’ (a>b) are the boundary
walls and z’axis is the axis of cylinders, the direction of motion. Let us consider
W'(x’,y’,t") be the velocity of the fluid. Assuming the motion to be slow and neglecting
pressure gradient, the equation of motion of a conducting visco-elastic Oldroyd fluid in
the present studies becomes

2
(1+ )L'—-(?-)(—a-vg-) (l+l’—) (t)+v(l+k'-~)V W' - GBO(I l'—)W'

oW’
oz'
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where v the kinematic coefficient of viscosity, p is the constant density of the fluid, By 1s

the uniform magnetic field, o is the electrical conductivity, A; and A (A > A% >0) are

stress relaxation time and rate of strain retardation time respectively. We are now going

to put the equation (2.01) in a non-dimensional form by setting

W=—W',
Vv

t= : t’
a’? ’
Vv

A=—2,
a2

l r r L
(358 (% x2)

and
M =aB \/:(Z (Hartman number).
o VPV

Thus the governing equation (2.01) in the non-dimensional form is

0. oW

(I+A,§

The boundary conditions of the problem in non-dimensional form are

(i) W =0on the surface x> +y* =1 and
b2

(i) W =0 on the surface x° +y’ =a_2

Unsteady MHD I“low of Visco-Elastic Oldroyd Fluid Between Two Concentric Cylinder

0 0 : 0
)?=(1 +2A, —a—t)x(t)+(l+lz a)VZW—M (1+2, Bt—)w e en(2.03)
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7-3 SOLUTION OF THE PROBLEM

Case-I: Fluid motion due to transient body force; Firstly, we have consider a transient

body force X,e is applied to the fluid and assume velocity is of the form
W= V(x,y)e™,
then the (2.03) becomes

viVik*V=N. . (3.01)

where

2 (=hoXe-M)
(1—7\-2(1))

(1-Xo) o

(] - l2(‘))

0

with boundary conditions V = 0 on the surface

xz+y2 =1
o (3.02)
b2
x2+y2 =
a |

Solution of (3.01) with boundary condition (3.02) is

ccsk(?f"b = s]
2a

2 — h _—
M0 Cosk(am —bJ
2a

where S = xcosa +ysina
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and

W= 0 e 1- voen(3.03)
2
i cm[“’.]
2a
We now consider the case where k is very small so that we approximate k as
_ 2 —a)
Cosk b a] =1- -I—(Lza)——
2a 8a
and
5 2(a_+_!:3 - ST
Cosk(a+ —S]:l— i
2a 2
substituting these in (3.03) we obtain
= -
W = 4aX0(l A‘|('0)(S )(b aS) evu)l _,_,.,_,(3_04)

(1-1,m){8a% —k?*(a—b)?

Case 1I: Fluid motion due to periodic body force. In this case, we assume that the body
iof

force X, e is applied to the fluid and consider the velocity is of the form V(x,y)e",

the equation (2.03) becomes
V3V -klV=-N, e (3.05)

where

2 = M A0 + 07y —hy) | iy —A)M (1A A,0%)
142207 1+ Ao

= Rw" (Say)
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and

1At i —Ry)
Terke? 0 140’

0
= Rle_iOI (Say)

The solution of (3.05) subject to the boundary condition (3.02) is

. Cosk, (Egb - s)
s -]i'—e““’-*"’ = A L) (3.06)

Cosk, [a—;—b—]
a

Cosh(1- S)ACos(b- SJB
a

Cos(owf -0, =0)

e
M?* + @2 Cosh(a — b)A + Cos(a — b)B

Sinh(1 —S)ASin(-—b- —-S)B
: Sin(or -0, -0) | .......(3.07)

Cosh(a — b)A + Cos(a — b)B

only real part taken.

where
anp = 24 —2,)M? + (14 2,A,0%)}
~-M (1+A0,0%) +0 (A, —},)
and
tan0, L —?Lzz)
1+A,A,0
R? = M* +0®)(1+ 2 0?)

1+ 20
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, 14w’
tUiekle®

and

K= \/_R—COS%B,B = JRSin %9 .

Then, it may be concluded that the velocity of Oldroyd fluid is a periodic function of t

with period E’—t— It is also observed that the velocity depends on the radii a and b.
n

7-4 THE FLOW PATTERN IN ABSENCE OF MAGNETIC FIELD

We are now going to find out the velocity component due to flow in the absence of

magnetic field.

Case I: Transient body force and absence of magnetic field. we put M = 0 in equation

(3.03) we get

Cosk[a +P - S)
1

w=>o

-l

©

This velocity is transient and depends on the radii a, b and dies outas t > oo,
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Case I1I: Periodic body force and absence of magnetic field:

If we put M = 0 in equation (3.07) then we get

Cosh(1- S)ACOS(b - SJB

w=ldi- a Cos(wi -8, —0)
® Cosh(a — b)A + Cos(a — b)B
X . (b
Sinh(1- S)ASm[~ —S)B
£ Sin(or -8, —0)
Cosh(a —b)A + Cos(a—b)B
where
B 1+ (147 w?)
1+ o’
A= JECOS?IZ—G’
B= Jﬁsm%e
and
2
tanf = Ry ) —cotf, = tan('£+ 0,)
ok, =) p:
~8=249, and tand, =M
2 1+ AA,0

The velocity is periodic with period = and depends on radii a and b.
n
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7-5 DISCUSSIONS OF THE STABILITY OF FLOW

Rout-Hurwitz stability criteria for a small disturbing forces is that the deviation is small

from the initial condition of motion. In case of application of transient body force

X = X,e " the motion of the fluid will be stable if ® > 0.

In our problem, we have the relation

Mo)o - M?)
1- A0 '

Kzz(l“

This leads to the characteristic equation as
Aol = (1+AM? +,kNDo+ k> +M? =0 e (5.01)

The roots of the equation are

LT M? KT (14 A, M? +A,k7) - 44, (K + M)
- 2,

(4]

Clearly, for stability of transient motion, the solution (3.03) tends to zero or a finite value
as t = oo, It is possible, if both the roots of equation (5.01) are positive. This yields the

condition as

(1+A,M? +A,k*)? —4A, (k* +M?*) >0 e (5.02)
1 2 1 ;

and

142, M? +A,k2 £ J(1 44, M? +2,k%) =41, (k* + M?) > 0.....(5.03)
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Conditions (5.02) and (5.03) implies

O<m< L+M2 I—)L—2
A, A

M? < — o (5.04)

Thus, the condition (5.04) ensures the stability of the transient motion.

If A, >, and M’ >%, then the roots of the characteristic equation (5.01) in w are
2

complex conjugate. The positive real part indicating the motion is stable with a damped

oscillation type.
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7-6 NUMERICAL CALCULATION:

For numerical calculation of the velocity profile for visco-elastic Oldroyd fluid, the

following data are consider in (3.04)

A, =0.051, =0.005,0=10,a=2,b=1,X,=1and §=.75

Table-1 Table-2 Table-2
t e»l(lf W W W
A, =0.05 A =0 Ay =iy =il
A, =0.005 A, =0.005
= M: = = = -
3.10 3.16 3.10 3.16 3.10 3.16

0 1 0655 01645 03332 03291 03163 03126
.05 | .6065 .01003 .00997 02021 01996 01918 01896
10| .3679 00609 200605 01225 01211 01167 01150
15 2231 .00369 .00367 00749 00734 .00705 .00697
20| .1353 .00223 .00222 00457 00445 .00428 .00423
251.0821 .00136 00135 00273 00270 .00259 .00256
.30 | .0498 .00082 .00082 00166 00164 00157 00155
.351.0302 .00050 .00050 00100 00099 .00095 .00094
401 .0183 .00030 .00030 00061 00060 .00058 .00057
451 0111 00018 00018 00037 00036 00035 00034
.50 | .0067 .00011 .00011 00022 00022 .00021 .00020
.551.0041 .00006 .00006 00013 00013 .00013 .00013
.60 | .0025 .00004 .00004 00008 00008 .00008 .00008
.651.0015 00002 .00002 00005 00005 .00005 .00004
.70 | .0009 .00001 00001 00003 00003 .00003 .00003
75 1 .0005 0 0 00001 00001 00001 .00001
.80 | .0003 0 0 0 0 0 0
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=-1,=0.05 & 3,=0.005 |
—o), = & 2,=0.005
M= & 2 =0

0,035

0,03

0,025

0,02

0,015 -

W(at M=3.16)

0,01

0,005

N
O ']/Q‘p Q?‘ Q?.J Q@ Q:\ Qcp

Fig 2(a): Velocity Profiles for Oldroyd Fluid, Rvilin Rricksen Fluid and
Ordinary Viscous Fluid at M = 3.16.
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7-7 CONCLUSION
Figl(a) and 2(a) shows the following results:

I. Velocity of Oldroyd is smaller than Rivlin-Ericksen fluid and ordinary viscous

fluid.

2. Velocity of Rivlin-Ericksen fluid as greater than Oldroyd fluid and ordinary

viscous fluid.

3. Velocity of ordinary viscous fluid is greater than Oldroyd fluid but smaller than

Rivlin-Ericksen fluid.

4. Velocity decrease due to increase of magnetic field in the case of all fluids
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CRHAPTER = WVl

UNSTEADY MHD FLOW OF VISCO-ELASTIC OLDROYD FLUID
WITH THE TIME VARYING BODY FORCE THROUGH A
RECTANGULAR CHANNEL



=), =0.05 & 1,=0.005
-3, =0 & %,=0.005
—+-2=0 & 2,=0 |

0,03

0,025

0,02

0,015 -

W(at M=3.10)

0,01

0,006 -

o

Fig 1(a): Velocity Profiles for Oldroyd Fluid, Rvilin Rricksen Fluid and
Ordinary Viscous Fluid at M = 3.10.
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8-1 INTRODUCTION

The fluids which exhibit the elasticity property of solids and viscous property of liquids
are called visco-elastic fluids or non-Newtonian fluids. The basic development of
hydodynamics flow has been presented in the work of Lamb [20] and hydromagnetic
problems have considered by Cowling [27]. Carslaw and Jaeger [33] studied the basic
problem of viscous motion between two parallel plates under the action initially applied
body force, Das[37] studied hydro magnetic flow of viscous conducting fluid through a
circular cylinder. The hydromagnetic flow of two immiscible visco-elastic walter liquids
between two inclined parallel plates has been investigated by Chakrabarty and Sengupta
[38]. Ghose and Sengupta [36] studied the unsteady hydromagnetic flow of two parallel
plates. In this paper we have considered unsteady MHD flow of visco-elastic fluid of

Oldroyd type with time varying body force through a rectangular channel.
8-2 MATHEMATICAL ANALYSIS

We consider the wall x' =+a, y'=1b and z' axis is taken in the direction of motion.
Let us assume W'(x',y’,t") be the velocity of the fluid. Assuming the motion to be slow

and neglecting pressure gradient and perturbation, the equation of the motion of a

conducting visco-elastic Oldroyd fluid in the present studies becomes

[1 4—1; .‘11%) =
at' A ot

! a r ! a ' UB: ’ a !
(l+kléFJX(t)+v(l+k2§]Vzw_ p“(nx! ,)W
........ (2.01)
oW’
—=0. (2.02)
oz

where v the kinetic coefTicient of viscosity, p is the constant density of the fluid, o is the

electrical conductivity, | and A, (A} > 1} > 0) are the stress relaxation time and rate of
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strain retardation time respectively. We are now going to put the equation (2.01) and

(2.02) in a non-dimensional form by setting

a
w=w,
v
v
t=—t,
a2
v
A=—\,
aZ

Li s
(x,y,2)=;(x,y,2)

and

M =aB, ik (Hartmann number).
\} pv

Thus the governing equation (2.01) and (2.02) in the non dimensional form are

()

(1 +A, ﬁ]xun(lmz £)V2W~M2(l+k, -q-]w, ........ (2.03)
ot ot ot

and
W o e (2.04)
oz

The boundary conditions of the problem in non-dimensional form are

(1) W =0 when xzil,;P-SysR.
a a

(11) W=0wheny=i~~l3,—l_<_xsl.
a
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8$-3 SOLUTION OF THE PROBLEM

Case I: Fluid motion due to transient body force; Firstly, we consider a transient body

force X,e™ is applied to the fluid and assume the velocity is of the form

W =F(x,y)e™,

then the equation (2.03) becomes

V?F +k’F = -N. .(3.01)

where

2
_(-ho)o-M)
1-A,0

k? d

N< -\ o .
1-1,0

with boundary conditions F =0

when x=%1, —=<y=<
a

and F = 0 when yzig, -1<x<1 P 11
a

A solution of (3.01) under the condition (3.02) will be satisfied if

Cosm E =i
a

cm=Cn+1D) 22 0=0,1234, oo,
2b
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We construct the solution as the sum of all possible solutions for each value n and

therefore

F= Z f(x)Cosmy.
0

: . L . -b b ;
Now expressing N as a Fourier series in the interval — <y <— and equating
a

a

coeflicient of Cosmy, we get

& e =NED”
dx? 2n+ )’

where

) i ={(2n+l)E}2 _ (-} o) 0-M?)
2b g

So, there exist a positive integer n; such that T2 > 0 for all n > n,.

Solution of (3.03) is

F(x) = 4N(-1) ZI—]_Costh} 2
(2n+1)nT?|  CoshT | for T2>0

4 oz n
L Z[COSTX—I] for T2<0
(2n+)n|T|" L CosT

Hence the solution of (2.03) becomes

5 (=" [CosTx
T & On+ 1T | CosT

- I}COS(2n + 1)3‘31»6'"']
2b

o = 1—C"ShT"}COS(zml)”—”e'““}
W2 2n+)T2] CoshT 2b

e (3.03)

e (3.04)

~ where n, is such that T?(n,) < 0, T?(n, +1)>0. However n, = 0, if T*(0) > 0.
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Case II: Fluid motion due to periodic body force. In this case, we assume that the body

force X,e'" is applied to the fluid and consider the velocity is of the form

V(x,y)e™,

the equation (2.03) becomes

VV+kiV=-N,, ......(3.06)
where
K2 0’ (A, —Ay) - M2(1+A,4,0%) iof(A, —A, )M +(I +A,A,0%)}
b 1+ 0’ 1+ Mo
and

1+AA0° o, -A,)
N, = N 3.2
1+ A0 1+ A0

- -i0)
=Re™.

A solution of equation (3.06) under conditions (3.02) can be taken as

V(x,y) = f(x)Cosmy, conditions (3.02) will be satisfied if

Cosm—b=0
a

or

m=2n+D) s, 1=0,1.2, coooeeeerienerereeionn ,
2b

We construct the solution as the sum of all possible solutions for each value of n and

. : . : -b b . :
expressing N; as a Fourier series in the interval — <y <— and equating coefficient of
a a

Cosmy we get
d*f .. —4AN(-])"

—-Tf =, el AL
dx? (2n+n _ 07)
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where

T? =m? -K,* = Re“ (Say).

Therefore solution of (3.07) is

L) [I—LOSth}. o n(3.08)
(2n+1)T? CoshT

.. Periodic solution of (3.03) is

4R, i (-1)" [{] _ Cosh(x + 1)A Cos(x —1)B + Cosh(x — )A Cos(x + I)B}
AR S (@2n+1)| Cosh2A +Cos2B

Sinh(x + 1)A Sin(x — 1)B + Sinh(x — 1)A Sin(x + I)B}
Cosh2A +Cos2B

% {cos(.’in + 1)-’;—?} Cos(wt — 0 — e,)+{
x{cos(Bn+l)%}8in(mt_e_9')] eer(3.09)
taking real part only, where A and B are dunctions of n, w, A, A; and M?.

8-4 DEDUCTIONS

Case I: Putting A; = 0 in the equation (3.05) we shall obtain visco-elastic Rivlin-

Ericksen fluid which is given below

W= =0 ; Il _ Koahix }Cos(?.n +1) 2 g }
“n+1)T2|  CoshT 2b

where
N = X
1-A,0
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and
o - M?

T? =m* - .
[-A,®

Case I1: When putting A; = 0 and A, = 0 in the equation (3.05), we obtain purely viscous

fluid and velocity in this case is

4X, & (=) (l_costh

W = -
“on+ T2 CoshT

Cos(2n+ )2 e,
2b

where

T? =m? -0 +M?%

Case I1I: When the magnetic field is absent i.e. M = 0, the velocity will be in the form

wo NN [|_ CoshTx

5 ]Cos(Zn + l)m xe™,
n S 0@2n+1)T L CoshT 2b

where

2 o(l-10)
1-A,0

T =m

| 8-5 DISCUSSIONS OF STABILITY

-l

We study the stability of the flow due to transient body force X = X,e™, the motion of

the fluid will be stable if @ > 0. It means that the motion of the fluid tends to finite value
or zero as t tends to infinity and hence is stable. Both the roots of the characteristic

equation in @ are to be positive for motion to be stable.

The presence of a negative root would lead to an unstable transient motion. Also if the
roots are complex conjugate with positive real part, the motion will be stable and damped
oscillation, while the complex conjugate roots with negative real part will generate

instability. In our problem we have the relation

iZ= (I-A0)o- MZ)
1-X,0 ‘
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This leads to the characteristic equation as
A0 —(1+A,M? + 0,k +k*> +M? =0 e (5.01)

The roots are

| S£4fST 41, (k7 +M?)
- 7, ’

®

where

S=1+AM?*+24k%

The transient motion will be stable if

S? — 4L, (M? +k?)>0 cen(5.02)

S—4/S? —4A,(M? +k?) >0 coon(5.03)
Relation (5.02) and (5.03) implies

Ay S8y,

These are the conditions of stable of visco-elastic oldroyd type fluid.
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8-6 NUMERICAL CALCULATION

For numerical calculation of the velocity profile, the following data are considered for
equation (4.05)
A, =0.05,A, =0.005 X,=1,0=10,b=0.25a=0.5,x=0.75and y = 0.45

Table-1 Table2 Table2
W W n
¢ | A4,=005 A4,=0005 A, =0 A4,=0.005 A=2,=0

M=0 | M=3 | M=6 | M=10 | M=0 | M=3 | M=6 | M=10 | M=0 | M=3 | M=6 | M=10
00| 0114 | .0078 | .0051 | .0028 | .0845 | .0161 | .0072 | .0038 | .0568 | 0153 | .0069 | .0037
.02 | .0093 | .0064 | .0042 | .0023 | .0692 | .0132 | .0059 | .0031 | .0465 | .0125 | .0056 | .0030
.04 | 0076 | .0052 | .0034 | .0019 | .0566 | .0108 | .0048 | .0025 | .0381 | .0102 | .0046 | .0025
.06 [ .0062 | .0043 | .0028 | .0015 | .0464 | .0088 | .0039 | .0021 | .0312 | .0084 | 0038 | .0020
08 .0051 | .0035 | .0023 | .0012 | .0380 | .0072 | .0032 | .0017 | .0255 | .0069 | .0031 | .0017
10 | .0042 | .0023 | .0018 | .0010 | .0311 | .0059 | .0026 | .0014 | .0209 | .0056 | .0025 | .0013
.12 | 0034 | 0023 | .0015 | .0008 | .0254 | .0048 | .0022 | .0011 | 0171 | .0046 | .0021 | .0011
141 .0028 | .0019 | .0012 | .0007 | .0208 | .0040 | .0018 | .0009 | .0140 | .0038 | .0017 | .0009
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Fig-1(a)

~ —=),=0.05 &2, =0.005
—-)1,=0 &2, =0.005
=M= A =0

0,09
0,08
0,07
0,06
0,05

0,04

W(at M=0)

0,03
0,02

0.01 L\‘\\“'\—-—\,\_’\_*
0 T T T T T T !

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14
t

Fig 1(a): Shows the Velocity Profiles at M = 0 for Oldroyd Fluid, Rivilin
Ericksen Fluid and Ordinary Viscous Fluid with Time in a
Rectangular Channel.
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Fig-2(a)
 -=-),=0.05 &), =0.005 |
i 3,20 &3,=0.005
| ~n= a0
0,008
0,007
0,006
— 0,005
i
= 0,004
>,
= 0,003
0,002
0,001
0 | I | | I I 1
0 0,02 0,04 0,06 0,08 0,1 0,12 0,14
t

Fig 2(a): Shows the Velocity Profiles at M = 6 for Oldroyd Fluid, Rivilin
Ericksen Fluid and Ordinary Viscous Fluid with Time in a
Rectangular Channel.
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Fig-3(a)

—=-1,=0.05 & },=0.005
"""A,] =0 & lg =0.005
—A— A= As =0

0,008
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0O 0,02 0,04 0,06 0,08 0,1 0,12 0,14

t

Fig 3(a): Shows the Velocity Profiles at M = 10 for Oldroyd Fluid, Rivilin
Ericksen Fluid and Ordinary Viscous Fluid with Time in a
Rectangular Channel.
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8-7 CONCLUSION

Fig 1(a), 2(a) and 3(a) shows the following results:

I. Velocity of Oldroyd is smaller than Rivlin-Ericksen fluid and ordinary viscous

fluid.

2. Velocity of Rivlin-Ericksen fluid as greater than Oldroyd fluid and ordinary

viscous fluid.

3. Velocity of ordinary viscous fluid is greater than Oldroyd fluid but smaller than
Rivlin-Ericksen fluid.

4. Velocity decrease due to increase of magnetic field in the case of all fluids

Unsteady MHDI'LOW of Visco-Elastic Oldroyd I'luid with the 109 -
Time Varying Body I'orce Through a Rectangular Channel



STUDIES ON THE HYDROMAGNETIC STABILITY OF
~ NEWTONIAN AND NON-NEWTONIAN FLUID
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