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PREFACE

The thesis entitled “Some Theoretical Studies on Turbulence and Magneto-hydrodynamic
turbulence” is being presented for the award of the degree of Doctor of Philosophy in Mathematics.
It is the out come of my researches conducted in the Department of mathematics, Rajshahi
University, Rajshahi, Bangladesh under the guidance of Dr. M. Shamsul Alam Sarker, Professor,
Department of Mathematics, Rajshahi University, Rajshahi- 6205, Bangladesh.

The whole thesis has been divided into six chapters.

The first chapter is a general introductory chapter and gives the general idea of Turbulence
and Magneto hydrodynamic turbulence and its principal concepts. Some results and theories, which
are needed in the subsequent Chapter, have been included in this chapter. A brief review of the past
researches related to this thesis has also been given. Throughout the work we have considered the
flow of fluids to be isotropic and homogeneous. The notions generally adopted are those used by
Batchelor, Chandrasekhar, Deissler, Jain and Lundgren in their research papers. Number inside

brackets [ ] refer to the references which are arranged alphabetically at the end of the thesis.
The second chapter consists of three parts:

In part-A, we have studied the decay of temperature fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi- time in a rotating system. In
this Chapter we have considered correlations between fluctuating quantities at two and three point.
Two and three point correlation equations in a rotating system are obtained and these correlation
equations are converted to spectral form by taking their fourier transforms. Finally the energy decay
law of temperature fluctuations in homogeneous turbulence at times before the final period for the
case of multi-point and multi-time in a rotating system is obtained. This study shows that due to the
effect of rotation of fluid in homogeneous turbulence, the temperature energy fluctuations decays

“more rapidly than the energy for non-rotating fluid for times before the final Period.

In part-B, we have studied the decay of temperature fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time in presence of dust
particles. In this chapter, at first we have considered correlations between fluctuating quantities at
two-point two-time and three-point three-time correlation equations in presence of dust particles.
The equations are obtained and the set of equations is made to determinate by neglecting the
quadruple correlations in comparison to the second and third order correlations. Then the correlation
equations are converted into spectral form by taking their fourier transforms and then the energy
decay law of temperature fluctuations in homogeneous turbulence before the final period for the
case of multi-point and multi-time in presence of dust particles is obtained.

In part-C, we have studied the effect of coriolis force on the decay of temperature
fluctuations in homogeneous turbulence before the final period for the case of multi-point and multi-
time in presence of dust particles and derived an early period decay equation of homogeneous
turbulence in a dusty fluid under the effect of rotation. The obtained equation shows that the effect
of rotation in homogeneous turbulence the temperature energy fluctuation decays more rapidly than
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the energy for non-rotating clean fluid for times before the final period. It is the extension work of
part-A and part-B of this chapter.

In the third chapter, a hierarchy of distribution functions in the statistical theory for
simultaneous velocity, magnetic field, concentration and temperature fluctuations in MHD turbulent
flow in a rotating system in presence of dust particles have been studied. Some properties of
distribution functions have been discussed. Equations for the evolution of one and two point
bivariate distribution functions in MHD turbulent flow in a rotating system in presence of dust
particles have been derived and finally a comparison of the equation for one point distribution
functions in case of zero viscosity and negligible diffusivity is made with first equation of BBGKY
hierarchy in the kinetic theory of gasses.

The fourth chapter also consists of two parts:

In part-A, we have studied the decay of temperature fluctuations in MHD turbulence before
the final period in a rotating system and have considered correlations between fluctuating quantities
at two and three point. Two-and three-point correlation equations in a rotating system is obtained
and the set of equations is made to determinate by neglecting the quadruple correlations in
comparison to the second and third order correlations. The correlation equations are converted to
spectral form by taking their Fourier-transforms. Finally we have obtained the decay law of
temperature fluctuations energy before the final period.

In part-B, we have discussed the decay of temperature fluctuations in dusty fluid MHD
turbulence before the final period in a rotating system. The results obtained have been compared
with the equations of part-A of this chapter.

Chapter V is again divided into three parts:

In part-A, we have discussed the decay of MHD turbulence before the final period for the
* case of multi-point and multi-time in a rotating system. Two-and three-point correlation equations in
a rotating system have been obtained and the set of equations is made to determinate by neglecting
the quadruple correlations in comparison with the second and third order correlations. The
correlation equations have been converted into spectral forms by taking their Fourier transforms.
Finally integrating the energy spectrum over all wave numbers, the solution is obtained and this
solution gives the energy decay law of magnetic energy fluctuations in MHD turbulence before the
final period in a rotating system for the case of multi-point and multi-time. The result shows that due
to the effect of rotation in the magnetic, ﬁeld, the turbulent energy decays more rapidly than the
energy for non-rotating fluid.

In part-B, we have considered the decay of MHD turbulence before the final period for the
case of multi-point and multi-time in presence of dust particles and the decay law of magnetic
energy fluctuations of MHD turbulence before the final period for the case of multi-point and multi-

time in presence of dust particles is obtained.

In part-C, we have studied the Decay of dusty fluid MHD turbulence before the final
period in a rotating system for the case of multi-point and multi-time. We have considered the two
and three point correlation equations and solved them after neglecting the fourth order correlations
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in comparison with the second and third order correlations. Finally the energy decay law of dusty
fluid MHD turbulence before the final period in a rotating system for the case of multi-point and
multi-time has been obtained. Here due to the effect of rotation in presence of dust particles in the

magnetic field, the turbulent energy decays more rapidly than the energy for non-rotating clean
fluid. It is also the extension work of part-A and part-B of this chapter.

The six chapter is an over all review of the works with conclusions based on the findings of
the thesis.

The following research papers, which are extracted from this thesis, have been accepted and
communicated for publication in different national and international journals.

(1) Decay of MHD turbulence before the final period for the case of multi-point and multi-time
in presence of dust particles
(Accepted for publication in the journal of “The Bangladesh Journal of Scientific and Industrial
Research™).

(2) Statistical theory of certain distribution functions in MHD turbulent flow in a rotating systen in
ry g sy
presence of dust particles
( Accepted for publications in the journal of ““Rajshahi University Studies , Part-B”).

(3) Decay of MHD turbulence before the final period for the case of multi-point and multi-time
in a rotating system
( Accepted for publications in the journal of “Rajshahi University Studies , Part-B”).

(4) Decay of dusty fluid MHD turbulence before the final period in a rotating system for the case of
multi-point and multi-time
~ (Presented in the 14" Mathematics conference, 27-29 December, 2003, Department of
Mathematics, University of Dhaka, Dhaka and communicated for publication)

(5) Decay of temperature fluctuations in homogeneous turbulence before the final period for the
case of multi-point and multi-time in a rotating system (Communicated for publication).

(6) Decay of temperature fluctuations in homogeneous turbulence before the final period for the
case of multi-point and multi-time in presence of dust particles (Communicated for publication).
(7) Decay of temperature fluctuations in homogeneous turbulence before the final period for the

case of multi-point and multi-time in a rotating system in presence of dust particles
(Communicated for publication).

(8) Decay of temperature fluctuations in MHD turbulence before the final period in a rotating
system (Communicated for publication).

(9) Decay of temperature fluctuations in dusty fluid MHD turbulence before the final period in a
rotating system (Communicated for publication).

Department of Mathematics ( Md. Abul Kalam Azad )

University of Rajshahi,
Rajshahi-6205, Bangladesh.
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Chapter 1 ]

CHAPTER-I

General Introduction

1. Basic Concept and Definition of Turbulence:

The theory of turbulent motion has received considerable attention in recent
developments of high-speed jet aircraft, plasma physics and chemical engineering. The
formation of a turbulent boundary layer is one of the most frequently encountered phenomena

in high-speed aerodynamics.

[t is common experience that the flow observed in nature such as rivers and winds
- usually differ from stream flow or laminar flow of a viscous fluid. The mean motion of such
flow does not satisfy the Navier-Stockes equations for a viscous fluid. Such flows, which occur
at high Reynolds numbers, are often termed turbulent flows. In turbulent flow, the steady
motion of the fluid is steady so far as the temporal mean values of velocities and the pressures
are concerned where as actually both velocities and the pressures are irregularly fluctuating.
The velocity and pressure distributions in turbulent flows as well as the energy losses are
determined mainly by turbulent fluctuations. The essential characteristic of turbulent flows is

that the turbulent fluctuations are random in nature.

The instability of laminar flow at a high Reynolds numbers, are causes disruption of the
laminar pattern of fluid motion. With sufficient disturbances the result is known as turbulence.
The irregular, chaotic motion of fluid particle characterizes turbulence. It is far too complicated
to be known in complete detail. This fact has been recognized by all theories extant today start

with a stochastic formulation of the phenomenon.

At least, the technical people understand the meaning of turbulence. The use of the
word “Turbulence” to characterize a certain type of flow, namely, the counterpart of streamline

motion is comparatively recent. Reynolds, O. [102] made the first systematic experimental
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investigation of turbulent flow. The turbulent motion of fluid was described by Reynolds
[102], one of the pioneers in the study of turbulent flows as “sinuous motion” because fluid

particles in turbulent flow appeared to follow sinusoidal or irregular paths.

Turbulence is rather a familiar notion; yet it is not easy to define in such a way as to
cover the detailed characteristic comprehended in it and to make the definition agree with the
modern view of it held by professionals in this field of applied science. The word “Turbulence”
means: agitation, commotion, disturbance etc. This definition is, however, too gencral, and
does not suffice to characterize turbulent fluid motion in the modern sense. In 1937, Taylor and

Vonkarman [128] gave the following definition:

* Turbulence is an irregular motion which in general makes its appearance in fluids,
gaseous or liquid, when they flow past solid surface or even when neighbouring streams of the

same fluid flow past or over one another”.

According to this definition, the flow has to satisfy the condition of irregularity. But
this irregularity is a very important feature. Because of irregularity, it is impossible to describe
the motion in all details as a function of time and space co-ordinates. But fortunately turbulent
motion is irregular in the sense that it is possible to describe it by laws of probability. It
appears possible to indicate distinct average values of various quantitics, such as velocity,
pressure, temperature, etc and this is very important. If turbulent motion were entirely
irregular, it would be inaccessible to any mathematical treatment. Therefore, it is not sufficient
just to say that turbulence is an irregular motion yet we do not have clear-cut definition of

turbulence. This is rather difficult.

Hinze [41] suggested that, “Turbulent fluid motion is an irregular condition of flow in
which various quantities show a random variation with time and space co-ordinates, so that

statistically distinct average values can be discerned”.

The addition “with time and space co-ordinates’ is necessary; it is not sufficient to
define turbulent motion as irregular in time alone. For instance, the case in which a given
quantity of a fluid is moved bodily in an irregular way; the motion of each part of the fluid is

then irregular with respect to time to a stationary observer, but not to an observer moving with
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the fluid. Nor is turbulent motion, a motior  at is irregular in space alone, became a steady
flow with an irregular flow pattern might the ~ yme under the definition of turbulence.
Turbulence sets in for various reasor A sudden change in one of parameters of a flow
field, e.g., kinematics viscosity, could ea - cause instability viscosity, for example, is
responsible for conversion of kinetic energy ato heat, thus causing turbulence to arise. Such
phenomena are almost surely found in shearing flow with high Reynolds numbers. As the case

for nonlinear stochastic phenomena, the problem of turbulence is still far from being solved.

Physically, turbulence is a manifestation of an inter-active motion of eddies of various
sizes, where by an eddy we mean a lump of fluid over which flow properties do not vary

substantially.

Different Kinds of Turbulence:
As Taylor and Von Karman have stated in their definition, Turbulence can be generated
by the friction forces at fixed walls (fluid flow through conduits, fluid flow past solid surfaces)

or by the flow of layers of fluids with different velocities past or over one another.

The above definition indicates that there are two distinct types of turbulence.
(i) Wall turbulence
(i1) Free turbulence

(i) Wall turbulence : Turbulence is generated by the viscous effect due to presence of a

solid is called wall turbulence.

(ii) Free turbulence : Turbulence in the absence of walls, generated by the flow of

layers of fluids at different velocities is called free turbulence.,

In the case of real viscous fluids, viscosity effects will result in the conversion of
kinetic energy of flow into heat; thus turbulent flow, like all flow of such fluids, is dissipative
in nature. If there is no continuous external source of energy for the continuous generation of
the turbulent motion, the motion will decay. Other effects of viscosity are to make the

turbulence more homogeneous and to make it less dependent on direction.

isotropic Turbulence:

1 he turbulence is called isotropic if its statistical features have no preference for any

direction, so that perfect disorder reigns. No average shear stress can occur and consequently,
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no velocity gradient of the mean velocity. This mean velocity, if it occurs, is constant

throughout the field.

Isotropic turbulence is the simplest type of turbulence, since no preference for any
specific direction and a minimum number of quantities and relations are required to describe its
structure and behaviour. However, it is also a hypothetical type of turbulence, because no
actual turbulent flow shows true isotropy, though conditions may be made such that isotropy is

more or less closely approached.

From theoretical considerations and experimental evidence it is known that the fine
structure of most actual non-isotropic turbulent flows is nearly isotropic (local isotropy). Hence
many features of isotropic turbulence may apply to phenomena in actual turbulence that is

determined mainly by the fine-scale structure, where local isotropy prevails.

In isotropic turbulence the mean value of any function of the velocity components and

their derivatives is unaltered by any rotation or reflection of the axes of references. Thus in

. sl g 52 2 = ;
particular, #” =v" =w" and uv=vyw=wu=0

Isotropy introduce a great simplicity into the calculations. The study of isotropic

turbulence may also be of practical importance, since far from solid boundaries it has been
observed that uf , u; s uf tend to become equal to one another, e.g. in the natural winds at a

sufficient height above the 'ground and in a pipe flow the axis.

Homogeneous Turbulence:

The turbulence which has quantitatively the same structure in one parts of the flow field
is called homogeneous turbulence. In a homogeneous turbulent flow field the statistical

characteristic are invariant for any translation in the space occupied by the fluid.

The conception of homogeneous turbulence is idealized, in that there is no known

method of realizing such a motion exactly. The various method of producing turbulent motion
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in a laboratory or in nature all involves discrimination between different parts of the fluid, so
that the average properties of the motion depend on position. However, in certain
circumstances this departure from exact independence of position can be made very small, and
it is possible to get a close approximation to homogeneous turbulence. Most of the theoretical
works in turbulence and MHD turbulence in homogeneous and isotropic field in an

incompressible fluid at rest.

Non-isotropic turbulence:

In all other cases where the mean-velocity shows a gradient, the turbulence will be non-

isotropic or an isotropic.
Shear flow turbulence:

The gradient in mean velocity is associated with the occurrence of an average shear
stress, the expression “shear flow turbulence”. It is often used to designate this class of flow.

Wall turbulence and an isotropic free turbulence fall into this class.

Reynolds number and its effect on turbulent flow:

Reynolds define a dimensionless quantity which is defined by the ratio of the inertia
force to the viscous force is called Reynolds number after his name. This Reynolds number can

be used as a measure for indicating the occurrence of laminar and turbulent flow transition

between them.

According to definition of Reynolds number

Reynolds no. = ¢ force _ pv* _pvd _vd

viscous force — pv T v

d

v — mean velocity of liquid
d — diameter of pipe

v —> kinematic viscosity of liquid

Dimension of Reynolds number:
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....... x L _
Re. nr).:E:Tj =_T__=1,-.V:ﬂ
v T Time

which shows that Reynolds number has no units but it is a dimensionless number.

Reynolds number has much importance and gives the information about the type of

flow (i.e. laminar or turbulent).

Reynolds [102] after carrying out a series of experiments found that if the Reynolds
number for a particular flow is less than 2000, the flow is faminar flow. But the Reynolds
number is between 2000 and 2300, it neither laminar flow nor turbulent flow. But the Reynolds

number, exceeds 2300, the flow is turbulent flow.
Critical Reynolds number:

Reynolds [102] investigated circumstances of the transition from laminar to turbulent
flow. Based on his experimental results Reynolds [102] concluded that the transition from
laminar to turbulent flow in pipes always occurred at nearly the same Reynolds number. This
suggested that the Reynolds number at which the flow the change from laminar flows to
turbulent flow is called critical Reynolds number. The approximate value the critical Reynolds
number, Re, at which the laminar regime breaks down was established to be order of 2x10°.
Later with Reynolds apparatus, Ekman [32(a)] was able to maintain laminar flow up to a
critical Reynolds number of 4x10* when the testing conditions were made extremely free from
disturbances. There are two types of critical Reynolds number.

(i) Upper critical Reynolds number.

(ii) Lower critical Reynolds number.

Upper critical Reynolds number: The Reynolds number, which defines the upper limit of
laminar flow, is called the upper critical Reynolds number or in other words the Reynolds
number at which the flow enters from transition to turbulent flow is known as upper critical
Reynolds number. However, several more recent investigators [39(a), 101(a)] have repeatedly
demonstrated that there is no definite upper critical Reynolds number; rather the numerical

value depends largely on the test conditions affecting the initial turbulence of flow.
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Obviously, the upper critical Reynolds number is a function of initial disturbances; its
numerical values always increase with a decrease in disturbances. For engineering purposes,
high numerical values of the upper critical Reynolds number are of limited practical
significance; the transition from to turbulent flow in a tube may be assumed to take placed at

2100-4000.

Lower critical Reynolds number: The Reynolds number which defines the below limit of
laminar flow is called the lower critical Reynolds number or in other words the critical
Reynolds number at which the flow enters from laminar to transition period is known as a
lower critical Reynolds number. At lower critical Reynolds number the flow is always laminar.
For flow through round tubes the lower critical Reynolds number is taken to be approximately
2000. This lower critical Reynolds number has considerable practical significance since it
defines a definite limit below which all initial disturbances in the flow will eventually be

damped out by fluid viscosity; therefore the flow is always laminar.

From the above discussion we conclude that if the Reynolds number is smaller than the
critical Reynolds number i,e R < Rey, the flow is laminar. If the Reynolds number is greater
than the critical Reynolds number i,e R < Reg, the flow is turbulent. Transition normally takes

place at Reynolds number 2000-4000.

Other factors affecting transition from laminar to turbulent flow are

(a) The influence of the pressure gradient on transition from laminar flow to a

- turbulent flow is demonstrated by Schubaner and Shramstad’s [123(a)] experimental results.

For accelerated flow ( % <0 and %> 0 ) the critical Reynolds number, Reg increases,
dp du : :
where as for retarded flow ( 3 >0 and = <0 ) Re, decreases i.e transition to turbulent
x X

flow much more easily provoked.

(b) The effect of roughness of the wall on transition is to decrease the critical
Reynolds number. This is clear because roughness would be equivalent to additional

disturbances in the laminar strewing.
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(c)  Curvature has negligible effect on convex surface (the radious of curvature is

negative), but the critical Reynolds number was found to decrease as the radious of curvature

of a concave surface decreases.

(d) Suction of the boundary layer at the wall has a very powerful influence on

stabilizing the laminar flow; but injection will tend to decrease the critical Reynolds number.

(¢)  For heated wall when T, > T, the transfer of heat from the wall to the gas tends
to destabilize the laminar boundary layer, where as the heat transfer from the gas to the wall

Tw < T« increases the critical Reynolds number.
1.2 Historical Back Ground of Early Work of Turbulence:

The study of turbulence began with the works of Boussinesq [1] and Reynolds [102].
Boussinesq cast much light on the physics of turbulence. He pointed out that turbulent motion
is chaotic in nature and can’t be treated by deterministic laws, hence indicating the use of
theory of probability. Reynolds, O. in 1883 [102] first made the systematic investigations and
gave the experimental results to understanding the facts of turbulent flow. He made the
remarkable difference between laminar and turbulent flows by proposing the Reynolds number
and gave the Reynolds stresses to describe the turbulent phenomena. Reynolds averaged the
Navier-Stockes equations for an incompressible fluid. Thus he established the so-called
Reynolds equations for the mean values. His technique followed closely that used by Maxwell
“in 1850 when Maxwell deduced the Navier-Stockes equation from the Kinetic theory of gases.
Therefore, the theory of turbulence was based on analogies with the discontinuous collisions
between the discrete entities studied in Kinetic gas theory. Prandtl [93] developed His “mixing
length” theory based on the problems of practical importance such as pipe flows over
boundaries of specific shapes. Prandtl’s theory was successfully applied to the turbulent flow
of a liquid in a circular pipe and also to the meteorological problem of wind distribution in the

layer of air adjacent to the ground. However, his theory had a serious weakness in the sense

that it requires some adhoc assumption on the mixing length.
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The origin of the idea of statistical approach to the problem of turbulence may be traced
back to Taylor’s paper of 1921 [125] in which he has advanced the concept of the Lagrangian
correlation coefficient that provides a theoretical basis for turbulent diffusion. Tailor, G. I.
[126,127] and Von Karman, T. [133,134] broke away from the concept, which described
turbulence in terms of collisions between discrete entities and instead introduce the concept of
velocity correlation at two or more points, as one of the parameters involved in describing
turbulent motion. Taylor, G. I. introduced the so-called “ energy spectrum” method to describe
the probability density function for energy in the turbulent flow field. Von Karman proved that
the correlation of velocities at two points is a tensorial character. He introduced the
“correlation tensor” method. Taylor, G. I. [126] introduces the idea that the velocity of the
fluid of turbulent motion is a random continuous function of position and time. To make the
turbulent motion amenable to mathematical treatment, he assumes the turbulent fluid to be
homogeneous and isotropic. In its supports, he describes the measurements showing that the
turbulence generated downstream from a regular array to rods in a wind tunnel is
approximately homogeneous and isotropic. In spite of the fact that the turbulence in nature is
not always exactly homogeneous and isotropic, it is essential to study homogeneous and
isotropic turbulence as a first step to understand the more complicated phenomenon of non-

homogeneous turbulence.

Taylor, G. 1. [130] in 1938 took into account the non-linearity of the dynamical
equations and showed that it results in the skew ness of the probability distribution of the
difference between the velocity components at two points. He showed that the non-linearity of
the dynamical equation is also responsible for the existence of the interaction between

components of the turbulent having different fluctuations.

Kolmogoroff’s [67, 68] work contributed significantly to understanding the physics of
turbulence. His outstanding works in the theory of local homogeneous and local isotropic
turbulent flow resulted in the “2/3 Kolmogoroff law”, the analog of which in the language of

spectra is the 5/3 law.

Another significant contribution came from Hopf, E. [44,45] who applied the theory of
the characteristic functional to turbulence, and Kampe de Feriet, J. [33], who used the theory of

group transformation in order to mathematically certain characteristics of turbulent motion.
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Kampe de Feriet, J. and Batchelor, G. K. introduced the three dimensional spectrum functions
and by means of Fourier transformations, investigated many of its properties in connection
with the energy spectrum.

Other significant contributors to the theory of turbulence were S. Chandrasekhar, R.
Betchov, J. Laufer, A. A. Townsend, J. O. Hinze, S. Corrsin, O. Phillips, A. S. Monin, A. S.
Obuklov, A. M. Yaglom and G. Yamamoto modified theory of incompressible turbulence to

accommodate compressible turbulence, but without significant success.

Continuous through today, modern theories in turbulence are still statistical in nature,
but are phenomena logically different from previous efforts. Among the most important recent
developments is Kraichnan’s [69] theory of direct interaction approximation. In fact
Kraichnan’s theory represents an effort to determine an average green’s function of a nonlinear

stochastic field.

In the following instead of giving a detailed account of the historical development of
the subject, we shall confine to mere concepts and method of turbulence together with a few

theories of turbulence, which have been used in subsequent chapters.

1.3 Averaging Procedure:

In mathematical description of turbulent flow, it is convenient to consider an
‘instantaneous velocity such as u is the sum of the time average part # and momentary

fluctuation (fluctuating velocity) u’ i,e

u=uw+u e (1.3.1)
where # — average value or mean value
u' — fluctuating velocity and

u — velocity of motion

In a steady flow @ does not change with time. In talking the average of a turbulent
quantity, the result depends not only on the scale used but also on the method of averaging.
These are four different kinds of averaging procedure introduced by Pai [91] that are found to

be useful for the study of turbulent flows. These are
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(i) time average,
(i) space average,
(iii) space-time average and

(iv) ensemble average or the statistical average.

If the turbulent flow field is quasi-steady, time average can be used. For a
homogeneous turbulence flow field, space average can be considered. If the flow field is steady
and homogeneous, space-time average is used. Lastly, if the flow field is neither steady nor
homogeneous, we assume that averaging is taken over a large number of experiments that have
initial and boundary conditions. This type of average is called ensemble average or statistical
average. Ensemble average is more general than the time and space averages and very useful
for the study of in homogeneous, non-stationary turbulent flow. This type of averaging can be
applied to any flow. Most of the modern theories have used the ensemble averaging procedure
for describing the statistical properties of turbulence. However, like the time and space
averages, the physical interpretation of the ensemble average is not so simple. In general any

turbulent field is completely determined by the hierarchy of correlations.

(u,(r,t)), (u,(r,t)uj (r',t)) , <u, (r,t}u,(r',t)um (x",t) >, where, ( ) denote the ensemble

average defined in Leslie’s Book (79)

In homogeneous isotropic turbulence the first correlation represents the mean velocity,
and is simply zero, the pair correlation <u,(r)uj (r')) is often considered to be a sufficient

description of turbulent flow. The higher order correlations are assumed to give less and less
information so that only a finite number of correlations are required to determine the statistical

properties of turbulence. This is a possible method of reducing the infinite hierarchy of

equations into a closed set.

The double correlation tensor Rj; (I:,J?:,t ) for two points separated by the space vector

7 is defined by

- w ke i e
Rij (rax:t)=< ( x“"”i( ,t )MJ( x+'§:r,[ ))

Similarly, the triple correlation tensor Ty or higher correlation tensors can be
introduced.
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The Fourier transform of Rjj with respect to 7 defined by

8,(5.0)= L[] [ 6. A)R, ()

(27) *°

represents the energy spectrum function E(k,t) in the sense that it describes the distribution of
kinetic energy over the various wave number component of turbulent flows. The Fourier
transform defined above can be treated as generalized functions or distributions in the sense of

Lighthill [71]. It follows from the inverse Fourier transform that

l(‘uz) . (u,(i)u, (JE)) = %R” (0,2,1)= TE(/;,t}ﬁ;
0

2 "

So that E(k,l) represents the density of contributions to the kinetic energy in the wave

numbers of space k, thus the investigation of the energy spectrum function E(k,l) is the

central problem of the dynamics of turbulence.
Expressed in mathematical form the four methods of averaging applied for instance.

(a) Time average for a stationary turbulence

+1

;7 (x,1)= ,11_13; —2]7 I u(x,1)ds
1

In practice the scale used in the averaging process determines the value of the period 2T.

(b) Space average in which we take the average over all the space at given time, i.e

izi(x,t)= lim A ju(s,t)ds

vy —>o0
b Vb 9

In practice the volume of space the scale used in the averaging process determines V.
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(¢) Space time average in which we take the average over a long period of time and over the

space i.e.,

T, ' +1
E(x,t) = lim 1 JI u(.s*,y)d.s*dy

T, )= 2T. LA

In practice the scale used determines both the values of T and of V,,

(d) Statistical average in which we take the average over the whole collection of sample

turbulent functions for a fixed time, i.e.

iﬂri(x, l, a)) = ju(x, l, aJ)du(a))

Q

over the whole Q space of , the random parameter. The measure is
Ja’y(a)) =1
o]

Some explanations are neglected for the statistical average. The essential characteristic
of the turbulent motion is that the turbulent fluctuations are random in nature. A turbulent
velocity field can be regarded as a random vector field of a set of vectors in space and time.
Any random vector field can be regarded as a field consisting of three random scalar fields as
its components. A random scalar function u(x,t,) is a function of the spatial co-ordinates x
and time t, which depends on a parameter @. The parameter o is chosen at random according

to some probability law in a space.

In the experimental investigation we use time averages almost exclusively, space
averages seldom and never statistical averages. In the theory, we use almost exclusively the

statistical averages.

For stationary homogeneous turbulence we may expect and assumed that the three

averaging lead to the same result.
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! 8
U =u-=

IS

This assumption is known as the ergodic hypothesis.

1.4 Reynolds Rules of Averages:

Reynolds [102] was the first to introduce elementary statistical motion into the
consideration of turbulent flow. In the theoretical investigation of turbulence, he assumed that
instantancous fluid velocity satisfies the Navier-Stockes equations for a viscous fluid and that
the instantaneous velocity may be separated into a mean velocity and a turbulent fluctuating
velocity. u, P, T and p be respectively the instantaneous velocity, pressure time and density,

then the process of averaging we write
u=u+u', P=P+P', p=p+p', T=T+T etc

In these expressions the quantities with bars denote mean variables and the quantities

with prime denote the fluctuating variables.

L

Furthermore #' =P '=T"'=0

In the study of turbulence we often have to carry out an averaging procedure not only

on single quantities but also on products of quantities. Here the over scores have the following

properties.

let A=A+ A" and B=B+B'

In any further averaging procedure we can show that

A=dAd+A=Ad+4'=4 whence A'=0 memeeememeee- (1.4.1)
B=B+B'=B+B'=8 whence B'=0  eeeeeeeeeee (1.4.2)
In the above relations we used the properties that the average of the sum is equal to the

sum of the averages and the average of a constant times B is equal to the constant times the

average of B.
Next
= AR

o3|

Bd
T -TR=l &Bes e (1.4.4)

E

=
=)
It
<
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BA=BA'=BA'=0 . A'=0 e (1.4.5)
Similarly,
AB=(A+ A B+B)=AB+AB + AB+ AB =AB+ 4B e (1.4.6)

Note that the average of a product is not equal to the product of the averages. Terms

such as A'B’ are called correlations.

1.5 Reynolds Equations and Reynolds Stresses:

In turbulent flow, we usually assume that instantaneous velocity components satisfy the

Navier-Stockes equations,

Wiww=r-Ltvpewry e (1.5.1)
ot fo) '

The tensor form the equation (1.5.1) can be written as

0 , *u,
Oy B p 1O, 0 (1.5.2)
or ox, p Ox, ou ,Ou ,

Substituting the expression for the instantaneous velocity components , =, +u, into
the Navier-Stockes equation (1.5.2) for an incompressible fluid after neglecting the body forces
and taking the mean values of these equations according to Reynolds rule of averaging
(1.4.1)-(1.4.6), we have the following Reynolds equation of motion for the turbulent flow of an
incompressible [uid.

O o O | O g O P e (15.3)
o ! ox, ox, ; oxox, ox, ' o

where i and j run from 1 to 3 and Einstein’s summation convection is used. The bar represents

the mean value and the prime represents the turbulent fluctuation. Additional terms over the

12
Navier-Stockes equations are due to Reynolds stress are — PU, and the eddy stresses are
- puu, (t' # j), where p is the density of the fluid. These stresses represent the rate of transfer

of momentum across the corresponding surfaces because of turbulent velocity fluctuations.

The solutions of Reynolds equation will be represent the turbulent flow, but as in the

case of Navier-Stockes equations it is not at the present time possible to solve the Reynolds
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equations for many practical purposes. In general the Reynolds equations are not sufficient to
determine the unknown variable u;, uj(i, j=1,2,3), p and Reynolds stresses. This is one of the
main difficulties in theoretical investigation of turbulent flow. In similar way, Reynolds
equation of motion for the turbulent flow of a compressible fluid may be obtained. But the
expressions for the eddy stresses (Reynolds stresses) of compressible fluid are much more

complicated because the fluctuations of density should be considered.

1.6 Correlation Functions:

Taylor, G. 1. [126] introduced new notions into the study of the statistical theory of
turbulence in a most important series of papers in 1935. He successfully developed a statistical
theory of turbulence, which is applicable to continuous movements and satisfies the equation

_of motion.

The first important new notion was that of studying the correlation or cocfficient of
correlation between two fluctuating quantities in turbulent flow. In his theory, Taylor makes

much use of the correlation between the components of the fluctuations neighbouring points.

The statistical property of a random variable may be described by the correlation

function, which is defined as follows:

Consider the fluctuating variables u; and u; and assume that there exists certain

correlation between them. The correlation function is defined as

o =wu, (1.6.1)

i
where the bar denotes the average by certain process. Some times it is convenient o use the

correlation coefficient such as

By Cauchy inequality, we have

it 0t S (16.3)



Chapter 1 17

hence —ISRUSI

If we consider u, and u; as the velocity components in a flow field, the correlation of

Equation (1.6.1) as a tensor of second rank.

By a different process of averaging we obtain different kinds of correlation functions. If
we consider u; and u; as the velocity components at a given point in space, u; and u; are
functions of time; hence, we showed take the time average in equation (1.6.1) to get the

correlation function Pjj.

If we consider u; and u; as the velocity components at a given time, u; and u; are
functions of space co-ordinates X(x;, Xz, X3); hence, we should take the space average in

“equation to get the correlation function.

More generally if we consider u; and u; as functions of both time t and spatial co-
ordinates x(x;, Xa, X3), we obtain take a space-time average in equation (1.6.1) to get the

correlation function.

The correlation function between the components of the fluctuating velocity at the same
time at two different points of the fluid, first introduce by Taylor, G. 1. [126], has been

investigated extensively in the isotropic turbulence.

The correlation function between two fluctuating velocity components at the same
point and at the same time gives the Reynolds Stress. The correlation function between two

fluctuating quantities may also be defined in a manner similar to above.

1.7 Spectral Representation of the Turbulence:

Theoretical treatment of the turbulence is merely related to the solution of the Navier-
Stockes equations. These equations, however, contain more unknowns than number of
equations and therefore additional assumptions must be made. This is known as * Closure
problem”. An alternative approach is based on the spectral form of the dynamical Navier-
Stockes equation. The spectral form of the turbulence is still under-determined, but it has a

simple physical interpretation and is more convenient. The spectral approach is, however,
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almost exclusively used for the description of homogeneous turbulence [85,86]. The principal

concepts of spectral representation in the study of turbulence are described below:

If we neglect the body forces from the Navier-Stockes equation (1.5.2) and multiply the

xi-component of Navier-Stockes equation written for the point P by u', and multiply the x’

component of the equation written for the point P’ by u’; adding and taking ensemble averages

we get.

0—s ., Ou O 1| o & 00w, O

UM AR, Ul = = U bl = [ P bl o | (L.7.1)
ol T oy, ox; Pl 7 ox, ox, ox " ox*)

Since in homogeneous turbulence the statistical quantities are independent of position
in space and considering the point P and P'. Separated by a distance vector 7 and applying the

laws of spatial covariances, a simplified form of equation (1.7.1) is obtained as:

0 o ( 1|opu’  dp'u O uu
] :—“(u,u;u! *—M,uj,u,')ﬁ»—— i S :

/

The covariance u,u', is not suitable for direct analysis of quantitative estimate of the
turbulent flows and it is better to use the three-dimensional Fourier transforms of EZZ:T with

respect to 7. The variable that corresponds to 7 in the three dimensional wave-number space is

a vector K =(K,,K,,K,). We define the wave number spectral density as:

$, (]Z): Z2—1)—3 ~I'Wexp(— i[?.F)dF o HWexp{— i(K 1, + Kyry + Kyr, dr drydr,
T

(27}

It can be shown that if u,u) has a continuous range of wavelength, ¢ﬁﬂ.(K)has a
continuous distribution in wave number space. We can rigorously regard @, (K)dKlngng as
the contribution of elementary volume dK,dK»dK; (centred at wave number K and therefore

T 4 _— 5 -
representing a wave number of length ]T in the direction of vector £) to the value of u,u,
K
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hence the name “Spectral density”. This is consistent with the behaviour of the inverse

transform

wu' (r)= T¢., (k)exp(ik.r)rl/? . (1.7.4)

The one dimensional wave number spectrum of w,u, for a wave number component in

the x; direction is
o)

l ; >
- 4, (k)=— Izt{u, (r, )exp(—r/{, ¥ )a’r, ---------- (1.7.5)

2

-0

whose inverse is
uJuJiri: J‘gﬁy([{'f)exp(ik,,rf Jak, (1.7.6)

The equation (1.7.2) for unstrained homogeneous turbulence becomes on Fourier
transforming as:
24, (K)

===,k (R)-2k7 g, &) (1.7.7)

where I" and [ are the transforms of the triple product and pressure terms respectively.

1.8 Equation of Motion of Dust Particles:

Knowledge of the behaviour of discrete particles in a turbulent flow is of great interest
to many branches of technology, particularly if there is a substantial difference between
particles and the fluid. Saffman [106] derived an equation that described the motion of a fluid

containing small dust particles, which is applicable to laminar flows as well as turbulent flow.

A more plausible explanation seems to be that the dust damps the turbulence. A dust
particle in air, or in any other gas, has a much larger inertia than the equivalent volume of air
and will not therefore participate readily in turbulent fluctuations. The relative motion of dust
particles and the air will dissipate energy because of the drag between dust and air, and extract
energy from turbulent fluctuations. If as certainly seems possible, the turbulent intensity is
reduced than the Reynolds stresses will be decreased and the force required to maintain a given

flow rate will likewise be reduced.
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In order to formulate the problem in a reasonably simple manner and to bring out the

essential features, we shall make simplifying assumption about the motion of dust particles. It
will be supposed that their velocity and number density can be described by fields 11(5&,[)and

N(i,t). We also assume that the bulk concentration (i.e. concentration of volume) of dust is
very small so that the effect of dust particles on the gas is equivalent to an extra force
KN('F o :T:)per unit volume, where ii(fc,t)is the velocity of the gas and K is constant. It is also
_supposed that the Reynolds number of the relative motion of dust and gas is small compared
with unity, so that the force between the dust and gas is proportional to the relative velocity.

Then with small bulk concentration and the neglect of the compressibility of the gas, the

equations of motion and continuity of the gas are:

,{%4&.%}]: ~Vp+W3i+ KNG -id) e (1.8.1)
C
divi=0 e (1.8.2)

where p, p and p are the pressure, density and viscosity of the clean gas respectively. If dust

particles are spheres of radius &, then by Stocke’s drag formula, K = 6mue .

As will be seen below, the effect of the dust is measured by the mass concentration, say

f. The bulk concentration is f £ where py is the density of the material in the dust particles.
P

For common materials 2~ will be of the order of several thousand or more, so that the mass
fo

concentration may be significant fraction of unity, while the bulk concentration is small. it is to
be noted that for suspension in liquids, the bulk and mass concentration will roughly be the
same. So that the qualitative differences in the motion of dusty gases and the suspensions in the

liquids may be expected. For spherical particles, the Einstein increase in the viscosity is

EM-,&, which is negligible for a dusty gas but may be significant for a liquid suspension. The
27 p

force exerted on the dust by the gas is equal and opposite to the force exerted on the gas by

dust, so that the equation of motion of the dust is:
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N e n o T
mN{é+(v.V)vJ:qu +KN(G-3) e (1.8.3)
where mN the mass of the dust per unit volume and 3 is the acceleration due to gravity. The

buoyancy force is neglected since £~ is small.
P

The equation of continuity of the dust is:

ON
—+div(W)=0 (1.8.4)
ot
Here, v= # s Kinetic viscosity of the clean gas and ;= _j}:_is called the relaxation time of the
P

dust particles. It is measure of the time for the dust to adjust to changes in the gas velocity. For

spherical particles of radius ¢,

rep, 262 p
N 7 el
bren 9v p

4 . i . .
where EESJP’ mass of single spherical dust particle of radius €; p,, density of the material in
the dust particles.

The effect of dust is described in two parameters f and t. The former describes how
much dust is present and the latter is determined by the size of individual particles. Making the
dust fine, will decrease 1, and making coarse, will increase t in a manner proportional to the

surface area of the particles.

1.9 Decay of Turbulence before the final period and in the final period:

In considering the dynamic equations for the velocity correlation and for the energy
spectrum, it has been shown that these correlations and spectra change with time and the
turbulence decays if no energy sources are present to sustain it. As in all fluid flows, an
important parameter is the Reynolds number and the character of the turbulence may vary

appreciably whether the Reynolds number of turbulence is large or small.
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Batchelor and Townsend [2,3,4] have made many measurements of the decay of an
isotropic turbulence produced by grids. From the results of these measurements Batchelor [3]
arrives at the conclusion that different periods of decay may actually be distinguished; an
initial period, a final period and a transition period. This is considered with respect to time, but

for turbulence behind grids it applies to consecutive regions downstream of the grid.

How long the initial period will last is difficult 1o say, since the transition to other
periods is very gradual, and since moreover, it would depend strongly on the initial value of the

Reynolds number. The above-mentioned experimental data by Townsend seen to show that the

turbulence may be considered to be in the initial period up to X%J =100 to 150, but data

obtained by other experimenters have shown from the initial period-decay law may occur.

Townsend’s experiments have shown that the final period seems to apply to distances
greater than 500M. Of course, this value too should depend on the initial Reynolds number of

turbulence.

In Townsend’s experiments the Reynolds number Re,, =U M /v was about 650.

Where, Reyy—>mesh Reynolds number; M, Mesh of a grid; 7,, speed; v, kinematic viscocity.

In the initial period the decay is determined predominantly by the decay of the energy
containing eddies; in the final period the viscous effects predominate over inertial effects.
Thus, in the final period, where the Reynolds number of turbulence is very small, the inertial

terms in the dynamic equations may be neglected.

According to Deissler [27], in the final period of decay the inertia terms (triple
correlations) in the two point correlation equation obtained from the momentum and continuity
equations can be neglected because the Reynolds number of the eddies is small, and a solution
can be obtained. However, at earlier times the inertia terms in the two-point correlation
equation can’t be neglected. So that in order to obtain a solution, an intuitive assumption is
generally introduced to relate the triple correlations to the double correlations. The situation in
homogeneous turbulence is therefore analogous to that in turbulent shear flow where intuitive
assumptions have been introduced to relate the Reynolds stress or the eddy diffusivity to the

mean flow; although one case of homogeneous turbulence, the turbulence in the final period,
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has been solved without introducing intuitive hypothesis. Where as those analyses aided
greatly in unifying much of the information on turbulent flow and in clarifying some of the
physical aspects of turbulence, they do not of course, constitute deductive theories based on the

momentum and continuity equations.

[t should be possible to predict the turbulent decay at times before the final period from
the momentum and continuity equations. If the initial distribution of velocities and pressure is
known, the momentum and continuity equations could be used numerically to predict the
distributions a short time later. However it appears that because of the small size of some of the

eddies, the step sizes in the calculations would have to be extremely small.

A better plan may be to construct, from the momentum and continuity equations,
equations involving correlations between velocities and pressures at more than two points.
Then, for instance, in the three-point correlations equation, one neglects the quadruple
correlations, which should be applicable before the final period. In the final period the triple
correlations are of course negligible. Using the expression for the triple correlations so
obtained, the two-point equation can be solved and the various quantities describing the
turbulence at times the final period can be obtained. Higher order approximations, valid at still
earlier times can be obtained in the same way by constructing four- or five-point correlation
equations. Each time the set of equations is made determinate by neglecting the highest order

correlation.
1.10  Distribution Functions in Turbulence and it’s Properties:

The distribution function in the statistical theory are discussed by several authors in the
past, but the dynamical equations describing the time evolution of the finite dimensional
probability distributions in turbulence were first proposed by Lundgren [75] and Monin
[84,85]. Lundgren [75] considered a large ensemble of identical fluid system in turbulent state.
In his consideration each number of the ensemble is an incompressible fluid in an infinite
space with velocity ﬁ(ﬁ,t) satisfying the continuity and Navier-Stockes equations. The only
difference in the members of ensemble is the initial conditions that vary from member to

member. He considered a function #(i(#,1).4(7,¢)~~~) whose ensemble is given as

(F(ﬁ(n,t),ﬁ(rz,t)———)) and defined one point distribution function f,(#.9,,¢) such that
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J-f](ﬁ.ﬁ] 1) dv, is the probability that the velocity at a point 7, at time t is in element /¥, about
v, and is given by f,(7,v,.1) =< 8(a(#,1)-v,) )
and two points distribution function is given by

fz(ﬁl’ﬁl’ﬁzaﬁzat): ((s(ﬁ(’],[)“\A’I)é‘(e‘:'(i"z,[)— \32»

In short one and two point distribution functions are denoted as £, and £, . Here

o is the dirac-delta function, which is defined as
J‘(g(l_l w \_7)62(17 . {| at the point u=v

0 elsewhere

and < ) denote the ensemble average.

1.11 Fourier Transformation of the Navier-Stockes Equation:

The principal reason for using Fourier transformation is that they convert differential
operators into multipliers. The equations are so complicated in configuration (or coordinate)
space that very little can be done with them, and the transformation to wave number (or

Fourier) space simplifies them very considerably.

Another and more mathematical argument shows that these transforms are right method

of treating a homogeneous problem. Associated with any correlation function, ¢(J?,J?') is a

sequence of eigen functions ¢’(ﬁ,f) and their associated eigen-values ﬂ(f’l)‘ These

quantities satisfy the value equation.

[p(E, % (5, 3)a5 = AGEN(RE) e L)
and the orthonormalization relation

j‘l’(r‘a,f)‘l"(ﬁ%,ﬁ)d“f =1, ifm=n e (1.11.2)

=0 otherwise

These equations imply that ¢ is a scalar. Actually it is a tensor of order two, but this

complicates the argument without introducing anything essentially new. The index » 1s in
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general a complex variable and w* denotes the complex conjugate of y (strictly, y* is the
adjoint of w, but since ¢ is real and symmetric the adjoint is simply the complex conjugate).
The integrations in equations (1.11.1) and (I.11.2) are over all space, which may be finite or
infinite. If the space is finite 7 is usually an infinite but countable sequence, while if space is
infinite, # will be a continuous variable, Here the cigen functions all have real eigen-values. I

follows from (1.11.1) and (1.11.2) that.

p(35)=Y AGwiiy @) (1.11.3)

all
and this is the diagonal representation of the correlation function in terms of its eigen
functions. Evidently these functions are only defined “within a phase” that is, a factor exp(iy)
can be added to (7, ¥) without altering #(%,%') provided y is real and independent of x. For a
homogeneous field, ¢ is a function of ¥,%"only and the problem is to find the eigen functions

which are also homogeneous within a phase in the sense that

w(i, ') = expliy )y (7, % + )
This equation is satisfied by the Fourier equation

w (i, x) = explif.5) = exp(iﬁffv'l )

with ¥ =—n.a. In this situation (instance), therefore, “the index”, # is a wave number.

Equation (1.11.3) becomes.
#(3%,5) =Y Alii)explin(s - 5'))

so that A(7)may be identified with ¢(i1), the Fourier transform of the correlation function.

Since we are considering homogeneous isotropic turbulence, the turbulent field must be
infinite in extent. This produces, mathematical difficulties, which can only be resolved by
using functional calculus, This difficulty is avoided by supposing that the turbulence is
confined to the inside of a large box with sides (aj, a;, as) and that it obeys cyclic boundary
conditions on the sides of this box. The a; is allowed to tend to infinity at an appropriate point

in the analysis. Thus the Fourier transform is defined by

U,(?)=2x)(a,,a,,a,)" Z u, (K)exp(if(..)?) -------------- (1.11.4)

e

Here K is limited to wave vectors of the from
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2nr 2nym 2mym

b 3

a,

a 2 a,
where n; are integers while the a, are, as before the sides of the elementary box

become infinitely large, cquation (1.11.4) goes over into standard form,
U, (%) ju,(lg)exp(i!g.f)ciaﬁ

The inverse of (1.11.5) is,

u, (]_('): (2xz)” Iu' (i)exp(ﬁ ffG)(fJX

box

The Fourier transform of Navier-Stockes equation may be written as

|

where i is a short notation for the integral operator in

] +vK* Ju, (f;’) =M, (K )EA: u, (ﬁ)Uw ()

dt

[[v, (R, (F)o(& - B~ #)a )aF)

where 8k, ptr is the Kronecker delta symbol which is zero unless

K=p+7

Here, MW,( ﬁ) is a simple algebraic multiplier and not a differential ope

T R —
whete, By, (K )= K,P, (& )+ &, ,,(K)

KK
and =8y = sz

(f{') is not the transform of P,

but P

1m

B (!2) is the Fourier transform of P, (V)

. As these sides

(1.11.6)

(1.11.7)

(1.11:8)

rator. We have

(1.11.9)

(V).
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~ As it is stands, equation (1.11.7) can’t describe stationary turbulence since it contains
no input of energy to balance the dissipative effect of viscosity. In real life this input is
provided by effects, such as the interaction of mean velocity gradient with the Reynolds stress,
which are incompatible with the ideas of homogeneity and isotropy. To avoid this difficulty,
we introduce in to the right hand side of equation (1.11.7) a hypothetical homogeneous

isotropic stirring force fi. The equation then reads.

dt

[i +VK? }u, &)=, R} 2 Pl +0,(R) e (1.11.10)

1.12 Magneto-hydrodynamic (MHD) Turbulence:

Magneto-hydrodynamic (MHD) is an important branch of fluid dynamics. MHD is the
science, which deals with the motion of highly conducting fluids in the presence of a magnetic
field. The motion of the conducting fluid across the magnetic field generates electric current,
which changes the magnetic field and the action of the magnetic field on these currents gives
rise to mechanical force, which modifies the flow of the field. From historical point of view it
seems that the first attempt to study the problem of MHD is due to Faraday. Later on in 1937
Hartmann took up Faraday’s idea in understood conditions, Hartmann carried out experiments,

which demonstrated the influence of a very intense magnetic field on the motion of mercury.

There are two basic approaches to the problem, the macroscopic fluid continuum model
known as MHD, and the microscopic statistical model known as plasma dynamics. We shall
be concerned here only with the MHD, that is electrically conducting fluids, and study the

problems of MHD turbulent flow.

The magneto-hydrodynamic turbulence is the study of the interaction between a
magnetic field and the turbulent motions of an electrically conducting fluid. The interaction
between the velocity and the magnetic fields results in a transfer of energy between the Kinetic
and magnetic spectra, and it is thought that the interstellar magnetic field is maintained by a

“dynamo” action from turbulence in the interstellar gas.
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Modern applications of magneto-hydrodynamics in the fields of propulsion, nuclear
fission and electrical power generation make the problem of magneto-hydrodynamic
turbulence one of considerable interest o engineers, since turbulent phenomena scen to be

inherent in almost all type of flow problems.

The theory of turbulence in an incompressible viscous and electrically conducting fluid
is formulated probabilistically through the use of the joint characteristic functional and the
functional calculus. The use of the joint characteristic functional approach relies upon the fact
that the velocity and magnetic fields are both solenoid, and hence, in the probabilistic sense,
are jointly distributed over the phase space consisting of the set of all solenoid vector fields.
The formulation of the problem in phase space is completely carried out. The full space-time
functional formulation of the problem as developed by Lewis and Kraichnan [73] for “ordinary
turbulence” is extended to magneto-hydrodynamic turbulence. This approach enables us to
generate space-time correlation between the velocity and magnetic field components rather
than merely spatial correlations as were used in the original [43] Hopf presentation.
Dynamical equation for various order space-time correlations between velocity and magnetic
field components are derived from the joint characteristic functional by its expansion in a

Taylor series.

The concept of Kolomogoroff’s [68] equilibrium hypothesis for ordinary turbulence is
extended to magneto-hydrodynamic turbulence. The problem of predicting the form of the

energy spectra in the equilibrium range is taken up.

The fundamental equations of magneto-hydrodynamics for an incompressible fluid are

B T i BB R BB e (1.12.1)
or p p p

Vi=0 (1.12.2)
Bl et 0000 e (1.12.3)
c Ot

L e (1.12.4)
é ot

S (1.12.5)
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- . U

J= O'(C‘E R TN H)+ B~
2

where u, the velocity vector; #, the body force; P, the pressure; p, the density of the fluid
which is constant; p, the excess electric charge; #, the electric field strength; ., the magnetic
permeability; J , the electric current density; #, the magnetic field strength; v, the coefficient
of kinematic viscosity; k, the diclectric constant; ¢, the speed of light; o, the electrical

conductivity; v, the gradient operator, V.v = v? and t is the time.

When conductivity o of the fluid tends to infinity the electric field strength £, at each

point must tend to the value 47*!" " oiherwise the current Jgiven by equation (1.12.6)

¢

becomes very large even when very slightest mass motion is present. Hence when o is large

we may assume that

- ixH
b s e s (1.12.7)
C

a relation which is increasingly valid as c—

An important consequence of relation (1.12.7) is that under the circumstances in which

this is a good approximation the energy in the electric field is of the order of ME/ of the
e

energy in the magnetic ficld and can, therefore, be neglected.

This approximation is known as the approximation of Magneto-hydrodynamics. We

have to consider only the interaction between the two fields @ and #.

In the MHD approximation, Maxwell equation (1.12.3) becomes,

Fergt® s (1.12.8)

4

In the framework of approximations (1.12.7) and (1.12.8) the Navier-Stockes equation

are modified to take into account the electromagnetic body force (assuming that there is no

body force F') and equation (1.12.1) becomes
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X v =L -Lopaws 000 e (1.12.9)
ot dmp 2l
Again, in the approximation (1.12.7), Maxwell equation (1.12.4) becomes
oH

Ezcm(ﬁxg) -------- (1.12.10)

In a higher approximation in which the loss of energy by Joule heat is allowed for the
equation (1.12.10) is modified to [6]

H _ -
%;wcurl(ﬁxn):wln --------- (1.12.11)

where 1 =(47u,0)" is the magnetic diffusivity

Now the magnetic field intensity /7is a solenoidal vector, and in an incompressible
fluid the velocity # is also a solenoidal vector. When we use this property of # and

H equations (1.12.9) and (1.12.11) can be written in the form [5] as

sl D

A, Oud H

iy SNy e Wy e 1 B Um)+vv2u, ---------- (1.12.12)
ot ox, dmp Ox, P ox, 87 '

and

8H, 8

b (g i L PEfNA . e (1.12.13)
ot ox,,

where, here and in the sequel, summation over the repeated indices is to be understood.
Equations (1.12.12) and (1.12.13) form the basis of Batchelor’s [6] discussion. Chandrasekhar

[16] extended the invariant theory of turbulence to the case of magneto-hydrodynamics. He

introduced the new variable as

B 2 (1.12.14)
dmp :

for H. It has the dimension of velocity (known as Alfven’s velocity) but be haves as vorticity.

In terms of A the equations (1.12.12) and (1.12.13) can be expressed as
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ou, 0
~5t—+—éx—(u,.uk—-h,hk)=—ax """"" (11215)
i i
oh,
and E’Lax (hu, - ihk):/lvzh! '''''''''' (1.12.16)
k

P 172 . a
where P, :_+Eh , is the total MHD pressure and A = (4mu,0) 'is the magnetic

Yo,

diffusivity. Chandrasekhar [21, 22] in his theory, considered the correlation’s between # and

h at two points p and p’ in the field of isotropic turbulence in the same manner as in the

ordinary turbulence. Here, we have the double correlation, U,-U /’l b ; and H,h ; » and the

triple correlation,

wa gy | hhol | wuhy hhky b, —uh L and (Bu) — B’
where the subscripts refer to the components of the vectors i,j,k=1,2,3. Each of these double

and triple correlations depends on one scalar function in the case of isotropic turbulence

because the divergence of both # and h is zero.

Equations (1.12.15) and (1.12.16) are derived by coupling Maxwell’s equations for the
electromagnetic field and Navier-Stockes equations for the velocity field. The Maxwell
equations are modified to include the induced electric field due to the fluid motion and the
Navier-Stockes equations are modified to include the Lorentz force on fluid elements due to
the magnetic field. The so-called “Magneto-hydrodynamic approximation” is made, in which
displacement currents are neglected in Maxwell’s equations. This approximation is well
founded provided we are not dealing with very rapid oscillations of the electromagnetic field

quantities, as is the case in the propagation of electromagnetic waves. Under this

approximation, the energy in the electric field is of the order of —- times the energy in the

c

magnetic field, where c is the speed of light and hence may be neglected. Therefore, we have

only to consider the interaction between the velocity field # and the magnetic field h.

1.13 A brief Description of Past Researches Relevant to this Thesis work:

In geophysical flows, the system is usually rotating with a constant angular velocity.

Such large-scale flows are generally turbulent. When the motion is referred to axes, which
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rotate steadily with the bulk of the fluid, the coriolis and centrifugal force must be supposed to
act on the fluid. The coriolis force due to rotation plays an important role in a rotating system
of turbulent flow, while the centrifugal force with the potential is incorporated into the

pressure.

Kishore and Dixit [52], Kishore and Singh [54], Dixit and Upadhyay [30], Kishore and
Golsefied [57] discussed the effect of coriolis force on acceleration covariance in ordinary and
MHD turbulent flow. Funada, Tuitiya and Ohji [37] considered the effect of coriolis force on
turbulent motion in presence of strong magnetic field. Kishore and Sarker [62] studied the rate
of change of vorticity covariance in MHD turbulence in a rotating system. Sarkar [109]
discussed the vorticity covariance of dusty fluid turbulence in a rotating frame. Shimomura and
Yoshizawa [119], Shimomura [120] and [121] also discussed the statistical analysis of
turbulent viscosity, turbulent scalar flux and turbulent shear flows respectively in a rotating
system by two-scale direct interaction approach. Sarker [111] studied the Thermal decay

process of MHD turbulence in a rotating system.

Saffman [106] derived an equation that described the motion of a fluid containing small
dust particles, which is applicable to laminar flows as well as turbulent flow. Using the
Saffman’s equation Michael and Miller [83] discussed the motion of dusty gas occupying the
semi-infinite space above a rigid plane boundary. Sinha [122], Sarker [110], Sarker and

Rahman [112] considered dust particles on their won works.

The essential characteristic of turbulent flows is that turbulent fluctuations are random
in nature and therefore, by the application of statistical laws, it has been possible to give the
idea of turbulent fluctuations. The turbulent flows, in the absence of external agencies always
decay. Millionshtchikov [81], Batchelor and Townsend [4], Proudman and Reid [101], Tatsumi
[124], Deissler [27,28], Ghosh [38,39] had given various analytical theories for the decay
process of turbulence so far. Further Monin and Yaglom [85] gave the spectral approach for
the decay process of turbulence. Although, MHD turbulent fluctuations are random in nature

but exhibit the characteristic structure likewise the hydrodynamic turbulence, hence the
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statistical laws can also be applied in MHD turbulence. Mazumdar [87] derived an early period
decay equation for general type of turbulence for an incompressible fluid. Also Sinha [122]
discussed the decay process of MHD turbulence and derived an early period decay equation.
Sarker and Kishore [ 108] discussed the decay of MHD turbulence before the final period. The
approach is phenomenological in the sense that they considered the region where the variations
of the mean temperature and mean velocity may be neglected because of the transportation of

the thermal energy from place to place is very rapid.

Deissler [27,28] developed a theory for homogeneous turbulence, which was valid for
times before the final period. Using Deissler’s theory Loeffler and Deissler [72] studied the
temperature  fluctuations in homogeneous turbulence before the final period. Following
Deissler’s approach Sarker and Islam [116] also studied the decay of temperature fluctuations
in homogeneous turbulence before the final period for the case of multi-point and multi-time.
Sarker and Rahman [113] studied the decay of temperature fluctuations in MHD turbulence
before the final period, Sarker and Islam |117] considered the decay of dusty fluid turbulence

before the final in a rotating system.

Sarker and Rahman [112] discussed the decay of turbulence before the final period in
presence of dust particles. Sarker and Islam [118] studied the effect of very strong magnetic
field on acceleration covariance in MHD turbulence of dusty fluid turbulence in a rotating
system. Further Rahman and Sarker [105] studied the decay of dusty fluid MHD turbulence
before the final period. In their approach they considered the two and three point correlation
equations and solved these equations after neglecting the fourth and higher order correlation

terms compared to the second and third order correlation terms.

Using Deissler’s theory Kumar and Patel [64] studied the first order reactants in
homogeneous turbulence before the final period for the case of multi-point and single time.
The problem [64] also extended to the case of multi-point and multi-time concentration

correlation in homogeneous turbulence by Kumar and Patel [65]. The numerical result of [65]

“carried out by Patel [97].

Following Deissler’s approach Sarker and Kishore [108] studied the decay of MHD

turbulence before the final period. Sarker and Islam [115] studied the decay of MHD
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turbulence before the final period for the case of multi-point and multi-time. Islam and Sarker
[46] discussed the first order reactant in MHD turbulence before the final period of decay for
the case of multi-point and multi-time. Sarker and Islam [117] also studied the decay of dusty

fluid turbulence before the final period in a rotating system.

By analyzing the above all theories, we have studied the chapter 11, chapter 1V and

chapter V.

Hopf [43], Kraichnan [69], Edward [32] and Hering [40] have given various analytical
theories in the statistical theory of turbulence. But at first Lundgren [74] derived the dynamical
equations, which are describing the time evolution of the finite dimensional probability
distribution of turbulent quantities. Lundgren [74] derived a hierarchy of coupled equations for
multi-point turbulence velocity distribution functions, which resemble with BBGKY hierarchy
of equations of Ta-Yu-Wu [131] in the kinetic theory of gases. Further Lundgren [75]
considered a similar problem for non-homogeneous turbulence. The basic difficulty is that the
above theories faced to closure problem. Some general approaches to closure problem for multi
dimensional probability density equations those were made by Lyubimov and Ulinch [77,78].
Two other closure hypotheses for the probability distribution equation of single time values
were investigated by Fox [35], Lundgren [76], Bray and Moss [14] considered the probability
density function of a progress variable in a idealized premixed turbulent flow. Bigler [13] gave
the hypothesis that in turbulent flow, the thermo-chemical quantities can be related locally a

few scalars.

Further Janicka, Kolbe and Kollmann [50] and Pope [98] gave a more suitable model

for the probability density functions of scalars in turbulent reacting flows.

Also Kishore [51] studied the distributions functions in the statistical theory of MHD
turbulence of an incompressible fluid. Pope [100] derived the transport equation for the joint
nrobability density function of velocity and scalars in turbulent flow. Kishore and Singh [53]
derived the transport equation for the bivariate joint distribution function of velocity and
temperature in turbulent flow. Kishore and Singh [55] have been derived the transport equation
for the joint distribution function of velocity, temperature and concentration in convective

turbulent flow. Dixit and Upadhyay [31] considered the distribution functions in the statistical
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theory of MHD turbulence of an incompressible fluid in the presence of the coriolis force.
Kollman and Janicka [66] derived the transport equation for the probability density function of

a scalar in turbulent shear flow and considered a closure model based on gradient — flux model

But at this stage, one is met with the difficulty that the N-point distribution function
depends upon the N+I-point distribution function and thus result is an unclosed system. This
so-called “closer problem™ is encountered in turbulence, kinetic theory and other non-linear
system. Sarker and Kishore [107] discussed the distribution functions in the statistical theory of
convective MHD turbulence of an incompressible fluid. Further Sarker and Kishore [114]
discussed the distribution functions in the statistical theory of convective MHD turbulence of

mixture of a miscible incompressible fTuid.

Following the above theories, in chapter III, an attempt is made to define the
distribution function for simultaneous velocity, magnetic, temperature and concentration ficlds
in MHD turbulence in a rotating system in presence of dust particles. Finally, the transport
equations for evolution of distribution functions have been derived and various properties of
the distribution function have also been discussed. The resulting one-point equation is
compared with the first equation of BBGKY hierarchy of equations and the closure difficulty is

to be removed in the case of ordinary turbulence.

In chapter II-A, we have considered the decay of temperature fluctuations in
homogencous turbulence before the final period for the case of multi-point and multi-time in a

rotating system.

In chapter II-B, we have studied the decay of temperature fluctuations in
homogeneous turbulence before the final period for the case of multi-point and multi-time in

presence of dust particles.

In chapter II-C, we have studied the decay of temperature fluctuations in
homogeneous turbulence before the final period for the case of multi-point and multi-time in a
rotating system in presence of dust particles and we have derived the decay law of temperature
energy fluctuations in homogencous turbulence before the final period for the case multi-point

and multi-time in a rotating system in presence of dust particles. In all cases two- and three-
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point correlations equations are made to determinate by neglecting the quadruple correlation in

comparison with lower order correlation applicable at times before the final period.

In chapter-111, we have studied the statistical theory of certain distribution functions in

MHD turbulent flow in a rotating system in presence of dust particles.

In chapter IV-A, we have studied the decay of temperature fluctuations in MHD

turbulence before the final period in a rotating system.

In chapter 1V-B, we have considered the decay of temperature fluctuations in MHD
dusty fluid turbulence before the final period in a rotating system and we have obtained the
decay law of temperature fluctuations in dusty fluid MHD turbulence before the final period in

a rotating system.

In chapter V-A, we have studied the decay of MHD turbulence before the final period

for the case of multi-point and multi-time in a rotating system.

In chapter V-B, we have considered the decay of MHD turbulence before the final

period for the case of multi-point and multi-time in presence of dust particles.

In chapter V-C, we have discussed the decay of dusty fluid MHD turbulence before
the final period in a rotating system for the case of multi-point and multi-time. We have
derived the decay law of magnetic energy fluctuations of dusty fluid MHD turbulence in a

rotating system before the final period for the case of multi-point and multi-time.
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CHAPTER-II

PART-A

DECAY OF TEMPERATURE FLUCTUATIONS IN HOMOGENEOUS
TURBULENCE BEFORE THE FINAL PERIOD FOR THE CASE OF
MULTI-POINT AND MULTI-TIME IN A ROTATING SYSTEM

2.1 Introduction:

The essential characteristic of turbulent flows is that turbulent fluctuations are random
in nature and therefore, by the application of statistical laws, it has been possible to give the
idea of turbulent fluctuations. The turbulent flows, in the absence of external agencies always
decay. Millionshtchikov [81], Batchelor and Townsend [4], Proudman and Ried [101], Tatsumi
[124], Deissler [27,28], Ghosh [38,39] had given various analytical theories for the decay
process of turbulence so far. Further Monin and Yaglom [85] gave the spectral approach for

the decay process of turbulence.

In geophysical flows, the system is usually rotating with a constant angular velocity.

Such large-scale flows are generally turbulent. When the motion is referred to axes, which

rotate steadily with the bulk of the fluid, the coriolis and centrifugal force must be supposed to

~act on the fluid. The coriolis force due to rotation plays an important role in a rotating system
| of turbulent flow, while the centrifugal force with the potential is incorporated into the
pressure. Kishore and Dixit [52], Kishore and Singh [54], Dixit and Upadhyay [30], Kishore

and Golsefied [57] discussed the effect of coriolis force on acceleration covariance in ordinary

and MHD turbulent flow. Funada, Tuitiya and Ohji [37] considered the effect of coriolis force

on turbulent motion in presence of strong magnetic field. Kishore and Sarker [62] studied the

rate of change of vorticity covariance in MHD turbulence in a rotating system. Sarker [109]

discussed the vorticity covariance of dusty fluid turbulence in a rotating frame. Shimomura and

Yoshizawa [119], Shimomura [120] and [121] also discussed the statistical analysis of
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turbulent viscosity, turbulent scalar flux and turbulent flows respectively in a rotating system
by two-scale direct interaction approach. Sarker [111] studied the thermal decay process of
MHD turbulence in a rotating system. Deissler [27,28] developed a theory for homogeneous
turbulence, which was valid for times before the final period. Following Deissler’s theory
Loeffler and Deissler [72] studied the decay of temperature fluctuations in homogencous
turbulence before the final period. In their study, they presented the theory, which is valid
during the period for which the quadruple correlation terms are neglected compared to the
second and third-order correlation terms. Using Deissler’s same theory Kumar and Patel [64]
studied the first-order reactants in homogencous turbulence before the final period for the case
of multi-point and single-time. The problem [64], which is extended to the case of multi-point
and multi-time concentration correlation by Kumar and Patel [65] and also the numerical result
of [65] carried out by Patel [97]. Following Deisssler’s approach Sarker and Islam [115]
studied the decay of MHD turbulence before the final period for the case of multi-point and
multi-time. Islam and Sarker [46] also studied the first—order reactant in MHD turbulence
betore the final period of decay for the case of multi-point and multi-time. Sarker and Rahman
[113] studied the decay of temperature fluctuations in MHD turbulence before the final period.
Sarker and Islam [116] also studied the decay of temperature fluctuations in homogencous
turbulence before the final period for the case of multi-point and multi-time. In their approach,
they considered two and three point correlations and neglecting fourth- and higher-order

correlation terms compared to the second-and third-order correlation terms.

In this chapter the method of [27,28] is used and we have studied the decay of
temperature fluctuations in homogeneous turbulence before the final period for the case of
‘multi-point and multi-time in a rotating system and have considered correlations between
fluctuating quantities at two and three point. Two and three point correlation equation in a
rotating system is obtained and the set of equations is made to determinate by neglecting the
quadruple correlations in comparison to the second- and third-order correlations. The triple
correlation equations should be applicable before the final period. In the final period the triple
correlations are of course negligible. Using the expressions for the triple correlations so
obtained, the two-point equation can be solved and the various quantities describing the
turbulence at times before the final period can be obtained. For solving, the correlation
equations are converted to spectral form by taking their Fourier transforms. Finally integrating

the energy spectrum over all wave numbers, the energy decay law of temperature fluctuations
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in homogeneous turbulence before the final period for the case of multi-point and multi-time in

a rotating system is obtained.

2.2 Correlation and spectral equations :

For an incompressible fluid with constant properties and for negligible frictional

heating, the energy equation may be written as

s

o ;o __k T
o ox, pC, ox0x,

where 7' and #, are instantaneous values of temperature and velocity; k, thermal conductivity;

p, fluid density; C, heat capacity at constant pressure; x;, space co-ordinate: t, time and the

repeated subscripts are summed from 1 to 3.

Breaking these instantaneous values into time average and fluctuating components as

T=T+T and U, =u, + i, allows equation (2.2.1) to be written as

+

8 iz o - B o ops e R T
— (T +Ty+( +u)— T +T)=y——=
g P e T T e

1

oT or _or _or oT ar _&T o)
or, —+—+u, —+i, —+u, —+u, — = y[—+—-],
ar ot ax Ox ox Ox, Ox,  Ox,0x,

! I3 !

- T ; .
. From the condition of homogeneity it follows that 7 =0, and in addition

<, ox,

Wherc =

the usual assumption is made that 7 is independent of time and that ¥ = 0 . Thus

equation (2.2.2) becomes

ar  oT [VJ o°T

p, )Ox,.0x,

where p, =v/y , Prandtl number; v, kinematic viscosity.

Equation (2.2.3) is assumed to hold at the arbitrary point p. For the point p'the

corresponding equation can be written
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Multiplying equation (2.2.3) by 7", equation (2.2.4) by T and taking ensemble average,

result in
oTT") o(TTw,) (v \o*(TT)
+ =|—|— cmneea
ot ox, p, ) Ox,0x, ° (s3]
oTT"y A(TTw)y (v \o*(IT')
R e eenemes (2.2.6)
ot Ox, p, ) Ox/ox,
with the continuity equation,
Ou, Ou, 0
—— === 1| ] | = S S 2
ox  Ox] o)
Angular bracket (—w»)is used to denote an ensemble average. Using the

transformations
o6 __0 8 _38 [E_J "[Ej 0 d_o0o
ox, or ox or\a), \a), ona Ol

into equation (2.2.5) and (2.2.6), one obains

' ' 1ot 2 #
3(TT)_5<H,TT >(___r. —A[[*"‘Af)"‘M(F,AlJ):Z{LJa (TT> ,  mmmmmm———- (228)
ot or, ' ' or, p, ) oror
e g ald ol 62 7v['r
Ty, ou17 )(_ P _L__> __________ o
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It is convenient to write this equation in spectral form by use of the following three-

dimensional Fourier transforms.

(TT'(F,AL,1)) = mf(ff‘(k,A!,t)>e><p[f(13f)]d:’§’, ---------- (2.2.10)

-0
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W

(u, 1T (R,80,0)) = [(4, rr'(f%,Az,z)>cxp[f(i%ﬁ)]dk ---------- (22.11)

and (u;TT’(F, Att)y = (zth?"(— F,—Att + Al )>

@

= I<¢' rz"(— K~nai+ AI)> exp[f(kﬁ)]d[% __________ (2.2.12)

o

(Interchange are made between the points p and p')

where K is known as a wave number vector and magnitude of K has the dimension 1/length

and can be considered to be the reciprocal of an eddy size.

Substitution of equations (2.2.10)-(2.2.12) into equations (2.2.8) and (2.2.9) we get the

following spectral equations.

A of 2oty el el st o) 1z

e +2( L

) P,

Y Jk ?=—iK (¢, rr')(— K.~AL 1+ At)‘ ~~~~~~~~ (2.2.14)

In equations (2.2.13)-(2.2.14) the quantity rr’(!%) may be interpreted as a temperature
fluctuation “‘energy” contribution of thermal eddies of size 1/k. The time derivative of this
“energy’ as a function of the convective transfer to the wave numbers and the “dissipation” due
to the action of the thermal conductivity. The term on the right hand side of equation (2.2.13) is

% ; i 5 " : T,
also called transfer term while the 2" term on the left hand side is the “dissipation” term.

2.3 Three-Point, Three-Time Correlation and Spectral Equations :

In order to obtain the three-point, three-time correlation and spectral equations, we
write the Navier-Stockes equation for turbulent flow of incompressible fluid in a rotating

system at the point P, energy equations at the points p' and p" separated by the vectors r and

~t

I
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1 8 0%u .
M;H,)I—"— p +v - —261).':' inu'a
pox,  0Oxox, ’ J

or' 0T v 0T
.ty = (7)
Ot ox; P ox/ox]

| or” .o v, o°T"
a g aaprital U .
o ox" P oxlox

Multiplying equations (2.3.1) - (2.3.3) by 7'T", u,T" and u T"respectively and then

taking ensemble average, we obtained

8<uJ,.T’T”>+8<uJ,T'T"u,>_ 1 a(prT"y 8w, TT")
ot Ox, __; ox, Y ox,0x, -
AT,y 8(uTu,r"y (o (Tu,T")
o on ~[?{J oxL0x!

P

r

8<T"1;‘!T’> ﬁ(uf’T”ulT’> {Vjaz(T”u,T'>

.and . ; + ; =
‘ ot ox!’ Ox'ox!’

Using the transformations

d (a a]a e o @
=—{—+

o, \or on)ox oo or

!

(g] _(g) 8 2 o _ 02 0o _0
O o \Ot)yy OAL OAIBAC  OALTOA"  OAL"

into equations (2.3.4)—(2.3.6), we have

olu, 1" _( 7 B ] a7 >+8<u,'7"uj'['”> a(ur"u, T")
e Ty,

+
C ot or or'

L 1

= —a—+—a~; (PT'T")+v “(‘?"+i, (uIT"I'")+ i, &
pl\or, O o, o) P, | aror,

2 ey Dol TTY, - 2:3:4)

2

0 -
or/or, }<”"7 ! >

+
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-2e Qm<ujT’T"> :

TR L O —— (2.3.7)
ou,T'7") a(uTu,T") (o T'u r")

g (e
a(T'ujT”> 6(2‘!,.'7"’11‘ T’> (v 62<u T'T”>

OAL’" ¥ or/ R (?J_Of;'ar—,' T (23:8)

In order to convert equations (2.3.7)-(2.3.9) to spectral form, we can define the

following six-dimensional Fourier transforms :

(u,T'T")F. ' A0, A1) = TR[?,@'O")exp{f( P+ K’.F’)Jdl%df(', --------- (2.3.10)
(s, T'T")F ' AL A 1) = ﬂ{ﬁ, ﬁﬂ’@”)exp[?(f%f+1%’.F’)Jd13d13', ......... (2.3.11)
(pT'T")F, P, AL, AL 1) = oj(ae’a")exp[f (Kr * K'.ﬁ')]dl&dl%‘ A (2.3.12)

Interchanging the points p’ and p" shows that

(u a1y = (o 11"y = [ (8,800 ) expli (R + R/ 7 WaRak' . oo 23.13)
In these equations K and K' are known as wave number vectors and
dK =dK,dK,dK,. The quantities S 60'0"ctc are spectral tensors in wave number space

corresponding to the correlation tensors in physical space.

Substituting the equations (2.3.10)~(2.3.13) in equations (2.3.7)-(2.3.9), we have

,?Q%@(k,ﬁ"At,Al’,l)+L[(l+pr)k2 +2p,k,k,—r +(1+pr )k,g % 2}:r g Q,,,](ﬁ,@'@")

r

(R.R".An A0 1) = ’—;[k, vk, j(af)'a") vill, + K X(B.8,007) ~(B:8,00") R R, A, A1)
g _

--------- (2.3.14)
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5(,6’_,9’9”)(13,]3’, Az,At',z) . .
AN b (f&)kh <'849r0”>( K AL AL ‘): ~ik, (ﬁ,'ﬁ_f9'9">([%a K’ AL AL, t),

”

5<ﬂ,8‘6”>(1%, R AL AL
oA’ +[

;VI_WJ""? <ﬂf9"9">([%5 K',ar4r, ’): “fkf</5’.'ﬂ,6"9">(f£', K", At',r).

......... (2.3.16)

If the derivative with respect to x; is taken of the momentum equation (2.3.1) for the

point p, the equation multiplied by 7’7" and taken the ensemble average, the resulting equation
is

§2<u,.u‘fT'T”> _ 1 82<pT'T”>
ox p o, (2.3.17)

Writing this equation in terms of the independent variables # and 7'

az 62 aZ 62 l az az 62 .
+ _|._ + e alld e P
Lo * oo oror,  orlr] Yo} p[arjar, +2arjar' 5 KpT'T").-23.18)
: / S
Taking the Fourier transforms of equation (2.3.18)
Pk 5 ki, i .00

Kk +2kk v kk T (23.19)

Equation (2.3.19) can be used to ¢liminate (a()'ﬂ") from equation (2.3.14),
2.4 Solution for times before the final period :

To obtain the equation for times before the final period of decay, the three point
correlations are considered and the quadruple correlation terms are neglected in comparison

with the 3 order correlation terms. If this assumption is made the equation (2.3.19) shows that
the term (a9'9"> associated with the pressure fluctuations should also be neglected. Thus
neglecting all the terms on the right hand side of equations (2.3.14)-(2.3.16), we have

XBOONR, R\ AL AL v

2 ' 2 il o gt '
- +A[(l Ep W ip Rk r—re . Qm}(ﬁﬁa (&, & A Ar,1)=0,
t P, v " |
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--------- (2.4.1)
Ap oK. R aA) (v 5 5

+— |k FONE K AR =0, s 4.
B OO"K, K" A, ALt . o
ad (am' )+[M‘LJW<ﬂ,9'9">(K,K',A:,m',:)z0. ......... (2.4.3)

Inner multiplication of equations (2.4.1), (2.4.2) and (2.4.3) by k; and integrating

between t, and t we obtain

k (B,00" = f exp] ——V—[(I + p NI+ )+ 2p, k! cos O + £, €0 QMJ(: ~1,) },-(2.4.9)

J{)r V
k(5,00 =g, GXP[——V—kzNJ ............ (2.4.5)
ran 4 12 t
and k,(f,007)=q, cXP(“wk A J ------------ (2.4.6)

For these relations to be consistent, we have

k (B,0'0" =k (8,007, exp{— L+ p k2 + k2 e —1,)+ KAt + kA +2p ki cos Ot —1,)
i p

r

2p,
+mv_€mr,l Qm([—to) )] """""""""" (247)
where 6@ is the angle between k and k" and (f,0'0"),is the value of <ﬂ10’9"> at t=t,
JAf= Al =0. Letting #'=0,Ar' =0 in the equation (2.3.10) and comparing the result with the

equation (2.2.11) shows that

~
2

O TN S W X (3 AR ) ¥ S — (2438)

Substituting the equation (2.4.7) and (2.4.8) into the equation (2.2.13) we obtain
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Mgf”“_’:i) +2 % k() (K, i) = Izk ko0&, K, a00.0)-poon- R -K,a0.0) ]

exp| - — {(l +p, )(k2 + K’z)(t —1,)+ KN KA+ 2 p Kk (- 1,) cos @

»

mi

2 ~
+"§L spSl=a) ™. 0 e (2.4.9)

Now, dK' (= dK|dK'dK)can be expressed in terms of &' and @ as —2;rk’2d(0039)d12'

(cf. Deissler [28]).
ie., dk' = 2mkd(cosd)dk’ e (2.4.9a)

Substitution equation (2.4.9a) in equation (2.4.9) yields

O(Tr’)(k,Ai,I)Jrz v

o 5 kz(rr’)(K,At,t)

_ 2?27;;1(, (8 00"k k)~ 000M - R, ), k'{ l.[exp{— —;— [0+ p k2 + 57X —1,)

r

+ kAL +/c’zm"+2p,_1kk'(4r—tu)(;osQJrgiIzL &y Q. (1—1,) ld(cos0) ]d!g'. --(2.4.10)
Vv

In order to find the solution completely and following Loeffler and Deissler [72] we

assume that
ik [(8,00m(R, k')~ (8,00m(- R-R) =- (2‘:':)2 (8 —kh?) oo oat)

where 8, is a constant depending on the initial condition. The negative sign is placed in front of

8, in order to make the transfer of energy from small to large wave numbers for positive value

of 8. The quantity [(ﬁjﬁ’ﬂ”)(f(,k’)—(ﬂ}'ﬂ’ﬁ")(— I%,—Ii”)] depends on the initial conditions of the
' 0

turbulence.

Substituting equation (2.4.11) into equation (2.4.10), we get

%(n')(k, A2 + 2pi2nk3 (re'\(K, At )= =28, mj(k?k”‘ WU
r 0
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[Iexp{~[l+p )(k +k'2Xt )+ kAL + kALY +2p kk'(t -1, )cos 6
P

r

2 N
+—f— €,, 2, (=1t,) Jld(cos0) }dk’. ----------- (2.4.12)

Multiplying both side of equation (2.4.12) by k*, we get
OE

L (2.4.13)
a  p,

where £ =2zk*(rr'), the energy spectrum function and w is given by

w=-26 j Kk -k e kﬂﬁcxp{_p[np N+ kYo -1,)+ k2

| r

+2p, kk'(¢~1,)cosO 328 €, Q,-1,) ]}a’(cosﬁ)}dé’ N (2.4.14)
Vv

[ntegrating equation (2.4.12) with respect to 6, we have

‘,(15_[ )I(k k" —k k”{exp{——[(] +p, )(k +k'°Xf )+ kAt

W=

" ow

jk K= - )
0

p
—2p kk'(t -1, )+m§—t €y 0~ )]}]a’k’ +

miy

cxp{—;—/[(lerr)(kz+k’2Xr~i“)+k2Al+2prkk’(tf“)+2f’ e, Q (1—1)} |k .

------- (2.4.15)

Again integrating equation (2.4.15) with respect to k", we have

S, Nap" 2p,

—kv(1+2p,)
w:_41/3f2(1 )3/2(|+p )5.'2 exp{- v €y Q’”([_t“)}xexp[ Pr(1+pr)

I5p k' . 5p? 3} k®
X Tl
1+2p, wii-1,Y 0+ p,) (+p ) 2 vl-1,)
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5”\/;;9:” 2p, 15p.k*
a 5/2 CXp{—-»—f—e Qm(t _tu)}x[ p"

(=1, + A0 (14 p,) " -, +a) (14 p,)

4+ =4

Sp; 3 I S ) v
W+p )} 2 vl-t,+a1) (+p) l+p =~

The series of equation (2.4.14) contains only even power of k and start with k*. The
quantity w is the contribution to the energy transfer arising from consideration of the three-

point equation.

If we integrate equation (2.4.16) for At=0 over all wave numbers, we find that

oo}

dek =0 (2.4.17)

0
which is indicating that the expression for w satisfies the condition of continuity and
homogeneity. Physically it was to be expected as w is a measure of the energy transfer and the

total energy transferred to all wave numbers must be zero.

The linear equation (2.4.13) can be solved to give

o ) 5 At
Es cxp[—z—‘k‘(l -1, +£)]Iuiexp[2lk'(! -1, +g)}d! +J(k)exp[—gik‘(: —t, +—)]-(2.4.18)
D, 2 D, 2 7 2
Nk . . . ;
where J(k)=— is a constant of integration and can be obtained as by Corrsin [24].
/2

Substituting the values of w from (2.4.16) and J(k) into the equation (2.4.18) and

integrating with respect to to we get

2

e At
E= Ak exp[—2lk2(1 —t, +—)]+
T 2 4

5 mp?

ex[)[_2 EH‘H} Q.’.’l (t .—[!) )l

v3/2(1+p )7!2
—k2(1+2p,) [+ p A 3p .k’ p.(1p, —6)k°
N TR ey g SN +
%Pl {1+ p,) ! I“+1+2p, x[zvz(r—:r,)” 3w+ p)-1,)"?

4G3p*. -2p, + K" 8/v(3p:—2p, +3)k’ Fln+ S Nmp"
(e p) =) 3+ ) w1+ p,)"
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4

v {i+2p,)

3p.k
xexp[fQ Emu Qnr (.f '—l“)'XCXp[ (r—[u + p"g Af))([ 2 2 5/2 ]
' p,(1+p,) 14 2p, 2v (e ~it, + A1)
pr('}‘pr = 6),1((’ _i (3/)2,. -2p, + 3)/(“ 4 8‘\/;(3[),? -2p, + 3)'1{.) F(n) _(2 4 I())
o Pr)(! . +A{)m 3+ p )t —1, + A 301+ pr)snprm 1)

7
—t X’
where F(77) = e’ _[6 dx’

0
t—t v(t—t, + At
I] =k L(___.L or = k (—”__)_ .
p,(I+p,) V p,(+p,)
By setting 7 =0 in equation (2.2.10) and use is made of the definition of E, the result is

(rry (1?) = |
e _G[Edk_ --------- (2.4.20)

Substituting equation (2.4.19) into equation (2.4.20) and integrating with respect to k,

gives

0
(T2> anfu(’ro +-_.£_()_) 342

6
wé,p,
2 - 8272 £ 4V6(1+pr)(] +2pr)m exp[_zemrj Qm]
[ 9 % 9 N 5p,(Ip, —6)
ey e il G T o P AT 61420 VAT I+ p, o
167, (7, + Yer ATy) 16(7, + AT, (1, + iv25, AT) (1+2p, 7,227, +]+2pr x
‘ 22,0, ~0) 5 35p,(3p; =2p, +3)

') D
1811425 (T 2. (L, it
(1+2p, )T, o) Ty 1472

1+ p. .
ATYR 8+ 3p 3% A, +]—--—2—p'--A7(,)) 2

r r

35p,3p; =2p,. % %) 8p,(3p] -2p, +3)(1+2p,)*"”
L P + 3 22312(l+p )IIJ'?.
8(1+ 2p, T, + ATy (T, + —2— AT,)""? L r
1+2p,
2n41)/2 (2n+1)12
By 1,85 maissad (2n+9) Fa (T: + AT;)

2z T s == (24.21)
n=0 n!(2n+1)23” (] +p, )" 4 (T{) + ATU /2)(-””)” (TU + ATO /2)(.. 1)/2
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where T()':t-[.:) J

Equation (2.4.21) is the decay law of temperature energy fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time in a rotating

system.

2.5 Concluding Remarks :

In equation (2.4.21) we obtained the decay law of temperature fluctuation in
homogeneous turbulence before the final period in a rotating system and the quadruple
correlation terms are neglected in comparison with the third —order terms for the case of muiii-

point and multi-time. If the system is non rotating then Q,, =0 the equation (2.4.21) becomes

AT,
(1) Nop (T + =97

> " 0,p, g 9
2 8v'" \2r o+ p N1+2p, )" 6T, (T, 1+p, AT, )"
1+2p,
9 5p.(71p, —6
& i P, (7p, 1+)
W ALY o s A < S T BE TN L PR BT
1+2p, P2,
; Sp,(p, —6) . 35p,(3p] =2p, +3)

] Y 2 2 l+.~ v 7972
mﬂ+2mx%+ﬁﬂf“ﬁhwiémﬂﬂfh 80+hamﬁ(n+];f AT

35pBpi=lp.n3) + 8p,(3p; —2p, +3)(1+2p,)""*
+ 2 /2
- ; Pe s 322201+ p,)
8(1+2p, NT, + AT,)"* (T, + Le2p, ALY"™
o (2041)12 (2n+1)/2
= 135 2n+9 T T, + AT,
( ) ; ( : O) 2n+l]f2}]’ """""" (2.5.1)

% 204 *
S a2+ p,) (T, +AT, 12) (T, + AT, /2)

which is obtained carlier by Sarker and Islam [116].
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If we put AT, =0 in equation (2.5.1), we can easily find out

(") _Npron, 5, pyT,

9 5 p,(7p, -6 3pl-2p, +3
w2 BllE =0} 20 PiBp, b +3)

= I K= i N

2 82 av (4 p Nt 2p, )" START: 1+2p, 8§  (+2p,)° |
AT, + BT, = At -1,)>? +B@-1)7, e (2.5.2)
312 ‘

8] r

where 4= —F——
o 82712

and

6
B = ﬂ-&“ 1)!‘ % [

9,5 p.(p.=6) 35 p.Bpl-2p,+3)
2v*(1+p N1 +2p,)" |

16 16" 1+2p, 8 (1+2p,)

+ e, |.

which was obtained earlier by Loeffler and Deissler [72].

Here due to the effect of rotation in homogeneous turbulence, the temperature energy
fluctuation decays more rapidly than the energy for non-rotating fluid for times before the final

period.

If higher order correlation equations were considered in the analysis it appears that
more terms of higher power of time would be added to the equation (2.4.21). For large times,
the second term in the equation becomes negligible leaving the -3/2 power decay law for the

final period.
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CHAPTER-II

PART-B

DECAY OF TEMPERATURE FLUCTUATIONS IN HOMOGENEOUS
TURBULENCE BEFORE THE FINAL PERIOD FOR THE CASE
OF MULTI-POINT AND MULTI-TIME IN PRESENCE OF
DUST PARTICLES

2.6 Introduction :

Knowledge of behavior of discrete particles in a turbulent flow is of great interest to
many branches of technology, particularly if there is a substantial difference between the
particles and the fluid. A dust particle in air, or in any other gas, has a much larger inertia than
the equivalent volume of air and will not therefore participate readily in turbulent fluctuations.
The relative motion of dust participate and the air will dissipate energy because of the drag
between dust and air, and extract energy from turbulent intensity is reduced than the Reynolds
stresses will be decreased and the force required to maintain a given flow rate will likewise be

reduced.

Taylor [126] has been pointed out that the equation of motion of turbulence relates the
pressure gradient and the acceleration of the fluid particles and the mean-square acceleration
can be determined from the observation of the diffusion of marked fluid particles. The
behavior of dust particles in a turbulent flow depends on the concentration of the particles and
the size of the particles with respect to the scale of turbulent fluid. Saffiman [106] derived and
equation that describe the motion of a fluid containing small dust particle, which is applicable
to laminar flows as well as turbulent flow. Using the Saffman’s equations Michael and Miller
[83] discussed the motion of dusty gas occupying the semi-infinite space above a rigid plane

boundary. Sarker and Rahman [112] considered dust particles on their won works. Sinha [ 122]
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studied the effect of dust particles on the acceleration covariance of ordinary turbulence.
Kishore and Sinha [59] also studied the rate of change of vorticity covariance in dusty fluid
turbulence. '

Deissler [27,28] developed a theory for homogeneous turbulence, which was valid for
times before the final period. Following Deissler’s theory Loeffler and Deissler [72] studied
the decay of temperature fluctuations in homogeneous turbulence before the final period. In
their study, they presented the theory which is valid during the period for which the quadruple
correlation terms are neglected compared to the 2™ and 3"-order correlation terms. Using
Deissler’s same theory Kumar and Patel [64] studied the first-order reactants in homogeneous
turbulence before the final period for the case of multi-point and single-time. The problem
[64] extended to the case of multi-point and multi-time concentration correlation by Kumar
and Patel [65] and also the numerical result of [65] carried out by Patel [67]. Following
Desiler’s approach Sarker and Islam [115] studied the decay of MHD turbulence before the
final period for the case of multi-point and multi-time. Islam and Sarker [46] also studied the
first-order reactant in MHD turbulence before the final period of decay for the case of multi-
point and multi-time. Sarker and Rahman [113] studied the decay of temperature fluctuations
in MHD turbulence before the final period. Sarker and Islam [116] also studied the decay of
temperature fluctuations in homogeneous turbulence before the final period for the case of
multi-point and multi-time.

They considered two and three point correlations and neglecting fourth- and higher-
order correlation terms compared to the second- and third-order correlation terms. In this
chapter the method of [27,28] is used and we have studied the decay of temperature
fluctuations in homogeneous turbulence before the final period for the case of multi-point and
multi-time in presence of dust particles. The main purpose of this part of the chapter to derive
an equation for the energy decay law of temperature fluctuations in homogeneous turbulence
before the final period for the case of multi-point and multi-time in presence of dust particles.
When the frequency f is zero, i.e. for homogeneous turbulence of a clean fluid the result

reduces to the one obtained earlier by Sarker and Islam [116].

2.7 Correlation and spectral equations :

The equations of energy for an incompressible fluid with constant properties at the

point P and P’ are given by
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or aT_[vJ o’T

—+U il Pt
or  'ox, \ p, )ox,ox, (2.7.1)
and

‘ 8—7—”-{—1['6_71’ — L azT,
a e \p e T (2.7.2)

The subscripts can take the values 1, 2, or 3.

Here u; turbulent velocity component P, Prandtl number; v, kinematic viscosity

Multiplying equation (2.7.1) by 7", equation (2.7.2) by T and taking ensemble average,

result in
ATT") O(TTw o TT’
ua e o .
t ox, p, ) Ox0x,
o(rT"y &(TT'w)) (v \o*(IT")
and o' o Ox! - p_r ox'ox’ T et
with the continuity equation
ou, Ou, '
S I 1 T
x  or : {2.7:5)

Angular bracket (———) is used to denote an ensemble average. Using the

transformations

9. .2 i_i(i) _[QJ _0 o0_0
ox. or ax or\o), \at), oar’er oAt

into equation (2.7.3) and (2.7.4), one obtains

; o n X {TT’
BET) = BT ) (—- r—Att+ A1)+ T ) (7, At,1) Z(I—} L — (2.7.6)
ot or, ‘ ' or, p, ) oror,
TT") o(uTlT’), . (v o(rry —
and Y + o, (— F=ALE+ A!)ﬁ o | orar (2.7.7)
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It is convenient to write this equation in spectral form by use of the following three-

dimensional Fourier trans{orms.

1T, A1) = T(ﬁ(z&,Az,:))exp[f(f%.ﬁ)]dk e (27.8)

-0

(uJTT’(F,A!,I»: <¢, fr'(k,A!,!bepr([Zﬁ)}aﬁe ------- (2.7.9)

él__.._'ﬂ

and (u,TT'(F, AL, t)) = (uTT'(- F,~At,t + At))

= ?<¢,rr'(— K,~Af1+ A:)) exp[f(k.ﬁ)]di% ------ (2.7.10)

(Interchange are made between the points p and p')

where K is known as a wave number vector and magnitude of K has the dimension 1/length
_and can be considered to be the reciprocal of an eddy size.
Substituting the equations (2.7.8)-(2.7.10) into equations (2.7.6) and (2.7.7) leads to the

spectral equations.

M + Q[L}k2<rr'> = iK. [(gzi, n’({%,m,:)) - <¢, rr'(— E’,~At,t + At)> ] ------- (2.7.11)

ot s
a ! A
N b

In equations (2.7.11)-(2.7.12) the quantity rr'(F:') may be interpreted as a temperature
fluctuation “energy” contribution of thermal eddies of size I/k. The time derivative of this
“energy” as a function of the convective transfer to the wave numbers and the “dissipation” due
to the action of the thermal conductivity. The term on the right hand side of equation (2.7.11) is

also called transfer term while the second term on the left hand side is the “dissipation” term.

2.8 Three-Point, Three-Time Correlation and Spectral Equations :
In order to obtain the three-point, three-time correlation and spectral equations, we

write the Navier-Stockes equation for turbulent flow of dusty incompressible fluid at the point

P, energy equations at the points p' and p"separated by the vectors 7 and 7’
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ou ) op d’u
LTI Y N R T e - 23,
= ax}(, ) = e o, =), (2.8.1
6T'+u,_£_(j_) o 2.8.2
B e
aTH ”aTrr aETH
gl b0t (2.8.3)

=4

1%
and U == ;
" Ta T P avax!

Multiplying equations (2.8.1) — (2.8.3) by T'7", u,T" and u 1" respectively and then

taking ensemble average, we obtained

@<zzJT'T”> 6(u_,T'T"u,>_ ]8(PT'T"> 62(117IT'T">

+V

+ =
ot 0x P Ox Ox,0x,

! !

a(T"u, ") . o Tu,T") (LJ o*(T'u,T")

ar' ' \P) axax

and

e T oxr P ) oxox’
Using the transformations

0_(0,0)08_ 0 2_2

ox, \or or)ox or o o

o 0 o 0

a(T”uIT’> 8<u:'T”uI7"> ( ” ]52<T”141T’>
L | (e v

O )y \Ot)yn OM OM'TOAI OALTOA" QAL

into equations (2.8.4) — (2.8.6), we have

+ f(<u_,T'T") ~(v,1'7")), - (2.8.4)
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ou, T'T") [ 0,0 J<” T,T"u%a(u;?"u,r") /", 1)
———— T,

o1 o, or or, i or,
el o {5l

+ f(<ujT’T”> —(va’T")), -------- (2.8.7)
weagEen
ppdnappen

The six-dimensional Fourier transforms for quantities in the equations (2.8.7)-(2.8.9)

may be defined as

(u,T'T")F,F A, AL 1) = Tj(ﬂ 0'6" Yexpli (Kr+ K’r’)ja’KdK ------- (2.8.10)
(a0, T'T"Y P 7 AL A 1) = j j( B.B,0'6"Yexpli (Kr e f%'.ﬁ')]d/%.:ﬂ%’, ------- (2.8.11)
(pT'T™)(F 7'\ AL AL 1) D}aa'a Vexpl[f(R7+ K7 Jakak'. (2.8.12)

Interchanging the points p" and p” shows that

(ug:f’?"ﬂ"")=(u,u,’T’T"> a]?([)’ ﬁ'00" expli (KrJrK' ')](JKdK' —————— (2.8.13)
(v, T'T"YP.7', A0, 00 1) = ??(yjﬂ'ﬁ">exp[f(1%.?+I%'.F’)]d]%dK'. ------ (2.8.14)

In these equations, K and K" are known as wave number vectors, and dk = dk,dk,dk, .
The quantities B,6'0" etc, are spectral tensors in wave number space corresponding to the

correlation tensors in physical space.
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- By use of these facts and equations (2.8.10)-(2.8.12), the equations (2.8.7)-(2.8.9) may
be transformed as
a(poey,

(R.&AnAr )+ 2004 p W2 42k k, + (14 p, o2 =BTy (809" )& K", 00 ,0)
ot p, 1%

= ﬁf[kf vk, )(a@'@”) — f{y,00") +ilk, + K Y(.5,007) ~ (88,00 K", Ar,801)

-------- (2.8.15)
a(B,0'0"\K, K", At At o -
2 >(am S t)+(lr}kﬁ(ﬂ_la'a")(i«f,K',Az,m',:)~—ik,(ﬁ,'ﬁ,e'e”)(x,K',A:,Ar',:),
-------- (2.8.16)
a(ﬂ,ﬂ'gﬂ)(f;;f', Ar,At’,f)+[plr]k”(ﬁj@'@”)(}{',K”,At,At',t):—ikf(ﬂ,’ﬂ_,&’ﬁ")( ¢ R AL AL
-------- (2.8.17)

If the derivative with respect to x, is taken of the momentum equation (2.8.1) for the

point p, the equation multiplied by 77" and taken the ensemble average, the resulting equation is

82<szzr}T'T"> ~ __L 62<1)T'T")

-------- 2.8.18
0Ox 0Ox, p Ox,0x, ( _)

Writing this equation in terms of the independent variables # and 7'

2 2, 2 2 2 2 2
[ . 8: - 53 ,]<uiujT'T">=—l[ g 3.0 +9—](;)T'T").-(2.3.19)
oror, oror/ oror, oror] p Ordr,  Oror Or

Taking the Fourier transforms of equation (2.8.19)

—plkk, +kk +kk, +kk, X 5,B,00)

9’9” =
(a0"6") Kk +2k K +K K,

Equation (2.8.20) can be used to climinate («6'6") from equation (2.8.15).

2.9 Solution for times before the final period :

To obtain the equation for times before the final period of decay, the third-order
fluctuation terms are neglected compared to the second-order terms. Analogously, it would be

anticipated that for times before but sufficiently near to the final period the fourth-order terms
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should be negligible in comparison with the third-order terms. If this assumption is made the

equation (2.8.20) shows that the term (a0'6")associated with the pressure fluctuations should

also be neglected. Thus neglecting all the terms on the right hand side of equations (2.8.15)-

(2.8.17), we can wrilte

ap.a0" I%,]%’,Az,Az',t _
(8,00 )+i[(l+p,)k2 +2p kk -Er .s}(ﬂié’ﬂ")(K,K',At,At’,t)=0,
ot D, v
-------- 2.9.1)
ABOONR K A br) (v L
: +| — |k OONK,K' At A E)=0, 405
= oo ) (92
P OONK, K AL, ALt .
b, >(am, ) +[LJk”(ﬁjQ’H”)(K,K’,A;,At',r):'0, -------- (2.9.3)

where (y ,0'0") = R(f,0'6"y and 1-R=S here R and S arbitrary constant.

Inner multiplication of equations (2.9.1), (2.9.2) and (2.9.3) by k; and integrating

between t, and t we obtain

k, (B,6'0" = [, exp} —-~—V—{(l+pr)(k2 +k'2)+2p, kk' cos@ L fs}(t—zo) st (2.9.4)
i B, Vv
ran Vv 2
k(B,00") =g, exp[—.k At] -------- (2.9.5)
and £, (B,00")=gq, exp[——l/—wk'ZAt’J. -------- (2.9.6)

For these relations to be consistent, we have

k(B,0OT =k (B,00, exp{”{(l Fp W k7 W=ty )+ AL+ k72 AL
' ' ' ‘ P

r

+2p kk' cosOt — 1, )— [1’/’ wi=tdL 00000000 e (2.9.7)
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where @ is the angle between k and k' and (B,0°0"),is the value of (ﬂj&'{)")at t=t,

Ar=Ar'=0. Letting #'=0,Ar"=0 in the equation (2.8.10) and comparing the result with the

equation (2.7.11) shows that

(k_,(ﬁr,-rf'(/%,:ﬁt,t)) - f(kf/f‘,c?’t?”(l%,!%’,At,(),rbdk. -------------- (2.9.8)
Substituting the equation (2.9.7) and (2.9.8) into the equation (2.7.13) we obtain

AW 5 e ) T i 0l ,200.)- 5007
o

-ty

%

(— K-K', At,O,t) ]0 exp[— p

{1+ p, 2+ K72 e =1, )+ k2 A0+ KA1+ 2p kk'(1 ~1, )cos®

r

L f-epake. (2.9.9)
V

Now, dK' (= dK dK dK ) can be expressed in terms of &'and € as -2k d(cosO)dk’
(cf. Deissler [28])

dK' = =27k d(cosO)dk’. (2.9.9a)
Substitution of equation (2.9.9a) in equation (2.9.9) yields

%W%—Z—;—kz(n')(k,m,l)

= 2];271’1"?, [(/3,9'9")(","')— ()3.,9'95(— K, k')]uk’{ I'[exp{— pi 0+ p, Y2 + k72 X —1,)

+ kAL KA+ 2p kk'(¢ ~t,)cos O ~%5-f5'(t ~1,) | Jd(coso) }dlz’ I S (2.9.10)

In order to find the solution completely and following Loeffler and Dessiler [72], we

assume that

O LRI S BN SO R
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where &y is a constant depending on the initial condition. The negative sign is placed in front of
8o in order to make the transfer of energy from small to large wave numbers for positive value
of 6{).

Substituting equation (2.9.11) into equation (2.9.10), we get

—aa;(w')(f%, A2 2;‘5:2;rk2 (ee) (R, Avyt)= 26, :f(kzk"‘ e

1
>< { Iexp{— ;7‘; [(1 + pf)(k2 o+ k’EXt —1,)+ KA+ KA+ 2p kk' (e~ 1, )cos O
-1

r

“&jﬁ‘(!—[“. ]}d(COSQ) :ldkA’ _________ (2.9.12)
v

Multiplying both sides of equation (2.9.12) by k% we get
2 gty =w, e {29.13)
a P,

where E =27k*(r7") is the energy spectrum function and w is the energy transfer term given

W=—2 O]. '2 k kﬂ!:]j p{——i[(]+pr)(k2 'f'k’zXl“"I“)-l-klA[
P,

~1

+2p,kk'(t —1,)cos@ —&fs([ -t,) ] }d(cos@)}cﬂ;'. --------- (2.9.14)
v

Integrating equation (2.9.12) with respect to 6, we have

Uj- P k'3{exp{—i[(l + pr)(k2 +k'2XI —t“)+ k*At
P

V(! ): :

k!S k kﬂ

—2p kk'(t-1,)~ f:} L file =t ]}}Ik’

C:

Vv

{@xp{mm—*[(l+[) )(k ke —t,)F KA+ 2 p Kkt - )Afi-_ﬁs(t—l“)]}}dlg' == (2.9.15)
p
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Again integrating equation (2.9.15) with respect to &', we have

B 0o, \/;p:"z P . e kzv(! + 2p,) I+ p,
W= ) (s ) )5/2 expf y Sl () x mp[mpr (s p,.) i = 2, Al
v, ]Sprk4 + Sp:_ __:_3“} kG +{ p.f _ P, }k8J
4y’ ({ sl )2 (I # p,,) (1 +p, )2 2 V(t . t‘“) (I + pr)3 [+ p,
S,Nzp” P, —k*v(i+2p,) p
e =% 2 I““t r s r
41/3’2(!—10 +At)3”(] +p")s;g exp{ y ﬁ( .,)}Xexf)[ ]7,,(1+ P,) (t=t,+ 725, Al)]
" 15p,k* 5p; 3 k° . p) Pr yj3], eeee (2.9.16)

e 3 + ’P_— -
Wt a0 p) Grpf 2780 e p ] T+p

The series of equation (2.9.16) contains only even power of k and start with k*. The
quantity w is the contribution to the energy transfer arising from consideration of the three-

point correlation equation.

If we integrate cquation (2.9.16) for At=0 over all wave numbers, it can be easily

shown that

[wdk=0. (2.9.17)
0

which indicates that the expression for w satisfies the condition of continuity and homogeneity.
Physically it was to be expected, since w is a measure of the energy transfer and the total

energy transferred to all wave numbers must be zero.

The linear equation (2.9.13) can be solved to give

Ee= exp[—gkz(l ~t, +éi)]J-w exp[2— k*(f —t, +é£)]dt + J(k)exp[——zlkz(t -1, +£t-)], (2.9.18)
2 Pr 2 pr 2

r

2
where J(k) = Nok” is a constant of integration and can be obtained as by Corrsin [24].
T

Substituting the values of w from (2.9.16) and J(k) into the equation (2.9.18) and

integrating with respect to ty we get
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Nk o Al 8 Nmp? -
E= = —exp|—2-;)~-.‘-k'(t i, 2)]—! 41/‘”2(1 i )m expl fs(r —l”)]
2 42 4 = 6
- k(] +2p,)([_t” L A q3p,k - p.(1p, —6)k 7
p.(1+p,) 1+2p, wHe-0,)" v+ p -1, )"

S Nmp:?

B 43p* =2p, +3)k* . 8\/;(3pf -2p, +3)k°

F(g)y+
3(]'}“[)'_)2([““1”)”2 3(1+pr)51’2p’|_."2 (??) 4V3f2(l+pr)7f2
—vk*(1+2 1
xexp[fﬁs*(t*tu )]xexp[——v—(jmﬁ’—)(f~tu + P Ar) x| 3p.k =
p1+p,) L+2p, " 2 (1 -1, + A1)
p,(Tp, =6k 4 (3p* —2p, + 3k’ +8\/;(3pff2p,+3)k9F(?) (2:9.19)
W+ p)e—t, +A) 3(+p) =1, +40)"F T 31+ p, ) pl” Rt

i

where F(7)=¢" _IAe'r dx
0

- [ —1 At
’];k M_ or U:k _‘./_(_____JLLT)._
p.(1+p,) \ p,(+p,)

By setting 7 =0 in equation (2.7.10) and use is made of the definition of E, the result is

<’f';") (”;> A (2.9.20)

Substituting equation (2.9.19) into equation (2.9.20) and integrating with respect to k,

gives
372 ATO -3/2
<T2) ~ Napr (Tg “l"T) B ]TCsupf exp[fy] 9
2 8/2mv"? 41/6(] + p,_)(l + 2pr)5!2 167'05“(7'0 2 lj"fz&“ATu)m
’-"‘ r
9 S5p.(7Tp, —6)
+ * 1+ p
G w5 P, ar\ 512 3/2 TPy a2
_16(T, + AT, (T, AT =y AT)) L6(1+2p )T, (T, i = AT,)

r r
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3 5p,(1p, —6) . 35p,(3p] -2p, +3)
1601+ 2p, )T, + AT (T, + D AT)"? 81+ 2p )1, 2 (1, + ' TP AT )3

1+2p. 1+2p,

4 35/7,‘(3[),? =2 0. +8) N 8p. (3/)5 =2p, +3)(1+2p, )"

372 E
8(1+2p NT, + AT (T, + [__)if % 32751+ p,)
+

¥

2 1350 (2049) T (1 4 A, JRoe2 } _________ 2.9.21)

n=0 n!(Zn + 1)22" (l + P, )” : (T}] + A?’;} /2){2’”‘)"2 * (Tu & AT'O ’/2)(21'”[).‘2 }

where ,!‘(le"t() .

Equation (2.9.21) is the decay law of temperature energy fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time in presence of dust

particles.

2.10 Concluding Remarks :

In equation (2.9.21) we obtained the decay law of temperature fluctuations in
homogeneous turbulence before the final period in presence of dust particles by neglecting the
quadruple correlation terms in comparison with the third—order terms for the case of multi-

point and multi-time. If the fluid is clean then =0, the equation (2.9.21) becomes

I -
<T2> N(;pjh(yn +*’;)’0*') ” 75 Pf.) l 9
— e + 0 ¥ x
2 8v 2 2m avi(t+p Ni+2p, )" 16T, "%, + I+p, AT, )"
1+2p,
9 >p,(7p, —6)
" " I+ p
= > s & o 2 32 o r 772
16(T, + AT,)**(T, EW ) AT, 16(1+2p )T, (T, + iTi_rM“)
" 5p.(1p, -6) " 35p,G3p; =2p, +3)
- 32 e P, 72 e l+p, o2
16(1+2p, XT, +AT,)" (T, ar TPy AT 8(1+2p )T, (T, +l_+2_p: AT,)
N 35p,(3p; =2p, +3) ,8p.Gp; -2p, +3)(1+2p,)""

. ATy 32771 4 pr)mz
+2p ¢

F

81+ 2p, )T, + AT (T, + ;
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2 1.3.5....c..... (2n+9) y 7”0(2"”)’2 (TO+AT“ )(2n+1]l2
e+ 122 (0 p, Y (1 AT, 12) (T 4 AT, )P

P (2.10.1)
which was obtained carlier by Sarker and Islam [116].

If we put A7, =0 in equation (2.10.1), we can easily find out

(r?) N, pier, o L T 5 2P =6) 35 p,(p; ~2p, +3) -
2 8V21v 4 (14 p, X1 +2p, Y T TI6 167 142p, 8 {ledp )P
=312 =5 ~3/2 -5
=AT, " "+ BT = A -1)7" + B -1y, (2.10.2)
342
where A =—2"— and
8272
-~ & —6 2_
B PuPr 2,3 2(p.-6) 35 p.Gp] 2,49,
200+ p )1+2p, )7 16 167 1+2p, 8 (1+2p,)

which was obtained earlier by Loeffler and Deissler [72].

This study shows that the effect of dust particles in homogencous turbulence the
temperature energy fluctuations decays more rapidly than the energy for clean fluid for times

before the final period.

If higher order correlation equations were considered in the analysis it appears that
more terms of higher power of time would be added to the equation (2.9.21). For large times,
the second term in the equation becomes negligible leaving the -3/2 power decay law for the

final period.
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CHAPTER-II

PART-C

DECAY OF TEMPERATURE FLUCTUATIONS IN HOMOGENEQUS
TURBULENCE BEFORE THE FINAL PERIOD FOR THE CASE
OF MULTI-POINT AND MULTI-TIME IN A ROTATING
SYSTEM IN PRESENCE OF DUST PARTICLES

2.11 Introduction :

In recent years, the motion of dusty viscous fluids has developed rapidly. Such a
situation occurs in the moment of dust-laden air, in problems of fluidization, in the use of dust
in a gas cooling system and in the Sedimentation problem of tidal rivers. Saffman [106]
derived an equation that described the motion of a fluid containing small dust particles, which
is applicable to laminar flows as well as turbulent flow. Michael and Miller [83] discussed the
motion of dusty gas occupying the semi-infinite space above a rigid plane boundary. Kishore
and Sinha [59] studied the rate of change of vorticity covariance in dusty fluid Lurbu!énce.
Sinha [122] also studied the effect of dust particles on the acceleration covariance of ordinary
turbulence. Sarker [110], Sarker and Rahman [112] considered dust particles on their won
works. Deissler [27,28] developed a theory for homogeneous turbulence, which was valid for
times before the final period. Following Deissler’s theory Loeffler and Deissler [72] studied
the decay of temperature fluctuations in homogeneous turbulence before the final period. In
their study, they presented the theory, which is valid during the period for which the quadruple
correlation terms are neglected compared to the second- and third-order correlation terms.
Using Deissler’s same theory Kumar and Patel [64] studied the first-order reaclants in
homogeneous turbulence before the final period for the case of multi-point and single-time.
The problem [64] extended to the case of multi-point and multi-time concentration correlation
by Kumar and Patel [65] and also the numerical result of [65] carried out by Patel [97].
Following Deissler’s approach Sarker and Islam [115] studied the decay of MHD turbulence

before the final period for the case of multi-point and multi-time. Islam and Sarker [46] also
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studied the first —order reactant in MHD turbulence before the final period of decay for the
case of multi-point and multi-time. Sarker and Rahman [113] studied the decay of temperature
fluctuations in MHD turbulence before the final period. Sarker and Islam [116] also studied the
decay of temperature fluctuations in homogeneous turbulence before the final period for the
case of multi-point and multi-time. In their approach, they used two and three point
correlations and neglecting fourth- and higher-order correlation terms compared to the second-

and third-order correlation terms.

In this chapter the method of [27,28] is used and we have studied the decay of
temperature fluctuations in homogeneous turbulence before the final period for the case of
multi-point and multi-time in a rotating system in presence of dust particles. It is the extension
work of Part-A and Part-B of this chapter and we have derived an equation for decaying energy
of temperature fluctuations in homogeneous turbulence for times before the final period. Here
we have considered correlations between fluctuating quantities at two- and three-point and the
set of equation is made to determinate by neglecting the higher correlations in comparison Lo

the second- and third-order correlations.

2.12 Correlation and spectral equations :

From the equation (2.2.3) and (2.2.4), we can write the equations of energy for an

incompressible fluid with constant propertics at the point P and P’ as

oT or (v )\ a'T

e e e R 2.12.1)
ot ox, \ p, )Ox, ox,

and

oT’ cOF v o7

_——_..-§-uj——-’-: —— ; o e (2122)
or' ox, p, )oxox,

. v . T
Here u; turbulent velocity component P, = —, Prandtl number; v, kinematic viscosity

The subscripts can take on the values 1, 2 or 3.

Multiplying equation (2.12.1) by 7", equation (2.12.2) by T and taking ensemble

average, result in



Chapter 2 68

oTT"y OTT" HTT
( >+ (IT",) z{_"_]a {r7’) . e (2.12.3)
ot ox, P, ) Ox,0x,

BET* IT%% » YOR(IT
(r7”) i ATT ;) = (‘_Ja;_q) __________ (2.12.4)
or’ Ox! p, ) Ox'ox!

with the continuity equation

ou, ou

—L=—"=0. L2,

e Ta (2.12.5)

i

Angular bracket (———) is used to denote an ensemble average. Using the

transformations

&8 2 i_i(ﬂJ m(fi) il Lo
o, or ox or\at), \ot), oar’ar oA

! 1 1

into equations (2.12.3) and (2.12.4), one obtains

I ol ol Prparprd - ’ ! 82 e ald
5(1F>_a<u,1[ )(“r _A,t+A,)+M(,:,Af,f):2(_"_] (77‘)’ _________ (2!26)
ot or, ’ : or, p. ) oror
oTT"y 8, TT") (v oery
+ (- F-Atyt + &) : (2.12.7)
oAt or, p, ) oror, '

It is convenient to write this equation in spectral form by use of the following three-

dimensional Fourier transforms.

<TT’(1"‘,A£,£)> = ](rr’(!%,At,t))exp[f(]%.?)]d/% P — (2.12.8)

(u,T7"(7, At 1)) = i[(qé,. (ke (2.12.9)

and (uTT'(F,A,1)) = (uTT'(= F=At, 1 + Ar))

)

= {ls, ro'(- R-ane+ At)) A3 S— (2.12.10)

(Interchange are made between the points p and p'),
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where K is known as a wave number vector and magnitude of £ has the dimension 1/length

and can be considered to be the reciprocal of an eddy size.

Substituting the equations (2.12.8)-(2.12.10) into equations (2.12.6) and (2.12.7) leads

to the spectral equations.

f(;_f) * 2(;%]"%”7 =ik, [<¢', TT'(IQ,AM» = <¢5, rr’(— K,~At,t+ Ar)) | - (2.12.11)
6éz> ¥ 2(1)—‘1} (L S ) R — (2.12.12)

In equations (2.12.11)-(2.12.12) the quantity rr’([%) may be interpreted as a temperature
fluctuation “energy” contribution of thermal eddies of size 1/k. The time derivative of this
“energy’ as a function of the convective transfer to the wave numbers and the “dissipation” duc
to the action of the thermal conductivity. The term on the right hand side of equation (2.12.11)

is also called transfer term while the second term on the left hand side is the “dissipation” term.

2.13 Three-Point, Three-Time Correlation and Spectral Equations :

In order to obtain the three-point, three-time correlation and spectral equations, we
write the Navier-Stockes equation for turbulent flow of dusty incompressible fluid in a rotating

system at the point P, energy equations at the points p’ and p”separated by the vectors 7 and

B

ou d 1 dp o'u .

—+——lwu)=-——tv—"L-2¢, Qu +flu, ~-v ), = e 2.13:1

at ax’ (u.lu') ,D ax’ ax!axf / A f( J .l) ( )
r ' 20

L e — (2.13.2)

ot " ox! P ox0x

a?,” aT‘” v aZTH‘
L S (2.13.3)
and 5 u o ( r ) o

Multiplying equations (2.13.1)-(2.13.3) by T'T", u, T" and u T’ respectively and then

taking ensemble average, we obtained
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E)(u}T'T") (3(5;_!7"7"”:.',) | E)(PT’T’> 52<HJT'T"> o o o
il - = ~ Loy S E -2¢,, Q,(u,TT Y+ fu,T'T )= (v, 7).
--------- (2.13.4)
8(7"1:_:7‘"> N 6(u,’]""t:fl'l”’> B [LJ 63<T:ull’f'”) _________ 2.13.5)
ot ox, P 8o
6(1"”11.]‘"’) 6<u,.”T”zz T'> 5‘2<T”u T'>
d 2 ! s Rl — e
an pwE + o [P,J PN (2.13.6)
Using the transformations
o _(8,0)0_2 2 o
ox, or, o' Jox] or ox' o
[3] :(E] 0 o o9 _o a8 _ 0
O )y \Ot)y, OA OAI" QAL OAL™ DA  BAL
into equations (2.13.4) — (2.13.6), we have
5(1{,?"’1'") —[—a—+-a—]<ulT'T"u, ) " a(u:}'"uj}"”> : 6(11,'7"'1",}’"’)
ot or, Or/ or, or/
sl —a—+m{1 (PT'T"yw i-ﬁ-—?— 2<u T'T">+ Zl B + i (u T'T")
plor, or or, o ¢ P orodr, oror )V’
~2¢,, Q,(uTT")+f ((u TT)={v jT’T”)) A 2.13.7)
ou,T'T") X o{u'u,1") [Lj o*(T'u,T") L 3.3
OAL or, P or.or,
[} " e ’ 2 ret
6<T”IT >+6<H'T "!T> :[L}M_ ........... (2.13.9)
OAl' or! P, or.or/

The six-dimensional Fourier transforms for quantities in the equations (2.13.7)-(2.13.9)

may be defined as
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(0, T'T")F, 7" A A1) = j j(ﬁ 0'6"expli (K Pt K'r’)JdeK' ......... (2.13.10)
(0, T'T"NF P A1 A1) = j j(ﬂ ,3,9'9">cxp[f(1€.f ) — (2.13.11)
(p[ !” rr LAY )= Ia()(" exp (Kr+K’ ')Ja’KdK’ ---------- (2.13.12)

Interchanging the points p" and p" shows that

o

(Y= (u Ty = | j(ﬁ B0 Yexpli (R 7+ K7 aRdR'  ceeeeeee (2.13.13)
<v 7T )(r FiLAL AL, t = G}?(y 99">exp (Kr-l—K'r')]deK' --------- (2.13.14)

Substituting the preceding relations (2.13.10)-(2.13.14) into equations (2.13.7)-(2.13.9)
give in the forms

Ap.07)

oL (& & anar 104 p K2+ 2p,kk, (14 p 2+ P06, @, - f)
P, v

(B,00")&, &', 80,807, 1) = z'(k, ik, )(aa'a") ~ 1{y,00") + ilk, + kX(B,,00") .

P
X1 O VYR ) R — (2.13.15)

8([3,9’9")([;‘;{{',A1,At’,!)+ [“};‘%Jk%ﬂ,g'g")("%’kﬂ Az,Az’,t)=—ik, <ﬁ,'ﬁfg'6)">([%,I{”,A!,At',!).

......... (2.13.16)

a(ﬂj&’g")(!&,]%',At,Af’,t)
oAt

+[——" ]k’?(/5,9'9">(1%,1%’,m,m',t):_fk;<,3;ﬁ,e'e">(k,1%', ALALE).
........ (2.13.17)

If the derivative with respect to x; is taken of the momentum equation (2.13.1) for the

point p, the equation multiplied by 77" and taken the ensemble average, the resulting equation is
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O ) v eprry (2.13.18)
axlax,. P ax,t'ax.' . -

Writing this equation in terms of the independent variables # and 7'

au 82 a] al ] 62 82 2

d
+ + + wu 1T —XpT'T"). --(2.13.19
ordr,  oror)  drlor,  Oror; ]< ) p[@f or,  ar,or, ror or, ApTT). = :

Taking the Fourier transforms of equation (2.13.19).

= plik, +k k) + Kk, +KK Y BB, 09"
e e —— (2.13.20)
kk, +2k Kk + KK

(a0'0") =

Equation (2.13.20) can be used to eliminate (aé"@") from equation (2.13.15).

2.14 Solution for times before the final period :

To obtain the equation for times before the final period of decay, the three point
correlations are considered and the quadruple correlation terms are neglected in comparison
with the third-order correlation terms. Because, the quadruple correlation terms decay faster
than the third-order correlation terms. If this assumption is made the equation (2.13.20) shows
that the term ((10'()") associaled with the pressure fluctuations should also be neglected. Thus

neglecting all the terms on the right hand side of equations (2.13.15)-(2.13.17), we can write

a(ﬂ a'6 )(k 1% At A!"t)+~l/—[(l+pr)k2+2P,.k,k:+]1/‘/( €y Q, jS ](ﬁ (99")( f( At AL t’) 0,

or D,
--------- (2.14.1)
i s ﬁgf el ")+[LJkﬂw,a'e")(k,k',m,m',z): e — (2.14.2)
{ P,

op 00K, At,At',t)
OAL'

[ Jk”([f T (S IR B — (2.13.3)
P,
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where (y ,0'0"y = R($ 0'9") and 1-R=S here R and S arbitrary constant.

Inner multiplication of equations (2.14.1), (2.14.2) and (2.14.3) by kj and integrating

between t, and t we obtain

k(060" = f, expf 7}"—[(1 +p WK k) 2p kk cosO+ p, Ivize,, @, - f)i-1,) }.

r

--------- (2.14.4)
k(8,007 =g, exp[—fiklm} --------- (2.14.5)
and k(8,607 =q, exp[—;l;—k'z[\t'] ......... (2.14.6)

For these relations to be consistent, we have

k (B,0'6" =k, (B,60", epr:- pi {1+ p, o>+ K72 Xe = 1)+ k2L + KA + 2 p Kk cos Ot —1,)

r

+ p%(z €y Q, _.ﬁX‘! _[0) )] -------- (2.14.7)

where € is the angle between k and %’ and (,8_,9’9">uis the value of (ﬂfﬂ’ﬁ">at t=t,
JAr=Ar"=0. Letting ' =0,At' =0 in the equation (2.13.10) and comparing the result with the

equation (2.12.9) shows that

A

k¢,77 (R, At = d](kf R Y N) Y S — (2.14.8)

Substituting the equation (2.14.7) and (2.14.8) into the equation (2.12.11) we obtain

‘3<”'>(f Bt) o ¥ e nc)= it [, 000k, K 800.0)-<8,00%
ot P, P
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(— KK At,o,t) ], cxp[—f}i{(l Ep 2+ K2 Y1, )+ k2 kA + 2p k't -1, )cos@

[)r 3 -t
+7(2 emy QHI ‘*jSX! —lﬂ) }]dK A ==tsmaase (2 !49)

Now, dK can be expressed in terms of &'and @ as —27rk'2d(cosﬁ)d/€’ (cf. Deissler

[28]).

Hence, dK'= -2z Pd(cosO)ik’ (2.14.9a)
o(rr'\K, A, \
M+2Lk2<rr’)(K, At‘,t)

o P,

_;[exp{%-):—{(i p N2+ kN -1,)

r

= 2?2;;;1(, ks 007k, 1)~ B,00M- &, I%')Lk’z[

SR RPAL  2p k=4, Joos O+ %(2 €y Qo = ikt —15) d(cos0) k. - (2.14.10)

In order to find the solution completely and following Loeffler and Deissler [72] we

assume that

ik, [8,00m&, &)~ (8,007 R-R")] == 20 (k" — k%), (2.14.11)

(27)’

where 3y is a constant depending on the initial condition. The negative sign is placed in front of

do in order to make the transfer of energy from small to large wave numbers for positive value
of 8. The quantity [(ﬁjé"ﬂ")([%,k’)*([)’,rﬁ'()”)(« f(,—k’)] depends on the initial conditions of the
0

turbulence.

Substituting equation (2.14.11) into equation (2.14.10), we get
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a—‘i(n')(f%, A2 + 2p—"r 27k (r' )R, AL, 1)= 28, cj(kzk’“ S

1
x[jexp{—L[(l p WO+ k2N —0,)+ B2 AL+ KA +2p, kk'( ~1, )cos B

i P

) i ~
+ "Vf (2e,, Q, - fli-1,) Jd(coso) }dk’. ----------- (2.14.12)
Multiplying both sides of equation (2.14.12) by k%, we get.

ok
22X E=w, (2.14.13)
o p,

where E = 21?1(“(”'), the energy spectrum function and w is the energy transfer term given

by

w:—zaj(kzk“‘ ~k4k'2)k2k’2“exp{—i[(l +p K+ kY-t + kA
0 P

-1 r

+2p kk'(t =1, )cosO + ”Tf(z €0 Q — fidi-1,) ]}d(cosﬂ)}d;@' R (2.14.14)

Integrating equation (2.14.12) with respect to 0, we have

- mj(k k'~ k k”{exp{_—-[ L+ p, k2 + k2 N —1,)+ kA
_l;)n P

r

o0

- (2 mu = fSX{ "‘t }dk‘ S I k'5 kf3)
|4

{)

—2p,kk'(t—1t,)+

{exp{ [(|+p W2+ k2 o=, )+ kP Ar+2p k't =1,) + [:, (2 € D _ﬁ'xt—f,,)]}}di‘ _
P

............. (2.14.15)
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Again integrating equation (2.14.15) with respect to k', we have

S,Nmp”

. . —k*v(l+2p,
W=— 5/2 CXp{—%—(2 = Qm —js) ([ =f )} xexp[M

4 e-0, Y1+ p,) p.(1+p,)
4 2 6
)t -1, + P 130k WL
1+2p, Wi i=0,)0+p,) (+p ) 27 vl-1,)
3 s [ 52
. 2 B (5,\/ ) D, _
7 \3 S " ’*) 7 EX = 26.'1“ w S,
IR T vy i
x(t 1 )}xexp[_kzgw(]—-'-%ﬁa—’—)x(rf! s Apx( 15,4
t p,(L+p,) O 142p, avi(—t,+a1)}(1+p,)
Spf 3 k° :
. P Pl e By (2.14.16)

(1+pr)2 2 V(t_lo+A[) (I_f_pr)3 ]+p,.

The series of equation (2.14.16) contains only even power of k and start with k*. The
quantity w is the contribution to the energy transfer arising from consideration of the three-

point correlation equation.

If we integrate equation (2.14.16) for At=0 over all wave numbers, we find that

jwdk =0 (2.14.17)
0

which indicates that the expression for w satisfies the condition of continuity and homogeneity.
Physically it was to be expected, since w is a measure of the energy transfer and the total

energy transferred to all wave numbers must be zero.

The linear equation (2.14.13) can be solved to give

: At
E= cxp[fgzkz(! il +9‘i)]jwcxp[2lik~(f =i, +£)]d: + J(k)exp[—g‘ik?‘(r ~i, +=] ~(2.14.18)
I 2 P, 2 2

r r

2

where J(k)= Nyl is a constant of integration and can be obtained as by Corrsin [24].
T




Chapter 2 77

Substituting the values of w from (2.14.16) and J(k) into the equation (2.14.18) and

integrating with respect to t, we get

Nk v At 5,xp?
F =gyl =-2——k [ —=f. + =]+ P Z = _ — filt -
T p[ [)r ( o 2 )] 4]/3”2(] " pr )7,12 exp[ (2 emq Qm fsx't 'ru )]
k%l ¥ 2 1 4 —6\°
] v(1+2p,) L SV __,_p.Cp, -6k
pr(l + p,_) 1+2p, 2-./‘(! ~t“) 3v(l + pr)(t =t )m
_43p% -2p, + K +3\/5(3;),%21), +3)k° P+ 8, p"?
W+p )2 U—1)"  3+p)y P R (ap )"
xexpl-(2€,, Q, - fili—t )jxexp{M(pz +—Lr Apx[ 3p.k” 1
mip " o [)r (]+pr) o !+2pr 2‘/2([——[” +A1)Sﬁ’2
Tp, - 6)k® 3p -2 ! 2 - ?
P.(Tp, ~Ok 4 _Gp'—2p, +DK'  8vGpi-2p +IK o 5 1419

T3 p -1, A 31+ p) U1, + AN <N e e

i

where F(77) = g” J‘eIZt dx,

0
— 1—f +Ar
p.(+p,) V ».(+p,)
By letting # =0 in equation (2.12.8) and use is made of the definition of E, the result is

(rry {r’) |2 2 — (2.14.20)

Substituting equation (2.14.19) into equation (2.14.20) and integrating with respect to

k, gives

Tg )-31'2

LA
(T2> N o, o 5 75, p*
3 827y ! 4ve(l+p X1 +2p,)" exp[— (2 St —ﬁ)]
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9 9
[ I+ p &
GT3(T, & b BT IR YG(T, & AR TUE, $trie A7 1B
1+2p, 1+2p,
0 Sp,(Tp, - 6) N Sp.(p, *16)
16(1+2p, 0T, + AT, (T, + - £r - ATY'"? 16Q0+2p YT,V (T, + — Pr AT
1+2p, I+2p,
.\ 0.0, =% §3) . 35p,(3p; —2p, +3)
B+ 20 YT, +AT YT, & —E2_KEP2  $1+28,57, 7 (@, + 1+ p, Dr. Ay
1+2p, 1+2p,
L 8p.Bp7-2p, +3)(1+2p,)" & 1.35..........(2n+9)
3252 (14 p )2 Sa2n+12*(1+p,)

TO(ZHH)/Z . (TD-J-ATD){M”)IZ

" 2 2n+ . e 2!42]
{(TO +AT0 /2)(2n+|)~‘- (To +ATO /2)(_ 1)72 }] ( |

where To=t-t, .
Equation (2.14.21) is the decay law of temperature energy fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time in a rotating

system in presence of dust particles.
2.15 Concluding Remarks :

In equation (2.14.21) we obtained the decay law of temperature fluctuation in
homogeneous turbulence before the final period in a rotating system in presence of dust
particles by neglecting the quadruple correlation terms in comparison with the third—order
terms for the case of multi-point and multi-time. [f the fluid is clean and the system is non

rotating then =0, and Q,,, =0 the equation (2.14.21) becomes

AT ’
312 0 y-3/2
() Mep '@+ 75, p? i 9
= P 6 5/2 14 = n
g 8> \2r o+ p Xi+2p, )" gpsnr o 1P pg g
1+2p,
0 SPr(7[)r —6)
% * 1
3/2

iy P 572 , + P, 712
16(T, + AT,)’ (T, + " ;‘51)—"57"0) 16(1+2p )T, (T, + ¥ 5};‘;'5%)
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5p,(0p, -6) : 35p,(3p; =2p, +3)

2 e 7, . P g
1601+ 2p (T, + AT (7, + -j,,p AT 801+ 2p )T, (T, + i”;’f AT

r'4

+

r r

35p,3p; -2p, +3) s 8p,3p; -2p, +3)(1+2p,)*"
3.2231‘2(1 + pr)llm

+
81429, )Ty +AT) (T, + - Pe—az,)”
+

r

o l35(2i‘?+9) y TO{ZNH)/2 . (7-;) +ATU)(2n+])/2
n=0 n!(2n #+ 1)2 - (] £4p. )” (Y;J 4 AT() /2)(2”“)’2 (T(J + ATU /2)(2”+I]/2

X

3 [— (2.15.1)

which was obtained earlier by Sarker and Islam [116].

If we put A7, = 0in equation (2.15.1), we can easily find out

4 r

i3 o - o =
I i w8, p;T, " L3 PP, -6) 35p,(pl-2p,+3)

=)

H g 8
2 8V2rv*?  ave(l+p X1+2p, )7 16 167 [+2p, 8  (1+2p,)?

= AT $ BT =AY #BE =10, 00000 e (2.15.2)

3/2
ot’r

where 4 = —22L
82712

78,y 9,5 p.(Ip,—6) 35 p,3p}-2p, +3)
: s e e e s SR R
200+ p, J1+2p, )" 16 167 14 2p, 8 (1+2p. )

and

B=

which was obtained earlier by Loeffler and Deissler [72].

In this problem, due to rotation (of the fluid) in presence of dust particles, t
temperature energy fluctuation decays more rapidly than the energy for non-rotating clean flu

for times before the final period.

If higher order correlation equations were considered in the analysis it appears that

he
lid

more terms of higher power of time would be added to the equation (2.14.21). For large times,

the second term in the equation becomes negligible leaving the -3/2 power decay law for the

final period.
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CHAPTER-III

STATISTICAL THEORY OF CERTAIN DISTRIBUTION FUNCTIONS IN
MHD TURBULENT FLOW IN A ROTATING SYSTEM IN
PRESENCE OF DUST PARTICLES

3.1 Introduction:

- Several authors discuss the distribution functions in the statistical theory of turbulence
in the past. Lundgren [74] derived a hierarchy of coupled equations for multi-point turbulence
velocity distribution functions, which resemble with BBGKY hierarchy of equations of Ta-Yu-
Wu [131] in the kinetic theory of gasses; Kishore [51] studied the distributions functions in the
statistical theory of MHD turbulence of an incompressible fluid. Pope [100] derived the
transport equation for the joint probability density function of velocity and scalars in turbulent
flow. Kishore and Singh [53] derived the transport equation for the bivariate joint distribution
function of velocity and temperature in turbulent flow. Also Kishore and Singh [55] have been
derived the transport equation for the joint distribution function of velocity, temperature and
concentration in convective turbulent flow. Dixit and Upadhyay [31] considered the
distribution functions in the statistical theory of MHD turbulence of an incompressible fluid in
the presence of the coriolis force. Kollman and Janicka [66] derived the transport equation for
the probability density function of a scalar in turbulent shear flow and considered a closure

model based on gradient —flux model.

But at this stage, one is met with the difficulty that the N-point distribution function
depends upon the N+1-point distribution function and thus result is an unclosed system. This
so-called “closer problem” is encountered in turbulence, kinetic theory and other non-linear
system. Sarker and Kishore [107] discussed the distribution functions in the statistical theory of
convective MHD turbulence of an incompressible fluid. Also Sarker and Kishore |1 14] studied
the distribution functions in the statistical theory of convective MHD turbulence of mixture of

a miscible incompressible fluid.
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In this paper, an attempt is made to study the distribution function for simultaneous
velocity, magnetic, temperature and concentration fields in MHD turbulence in a rotating
system in presence of dust particles. Finally, the transport equations for evolution of
distribution functions have been derived and various properties of the distribution function
have been discussed. The resulting one-point equation is compared with the first equation of

BBGKY hierarchy of equations and the closure difficulty is to be removed as in the case of

ordinary turbulence.

3.2 Basic Equations:

The equations of motion and continuity for viscous incompressible dusty fluid MHD

turbulent flow, the diffusion equations for the temperature and concentration in a rotating

system are given by

i) +m?m(u“u,, = hahﬁ): ....] + W, -2e¢
o Oxy ox,,

0 5
i, +—§-—(hauﬂ uhy )= AV2h,
ot Ebcﬂ

oo o0 y

—+1 0

ot " 0x Vo,

—a»g-ﬂtﬁ = DV’c

o1 6)clj
. ou, ov, Oh, 0

U X, & gy, By, ,

where

u, (x, t) , a—component of turbulent velocity
i (x, t), o — component of magnetic field

6(x,t), temperature fluctuation
¢, concentration of contaminants
vy, dust particle velocity

€ alternating tensor

mef

+ S, =v,),
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f= ﬂ, dimension of frequency

yel

N, constant number of density of the dust particle
w(t,) = % 4;'”2 +%.§"2X£.2, total pressure
P(fc,t), hydrodynamic pressure

p, fluid density

Q, angular velocity of a uniform rotation

v, Kinetic viscosity

A= (4muc)” , magnetic diffusivity

k,
Wﬂ

y= , thermal diffusivity,

¢, specific heat at constant pressure,
kr, thermal conductivity

o, electrical conductivity

p, magnetic permeability

D, diffusive co-efficient for contaminants,

The repeated suffices are assumed over the values 1, 2 and 3 and unrepeated suffices

may take any of these values. Here u, h and x are vector quantities in the whole process.

The total pressure w which, occurs in equation (3.2.1) may be eliminated with the help

of the equation obtained by taking the divergence of equation (3.2.1)

2 du  Ou oh ©Oh
2w=_ 6 (uauﬁ—hahﬁ)=—[ Lfa il e ("] B
Ox, 0x , ox, Ox, Ox, 0x,

In a conducting infinite fluid only the particular solution of the Equation (3.2.6) is

related, so that

| 2 Ouy, o, Ohy | %'
T4 Yo axl ax ox, X -x

w

Hence equation (3.2.1) — (3.2.4) becomes
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d *ou’ " oh! '

2 + ¢ ( allp "huhﬂ):‘L"‘—a o, o & Oh, Oy & + Wi

o ox, dz Ox, ° © dxp Ox, Oxy Oxl |5 - ‘

_2 Emaﬁ Qmua +j.(urz évu)a """""""""" (328)
oh 0

«+—\hu,-uh,)=AV?n .

= axﬁ(a p—Ughy)=AV?h,, (3.2.9)
o6 00 9
—_+u _— ”0 ___________
r P @xﬂ N0, (3.2.10)
oc oc
—gp——= e, 2.
a ' ox, st

3.3 Formulation of the Problem:

We consider a large ensemble of identical fluids in which each member is an infinite
incompressible heat conducting fluid in turbulent state. The fluid velocity u, Alfven velocity h,
temperature 0 and concentration ¢, are randomly distributed functions of position and time and
satisfy their field. Different members of ensemble are subjected to different initial conditions
and our aim is to find out a way by which we can determine the ensemble averages ét the

initial time.

Certain microscopic properties of conducting fluids, such as total encrgy, total pressure,
stress tensor which are nothing but ensemble averages at a particular time, can be determined
with the help of the bivariate distribution functions (defined as the averaged distribution
functions with the help of Dirac delta-functions). Our present aim is to construct the bivariate
distribution functions, study its properties and derive an equation for its evolution of this

distribution function.
3.4 Distribution Function in MHD Turbulence and Their Properties:

Lundgren [74] has studied the flow field on the basis of one variable character only
(namely the fluid #), but we can study it for two or more variable characters as well. In MHD

turbulence, we may consider the fluid velocity u, Alfven velocity h, temperature 6 and
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concentration ¢ at each point of the flow field. Then corresponding to each point of the flow
field, we have four measurable characteristics. We represent the four variables by v, g, ¢ and

= =(2) =)

y and denote the pairs of these variables at the points x ', x "7 ,————— , X as
(;(H)E,—(n,gém,wm (‘7(2),§(2}’¢(2)’w(2)l ______ (g(u)’g(m’gﬁ(n;sww) at i Feel irseant
of time.

It is possible that the same pair may be occur more than once; therefore, we simplify
“the problem by an assumption that the distribution is discrete (in the sense that no pairs occur

more than once). Symbolically we can express the bivariate distribution as

{ (F”’,E(”,;b(”,t//m}, (‘7(2),?(2:,(&(2),([/(2)) ______ (V("),g{”’,qb"”,t//“”) }

Instead of considering discrete points in the flow field, if we consider the continuous
distribution of the variables ¥,g,¢ and y over the entire flow field, statistically behaviour of
the fluid may be described by the distribution function F (v,2,4,w) which is normalized so
that

[ FO.2.0.p)dv, dgdgdy =1
where the integration ranges over all the possible values of v, g,¢ and y. We shall make use of

the same normalization condition for the discrete distributions also.

The distribution functions of the above quantities can be defined in terms of Dirac dclta

function.

The one-point distribution function E‘”(v“’,g‘“,gb“’,w“’), defined so that
E“’(v“’,g"’,¢"’,w“’)dv“’dg“’d;ﬁ”’dw“’ is the probability that the fluid velocity, Alfven
velocity, temperature and concentration at a time t are in the element dv" about v\, dg!”

about g, d¢ about ¢ and dy'"’ about y'! respectively and is given by

Fl“‘(v“’ g“’,¢”’,w‘”)= (5(:1“’ _ v“’)§(h“’ = gmb(gm _¢ll))§(ctl) chn) (3.4.1)
where & is the Dirac delta-function defined as

at the point i=v

'[5(5 = {;)df) = {L\ clsewhere
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Two-point distribution function is given by

F = ( ((n ‘”)D o ‘”)r)( M ¢(|J)5( M ty(”}()‘(um }5(],101 73)

5(0‘2’ —¢”’)5(c‘2' ~y/‘2') (3.4.2)

and three point distribution function is given by

LR = < ( M _ u:)()(hm g(ll)(g o _ ¢(|))5( M (n)cg(um _V<2>)5(h(21 _gm)
(9(2) ¢(2 )5( (2) —t//”’)c‘i(u‘” _V(3))5(h(3) (3))0(9(3; ¢(3))(5( 6) _ (3)) = (34:3)

Similarly, we can define an infinite numbers of multi-point distribution functions

F4("2‘3‘4) ; F5”’2'3'4'5) and so on.

The following properties of the constructed distribution functions can be deduced from

the above definitions:

(A) Reduction Properties:
Integration with respect to pair of variables at one-point, lowers the order of

distribution function by one. For example,

IE(”dv“)dg“)d;é“’day“’ =1

J.F;l'2]dv(2]dg(2}d¢{2}dt//[2) =F",
J.F;"2'3’dv‘3’dg”’dgb”)a’w“’ - J,;,:!(1,2)

and so on. Also the integration with respect to any one of the variables, reduces the number of

Delta-functions from the distribution function by one as

IFI{I)dv(IJ =<5(h“’ t11}5(9n) ¢m)5( m)

I FOdg® = <5(um _v(n)é-(gm _¢(n)5(cu) *V/(”) > ,
I F]“’dgzﬁ“’ :<5(”<n (I))()(h(ll - (n)(s( M ',V(”) >
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and

J FOD gy = < m_ (1))5( g“’)&(ﬁ“’ “¢m)‘§(cm —W“))(S(hm —g”))
5(6”’ mgﬁ‘"")()'(c‘“” —Wm) )

(B) Separation Properties:

If two points are far apart from each other in the flow field, the pairs of variables at
these points are statistically independent of each other i.e.,
lim
ifm _):‘;ml_)oo [;2(1.2} :f*‘]‘”F,”’
and similarly,
lim

1 3)

—» o0 F‘(LM) = Fz“’nﬁ}m ete.

2
— X "

(C) Co-incidence Property:

When two points coincide in the flow field, the components at these points should be

(1,2) g(Z) =g(n, ¢(2) :¢(1) and

obviously the same that is F2'"* must be zero. Thus v* =¥,

w® =y, but F;'"* must also have the property.
j‘Fz“'z’dv‘”dg‘z’dgﬁ‘z’dw”‘ =

and hence it follows that
lim
@ _>xtl)|_900 J'qu,n :Ema(v(za_vm)(;(gu) (1))5(¢(21 ¢n))5( @ (n
Similarly,

lim

‘?3)_,)5(2)]__)00 jFj”'z’”=Fq“’2’(‘>‘(v"”~—v(”)b( SO0 _ “’)b(gﬁ”’ ¢(1))&( ™ _ u)) ete.
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(D) Symmetric Conditions:

(1,2 r, =g =) (1,2,~=—=-5,-——r,——-n)
}1n - F :

n

(E) Incompressibility Conditions:

aF(l.l,—--ﬂ) —
W v dv"dh'" =0,
xa
a 7 (1,2,—-—=n) _
(if) j————a —— W dvdh” =0,
xﬂ

3.5 Continuity Equation in Terms of Distribution Functions:

The continuity equations can be easily expressed in terms of distribution functions. An

infinite number of continuity equations can be derived for the convective MHD turbulent flow

and are obtained directly by div # =0

Taking ensemble average of equation (3.2.5)

(1)
- <Z )= [ gy

a

\_

a

Zaa(” ( u )( RO >dvm(fgmd¢5(”(1!//“]
x{!

0

ox,,

Jvcl,”Fl‘"dv”’dg(”dqz)“’dt//“’

- j OF" e e 1 £ ——— (3.5.1)

0
ox,

and similarly,

()
0= | O g0 g VdgVdy™ e (3.5.2)

T
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which are the first order continuity equations in which only one point distribution function is

involved.

For second-order continuity equations, if we multiply the continuity equation by

5(11(2) _ 1,(2))5(;1( ’J)b(o(’ (?))5( (2) _wm)

and if we take the ensemble average, we obtain

B ( 6(1;‘2’ ﬁv(2l)(g(h(2) _gzzn)(y(gm _¢[21)§(€¢2) _Wu))g_j:% )
_EB__< 5(u(21 mvm)(;(h(z) B g‘”){f(@‘z) _¢(2))5(C(2) _l//(z))u;n >

= oo
ox,

_j_j( uf}”(‘)‘(u(”fv(”)ﬁ(h(” m)é(om (15“’)5(.5"”%!//“’)

- ()
e

5(”(21 _v<z))§(h( m)b(gm ¢m)§( (z;) __________ (3.5.3)

and similarly,

G (]) Jg“'F“z)dv“'dg Bdgdp®, e (3.5.4)

The Nth — order continuity equations are

0 g

. = - vt(l,”FA[;Lh .N)dvil)d¢(|)dw(|) __________ (54
x(l

and

. aa“’ gLH[.‘,(VI-l— S R e e — (3.5.6)

The continuity equations are symmetric in their arguments i.e.;

aa(r)( (;]F(Iz rN)dv(rldg(r)dw(r)) a"?) J (\]F(IZ 'N’dv(”dg""dqé""dw"".-(3.5,7)

Since the divergence property is an important property and it is easily verified by the

use of the property of distribution function as
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ou'’
O EM g0 g, M g g, 0“4 0y ! =0
axa I a4 £ (ﬁ 4 axt(:)< u ) < axa(]) )

and all the properties of the distribution function obtained in section (4) can also be verified.

3.6 Equations for Evolution of Distribution Functions:

We shall make use of equation (3.2.8)-(3.2.11) to convert these into a set of equations
for the variation of the distribution function with time. This, in fact, is done by making use of
the definitions of the constructed distribution functions, differentiating them partially with
respect to time, making some suitable operations on the right-hand side of the equation so
obtained and lastly replacing the time derivative of v,h,0 and ¢ from the equations (3.2.8)-

(32005,

Differentiating equation (3.4.1), and then using equations (3.2.8)-(3.2.11) we get,

or" :ﬂ ( M _ “))a(h“) n),g(g(n ¢(I))é( M _ m))

ol 8!

:< 0-(;1(1: - m})({)m ¢m)0( () 7ch)£§(um - vm) )4< é'(u‘” —v“’)é‘(é)”’ _¢m)

ot

xb‘(c“) _Wm)gé(hm ._gm) ) +< 5(u(” _v(i))(j(htl) —g“’ (9(1) _¢m)§;5(cm _Wm) >

(h

(5(}1‘” (11)5(901 ¢5m)é( ) Wu))g“__ 0 5(“(nq_vm)>

or ov'"
+(*(5(u[” (I])()({)(IJ ¢m)5( () W(n)?%“ F)am 5(/?“] ~g“’) >
og

( m (z))ﬁ(hm (")5( ) W(l))ig;lﬁg(gtl) _¢m) )

( )

+(—5(u“’ ‘”b(h“ g --(gm ¢,<n) : am 5((_,(1) —Wm) ) ________ (3.6.1)
%

Using equations (3.2.8) — (3.2.11) in the equation (3.6.1), we get
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R

T _ <—5(h“’ _ gm)(g(gm _¢m)5(c(n _W(l)){ _BT(uLnu;jn A h})’)

I 0 ou'’ (’31.';," oht ah'” &

1 =
4r dx, oxl ox"  oxy axl’ C|x' x|

20 (h (1) (h
+VV uu _2Em(zﬂ Qmuu +-f(uu =¥ ) }

o

0

X NI é’(y“’ - v”') )+ (—5(1;“’ - v“’)&(&‘” —(é“’)é‘(c“) “’){ = (” ( hluy = ufl”h},”)

+AVIRY }%5(/(1) g‘”) ( m _ ‘”)c)(h“ “’)5((;“)—1,1/“’)

r
t;" a

{ ui}’% + W20 } % (m ¢,m) (u) m)é(hm n))

Xp

A
x(b'({)“’ _¢,m}{_ “LI) 2;“) 3 P }a;m (5(0(” —9’/“)) )
Y

(m,, )

=2 ( M g“’)é( (M _ m)J( () _wm)a“ ol

o .
ax\’ll av(l) (H“)—V“J)>

+<—5(h(” m)o(gm ¢(|))(>( m V/(}’)ahr)h};)—a—é‘(n“)—v“’))

M
ox,'  Ov,

| 0 (’)um 011(” opWM ahi,,”
of 7, (D y W s L I o L oy L R o i «
--|-< ()(h _fs }5(0 ¢ b(‘f’ W )4” ax(“ J‘ [ ax(j” (.)x“) axL!) ax;” ]

x—(—i—?i——g—d(u“’fv‘”))r( b(f”’ gm)()()m ¢m)é( i _ “’}VVN”

|x - x| c")vé”

2ol )

avlll

+< 5(;1(1) m)[s(gm ¢(!:)§(Cm . 1//“])3 - Q,u) 378075(”(” B vm) )

a

+<—5(h“) 7gm)5(0m —qﬁ“’)d(c“’ "!,’/m)f(uﬂm = va(n)%(g(um —v“’) >

v,

y
(ol o g e ) 2y - )
il a
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( m _ m){)(g(l) (blll),)( m _ (.])a“i”(ﬁﬁjn a 5(!1{” *g“’)>

ox, og,

+( (5( o v“')h(()“’ /)(l])()( (1) a//”')lv ho ’)f“ S(h”’ _gm)>

( M _ m)(;(hm (n)(g( m _ m) }," ‘Zf;;: aj‘” ( ) _ g ))

+<_5(”(U _vlli}s(h(l) —gm)J(c“' i 39“)_5__5(0(,, L¢l“) )

a¢(ll
( M _ (11)0(;1(1) m)é(gu) m)‘ w 9c ( () (I))
O Juy % (n 5'//“) S -y))
# (=6 v Js(a" — g )5(0D - gDV awim(s(c“' VL] § e (3.6.2)
Various terms in the above equation can be simplified as that they may be expressed in

terms of one point and two point distribution functions.

The 1™ term in the above equation is simplified as follows:

(ol g0 g (et ) 12 s y)

(" m
oxy’ v,

<“L”‘>( M _ “’),5(5)“’ ¢m)é( (1) —W(I,)ML(S(H“) —v‘”) )

(1) 5,0
Ox,’ Ov,

=<—u;]”5(h“’ {1))5(9(13 ¢m)(5( m _ :n)i_a_g(“u)_vu)))

Oy (\) dx (ll

( ”,u ( . I))()( (n _ m)é( (n _ (”)Wa(”m —v“’) ) . (since ZI:;“ =

(-0 - g0 -4 -y )26 40) ). e (5.63)

Similarly, seventh, tenth and twelfth terms of right hand-side of equation (3.6.2) can be

simplified as follows;
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0
( 5(11:1) _vm)‘,y({)(n _¢(|))§(Crn _Wm)@/; :;]/f’ a;m 5(/’1[” *gm) >
= <*(‘J‘(u“’ - v‘”)ﬁ({)”’ ._¢‘”),§'((.“) _U,“))”;;)%(g(hm Agm) ) e (3.6.4)

X
Tenth term,

( 5(”“)L l,,)(( m (,,)é( o ) 0 00" 9 ( () ¢m)>

Ly dx ll) a¢li)

:<_5(“u: M )'b( (i) .. (I)b( )y (n al (9(” ¢m)>

8xﬂ ___________
and twelfth term
( 5(“(1) Hvtn)()(, M g“’)é(ﬁ(” gb“))t LIJ g(’(” > 6“) 5(0(11 “V/“)) >
= (ﬂd(u(” - v(”)d(h(” fg“’)()'(ﬁ“l — ¢! t}j’ga(ﬁ”—b‘(c“’ —y/“') ) ----------- (

Adding (3.6.3) — (3.6.6), we get

(—J(h“’ _gW ‘(gm _¢u>)§(cm “’)z 0 ( m _ u)) )

/5 o (l)

+<_5(H(|1 B u‘”):)‘(()“’ -_gb(l:)()‘(clll })um—’)—ﬁé(f m &m) >

4 D m

< {5( a m)( (;m ;,‘”)f)( () V/(IJ)“(IJ = ()m _¢tl)) )

i

+<—c‘)‘(u“'—v“’)d(h“’ m)()(gm ;25“’)4“’ d (u) W“’))

g a(l]

— 0 <“2;( (5(11‘” _ v”’)é‘(h“’ _g(n)&(gm wﬁ‘”)o‘(c‘” _W“;] )
ox'

PWIRC N [ Applying the properties of distribution functions |
f
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) OF

S w0 (3.6.7)

Similarly second and eighth terms on the right hand-side of the equation (3.6.2) can be

simplified as

( (h(” “’)5(9‘” ¢5”))b( m 7W(n)a‘h;”h}gflJ —8—5(14“) —v(”) )

(m )
8x/j ov,

. ag“} 0 ol
L ov') Gx“’ :
and

LN R AR AN T S (3.6.9)

axp  og,

1t
1 v o Lo

o

gy
200 )

Fourth term can be reduced as

<_ VV211’L”5(]?“) Agm};(@m P¢m)5(cm _W(]))a—ﬁﬁ5(1‘(|) _vm)

= -y 65‘” <V2 | 5( a _ (”)O(h“] (l))a(gm _¢<n)5(c(n _W“,) 1)

a

B pp O 0’ (u;”[ (5‘(11“) “))(‘)(h(” 3)‘”)(5(6’“ ¢(|))é( M Wm) ] )

v
h A a ()
ov,' Ox,'0x,

lim
o _va‘?” 2 _y 50 - (26:; - ( ;h[ 5(1,1“' ——v“’)é(h“’ —g(”)d(g(” _¢m)‘5(cm _W(n) ] )
v, X, Ox 5
lim
:_Vé_%fiz) %f"’ﬁ;;(juf@(um— m)O(hm g(21)5(8t2) ¢m}5( .(2) ‘.Vm)
a B A

X(g(“u) (1))5( m _ (&))5( i _ mk(cm —t,y(”)dv(z)dg‘z)dqﬁ“)dw‘z)

lim
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a -t s 82 i f 2 2
aV”)x‘-’ _)xm—ax"’ax"’ | R R A [ ——— (3.6.10)

o

=-v

Ninth, eleventh and thirteen terms of the right hand side of equation (3.6.2)

( b(z M m)( (0“’ ¢m)‘> A0 (1))/1\—/ hf‘” . 7(” b(h“’ _gm) )
8

( ) s a&“’ (m m)o( a _ (”)g(cmiwm)agima(hm _gm))

u

lim
0 —(2 =) az (2) 7 (1,2) (2) (2) (2) (2)
=—/1m —> X ng F v dg d¢ diﬂ §  memeseseess (36”)

<_5(“m —v“’)d‘(h“’ —g“')c?( 1) ay”’)yV oo ;“) (O“’ ¢5m)>

=<_“W30u)(5(“m rn)’j(;m é):n)/)v(cm_wm)% ((l) ¢u:)>

lim
0 —=(2)" =(1) aa (2) 2 (1,2) 3 (2) 7 (2) 7 4(2)
I——}’a—¢mx —peX. W—]‘ I¢ F dV dg d¢ d!,U ------- (36[2)

0

(—é‘(y“’ m)é(hm ”))5(8“’ _¢m)szc(n :
%

. 5(.:"” _wm) >

= (—DVzc“’b‘(u“) (l))é(hm ‘”){3((,(” _f//“])"‘"a—“ ( () ¢u)) )

a¢(i]

lim
sy O g _ i _B [y FPavPdg P dgPdy @ e (3.6.13)
- I (2)5,.(2) 2 ok
oy O o,

respectively.

We reduce the third term of right hand side of equation (3.6.2)
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| a D !(II) ah,(l) ahu) ahll) di!
( é)(h“] B m){ ({)”’ 40 )(5( ) l,ym)— J' [ Ou B o _71]' ]“ __E(T,"S( i —v“’))

) N AL
4z ox By oxl) ax,, axl" |x" - x| ov!

d | 0 1 av' v ag gl .
= [ *J o T‘T;F" X = Sa VD e Dy @ g 1 g gD oy, 0 (3.6.14)

[ _(2) (2) (2) (2)
) -
ov, )l o 4 O,

Fifth and sixth terms of right hand side of equation (3.6.2)

< ( M _ rl)b(@u ¢m)(>( M _ “))26,,,(,/, G g2 0 5(:1“)7‘)“’))

mta By (|}

_—_< 2€,, Q"’“'(f”aam[ 5(;;”) Mv“’)ﬁ(h“) m)(g( a _ (|))5( A (U)
vﬁ

=2¢€,. Q’"B%< uf‘”é‘(u(” —v”’)o'(h“’ —g‘”)é‘(f)“) _¢(n)5(cm "W(”) >

au“)
TN a ( 5(u(|: “’)O(h“’ m)b(gm _¢m)5(cm %Wm) >

mafl n av[i)
a

= Q0]
e 2 enm/J QmF‘I """""""" (36]5)
and

<—5(h“’ _g“ﬁ){;(()“l —¢“’)5(c(” —t//“’)f( " —y® )iﬁ(u“’ N v”’) )

(n
av,,

=_< f( ul —p0 )_af_(l)[ 5(1‘(1) —v“))b( M _ m)o(gtl) gﬁ(”)é( ) Wm) ] )

o

e f {4l oy )_6_( 5(14(1) “')()(hm é‘”){)‘(()“’ —¢('))r5(c(” “W“)) >

T
oV,

)
=—f( ul - WFI“’ e (3.6.16)

Substituting the results (3.6.3) — (3.6.16) in equation (3.6.2) we get the transport
equation for one point distribution function FY (v, g,4,)in MHD turbulent flow in a rotating

system in presence of dust particles as
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or" R ogy’ avy \OF" 9 1 0 |
+Vy | +5ﬂ!f y t I TN [ —j 1 ( )
o axly’ ovy og) Taxy v o [¥® -z

(o g

7(L2) 5..(2) 5.,(2) g (2) (2) (2)
T @ T D JE D dx P dv P dg D dg P dy
x/f xa x[.f xu

[im
a _ 2
—2 = 2 2
+v x( ) __)x(l) J’ (Z)FH ’dv‘z’dqp’dgzﬁmdwm
ov'" Oh e, 2 '
@ f s
lim

2

o . g o
+lagn) ¥ - x"— PREPNE J'g D F0D 1y g D g oy

2
2@ 450

(2) 2 (1.2) g (2) 1, (2) g 4(2) (2)
= = [P Py P dgPd g d
op" Gl [#7F; Bragey

[im

=(2) ={1) az (2) (1L2) (2) (2) (2) (2)
(”.X —> X TN W [’2 dv a'g d¢ dly
oy dx ;" 0x

el 0

(1 (n (h
+2 Emaf[l Qmﬂ + f( -V a (|)

o

f'“) 0. (3.6.17)

Similarly, an equation for two-point distribution function 1,2 in MHD dusty fluid
turbulent flow in a rotating system can be derived by differentiating equation (3.4.2) and

simplifying in the same manner, which is

o TR gy’ ov, \ O
2 +( Ln m +VL.J - ),2(1‘2)%%,};)( &(“ e ) — gD
ot ox ox ov, 0Og, ~ox,

g o | 0 o | d l
1( é( ¥ ) F“'”———[—j ( )

2 2 2 | | = =
) 8gm 8x;’ o' axf,) |x(3’~x“"

) avfz“ av(;) aé(3) agﬂ)

)Fl‘"3'3'dx“'dv”'dg"“dgé”’dz,u“ ]
oxiy) ox  ox,) axy T

«(
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el dy pa L gy R 2y B 0
a":zz) EJ‘ axr(lzl ’f‘-",}’“ a»\‘f,:) 5x,‘;” (')xl(,:) 5:}”

1,2,3 3 3 3 i 3
% F;l 23 e B3 ) )dg( )“!¢,( de/ ) ]

lim lim
0 (3) (n d —(3) —(2) o’ (3) ~(1.2.3) 5 (3
—=(: - 1 2 (1.2, ) 7 (3) g 4(3)
+v( ——avmx - X +—av(2] 7 —oXx )——Fc e Iva E " dv'deg~'d¢*"d
a a yi]
lim lim
2
+/1( _?_fm S F0 4 0 ¥ 5 ) 0 J-g”’F“‘z'”dvmdgmdgz’;S’d(ym
og." ag.” oxyox? 17
lim lim
a —(3) =) a —=(2) 82 (3)
( O T T R W L RN — FOED 3 g3 g g3 gy, )
¢ll) 6¢(2} )ax;f’axf;) J.¢ 3 &g ¢ 4
lim lim
+D( 0 Ty g +M_L?m S ) J* J @ (123 4y D) g D gy O g ¢
5'//“) awtzm : 61”’61“’ ¥ ug W
(1.2) ( (h d F2) = )
+ emaﬂ Q 1 +-/ va (7)_ 2 - el (36[8)
ov - _

Continuing this way, we can derive the equations for evolution of F"** F!"**% and
so on. Logically it is possible to have an equation for every Fj, (n is an integer) but the system

of equations so obtained is not closed. Certain approximations will be required thus obtained.

3.7 Concluding Remarks:

If the fluid is clean and the system is non rotating then f=0 and Qm=0, the transport

equation for one point distribution function in MHD turbulent flow (3.6.17) becomes

({}] (h
oR" w0 o

o ”a“’ B gy ag“’

O (h o () aF(I] d 1 a ]
Ea == i ) I [ J‘( . x“’l )

A D _Bv“’ A m| )
il o

2) (2)
” ov? ovg'  0g,’ 08y VD gD gy g O d gDy

(2) 7,.(2) 2) 3,2
Oxy,’ Ox, o gy
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2

0 _ i 0
Y 72 5 F0 J.vff)Fz”‘z’dvmdg(z’daﬁmdw‘2)

o oxox!?
lim
= = 52 2 2 3 2
+ 2 PRD T gl pereeT '[gizzJFg‘(lw)dv(-ldg(-)dgé(_)dwt2)
a Vi Vi
lim
0 =i =it (32 2 2 2 2 2
+75¢7ﬁx( ) (M e J(ﬁ(']F;"')dv('}dg(“)dqﬁ(“)d{//(z’
B B
lim
0 _ _, = o’ (2VE2Y G2 AR) T A2 7o )
+D@w(l) X = Do _[W [y dviiidg T deg T dyt =00 (3.7.1)
A A

which was obtained carlier by Sarker and Kishore [114].

If we drop the viscous, magnetic and thermal diffusive and concentration terms from

the one point evolution equation (3.7.1), we have

oF an aFI“) ;fn agzlzrn+avr[1” )aFI(”h 2 [_I__J 9 ( I )
o1 oxy) v ogl Toxy vl dmd &l [fP -5

5v((13’ 51}}3’ agctle ag;f' (1,2) 5..(2) 3 (2) 3_(2) (2) (2)
x( ax;f) axgz)_axbz; axéz) )FZ e 7dviidg deg T dy ™ =0 s (3.7.2)

The existence of the term

| I
5g( ) 611((!’

a

+
(1 M
v, 0g,

can be explained on the basis that two characteristics of the flow field are related to each other
and describe the interaction between the two modes (velocity and magnetic) at a single point

X(]).

We can exhibit an analogy of this equation with the 1*' equation in BBGKY hierarchy

in the kinetic theory of gases. The first equation of BBGKY hierarchy is given [75] as
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aFI(” + 1 o O F,”’ =n” oy, an(I'Z)

—vV
A (n (n
Ox,’ Ov,

&P . 3.7.3
; : ax;” ( )

2 1
() _,h

(¢4 24

v is the inter molecular potential.

where ¥, , =W

In order to close the system of equations for the distribution functions, some
approximations are required. 1 we consider the collection of ionized particles, i.e. in plasma
turbulence case, it can be provided closure form easily by decomposing Fo'"? as F,'" ,?). But
such type of approximations can be possible if there is no interaction or correlation between

two particles. If we decompose Fo'? as

Fz“‘z) = (i+€) Fl(l) Fl(z)
and

~ - B
Fy02) = (1+e)2 F,\) F,@ p,®)

where € is the correlation coefficient between the particles. If there is no correlation between
the particles, € will be zero and distribution function can be decomposed in usual way. Here
we are considering such type of approximation only to provide closed from of the equation i.c.,

to approximate two-point equation as one point equation.

The transport equation for distribution function of velocity, magnetic, temperature and
concentration have been shown here to provide an advantageous basis for modeling the
turbulent flows in a rotating system in presence of dust particles. Here we have made an
attempt for the modeling of various terms such as fluctuating pressure, viscosity and diffusivity
in order to close the equation for distribution function of velocity, magnetic, temperature and
concentration. It is also possible to construct such type of distribution functions in variable
density follows. The advantage of constructing such type hierarchy is to provide simultaneous
information about velocity, magnetic temperature and concentration without knowledge of

scale of turbulence.
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CHAPTER-IV

PART-A

DECAY OF TEMPERATURE FLUCTUATIONS IN MAGNETO-
HYDRODYNAMIC TURBULENCE BEFORE THE FINAL
PERIOD IN A ROTATING SYSTEM

4.1 Introduction:

Corrsin [24,26] made an analytical discussion on the problem of turbulent temperature
fluctuations using the approaches employed in the statistical theory of turbulence. His result
pertains to the final period of decay and for the case of appreciable convective effects to the
energy spectral form in specific wave number ranges. Oruga [90] had been done further work
along this same line. Deissler [27,28] developed a theory for homogeneous turbulence, which
was valid for times before the final period. Using Deissler's theory Loeffler and Deissler [72]
studied decay of the temperature fluctuations in homogeneous turbulence before the final
period. Following Deissler's approach Sarker and Islam [116] also studied the decay of
temperature fluctuations in homogeneous turbulence before the final period for the case of
multi-point and multi-time. Sarker and Rahman [113] studied the decay of temperature
fluctuations in MHD turbulence before the final period. Islam and Sarker [46] studied the first
order reactant in MHD turbulence before the final period of decay for the case of multi-point
and inulti-time. Kumar and Patel [65] also studied on fist-order reactant in homogeneous
turbulence before the final period of decay for the case of multipoint and multi-time. Sarker
and Islam [115] studied the decay of MHD turbulence before the final period for the case of
multi-point and multi-time. Sarker and Kishore [108] had been done further work along this
same line for the case of multi-point and single time. They considered two and three-point
correlations after neglecting higher order correlation terms compared to the second-and third-

order correlation terms. Also Kishore and Dixit [52], Kishore and Singh [54] discussed the
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effect of coriolis force on acceleration covariance in ordinary and MHD turbulence.
Shimomura and Yoshizawa [119], Shimomura [120] and [121] also discussed the statistical
analysis of turbulent viscosity, turbulent scalar flux and turbulent shear flows respectively in a
rotating system by two-scale direct interaction approach. Sarker and Islam [117] studied the

decay of dusty fluid turbulence before the final period in rotating system.

Using the above theories we have studied the decay of temperature fluctuations in
MHD turbulence before the final period in a rotating system. Here two-and three-point
correlation equations have been considered and fourth order correlation terms are neglected in
comparison to the second-and third-order correlation terms. Finally, the energy decay law of
temperature fluctuations in MHD turbulence before the final period in a rotating system is

obtained.

4.2 Basic Equations:

The equation of motion and continuity for viscous, incompressible MHD turbulent flow

in a rotating system are given by

ou, 0 ow o’u

—+—Auu, —hh )J=——+v ool e Can), 0 s 4.2.1
ot 8xk( i ) dx,  Ox,0x, ¢ ) sl
h o’h

i-{-—a—(/’lilﬁ wh e, (42.2)
o ox, Py, 0x,0x,

6v,+v v, . P, 423
Al T (4.2.3)

with

%:@L:%:o _________ (4.2.4)
ox, Ox, oK,

and the equation of energy for an incompressible fluid with constant properties and for

negligible frictional heating.
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L (4.2.5)
ot ox, \ p, )oxox,

The subscripts can take on the values 1, 2 or 3.

Here, uj, turbulent velocity component; hj, magnetic field fluctuation component

2

Qx x| ,total MHD pressure inclusive of potential and centrifugal

. R
W(x,t)=—+=(h")+—
(x,1) p S

force,

p(;c,t)z hydro-dynamic pressure,
p = fluid density,

V
Py = 7> magnetic Prandtl number,

A

|4
P, = —»Prandtl number,

¥

v = kinematic viscosity,

Y= —K—,thermal diffusivity,
m{}

A = (dmuo )", magnetic diffusivity,
¢, = heat capacity at constant pressure ,

Q = constant angular velocity components,

m

e = alternating tensor,

n ki

4 . : : .
m_=—nR’p,, mass of single spherical dust particle of radius R ,

p. = constant density of the material in dust particle,

Xy - Space co-ordinate, the subscripts can take on the values 1, 2 or 3.
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4.3 Two-point Correlation and Spectral Equations:

The induction equation of a magnetic field at the point p is

oh, Oh, ou, v Oh
g S e e (4.3.1)

+u, =—
o Ox, o, Dy 80K

and the energy equation at the point p' is

or; oI} v 831‘;’
SR, S, e (4'3-2)

a  Foxl ;6)(;_ ox;

Multiplying cquation (4.3.1) by 77 and (4.3.2) by h; adding and taking cnsemble

average, we get

XhT'Y  &hT) KT KT | OXATY 1 ONAT)
+u, +u, ————h, =y — T+ — = |, —--(4.3.3)
ot ox, ox, ox;, Py, oxox, F oxx

Angular bracket (............... » is used to denote an ensemble average and the continuity

equation is

Ou, Ou, ‘
_— prae 0 _________
ox, Ox, i)

Substituting equation (4.3.4) in to equation (4.3.3) yields

a(h,T;)+(3(u,‘h,.'1'l')+6(::;!1:}"1')_ﬁ(u,hﬂp___V RE az<h,'1‘;>+ s X hT) _— (435)
ot ax, ox, ox, Py Oxudx,  p, Ox,0x;

Using the transformations

0 0 0

o, ox, o
and the Chandrasekhar relations [19].

(uhT))=~hT)),
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Equation (4.3.5) becomes

HuhT' OXhT
AW >+2 — 7Y+ whl) SO N (4.3.6)
or, oror, \P, p,

Now we write equation in spectral form in order to reduce it to an ordinary differential

equation by use of the following three-dimensional Fourier transforms.

BT = [, (K»axp[?u? . )}d S (43.7)
Qh T () = j<¢ vt (K)>exp[?(12 ’ )}dk ........... (4.3.8)
BT = T -m) = [@,e) (- /c))cxp[?(?c ?)JM ----------- (4.3.9)

=)

Equation (4.3.9) is obtained by interchanging the subscripts / and j and then the points

pand p'.

Substituting of equation (4.3.7) to (4.3.9) in to equation (4.3.6) leads to the spu,tml

equatlon

a(‘f/;r > “ s ' A/ ] o I 1 2 ' 2
—_ +:!\{2((15*1/1,1’,(—[\)+(¢,y/krf([())]:—v (—+—)k (w7 (K))|. - (4.3.10)
a[ pl\.’ p.'
The tensor equation (4.3.10) becomes a scalar equation by contraction of the indices i

and j

1)

M r

wa<w*;'(K ) [MW KN+ By (K»} ——v[(PLJri)kZ(w,r:(f?»] ~ @311

4.4 Three-point Correlation and Spectral Equations:

Similar Procedure can be used to find the three-point correlation equation. For this
purpose we take the momentum equation of MHD turbulence at the point P, the induction

equation at the point 7’ and the energy equation at P" as
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—tuy—=h — == Ppo—-2e, . Qu, . 4.4.1
o ‘ok, ‘ox, ox  or . | Tk

N
Ou! v O°h

O it 2P 4.42
—+Uu -, e 4.
& ‘a *ax P, oo )

and

ar’,ﬂ ” aTjﬂ v 627}"

— Ty ] i e 4.4.3
a Yo \P Joxox i
where

Qx x| ,total MHD pressure inclusive of potential and centrifugal

” P o1 e
Wix,t)=—+=C(h")+—
p 2 2

force P(x,r), hydrodynamic pressure; Qm, constant angular velocity components; €,,,,

alternating tensor.

Multiplying equation (4.4.1) by AT7,(4.4.2) by u,1and (4.4.3) by wh/, adding and

taking ensemble average, one obtains

NuhT)y KuwhT) KhhHT)) Kuuhl)) KuuhT)) KuhuT))
_ + L + L +
B Ox, ox;, ox; Ox, ox;

HwhT™ 0%k O u T | O (uHT
DT g Oy N DT, )0 WD e T ) e
Ox, ;. 0, B Stk E onloy

miki m TR

M

Using the transformations

o 0 0
o ={ 0 + D J 4 =— into equation (4.4.4)

ax,  \on orfox, or ax! o
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Hu T O*(uhT" FWHTY  dNuMhT
<u,,j>_v(]+i) <u,,,>+(l+_1_) WhT) O WhT)
Ot Py Onor, p,  Onor, Or, or,

_ Kuu, AT | O i, hfﬁ'z _ Khh T _Khh AT _ Kuu KT))
or, or, or, or, Or,

Kuh,T7)  XuuhT))  XwhT!) XwhT])
+ AP g iy L-2e,.
or, or, or, or!

1

Q,whT). e (4.4.5)

In order to write the equation (4.4.5) to spectral form, we can define the following six

dimensional Fourier transforms:

(u, (T = jj(gé, B0 (k") exp[?(ﬁ.?+ K.r ’)}d kdk', e (4.4.6)
(B (DT = 11@,@ (k0" (k ')>exp[?(£.?+ e ’)Jdl;d,é’ e (4.4.7)
(R TT) = ﬂ(ﬁ, BB 0" (k'Y exp[?(z?.h K. ;’)}d!:td!g' . (4.4.8)
G, B (PTHy = 11@;@ k)BT exp[?(ﬁ.?+ f?’.?’)}di E . (4.4.9)
! (Y (PTG = j::[(gﬁ,.gb;ﬁ; (k)" (k ')>exp[?(i€.?+ f’.ﬁ')]d}}dfé' R, (4.4.10)
(Wh ()T (")) = l}m;abaj@'»exp[?(fc\.h lé\’.;’):|d1Acdlg’ e 4.4.11)

Interchanging the points p" and p" along with the subscripts iand ;,

(uaWT)) = uau kT .
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By use this fact and the equations (4.4.6)-(4.4.11), we can write equation (4.4.5) in the

form

X, 0"
<M' ) v[(ui)k%(uw]—)k'%zk,,k; 2 Ca "'}(M

Pu P,
=i(k, + kK@ ¢ BO])— ik, +k ) B.BBIOT)—ilk, +k, Ndb 0]

vk (BBLO ik, +KYBOT. e (4.4.12)

The tensor equation (4.4.12) can be converted to scalar equation by contraction of the

indices / and j

<a<¢ﬁ,0?>+{( (ke 2k k42 S B s i
P P,

=ik +k XS, B10)) = ik, + kB BP0 = ik + ki X9 B0))

+ik (BB BON+ilk, +k)BOY. e (4.4.13)

If the derivative with respect to x; is taken of the momentum equation (4.4.1) for the

point p, the equation multiplied through by h; 7" and time average taken, the resulting equation

82<M)hiJ Tﬂ) 82 ' [ ! U
e RS TRCT Y ) N— (4.4.14)
i i k

!

Writing this equation in terms of the independent variables » and »'

2 2 2 2 2 a 2 a 2
R +2 - + : (WhT") = g + 6: + — o ——
orodr ~ oror, oror ! oror, Oordr, Ordr, Oror
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<(uu T~ ChhHTD). e (4.4.15)

Now taking the Fourier transforms of equation (4.4.15), we get

(kk, +k'k, +k k., + kK (b8, 80" — (BB BE")
By =~ ' i ’ ik il 2ot 5 L it
WBOD kk,+2kk, +k'k] (4a:10)

Equation (4.4.16) can be used to eliminate (40)) from equation (4.4.12).

4.5 Solution for times before the final period :

It is known that equation for final period of decay is obtained by considering the two-
point correlations after neglecting the 3" order correlation terms. To study the decay for times
before the final period, the three point correlations are considered and the quadruple correlation
terms are neglected because the quadruple correlation terms decays faster than the lower-order

correlation terms. Equation (4.4.16) shows that term (yB/0]) associated with the pressure

fluctuations should also be neglected. Thus neglecting all the terms on the right hand side of

equation (4.4.13)

20500 , {m ke 1ok kg 4 ZSme ”’}(qﬁﬁ’()?:(}. ------- (45.1)
0 i P Py

Integrating the equation (4.5.1) between t, and t with inner multiplication by k and gives

k(¢ B0) =k, [¢!, /3,’0,”]0 exy{— v{(} +L)k2 +(1+ )k’2 +2kk’ cosd + Cn < }(: —t )}
P

M r 4

where @is the angle between k and k" and (4,586, is the value of (g P07 att=t,.

Now by letting »'=0in equation (4.4.6) and comparing with equations (4.3.8) and

(4.3.9), we get
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Gyrdy= [@porak, i

By, i(~h)) = f{ﬁkﬁ,'(—f;)@,"(—r’?')df;'. --------- (4.5.4)

Substituting equation (4.5.2) to (4.5.4) in equation (4.3.11)

WL sy L Ly, hy =- [ik[g,500+ 29, B~ -,
ot Pu D %
1 2 1 2 ! €, §2 AI
exp[——v(t—t“ (I+—)k" +(1+—)k"" +2kk’ cos @ +2 28— M k' e (4.5.5)
pM pr v

Now, dk'can be expressed in terms of k'and 6 as —27k"d(cos®)dk’ (cf.

Deissler[27]).

Hence d k' =—27k2d(cos®)dk'. e (4.5.6)

Putting equation (4.5.6) in equation (4.5.5) yields

itk v(;j—+;})k2<w,r:(?2)>:—°]2mkk [6.8:0m + 24, B~ 0=k, K x
M r 0 :

[JI. exp{—v(! Y=k (14 ke +2kk'cos9+2M]Hd(cosa)d%'. -(4.5.7)

Pu P, v

In order to find the solution completely and following Loeffler and Deissler [72] we

assume that

fh[<¢,ﬁ,’0,’> + 20, Bl(- k)0 é'»} = (2‘5’;)2 (SR ) R (45.8)
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where £, is a constant depending on the initial conditions. Substituting equation (4.5.8) into

equation (4.5.7) and completing the integration with respect to cos@, one obtains

8(2 (WZJ(';;») [ [ 2 : A 0 y 315 5103
SRR b e AERS D) = __,______L _
61 + v( y + p,.) aly, (k) Mi-1) 6[(/6 k™ -kk )x

{GXD{“ vit-1, A+ —)k? +(1 +—l—)k'2 ok 2 S 2 ]}

Pt P, 4
I 2 | 12 ' emki Qm !
—expy— vt =1 )(1+—)" +(1+—)k"" +2kk" + 22— ldk' . eemeeeeeeeen (4.5.9)
pM pr v
Multiplying both sides of equation (4.5.9) by £*, we get

gQ—+v(——!—+——l—-]k2Q:F, ----------- (4.5.10)
ot Pu P

where, Q=2 7k “Qw /(k)Y, (4.5.11)

Q is the Magnetic energy Spectrum function.

and

npv—— 0| e Xp 4 — V(L — 1+
] =y l()) J(k7k k7K"Y x| exp (¢ 10){(

2e ,. . Q N
AR [ 4 =) gty AL g
Py Py

2e ,.Q
—cxp{— vt =11+ —l—)kz +(1+ i_)k'z + 2kk" + KL my

R (4.5.12)
Py p, L

Integrating equation (4.5.12) with respect to &', we have

5/2 [ .
F=— ﬁ{)‘\/;})f o exp| — 2611#)'(,- Qm (t _I”)}x exp| — V(f —t“)(l + _ P, )kZ}
(e =1)(+p) v P 1P
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4 2 6 3
{ ’ 151:’,56 +{ P, 2“3} k 4_{ Bz b }ks} ______ @5.13)
-1,y (+p) ((+p) 2)vi-t) |(+p) (+p)

The series of equation (4.5.13) contains only even powers of k and start with £*and the

equation represents the transfer function arising owing to consideration of magnetic field at

three points at a time.

It is interesting to note that if we integrate equation (4.5.13) over all wave numbers, we

find that

dek =0 (4.5.14)
0

which is indicating that the expression for F satisfies the condition of continuity and

homogeneity.

The linear equation (4.5.10) can be solved to give

2 | 1 il 2 1 1 2 1 1
O =cxp| - vk ( W= 1y) [ Fexp| vk (—+ =)t —1,) [dt + J(k)exp| — vk ( +—)E-1y) |4
Prg o Pr Ppr Pr Pre Pr

___________ (4.5.15)

2

where J(K)=—"-—1is a constant of integration. Substituting the values of F from equation
n

(4.5.13) in to equation (4.5.15) and integrating with respect to t, we get

puzp,”
2V3f2(]+p )7/2 %

5

Q(k:t) = Mcxp|:— ka(L 3 i)(z —:,))} 2
T

Py P

exp[—{Z SS Qm (t i tu)}]exp|:_ sz(t - t(’){ﬁ%}:l

2 8
3prk? pr(Tp, —6KS  4C3pr" —2py +3K i 830, - 2p, + K
T 5 7) 172 572
2v2(1—10)5/2 3v(l+ p, )(:—10)3/2 3+ pp )Y t—=1y) 30+ pp) ,/pr

N(w) |,~(4.5.16)

where N(w)=¢e ™ J‘ex dx

]
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Alt—t))
== k o
N )

The function Nyyhas been calculated numerically and tabulated in [24] .
By setting 7 =0, j=i, dK=-2nk’d(cos@)dk and O = 27rk2<1,z/,1//} (l%)>in equation

(4.3.7), we get the expression for temperature energy decay as

Ty T (2 n s
<2>=3L:ImeM; --------- (4.5.17)
0

Substituting equations (4.5.16) in to (4.5.17) and after integration, we get

12 5/2

ﬁ{)]mrj pM ([ -_—tr))75

(1(2) = N”pr‘wsz‘wz(r — trJ) -
281+ p )1+ p, + py)

: +exp_2Ef”lQHl x
7 4\/;V312(pr+pM)3f2 [ k ]

52 <

9,550,006 35p,CGp, -2p.+3) 8P, Gp/-2p,+3) & 135..02n+9)
16 16(1+p.+py)  8p.(+p.+p,) 3200+ p, +p,) ZA2n+ 12"+ p,)

or

T) NP -1

+Bzvi(t—1,)  xexpl-2€,, Q, |,  -meeeem- (4.5.18)
2 4\/;1/3/2([)'._'_”.1)3/2 By [

mj»

where

112 572

I ﬂ])r lnﬂf
= X
20+ p )1+ p, +p,)"°

2
9 5P,(TP—6) 35pf4(3p3—2p,.+3)+spﬁ,,(3p,.~2p,,+3)§ 1.3.5...(2n+9)

_ > .
16 160+ B +py)  8p 0+ pet ) 328pF14 pp 4 pyy) 120020+ 127 (14 )"

Thus the energy decay law for temperature field fluctuations of MHD turbulence in a

rotating system before the final period may be written as

TH=X—1)" vexpl-{2€,, Qi lY0-1,)", e (4.5.19)
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where

__ NETpy
247 (p, + pyy)

T=andY 0 Vi

(T?) is the total "energy" (the mean square of the temperature fluctuations) t is the time, x and

t, are constants determined by the initial conditions. The constant Y depends on both initial

conditions and the fluid Prandt] number.

4.6 Concluding Remarks:

_ In equation (4.5.19) we obtained the decay law of temperature fluctuations in MHD
turbulence before the final period in a rotating system considering three-point correiation

equation after neglecting quadruple correlation terms. If the system is non-rotating, then

Q. =0,the eqtllation (4.5.19) becomes.

TH=X(-t) +Y(@-1)> e (4.6.1)

which was obtained earlier by Sarker and Rahman [113].

In the absence of a magnetic field, magnetic Prandtl number coincides with the Prandtl

number (i.e. p, = pm) and the system is non rotating the equation (4.5.18) becomes

2

T Npt B2
2 82 -1,)? Vi-1)

which was obtained earlier by Loeffler and Deissler [72].

We conclude that due to the effect of rotation of fluid in the flow field, the turbulent
energy decays more rapidly than the energy for non-rotating fluid. The Ist term of the right
hand side of equation (4.5.19) corresponds to the temperature energy for two-point correlation
and second term represents temperature energy for three-point correlation. For large times the
last term in the equation (4.5.19) becomes negligible, leaving the -3/2power decay law for the
final period. If we considering the higher order correlation terms in the analysis, it appears that

more terms in higher power of time would be added to the equation (4.5.1 9).
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CHAPTER-IV

PART-B

DECAY OF TEMPERATURE FLUCTUATIONS IN DUSTY FLUID
MAGNETO-HYDRODYNAMIC TURBULENCE BEFORE
THE FINAL PERIOD IN A ROTATING SYSTEM

4.7 Introduction:

Deissler [27,28] developed a theory for homogeneous turbulence, which was valid for
times before the final period. Using Deissler's theory Loeffler and Deissler [72] studied the
temperature fluctuations in homogeneous turbulence before the final period. Following
Deissler's approach Sarker and Islam [116] also studied the decay of temperature fluctuations
in homogeneous turbulence before the final period for the ease of multi-point and multi-time.
Sarker and Rahman [113] studied the decay of temperature fluctuations in MHD turblulencc
before the final period. Islam and Sarker [46] studied the first order reactant in MHD
turbulence before the final period of decay for the case of multi-point and multi-time. Kumar
and Patel |65] also studied on fist-order reactant in homogeneous turbulence before the final
period of decay for the case of multipoint and multi-time. Sarker and Islam [115] studied the
decay of MHD turbulence before the final period for the case of multi-point and multi-time.
Sarker and Kishore [108] had been done further work along this same line for the case of
multi-point and single time. They considered two and three-point correlations after neglecting
higher order correlation terms compared to the second-and third-order correlation terms. Also
Kishore and Dixit [52], Kishore and Singh [54] discussed the effect of coriolis force on
acceleration covariance in ordinary and MHD turbulence. Shimomura and Yoshizawa [119],
Shimomura [120] and [121] also discussed the statistical analysis of turbulent viscosity,

turbulent scalar flux and turbulent shear flows respectively in a rotating system by two-scale
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direct interaction approach. Sarker and Islam [117] studied the decay of dusty fluid turbulence

before the final period in a rotating system.

In this chapler, we have studied the decay of temperature fluctuations in dusty fluid
MHD turbulence before the final period in a rotating system. Here two-and three-point
correlation equations have been considered after neglecting fourth-order correlation terms in
comparison to the second-and third-order correlation terms. Finally, the energy decay law of
temperature fluctuations in MHD dusty fluid turbulence before the final period in a rotating

system is obtained.

4.8 Basic Equations:

The equation of motion and continuity for viscous, incompressible MHD dusty {luid

turbulent flow in a rotating system are given by

ou 0 ow o’u :

gt —hih )= ' Q u + ft, ~v)),  meemee 48.1
af ax’( uruk I} .i') axf v axkaxk mki mu1 f(u‘ v.-)) ( )

o%h,

%, + i(huk -uh,) = i e (4.8.2)
or  0Ox, B B -
%+vk—a—v'—=——k—(v, =u), e (4.8.3)
ot ox, m,

with

%:@iﬁ_:%;o __________ (4.8.4)
ox, Ox, Ox

and the equation of energy for an incompressible fluid with constant properties and for

negligible frictional heating

&
L ) L (4.8.5)
o 'ox, \ p, )ox0x,

The subscripts can take on the values 1, 2 or 3.
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Here, uj, turbulent velocity component; h;, magnetic field fluctuation component, v;

dust velocity component

A I il & . ; . :
W(x,t):%+5~(h2)+ Qx x| ,total MHD pressure inclusive of potential and centrifugal

2

force;

p(x,1)=hydrodynamic pressure,

p = fluid density,
4 :
P2 7 magnetic prandtl number,

p,= —V—, prandtl number,

4

v = kinematic viscosity,

s ——K-—,thermal diffusivity,
[xﬁ‘

A (4:1;;0) ' magnetic diffusivity,
¢p = heat capacity at constant pressure,

Q),, = constant angular velocity components,

€, . = alternating tensor,

ni ki

f= EJ—V—, dimension of frequency; N, constant number density of dust particle,
Fod

4 - : : —
m, = Em'(]_‘-p“ mass of single spherical dust particle of radius R,

p, = constant density of the material in dust particle,

x = Space co-ordinate, the subscripts can take on the values 1, 2 or 3.

4.9 Two-point Correlation and Spectral Equations:

The induction equation of a magnetic field at the point p is

o*h
gh_'_+u %_hk%ﬂ(L) A (4‘9.])

ot ax, e Py Oxcx,

and the energy equation at the point p' is
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o ar ., T
— At == (—)——
o *

- S G
Ox; p, OxL0x (4.9.2)

Multiplying equation (4.9.1) by T’ and (4.9.2) by h,, adding and taking ensemble

average, we gel

ohT! ah T XhT! ou,T! o> (hT! SHTT
< ">+uk ( ">+ui <,I ,)khk (u, ,>w 1o _,>+La hTS
ot ox, Ox Ox; Py ox0x, P oOx.ox

- (4.9.3)

Angular bracket (.......... ) is used to denote an ensemble average and the continuity

equation is

Ou, _Ouy _

= =0, G 4\
ox, @ (4.9.4)

Substituting equation (4.9.4) in to equation (4.9.3) yields

KhT)) " Ku T " 6(u;h:T_;) B Xuh T _ hs 62<h,TI') +_l_ az(hj'; o (4.9.5)
ot ax; ox; ox, Dy OXid%; D, 0%,

Using the transformations

d 3] 0

o, v, ox,
and the Chandrasekhar relation [19].
AT =~(uhT}) .

Equation (4.9.5) become

u,h, T} o (hT!
ﬁ(h,T;)-FZ-a—(u;th;)q. Ku,h 1)) - W17 W_L+J_ .
o or, ' or, oror, \ P, p,

Now we write equation (4.9.5) in spectral form in order to reduce it to an ordinary

differential equation by use of the following three-dimensional Fourier transforms.

BTN = [, (KD exp{f(ﬁ,?)}d K, e (4.9.7
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—0

h TN = [y o) (K exp[?u?,?, )} gk, 0 e (49.8)
e T(r) :(ukh,’l”,(—;D = j (Bow,t (-—/2)>e><p[?(!nc,;)}df<. ----------- (4.9.9)

Equation (4.9.9) is obtained by interchanging the subscripts i and j and then the points

pand p'.

Substituting of equation (4.9.7) to (4.9.9) in to equation (4.9.6) leads to the Spectral

equation

Ky,7,)
ot

Pu P,

+I'K{2<¢MTJ (~K)+ Dy, T;UA{D} = —V[(J“ri)kz(w,fj(fﬂ())}. = (4.9.10)

The tensor equation (4.9.10) be comes a scalar equation by contraction of the indices

and j

maw,;,; KY \ ik, [2<_¢,‘ v (=K + (v, r;(%»] = ”‘{(}:— +7,'—)k2<w, 2 (b)} ~(49.11)

M r

4.10 Three-point Correlation and Spectral Equations:

Similar Procedure can be used to find the three points correlation equation. For this
purpose we take the momentum equation of MHD turbulence at the point P, the induction

equation at the point P" and the energy equation at P" as

ou, du, oh, ow d’u,
+v

—tuy, ——h, —=—-— -2e€,, Qu +f(u,-v), - 4.10.1
B Yok, *om, & oxox, S, =) L

mki mi

/ : f 0 hl
2 gl gy S Vo O

s 4.10.2
ot “ox, “ox, P, oxlox] ( )

and

aT’," ST," v a 2 T}rr
—tede i | e e (4.10.3)
ot éx, LB ok B
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D

A Pl s, 1
where W (x, 1) =—+—=(h")+—
g 2 2

A 2l ~

Qx X| ,total MHD pressure inclusive of potential and

centrifugal force P(x,7), hydrodynamic pressure; Cm, constant angular velocity components;
o . RN o
€,, alternating tensor, f =—, dimension frequency; N, constant number density of dust

particle.

Multiplying equation (4.10.3) by A77,(4.10.2) by u,7] and (4.10.3) by #,h/, adding and

i

taking ensemble average, one obtains

XuhT)) g Suu hTj)  XhhhTT) N O hTY) HuuhT)) N &uh'w T

ot ox, ox; ox;, Ox, By
Kwh'Ty O hT) |1 &uhT) 1 0 wAT
=- +v —+ V| — e -
ox, ax, 8%, P, Oxor P, -gugox)
- 2 emkl Qm <uih:T_1ﬂ> + f(<u1 h_,T:) - <vt h.'rT; = USRS (4. l 0.4)

Using the transformations

0 o o0, 0 0 0 0
= )
ox,

—{— e =—\—= —’
or, Or, Ox, Or, Ox, Or
in to equations (4.10.4)

WT X u W'
KD ..\ (i g D L
ot Py or,or,

82 <ufh:r_,:"’> + 2 az (ulhlhl}'?
oror, or,or,

)

r

B a(ul-ukh}?.'}f) N 8(ul-ukhlfT;) B a(lzihkhif?j}-’) ) a(hl-hkh;T}Q ) 8<uiu}ch;TJ',-’)

ark 8r'é ark 81",’{ ark

Huguih TH) gy HiTT) ) (whiT?) . HwhiT?)

+

or

i a;-,'c or; or!

I !

~2e, 0 QT+ fQRTH =T . e (4.10.5)
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In order to write the equation (4.10.5) to spectral form, we can define the fol]owmg six

dimensional Fourier transforms:

G KT = T[(@ Bl0" (k') exp[i(k K r’)}dkdk’ ......... (4.10.6)
Gy, B (DT()) = 11@,% ﬁ,’(ﬁé)@j(}?’))exp ik k. r'):d}E dk', (4.10.7)
(B (T = _11(/;, B, B0 (k")) exp My f'):dﬁé AR, i (4.10.8)
i W (T = 11@,@ bk )9;’(/?’)>exp[?(f?.?+ K. ?')Jd?cd [— (4.10.9)

utu! (Y, (T (")) = H<¢¢(k)ﬁ (0, b)o" (k' ))exp[r(k r ’r')Jd!cdk' - (4.10.10)

—C0-= 0D

(wh! (T = jj(yﬁ (0o (& )>exp{z(k kL) dﬁédf?', ------- (4.10.11)
VBT = jj(u,ﬂ;(;?)aj.'(i?)>exp[?(ic‘.h K ldkdk . e (4.10.12)

Interchanging the points p’ and p" along with the indices fand ; result in the

relations
i T = Qua T

By use of this fact and equations (4.10.6)-(4.10.12), the equation (4.10.5) may be

transformed as

a 19" 5 5 F ’ rr
Pu 2 v

r

= iCk, + kX, B07) — ik, + kKBS BIOTY — ik, +k, )b$.BO))+ ik, (,6,,0))

+ilk, +kD)GBOD ~ f(eBOD. e (4.10.13)
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The tensor equation (4.10.12) can be converted to scalar equation by contraction of the
“indices 7 and j

a Jgr ] 5 l
i v[m bk Lo 2k 42 S0 B i}(aﬁ,ﬁ!«’)ﬁ
Vv 1%

pM’ p,.
= i(ky + k)PP BOT) — ik, + kB LBO - ik, + k)

x (3,0, B0 + ik, (B4 0,0 +ilk, +k))Xy,BO" - [l BO). e (4.10.14)

[f derivative with respect to x; is taken of the momentum equation (4.10.1) for the point
p, the equation multiplied through by h; 7} and time average taken, the resulting equation

OXwh! TN
ox.0x,  oxdx,

(wu T~ HTD). (4.10.15)

Writing this equation in terms of the independent variables » and ’

2 d 2 | I R R
- +2 - (wh; TJ’;) = + + +
8}}- (').'",- Orj ar,.' 8#}-'8;‘; (3rl- or A E)ri'ar i arj ar l'c E}ri'ar };

o R ) U — (4.10.16)

Now taking the Fourier transforms of equation (4.10.16)

(k.lkﬁ i+ ki’kﬁf + k.‘k;f + klrk.:r )(<¢J¢kﬂ:9:> - <ﬂ;ﬁkﬂ:€ :‘>)
kk,+2klk, + kk]

—{yB8;) = - (4.10.17)

Equation (4.10.17) can be used to eliminate (y5/8}) from equation (4.10.13).
4.11 Solution for times before the final period:

It is known that equation for final period of decay is obtained by considering the two-
point correlations after neglecting the 3" order correlation terms. To study the decay for times
before the final period, the three point correlations are considered and the quadruple correlation

terms are neglected because the quadruple correlation terms decays faster than the lower-order
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correlation terms. Equation (4.10.17) shows that term (50 associated with the pressure

fluctuations should also be neglected. Thus neglecting all the terms on the right hand side of
equation (4.10.14)

K. 3:07) 1 I 2E, 4 60
XPE? ek 40—y 2k Y

A
—L ¢;8i0;) =0,---(4.11.1)
ot Py Pr v v

where (1, 16" = R{(¢, 46"y and 1-R=S, here R and S are arbitrary constant.

Integrating the equation (4.11.1) between t, and t with inner multiplication by ki and

gives

i i | w2 e ’ 2€mki Om S8
kk<¢,.p’ioi>:kk[gaiﬁja,]oexp v —k2 + (1 — k2 + 20k 0050+ — TP gy |,
P Pr v v

--------- (4.11.2)
where @is the angle between k and k' and (¢, 80", is the value of (4,6 att=t,.

Now by letting = 0in equation (4.10.6) and comparing with equations (4.9.8) and
(4.9.9), we get

GwTl k) = [@pONdK, e (4.11.3)
BTk = Imﬂ,'(—/;)@,-"(—ig')d A (4.11.4)
Substituting equation (4.11.2) - (4.11.4) in equation (4.9.11), we get

N
Tk TN W A A
Wini®) | s ey =- | :kk[@,.ﬁ;ﬂgw2<¢kﬁ;(—k>o;<—k') )}
0

ot Py Pr
! ! €mki Cm S,
x exp|- vt = 1, (1 k2 (1 —)k'? + 2Kk cos O + Zﬁ—Q—Wﬁ}]dk e (4,14.5)
Pas Pr N V
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Now, d k' can be expressed in terms of k'and @ as —2ak"*d(cos@)dk' (cf. Deissler
[27]).

Hence dk' = —27k"d(cosO)dk'. e (4.11.6)

Putting equation (4.11.6) in equation (4.11.5) yields

AN
Nyt (k)) I I A % A A
L + 9 +—)k2(!//,'f,'-(k))=— J 2rik <¢,-ﬁ}9}')+2(¢kﬂ}(-k)9,-'(_k'))]ok'2
ot Py Pr —00

| | e ,.0 g A
x j__!e,\'p mv(:?:o)(u——)kz +(1+——)/<’2 +2kk'c050+2——’”/” i _j} d(cosO)dk' -(4.11.7)
Pt Py v v

In order to find the solution completely and following Loeffler and Deissler [72] we

assume that

ik, [<¢,ﬁ:(?c)9,"(£')> + 2<¢kﬁ,'<—f’2)9;(—/€')>} = (2/;“)2 (A R— @.1138)

where £, is a constant depending on the initial conditions. Substituting equation (4.11.8) into

equation (4.11.7) and completing the integration with respect to cos#, one obtains

Fay
2yt (k)) 1 I A B ©
L LY, s 27y 7 (K) :*—Uf(k:‘k’s —k5k'3)
ot Payp Pr 2v(t=1,)0

2 € miki Qy, _ ﬁ

|
[explev(t =110+ —— W2 4 (14— )2~ 24"+ I

Py Pr K g
o0 1 1 € mki i
b0 Tlu2w5 4503 Jorptovtt -t )01+ — 2+ (g ? w2 Sl S
2W(1-1,) 0 Py Pr v v
__________ (4.11.9)

Multiplying both sides of equation (4.11.9) by &%, we get

Gt ey, 0 e (4.11.10)
a[ PM pr
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where, Q=2 7k * <V/,r'(2)) . e (4.11.11)

Q is the Magnetic encergy Spectrum function.

and
By | 2e .0

F=ae0 [P k583 Yexp vt 1 [1+—I2 +( 2 g mkiZm S5,

22Ut =14) 0 Pag Pr v v

Jij 0 i . O ¢
+M~Q-~mj(k3k'5fk5k’3)exp fv(.rf’o)[(lJr——l——)kz+(E+——l—)k’2+2kk’+ Smki ~*m fﬁi d?’-

2v(t=14) 0 Py Py v v
-------- @.11.12)

Integrating equation (4.11.12) with respect to k', we have

v v

5/2

ﬁo\/;Pr 2Emkr' Qp A ( )
372 7,361 I 50

I et Y % pp )

1
X cxp{— vt =1, )1 +ﬁ—]i’i~)k2}
Py + Py

I15p,k* sp,. 3| & ) 8
va(f'*'“1-'(,)2(1+Pr)Jr{(lqtp,)2 Z}V(t—tu)+{(]+pr)3 (1+p,)k .= (41113)

The series of equation (4.11.13) contains only even powers of k and start with k*and

the equation represents the transfer function arising owing to consideration of magnetic field at

three points at a time.

It is interesting to note that if we integrate equation (4.11.13) over all ware numbers, we

find that
[Plk=0 (4.11.14)
0

which indicates that the expression for F satisfies the condition of continuity and homogeneity.

The linear equation (4.11.10) can be solved to give
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Q= exp[~ sz(L + ul—)(l = tu)} J!ﬂ'exp{vkl(—]—— % w]—)(t i t,,)ZIJI

Py P, Py P
2, 1 1
+J(K)exp| —vk* (— +—)-1)|, (4.11.15)
[)M pr
_ Nk . : _— .
where J(K)= is a constant of integration. Substituting the values of F from equation
T

(4.11.13) in to equation (4.11.15) and integrating with respect to t, we get

puln,”

21/31’2(] e I)r)TJ'Z

" 2
Olk,t) = ok exp[— vk?® (_]— + L)(: - [”)} +
s Pu P,

X exp[—{2 €, O, — fS}(1 - fu)lexp[‘ -1, ){MH
Pu(l+p,)

3p.k* p.(Ip, —6)k*  43p,  =2p, +3)k*
2v3(t=1,)°"% 3w+ p )t —1,)"" 301+ p,)(e-1,)"
2 _ 3 9
L 8vGp, 2f”+)k By 0 e 4.11.16)
3+ p,)" % p,

where N(@w)=¢e™ _[ex dx,

o

At —t
=k A ) _
B+ B
The function has been calculated numerically and tabulated in [24].

By setting 7=0, j=i, dK = 27k*d(cos@)dk and Q= 2Jrk2<l,u,r,. (I%)) in equation

(4.9.7), we get the expression for temperature energy decay as

<T2>~Tl']‘f’~ w A L 4“ |7
T Jekdk o
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Substituting equations (4.11.16) in to (4.11.17) and after integration, we get

i 712 5/2 o
)b)(lﬂzjr ])M (t - I()) .
)51‘2

() _ N pyte-t,)
2 = \/_ _-UQM 3/2 +exp[— {2 Emfu Qm ....](S}] 6
Nmv I (p, + Py v (l+p )1+ p, + py,

2 2 3 2
9 x 5Py Tpr =6 35pyBpyy —2pp +3)  8py,QBpy —2pp +3) % 1.3.5..(2n+9) 1

Zr:(] +p) n J

g 2 6 2 =
16 16(1+pp +pyr) 8pp(L+pp+pyy) 32%.pp (14 py +PM)3 n70n!(2n+l)2
or

<T2> — N()})ryzpﬂ’fyz(t_tu)myz
2 4\/7?1’3!2(}% +pM)3u

where

+ﬁ(lzvko([ --'[(;)_5 Xexp[_{z emkl Qm QfS}]: = (41 L, l 8)

712

— ﬂ’pr pMSI
20+ p )1+ p, + Pur)

5/2

9. 5P, (7P, -6) _35;;;,(3p3-2p,.+3)+ 8py, 3pl—2p, +3) i 1.3.5...2n+9)
16 16(1+P +py) 8p,(l+p,+py)  32°p+p,+py) ZaQa+12"(1+ p,) '

Thus the energy decay law for temperature field fluctuation of dusty fluid MHD

turbulence in a rotating system before the final period may be written as

Ty =X(-1,)""+vexp[-(2¢€,, Q, - S}V -1)°, e (4.11.19)
where
Noly " pir?

X = and Y =28,2v .

2\/;V3’2(pr + Pii)

(T*Yis the total "energy" (the mean square of the temperature fluctuations) t is the

time, x and t, are constants determined by the initial conditions. The constant Y depends on

both initial conditions and the fluid Prandtl number.

4.12 Concluding Remarks:

In equation (4.11.19) we obtained the decay law of temperature fluctuations in MHD
turbulence before the final period in a rotating system in presence of dust particle considering
three-point correlation equation after neglecting quadruple correlation terms. If the fluid is

‘clean and the system is non-rotating then =0, Q=0 the equation (4.11.19) becomes.
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TH=X@—-t)+Y@-1)> e @.12.1)

which was obtained earlier by Sarker and Rahman [113]

In the absence of a magnetic field, magnetic Prandtl number coincides with the Prandtl
number (i.e. p~=pm) and the system is non-rotating with clean fluid the equation (4.11.18)

becomes

2

I __ N BZ
2 8\‘2]['/3/2([“[0)3/2 Vé(t_tn)s

........... (4.12.2)

which was obtained earlier by Loeffler and Deissler [72].

Here we conclude that due to the effect of rotation in presence of dust particles in the
flow field, the turbulent energy decays more rapidly than the energy for non-rotating clean
fluid.

The I* term of the right hand side of equation (4.11.19) corresponds to the temperature
energy for two-point correlation and second term represents temperature energy for three-point
correlation. For large times the last term in the equation (4.11.19) becomes negligible, leaving
the -3/2power decay law for the final period. If higher order correlations are considered in the
analysis, it appears that more terms of higher power of time would be added to the equation

(4.11.19).
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CHAPTER-V

PART-A

DECAY OF MAGNETO-HYDRODYNAMIC TURBULENCE BEFORE
THE FINAL PERIOD FOR THE CASE OF MULTI-POINT
AND MULTI-TIME IN A ROTATING SYSTEM

5.1 Introduction:

The magneto-hydrodynamic turbulence is the study of the interaction between a
magnetic ficld and the turbulent motions of an clectricity conducting fluid. The interaction
between the velocity and the magnetic fields results in a transfer of energy between the kinetic
and magnetic spectra and it is through that the interstellar magnetic field is maintained by a
“dynamo” action from turbulence in the interstellar gas. Modern applications of magneto—
hydrodynamics in the fields of propulsion, nuclear fission and electrical power generation
make the problem of magneto-hydrodynamic turbulence one of considerable interest to
engincers, since turbulent phenomena seen to be inherent in almost all type of flow problems.
In what follows, we consider the magneto-hydrodynamic turbulent flow in a rotating system.
When the bulk of the fluid, the coriolis and centrifugal force must be supposed to act on the
fluid. The coriolis force due to rotation plays an important role in a rotating system of turbulent
flow, while the centrifugal force with the potential is incorporated in to the pressure. Kishore
and Dixit {52}, Kishore and Singh [54], Dixit and Upadhyay [31] and Kishore and Golsefied
[57] discused the effect of coriolis force on acceleration covariance in ordinary and MHD
turbulent flows. Kishore and Upadhyay [63] studied the decay of MHD turbulence in rotating
© system. Shimomura and Yoshizawa [119], Shimomura [120] discussed the statistical analysis
of turbulent viscosity, turbulent sealer flux respectively in a rotating system two-scale direct
interaction approach. Sarker and Islam [117] also studied the decay of MHD turbulence before

the final period for the case of multi-point and multi-time.
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Dessiler [27,28] developed a theory for homogeneous turbulence, which was valid for
times before the final period. Using Deissler’s theory Loeffler and Deissler[72] studied the
temperature fluctuations in homogeneous turbulence before the final period. Sarker and
Kishore [108] studied the decay of MHD turbulence before the final period. Sarker and Islam
[115] also studied the decay of dusty fluid turbulence before the final period in a rotating
system. Islam and Sarker [46] studied the first order reactant in MHD turbulence before the
final period of decay for the case of multi-point and multi-time. Kumar and Patel |65] also
studied on first-order reactant in homogeneous turbulence before the final period of decay for
the case of multi-point and multi-time. Sarker and Islam [116] studied the decay of temperature
fluctuations in homogeneous turbulence before the final period for the case of multi-point and
multi-time. In their approach they considered two and three-point correlations and fourth-order

correlation terms are neglected in comparison to the second-and third-order correlation terms.

Here, we have studied the decay of MHD turbulence before the final period in a
rotating system for the case of multi-point and multi-time using two-and three-point correlation
equations after neglecting fourth-order correlation terms which are compared to the second-and
third-order correlation terms. Finally the decay law of magnetic energy fluctuations of MHD
turbulence in a rotating system before the final period for the case of multi-point and multi-

time is obtained.

5.2 Basic Equations:

The equations of motion and continuity for viscous, incompressible MHD turbulent

flow in a rotating system are given by

2
P O, s e O e, €0, e (5.2.1)
o  ox, o, ox0x,

2

L L T s (52.2)
o ox, P ox,0x,
v By g
Dot uomse (5.23)
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; h.
Ou _ov, _Oh _o (5.2.4)
Ox, Ox, ©0x,

Here, u; turbulence velocity component; hi, magnetic field fluctuation component; v;, dust

~ ’ 2 I 2 A 2 ~
particle velocity component; w(x,t)ul—+%<h‘ )4-§‘Q>< x‘ , total MHD pressure  p(x,f),
p £

hydrodynamic pressure; p, fluid density; v, Kinematic viscosity; Py, magnetic prandtl number;
Xy, space co-ordinate; the subscripts can take on the values 1, 2 or 3 and the repeated subscripts

in a term indicate a summation: 2, constant angular velocity component; €., alternating
p ; 4

4 ; . : ; :
tensor; m, = EER“' p,, mass of single spherical dust particle of radius Ry, ps, constant density of

the material in dust particle.

5.3 Two-Point, Two-Time Correlation and Spectral Equations:

Induction equations of a magnetic ficld at the point p and p’ separated by the vector 7

could be written as

oh, iy oh, ; au, v 0°h, @51
b iy =k =— 4
o tox, Yox, P, oxox,

oh' ok ou v ﬁzh;
BHA e oy fy i e
ot 6% %, Py O, o,

Multiplying equation (5.3.1) by h; and equation (5.3.2) by h; and taking ensemble

average, we get

ank, ) o y o (nh) )
bt ik N e A A 533
o ox, et )= Gumit ) | P ox,0x, S
olhk ) o v 0X(hh) )
2 Wath kR N={u' kb DR IO, it 0. S 5.3.4
md —— g, Y= (i ) ] L (5.3.4)
Angular bracket ( ————— ) is used to denote an ensemble average.

Using the transformations
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0 o 0 g (0 5]
ENNEJE N N W T N -
ox, or, 0Ox, Or, \ ot ot OAt Ot OAt

into equations (5.3.3) and (5.3.4), we can write

ORI B s 0 0% (hh,
(a[ ) +a:[<ukh’hf>—(u_lh}h,‘>kr,At,1)——aTk[<ukh,h ~(unh, >kr At,1) :%_(S_EEE
----------- (5.3.6)
hE) B, /b a*(hh!
and *(6 A:j> + é}; [(trki:',i?,)f(r!,h,hﬁ. )kr,At,1)= —é—%}i—) ----------- (5.3.7)
Using the relations of Chandrasekhar [19].
(ukh,h;> = *(Li;h,h; >, and <u3h,h;> = <u,h,‘/’i;>.
Equations (5.3.6) and (5.3.7) become
o hh a1, .. 9 82<}11h’
<a, >+2—r;[(whlh )~ {u ;)] ;,7‘: arkar:> ----------- (5.3.8)
o(hh o o*(hh'
and <at’>+6r,( [(ukhh> < hh>] }::; aSkar:> ___________ (5.3.9)

Now we write equations (5.3.8) and (5.3.9) in spectral form in order to reduce it to an

ordinary differential equation by use of the following three-dimensional Fourier transforms:

o

(h i) )7 A00) = [(w, W;.)(]%,A:,z)exp[f(k.f)}ik, ......... (5.3.10)

-0

- <u,h,‘h;>(F,At,1‘): j(a,wkr//;>(I%,At,t)cxp[f([%.ﬁ)]d]%. --------- 5.3.01)
Interchanging the subscripts i and j then interchanging the points p and p’ gives

() )7, A1) = (ugh )= Fi=At. + At
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@

= Ka‘.y/iw;)(— K,-Al 1+ At)cxp[f(li’.ﬁ)}lk, ---------- (5.3:12)

o0

where K is known as a wave number vector and dK =dK; dK; dK;. The magnitude of K has
the dimension I/length and can be considered to be the reciprocal of an eddy size. Substituting

of equation (5.3.10) to (5.3.12) in to equations (5.3.8) and (5.3.9) leads to the spectral

equations
a ) s A

Wa’,%) ' 211:,(, vw) =2k e & o)~ (ay ) Remdria) |- 5:3.13)
and

(ww!) =ik, ka,wk z,y_;)(l%, AL)- (e - Komtni+a0) ] - (5.3.14)

The tensor equations (5.3.13) and (5.3.14) becomes a scalar equation by contraction of

the indices i and j

Ny ! i 5 5
) s {w.yp!) = 2ik, [(aigy*y/»(K,Ar,t)—(aiy/,gy,.’>(m K,—-At,l+ At) } 15315

a - op,
and
A N 2 V&~ o) 5.3.16
OA] * ])” (W’Wf>—l k<af‘//.!\-tr’/,) s l,l —(akl//f.gu'.)— = I!{_,_Al ]. _______ ( a3, )

The terms on the right side of equations (5.3.15) and (5.3.16) are collectively

proportional to what is known as the magnetic encrgy transfer terms.

5.4 Three-Point, Three-Time Correlation and Spectral Equations:

Similar procedure can be used to find the three-point correlation equations. For this

purpose we take the momentum equation of MHD turbulence at the point P, the induction

equation of magnetic field fluctuations at p" and p" separated by the vector 7 and 7’ as

ou, ou,
+u, - Sl
ot ox, ox, ox, OX;, O,

R (54.1)
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oh/ it oh' W ou! Vv 82/1' <43
u, —-—h, e O, 4.
o oax ok P, oxox’ (2

on;  oh 1”814;-' v aﬁh;'
+u —n R —mes————s e
o fcaxir k ax;r PM 5x;'§x;" (543)

Multiplying equation (5.4.1) by h'; h;", equation (5.4.2) by uh;" and equation (5.4.3) by

why’, taking ensemble average, one obtains

ouhh’ ) 5 . . a(whh' ) 3*(unh ) -
#-rakuku,h,hf >7<h‘_h,hfhl ) ]: Bx,J +v gxi@x,‘j L€ i Qm(u,h,hJ ),
--------- (5.4.4)
olumh" ) 5 o o v 0 (uhh! )
Iaf' . + ax; [<u.'ukh:h,' )—<ulurhkh1 ) ]: PM Tax;’ ------- (545)
a(“.'hr’h_” > a [ IENEN UEREN 4 62<H',h,.'h; >
a;"l 50 <u,ukh,h, )= (uul iy ) ]:P—M—W ......... (5.4.6)
Using the transformations
L - P 3 L -
ox, \or, or Jox, or ox! o’
(2]1',1":(—6—}N,At'—-—§~—i,
ot ot OAL  OAL'
a2 9 .72
o oAt a" oAl
<into equations (5.4.4) to (5.4.6), we have
auhl’h”) a a rpn ryn a [N fyprogn
_<__’at_’_[5k—+6—I‘J[<ukujh,hj)—(h,{h,h,h}>]+£[<u,ukh,h}>—<u,u,h,‘hj>]
2
a nyrpn wyrpn L a a rpn a a rpn
+a—;[<u,ukh,h1>—<u,u,h,hk>]—— éﬁ;+5;:f]<w}l’h’>+v[5;:+a_r;] (u,h,h‘,>
b))
+L a <u.lh,h_,u> + <u{ i _I> _26",,@{ Q,,,(u,h:h;'), ________ (547)
B, ©Bnon or.or, '




Chapter 5 134

61111,'}2") ) o oo
(;Az.f +a [(ll.'”kh:h_,'>_<H.f”1hkh_;>]_PLM" oo T (5.4.8)
o(u,h'h" . o' (u,h'h"
and <E;At’ >+-§;— [u u,\h,h,) <u,ujh,hk>]:7‘; é;;far; > _________ (5.4.9)

In order to convert equations (5.4.7)-(5.4.9) to spectral form, we can define six

dimensional Fourier transforms:

(1, R NFL 7 A A Uj(@ﬂ BNR R A Jexpli(R 7 + &7 ukaR ", - (5.4.10)

SL__,S

(upi i 560800 = [ (i mipn )&, R o At Jexpf(R 7 + KRR 5.4.11)
(bW At AL ) = EE{yﬁjﬂf)(ﬁ, 06 dJexpi(R 7 + R \iRak | - (54.12)
(w0, Y7 ', 60, A1 H(;w,/;'ﬁ W&, & arartexpli(R 7+ R 7 \ukak -(5.4.13)
(N, 7 A A1) = ’H'(ﬂ,\ BBENK. K s arJexp[f(R 7+ &5 akak, - (5.4.14)

()P A A1) = ﬂ(ga,qﬁ;ﬁ;ﬁ;')(k, a0 expli(R 7+ 7 )Rk .- (5.4.15)

~ -

Interchanging the points P* and P" along with the indices i and j result in the relations

(u uh, h"> (umlhfhf).

By use of this fact and equations (5.4.10)-(5.4.15), we can write equations (5.4.7)-
(5.4.9) in the forms

§(¢,ﬁ,'ﬁ;')(k, R\ ALAC )+ PL[U + P, K2+ 2+ 2P, k' + ‘%(2 e, Q. )}

M
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(6,880 K avara)=[ilk, +k; X b 88"~ ilk, + K X B.B,B.8")

~ ik +k Xt BB )+ ik, + K X d BBl — ik, + K, XoBiB7) 1R, K Ar,ar' 1), ~(5.4.16)

> o ' k’? in\[¥r o1 '
- (¢ Bp)(R, R, AL AL, )+ ‘”M (0,BBIR, K, At AL )
ik, (9,8, B.8NK K 'be, 6t 1) v ik (b B BINK K AL AL ) e (5.4.17)
and _a_&. (08B )R R, At AL 1)+M (BBR R AL A1)
=ik, (¢, 0, .5 )\R K M A o)+ ki (081 BNR K AL AL ). e (5.4.18)
If the derivative with respect to x; is taken of the momentum equation (5.4.1) for the

point P, the equation multiplied by hi'h;" and time average taken, the resulting equation.

o> (wh'h" FE o )
B 6<x,5x,j> " ox,0x, (<”’ukh'h > <h h"h’h’>) “““““““ (5.4.19)

Writing this equation in terms of the independent variables 7 and 7'

a? aZ a? - a? a2 al 62
- +2 s (whlhj) = . i
oror,  0Ordr) Oror or,0r,  Or/Or, Ordr, Oror
x ({z.r,ukh,’h;'> = (b, h,’hj’))_ ---------- (5.4.20)
Taking the Fourier transforms of equation (5.4.20)

(ki + ik, + ke ky + Kk, )(<¢f¢kﬂfrﬁ:>_<ﬁ1ﬁkﬁ:ﬂ7>)

B B" = - S — 5.4.21
(8.57) Kk, + 2k k] + k(K| el

Equation (5.4.21) can be used to eliminate (yﬁfﬁ” from equation (5.4.16).

The tensor equations (5.4.16) to (5.4.18) can be converted to scalar equation by

contraction of the indices iand j
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(gﬁ,ﬂ ;5’”}( Af AL !)+ T[(l % P )(k2 +k“")+ oF kk’]

]M " ] 1 on
+ = (2e,, QX BBNR. R0 A= ilk, + K XpdB5))
(R,R', AL AL, U)-i(k, + kL XBBBBIR, K AL AL, t)-i(k, +K,)
(88 BBNK K AL AL+ ilk, + 1, Xt BLBNR, R At A 1) = ik, + )

OBBMR K AnAre), (5.4.16a)

(@ﬂﬁﬁ( At AL t) > (gb,ﬁ[}”)(!% k. !At’,t)

~ik (8, B BBNR K A A )ik (888 BNR R AL A ) e (5.4.17a)
and ﬁ(q) B(R, R, AL AL, )+ k: (6,8B")R,R", At, At 1)
ik; (6,6, 880K, K AL A1+ ik, (8B BNK R AL AL ), oo (5.4.18)

5.5 Solution for Times Before the Final Period:

It is known that the equation for final period of decay is obtained by considering the
two-point correlations after neglecting third-order correlation terms. To study the decay for
times before the final period, the three-point correlations are considered and the quadruple

correlation terms are neglected because the quadruple correlation terms decays faster than the

lower-order correlation terms. Equation (5.4.21) shows that the term (}/,[)’f,Bf) associated with

the pressure fluctuations should also be neglected. Thus neglecting all the terms on the right

hand side of equations (5.4.16a) to (5.4.18a)

a{(;ﬁ,ﬂ 'BAR R A A z)+P—[(l+ P YK® + k) + 2P, Kk +

(2 € 20, ](#Wﬂ')( AL, Al t)= g, s (5.5.1)
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B R R AL ,WW 3 (S SHVIIVN) B R — (5.5.2)

.i

OAt

12

a (‘biBiB?)(KaK'aAt: Atr,t)= O """""" (553)

oAt

and

(o BB(RK AL AL

Integrating equations (5.5.1) to (5.5.3) between t, and t, we obtain

A

ki (¢, B, = f,exp{——~[l+[’ﬁ, Nk +k2)+2P, kk'cos + % e, Q,) ke-1,) }

M

kf(@ﬂ,’ﬁ,d) =8 expl:_ %A’:l

1Y kaz T
and k(8,88 =q, eXp[— p At]

M

FFor these relations to be consistent, we have

k(BB = k(B BB, expl A0+ P, Nk + &7 N —1, )+ K2 A0+ kAL

+ 2P, kk'cos6(t—t,)+ [ze"’“ *"}(r BEY e (5.5.4)

where 0 is the angle between K and K' and (qﬁ,ﬂfﬁ,’)“ is the value of (qb,ﬁf[)’f) al =,

At=AU=0, A = —.

M

By letting ' =0, At' =0 in the equation (5.4.10) and comparing with equations (5.3.11)
and (5.3.12) we get

(aw, v )(K At r) a]’(gﬁ,ﬁ,’ﬁ" (1% K',At,0, r)dK ---------- (5.5.5)

and {a,wk:;/[)(— K,~At,1 + Az): 0]-(¢,ﬁjﬂ,”>(— ol K",At,o,t)d!%’. ---------- (5.5.6)

Substituting equation (5.5.4) to (5.5.6) into equation (5.3.15), one obtains
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%(wlwf)(ﬁ,m,i)ﬂh 2kk2<\p|\p >(K At, l) _[211( [(i; B! B")(K K tO,t)
—(,880- K~K800,0) |, expl- A {0+ £, Yk + K2 )i -1,)

+k2At+2P, (¢ -1, )kk'cosé)Jr[ze'—"zQ“'lj(f =5 ) ] BT, e (5.5.7)

Now, dK’ can be expressed in terms of k' and 0 as -2nk'd(cos0)dk’ (cf. Deissler [28] ).

Hence, dK' = -2zk’d(cosO)dk'. e (5.5.7a)
Substituting of equation (5.5.7a) in equation (5.5.7) yields

%(w,w;>(f(, at, )+ 220y &, Ae)= 2 [k [0, 5182, )

—(¢”8"ﬁf">(_ I%’ﬁk,) ]vk’z{j exp{— j'[(] + Py )(k2 +k'2X[ —f,,)

-1
2 | ' 2Emk|' Qn J
+ k2AL+ 2P, (1 —1, kk'cos O + f (t-1,) ] Jd(cos®) |dk'. —- (5.5.8)

In order to find the solution completely and following Loeffler and Deissler [72] we

“ assume that

g e e S (559)

where 8 is a constant determined by the initial conditions. The negative sign is placed in front

of 8y in order to make the transfer of energy from small to large wave numbers for positive
value of 8. The quantity [{¢,3]; )( ) {,B:B] )( IQ;}:(')]0 depends on the initial conditions of

the turbulence.

Substituting of equation (5.5.9) into equation (5.5.8) we get

g;Zﬂ(t//,l//:)(k, A+ 2k 2y R, 0, )= =28, Tl =kt e
0
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{ lj exp{— i[(l +P, )(lc2 +k" Xt —1,)+ kA +2P, (1 —1, kk' cosO

=
__________ (5.5.10)

(26”,“ J([ ) ] J(cos0) }HG'.

Multiplying both sides of equation (5.5.10) by k%, we get

ok
dp=F
ot

where E =27k*(y v

> E is the magnetic energy spectrum function and F is the magnetic

energy transfer term and is given by

[ expl 20+ 2, k2 + 52 )i—1,)

F= —25[,w(k2k’“ — Kk ek % {

0

+k*AL+2P, (1 1, kk'cosO +[——2 E;i 2 ](: ~1,) | Jd(cos6) }a’k’ , (5.5.12)
Integrating equation (5.5.12) with respect to cost), we have
F=- v(ré}to j(lc’k'5 —ksk"")[ expl- /1[(1 PN K Ne—1,)+ KA
o 1) + 25 ) ] }zkr
+w_[ :j Kk =k k”)[ expf- A[(1+ 2, Xk + &2 Ne =1, )+ K2
£ 2P KK'(t-t, )+ 2—?%9&(: -,) ]} }dk‘. ------------ (55.13)

Again integrating equation (5.5.13) with respect to k', we have

5 P '\/— { 2 EnrH Qm }
Fim o M S (et )
T S A
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— ~k2/1(l+21"“)[1_’ L1+ Py AtJ ) ISP, k"
1+PM ’ l+2PM 4V2(f'"f”)2(1+PM)

5P 3| &° P Pl s
+ - . = k
{(1+PM)2 2}"("'*’0) {(I-I_PM)] 1+ £,

50 PA-I VT 2 Emk.’ QH
- % ; —-eXp —— ([MIU)
422 -1, + MY (1 + P, V2 A

X exp _k21(1+2ﬂ"')[tv1 +—~PM AJJ X ]SP""‘kd
1+ P, "1+ D, (-1, + A&y (1+P,)

5P"3 3 k° PI; Py 8
* Y + - k . BRERUCESESS ik
{(MPM ) 2} v(e—1, +Ar) {(I+PM)3 1+ P, | (5.5.14)

The series of equation (5.5.14) contains only even power of k and start with k* and the

equation represents the transfer function arising owing to consideration of magnetic field at

three-point and three-times.

If we integrate equation (5.5.14) for At=0 over all wave numbers, we find that

o

[Fdk=0 (5.5.15)

0

which indicates that the expression for F satisfies the condition of continuity and homogencity.
Physically it was to be expected, since F is a measure of the energy transfer and the total

energy transferred to all wave numbers must be zero.
The linear equation (5.5.11) can be solved to give
E= exp[— 22kt -1, + At/z)jF exp[2£k2(t —t, + At/z)]dt

c@expl-2ak (-, +af2), e (5.5.16)
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9 9
+P e P %
|6'1‘-‘”[' £ o N A] m(’/’-i-M‘)‘”['/' g+ <t A}"]
1+2P, 1+2P,
. 5,17, -6) 5,08, -6)
/2 2
16(1+2P, )T T + BRLY. 16(1+ 2P, XT + AT)?| T + Pu__ar
1+2P, 1+2P,
35p, (3p2 - 2P, +3) - 358, (3P2 - 2P, +3)
9/2 9/2
1+ P 2
801+ 2P, 1 T’y — AT 8(1+20P 2l o TM Ay
(1+2P,) [ 5 J (1422, XT+AT)?| T + o AT
+8PM(3P,3,72PM +3[1+28, )" & 1350 (2n49) | T , T+ a7)0m " ] 1
3Pl S n@n+ 1271+ P, (T+A%){2"")/2 (T+At'/£)"""]f°[
------------ (5.5.19)
where T=1-t,.
For 7. =I= AT2 , equation (5.5.19) takes the form
(h h/ > N, 7o,
CXp [_2 E . QH] ]
2 8\2r AT ,‘,f’ a2¢(1+ P, N1+2P,)" .
9 9
% T 5-’,~5-+ 52
_AT/YV? AT
(] /) [m 1“2,::”} ]()( + /) ( m ]"{"ZI)M)J
N 5P, (7P, - 6)
2 /2
ATY"” AT Y
T e T 44—
16(“!‘2})‘“{ nr 2 J [ I 2(] +2PM )]
+ P (75, =6) s | I —— (5.5.20)

AT 3/2 AT 7/2
2 T RO ... N
]6(] 4 PM { n o= 2 ) ( n 2(1 & 21)‘” )]
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This is the decay law of magnetic energy fluctuations of MHD turbulence before the

final period for the case of multi-point and multi-time in a rotating system.

5.6 Concluding Remarks:

In equation (5.5.20) we obtained the decay law of magnetic energy fluctuations in
MHD turbulence before the final period in a rotating system considering three-point correlation

terms for the case of multi-point and multi-time. If the system is non-rotating then €2, =0, the

equation (5.5.20) becomes

(hlh:) " No 4 TES()
2 82mPT. A (i+ P, Y1+ 2P, )"

9 9
AT 5,11 AT
g o ) o (e )

SPM (7PM _6)

AT ar "
o |
16(] +2PM{ n 2 ] [ m Fie 2(1+2P )}

5P, (7P, - 6) U PUR——— (5.6.1)

12
, | AT
16(1+21M( ol 2} ( L (1+21> )J

which was obtained carlier by Sarker and Islam [115].

X 572

+

,.+.

If we put AT=0 in equation (5.6.1), we can easily find out

© 8/2m 22°(1+ P, )1+2p, )" 16 16 1+zp
AT +BTS, e (5.6.2)
where
NO

NI
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b, Jo,srr-6) |

B - -
200+ P )i+2p, 7 |16 16 1+2P,

which is same as obtained carlier by Sarker and Kishore [108].

This study indicates that the turbulent energy in the magnetic field decays more rapidly
due to the effect of rotation than the energy of non-rotating fluid. From the assumption we
conclude that the higher-order correlation terms may be neglected in comparison with lower-
order correlation terms. By neglecting the quadruple correlation terms in three-point, three-
time correlation equation the result (5.5.20) applicable to the MHD turbulence in a rotating
system before the final period of decay were obtained. If higher-order correlation equations are
considered in the analysis, i.e. if the quadruple correlations were not neglected, it appears that
more terms of higher power of (t-ty) would be added to the equation (5.5.20). For large times
the last term in the equation (5.5.20) becomes negligible, leaving the -3/2power decay law for

the final period.
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CHAPTER-V

PART-B

DECAY OF MAGNETO-HYDRODYNAMIC TURBULENCE BEFORE
THE FINAL PERIOD FOR THE CASE OF MULTI-POINT AND
MULTI-TIME IN PRESENCE OF DUST PARTICLES

5.7 Introduction:

" The behavior of dust particles in a turbulent flow depends on the concentration of the
particles and the size of the particles with respect to the scale of turbulent fluid. Saffiman [106]
derived an equation that described the motion of a fluid containing small dust particles. Sinha
[122] studied the effect of dust particles on the acceleration covariance of ordinary turbulence
Kishore and Sinah [59] also studied the rate of change of vorticity covariance in dusty fluid
turbulence. Sarker [110], Sarker and Rahman [112] considered dust particles on their won
works. Batchelor and Townsend [4] studied the decay of turbulence in the final period.
Dessiler [27,28] developed a theory for homogeneous turbulence, which was valid for times
before the final period. Using Deissler’s theory Loeffler and Deissler [72] studied the
temperature fluctuations in homogeneous turbulence before the final period. Sarker and
Kishore [108] studied the decay of MHD turbulence before the final period. Sarker and Islam
[115] also studied the decay of dusty fluid turbulence before the final period in a rotating
system. Islam and Sarker [46] studied the first order reactant in MHD turbulence before the
final period of decay for the case of multi-point and multi-time. Kumar and Patel [65] also
studied on first-order reactant in homogeneous turbulence before the final period of decay for
the case of multi-point and multi-time. Sarker and Islam [116] studied the decay of temperature
fluctuations in homogeneous turbulence before the final period for the case of multi-point and
multi-time. They considered two and three-point correlations and neglecting higher order
correlation terms compared to the second-and third-order correlation terms. Shimomura and
Yoshizawa [119], Shimomura [120] discussed the statistical analysis of turbulent viscosity,

turbulent sealer flux respectively two-scale direct interaction approach. Sarker and Islam [1 17]
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also studied the decay of MHD turbulence before the final period for the case of multi-point

and multi-time,

Here, we have studied the decay of MHD turbulence before the final period for the case
of multi-point and multi-time. Two-and three-point correlations have been considered and the
quadruple terms are neglected in comparison to the second-and third-order correlation terms.
Finally the decay law of magnetic energy fluctuations of MHD turbulence before the final
period for the case of multi-point and multi-time in presence of dust particles is obtained.
When the fluid is clean, the result reduces to the one obtained earlier by Sarker and Islam

[115].

5.8 Basic Equations:

The equation of motion and continuity for viscous, incompressible dusty fluid MHD

turbulent flow system are given by

ou 0 ow u ,

—+—(uu, ~hh)=——+v —+ fu,-v), e 5.8.1
o o et ) = Y e, ) e
: *h.,

ia-IELJrﬁ(?f(hiuk—Llihk)ml—-(’j =t e itec)
o ox, P ox.6x%, .

ov ov, K

T e (5.8.3)
T P

with

Oy O O i N — (5.8.4)

ox, Ox, O,

Here, u; turbulence velocity component; hi, magnetic field fluctuation component; v;, dust

1

i P 1 L N
particle velocity component; w(x,t):—+5<h2 >+E|Q><x , total MHD pressure p(x,7),
P

hydrodynamic pressure; p, fluid density; v, Kinematic viscosity; Py, magnetic prandtl number;

Xy, space co-ordinate; the subscripts can take on the values 1, 2 or 3 and the repeated subscripts

. KN . ; _ .
in a term indicate a summation; f = ——, dimension of frequency; N, constant number density
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: 4 ; ; . .
of dust particle m, = grrR_pr , mass of single spherical dust particle of radius Ry; ps, constant

density of the material in dust particle.
5.9 Two-Point, Two-Time Correlation and Spectral Equations:

Induction equations of a magnetic field at the point p and p’ separated by the vector r

could be written as

oh . Oh ou, v 0Oh,
on, L R o FE s S (5.9.1)

tu, —-—

a  ‘ar, ‘v, P, oxox,
on’ ok’ ou' o h

and —L+u, —-h,—-= . — . e (5.9.2)
ot ox, ox;, By o%.ox;

Multiplying equation (5.9.1) by h; and equation (5.9.2) by h; and taking ensemble

average, we get

ahk ) o v 0 (h )
e “Y-{u ! e & NS R g 593
e +6xk [(:fkh, h, ) (zt,hkh, ) ] P oxox, ( )
a(hrh; ) 0 Vv 62<hlh; )
auzre ALy AN h R L N e ey 9.
and - +8x; [(u,ch,hj ) (ujh,h,‘ )] T (5.9.4)
Angular bracket (- ———- ) is used to denote an ensemble average.

Using the transformation

0 = 0 0 0 {E]fr:[a]‘ﬁ[f—aw-—@—w—a—- ----------- (595)

o, orox, on\at) \a) onCar aa

into equations (5.9.3) and (5.9.4), we have

a h'-hr , ;. ; , . 2 az(h,hi‘>
(ar ) +5‘%[{;:,:;:,};;)w (a1 )kr,m,t)—%[(ukh,hj) ~ (7. 6,0) = ;5"5;;5,# -(5.9.6)
a h.th" a ] ' f t o v 62 <h’h')
and 4<—6A—tj>—+5:;:[<”*hlhf>_<”fhfh* >kr alyf)= P, arf,ar: T G2

Using the relations of Chandrasekhar [19].
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(wih ) = ~(uph ), (i) = (i),

Equation (5.9.6) and (5.9.7) become

2y O (h ')
ki e

o(hh 0 T rovs: s ’
(a[ I>+25a_{<y hh ><”,hi'hi)]:a ar,ﬁn

a(‘hfh;)+_‘3_[<umh;>_<uthkh;>]:L__az(h‘h:>, ------------ (5.9.9)

ot or, P Orr

~and -

Now we write equations (5.9.8) and (5.9.9) in spectral form in order to reduce it to an

ordinary differential equation by use of the following three-dimensional Fourier transforms:

<h,f?§>(f’, Att)= T{W,wj )(ﬁ,At,!)CXP[f(f%f‘)}HC’, ---------- (5.9.10)

-0

W

(u}irkh; )(F,Ar,!): J.(a,r,ukw; >(12,At,!)exp[f(1%.r‘)}!l€'. ---------- (5.9.11)

—@

Interchanging the subscripts i and j then interchanging the points p and p' gives
(11;r hh >(F, At t)= (uk hh >(-— PO+ At)

o

= [{awv, Mo Ko+ sexplil ik (5.9.12)

where K is known as a wave number vector and dK =dK, dK; dKs. The magnitude of K has
the dimension 1/length and can be considered to be the reciprocal of an eddy size. Substituting
of equation (5.9.10) to (5.9.12) in to equations (5.9.8) and (5.9.9) leads to the spectral

equations

ayw!) L2
ot Ey

(') =20k, e &ALt~ (e o Ro-ani+ ar) | - (5.9.13)

Bl -G e R )] 500
M
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The tensor equations (5.9.13) and (5.9.14) becomes a scalar equation by contraction of

the indices i and |

ow,w!) LS
ot P

<r,uigz/,') = 2ik, [(afgyk 1//,’>([%,At,t)f <a,‘t//,t,u,.'>(ﬁ K—ALt+ /_\.t) ] ----(5.9.15)

-and a<\;;]‘> + \:(-QMJ:) =ik [(a,\ij)(}‘(,m, t)f (aupgpf)(— K~Rep /_\.1) | = 1(5:9.16)

The terms on the right side of equations (5.9.15) and (5.9.16) are collectively

proportional to what is known as the magnetic energy transfer terms.

5.10 Three-Point, Three-Time Correlation and Spectral Equations:

Similar procedure can be used to find the three-point correlation equations. For this

purpose we take the momentum equation of dusty fluid MHD turbulence at the point P, the
induction equation of magnetic field fluctuations at p" and p" separated by the vector 7and #

as

82
o, ukéﬁm—hk 00 e T i flme=n), =0 e (5.10.1)
ot ox, ox, ox, Fos M

L Y - (5.102)
or' ox, ox; P, ox,ox,

12 t " 200
oh’ , Oh ,ou; v 0 h.}

tu, —— -y — = — = e (5.10.3)
i ol el P, 6oy

Multiplying equation (5.10.1) by h';i hy"", equation (5.10.2) by uh;” and equation
(5.10.3) by uh/’, taking ensemble average, one obtains
oluhlh) ) &

A(wh'h"
R [(ukufh:h_;' )= (b)) ]=w~——( ax,j )

% (u,h'h" o
+V—g);—ax;i—>+f(<”fh;hf >_<vf'hiii} ) St (5.10.4)
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ouhh) ) d 0 (u, H, )

BN rprn 7_.:
= +a—x;ﬁ[<u,ukh,hf V= (uuhihy ) = el B (5.10.5)
ouh'h” ) o o . v O (uhh )
T i ) (usiin H:P—M%{; ---------- (5.10.6)
Using the transformations
L St AR Jd U O
ox, \or, o )ox, or ox! o’
(—a—)t',t" =(-9JAt,At’ B ,
ot ot OAt  OAY
g 2o, 0
o' oAt " AL
into equations (5.10.4) to (5.10.6), we have
o\ hihj - - iy _ o
ﬁ!;! >_[_a%--i-—%—]ku‘,u,h,h_f)—(hkhl,r’:,/z[>]+%[(u,ukh,hI)—(u,u,h,‘h,ﬂ
2
0 e e o g 0 - 0 0 o
+G_r;[(ufukh'h’>_<z£fu"h’hk>]:_(a+5;}<wllg'h’>+v[?+ézJ <u,h{hl>
v | 8 (uhh) S*ukn)| e
+7);;'[ arkark + a’}:arkr +j(<“l'h-‘h,'> <v"h-'h.'>) s =me=F (5107)
6<”"h:h; > 0 IERIN g\ | _ v 62<L£,h:hj)
—5r+-a—’_k— [(lhukh,h,>—<Mﬂhh¢h_;>]hP—MW ----------- (5.10.8)
olu bkt ) 5 o v OMwkn)
and —~—m< c;Ar’J +5;;— [(u,ukh,hj)%u,ujh,h;, >]=P—M——aa,’-ark,—' o e (5.10.9)

Six dimensional Fourier transforms of the quantities in the equations (5.10.7)-(5.10.9)

may be defined as
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(u b 7,7 AL AL 1) UJ]'C]' ¢5,[)’,’ﬁ_f>(f<,k’,A:,A:',t)cxp[f(k.ﬁ+ Kr) KdK', - (5.10.10)
; <u,u: h:h;’><ﬁ,f", At,/.\t',!) = ]T(gé,gzﬁ;.ﬁ,’ﬂw(!%,!%',AI,AI',I)exp[f(J{’.F + !%'.F’) H%di&', -(5.10.11)
(whih (7.7, AL, AL 1) o:i‘T<}fﬂ,’ﬁ:’>([2,!%',At,At',t)exp[f(]%_P+]2’.:?’) IKdK', - (5.10.12)

(z.w:,h,'h}')(f',f", At AL, t Jj<¢* & pp7 >(K K' AL AL f)t,}\p[ (Kr+K ¥ )]di\dK -(5.10.13)

rrrrrr

(i, 7, At A1) o]?(ﬂﬂ.ﬁ,ﬂ;ﬁf)(]%,K’,At,At',t)exp[f(]&f+1%’.?") RdR', (5.10.14)

-

(b b 5,7 6,81y = [ (i8R R s ar exp (R 7 + &7 kaie - (5.10.15)

<v,h:h )r F,AL AL t T[R;t,ﬂ:ﬁf)([%,]%',A!,AI',t)exp[f(K'.f‘-i-[%'.F’) RdK' . --- (5.10.16)
Interchanging the points P" and P"" along with the indices i and j result in the relations
(i bty = (uui bR

By use of these facts and equations (5.10.10)-(5.10.16), the equations (5.10.7) to

(5.10.9) may be transformed as

Bty ol By , ; s B
E(gﬁ,ﬂ,ﬂ_,)(K, R, At, Al ,:)+PLM{(1 + P, YK? + k2 )+ 2P, ki —T}"i’-f}
(6,88)K R 80,80, 0)=[i(k, +K; X8 B.8") - ik, + 1, X B, BB

~ ik, + K Xp i BB+ ilk, + ki X881 By) — ik, + kI XoB.7)

~flupp) \R K anare) o e (5.10.17)
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(q) BB )(K,K’,At.m',l) (4> B B)( AL, AL’ t)

oAt
=ik (g, B AR KA A t)-Hk O S NN —— (5.10.18)
Al .Y, vk ,
and E(q;ma)(K,K,At,m,t) o (6,8B7)(K K", At AL 1)
R R A S NN Y710 9 YY) D— (5.10.19)

If the derivative with respect to x, is taken of the momentum equation (5.10.1) for the
point P, the equation multiplied by hi'h;"” and time average taken, the resulting equation
2 L
O (whih)) 52

T ok, oxox, «”’“*h:hf)_<h!hf«hfh7>) e (5.10.20)

Writing this equation in terms of the independent variables 7 and 7'

a 2 a 2 a 2 s b 2 a 2 d 2 8 2
- +2 - (wh/z,)z e e
or,0r, or,0r)  oror or,dr, orior, oror, Oror,

0 ) R — (5.10.21)
Taking the Fourier transforms of equation (5.10.21)

(k.'kx +'r‘rrk:c '*""rk.:- +k;k:rc )((¢I¢&ﬂ;ﬁ?>m(ﬂ.’ﬁkﬂ:ﬁ;’”

_{ypp") = . 5.10.22
(867) Kk, + 2k k + kK, ( )

Equation (5.10.22) can be used to eliminate (}’ﬂ,’ﬁ,") from equation (5.10.17).

The tensor equations (5.10.17) to (5.10.19) can be converted to scalar equation by

contraction of the indices i and j

(¢,ﬁm( AL AL )+ . Y+ P, Y+ k) 2P, kk']-

M

e plg prR R 000 )= ik, + K X )
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V(ln(,lﬂ(',At,At’,t) ik, +k{ KBy BBB")( At, At' t) i(k, +k})
(.0, B BNR, K00, A0 )+ ik, + K, X, ﬁkﬁ§(1( R A6, A )ik, + k)

(7ﬂ.’ﬁ7)(15,132Af,Af',f)—.f'(ﬂ,ﬁ,’ﬁ,")(le,K’,At,At’,r) o (5.10.17a)

o {n B K ) (Mﬁ”}( AL AL

ik, (b, B BNR R A A1)+ i (6,818 BNR K AL AL ) e (5.10.18a)

12
and 527((1),&;[37)([&,K’,At,At’,t)+illfm(d),[%:ﬁf’)(l"(,ﬁ', At A1)

M

= —ik; (¢,4, p’,’ﬁ,”)(i%, K',At, At’,t)+ ik! (¢,¢;ﬁ;ﬂ,")(k, K' A, At',t) e nT— (5.10.19a)

5.11 Solution for Times Before the Final Period:

It is known that the equation for final period of decay is obtained by considering the
two-point correlations after neglecting third-order correlation terms. To study the decay for
times before the final period, the three-point correlations are considered and the quadruple

correlation terms are neglected because the quadruple correlation terms decays faster than the
lower-order correlation terms. Equation (5.10.22) shows that the term (yﬂ,’ﬂj’) associated with

the pressure fluctuations should also be neglected. Thus neglecting all the terms on the right

hand side of equations (5.10.17a) to (5.10.19a)

%(gb,ﬁ:ﬁf)(k, R, AL, A1)+ F"w[(l + P YK + k) 2P kk' -

M
fM—ﬁs‘ ](¢fﬁfﬁf')(1%,K',AI,N’J)= 0, e (5.11.1)
1%

%(;ﬁ,ﬁ;ﬂ:}(ﬁ,k',Az,At',z) (¢,ﬁ BARRLALA)=0 e (5.11.2)

Af

and
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g

5 (0,887 (R, R, AL AU, )+ V—IEL(¢.B1B:’)(" REAGAL, )20 e (5.11.3)

M

where (1, B/8!) = R{¢, ") and 1-R=S, here R and S are arbitrary constant,

Integrating equations (5.11.1) to (5.11.3) between t, and t, we obtain

2 2 Pfy‘f
k(8,887 = f, exp} -}{L[(] + Py )k + k%) + 2P, ki cos 0 - Tﬁ- | R

M

k(688 =g, ex{_ i A,}

M

’ Vk’z 1
and kn’ (¢|’ﬂlﬂl’? - qn‘ explim P At :| :
M

For these relations to be consistent, we have

kA BB = k9 BB expl-Al(1+ By Jo2 + K72 Nt —1,)+ K2Ac + kA

+ 2P, kk' cos Ot — 1, *%1{(! % 1 R — (5.11.4)

where 0 is the angle between K and K' and (6,88 is the value of (4,8/8]) at t'=t,,

At= At =0, A = —,

M

By setting 7' =0, At' =0 in the equation (5.10.10) and comparing with equations
(5.9.11) and (5.9.12) we get

o

(awwK o= j(cﬁ,ﬁ,'ﬂ,-”}(k,k VR N) . <A — (5.11.5)

—o0

and (@, p - R-ani+ )= [(g B8N R K Ao iR e (5.11.6)
Substituting equation (5.11.4) to (5.11.6) into equation (5.9.15), one obtains

%(wi\p;)(ﬁ, At )+ 22Ky YR, AL U= ']2ik1 lo,p87)(&, K", A1,0,1)
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- (¢I'B;ﬁv”>(_ k’_‘(ﬂ’ AI’OJ) ]u CXp[_A{(l + Py )(kz t k’z)(f _tu)

+ kA +2P,,(t —r,,)kk'cosf)—g(r A L N/ S — (5.11.7)

Now, dK' can be expressed in terms of k" and 6 as 2nk'd(cos8)dk’ (cf. Deissler
[28]).
ie. dK' = 27k’d(cos®dk’ e (5.11.7a)

Substituting of equation (5.11.7a) in equation (5.11.7) yields

g;(w,w:)(k,Ar,t)+ 226w )R, At )= 2 [k (g 1800, )
4]

(¢85 k") ](,fc”[ [ explall+p Mt + 472X ~1,)

-1

+ kAL 4+ 2P, (01, kk' cos O —f%(l B ) N S — (5.11.8)

In order to find the solution completely and following Loeffler and Deissler [72] we

assume that

R R g

where 8 is a constant determined by the initial conditions. The negative sign is placed in front

[ ) R — (5.11.9)

of & in order to make the transfer of encrgy from small to large wave numbers for positive
value of &. The quantity [(rblﬁfﬁf)(ﬁ,ﬁ')— (¢.f”fﬁf)(“ K,—K')!(; depends on the initial

conditions of the turbulence.

Substituting equation (5.11.9) into equation (5.11.8) we get

gzz(w,w;)(k,m,:ﬁ 20k 2ly )R, A0 1) = 25, (k2R - kK
V]

D‘ exp{fi[(] + P, )(/c2 +k’3Xt —1)+ KA+ 2P, (1 —1, kk'cos 6
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—f(r—z“) | Yalcos®) \ak' . e (5.11.10)
Multiplying both sides of equation (5.10) by k?, we get
%%uasz --------- (5.11.11)

where, E = Zﬁkz(y/‘.r//,'>, E is the magnetic energy spectrum function and F is the magnetic

energy transfer term and is given by

F= —2500}(%/('4 — KRR % []j exple All+ P, Y2 + K7 Je -1,)
0 | .

-

£(1-1,) ] Jfeoso) }cﬂc’ - e (115

+k2Ar+2P, (1 -1, kk'cos@ -

Integrating equation (5.11.12) with respect to cos 6, we have

lf‘:m%—T(k’k" —~k5/c’3)[ expie A[(1+ P, YKZ + A2 e =1, )+ k2At —QPMkk'(f“‘fa)—f(f"!u) 1 ]dk'
V=1, )G

* V(fé‘—o t,,) !(klk’s - kjkr])l: cxp{_ l[(] + PM )(kl i kfll’ = tu)+ kZAI + 2PM kk’(t & tu)_uf;ﬂt{(r ‘tu) ] } ]dkr -

-------------- (5.11.13)
Again integrating equation (5.11.13) with respect to k', we have
5 3 - kA0 + 2P, 1+ P
= 5, Pulm exp| iSw(t_t”) ] % exp —~—-(—+——"—4—) t-1t, ¢ AR
A 1P, 1+ 2P,

Y (-1, Y20+ P, )"

o

152, k* 5P} 3] kS H P, |
o 2 2 * 2 5 + 5 k
4V“(t_tu) (1+PM) (1+PM) 2 V(l_[” (]+PM) ]+PM

_ k2 >
k 1(14«21,\4)[[_{“ K2 Atﬂ

(=, ]Xex‘{ 1+ P, 14 2P,

50 PM ‘\/—E
41 (t—1t, + AYA(1L+ Py, )

ISPk she 3k ) P P L o504
x[ g (+2,) 2 v(t—1, +a1) |(1+r,) 1+P, ] .

N

exp[

avi(e—t, + MY (1+Py)
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The series of equation (5.11.14) contains only even power of k and start with k* and the
equation represents the transfer function arising owing to consideration of magnetic field at

three-point and three-times.

If we integrate equation (5.11.14) for At=0 over all wave numbers, we find that

dek:O ----------- (5.11.15)

which indicates that the expression for F satisfies the condition of continuity and homogeneity.
Physically it was to be expected as I is a measure of the energy transfer and the total energy

transferred to all wave numbers must be zero.

The linear equation (5.11.11) can be solved to give

= exp[— 2Kt =1, + AI/Z)JF exp[2/1k2 (-1, + At/Z)]dt

rJ(K)expl-24k2 (-0, +A02), e (5.11.16)

where (k)= Nk is a constant of integration. Substituting the values of F from equation
m

(5.11.14) into equation (5.11.16) gives the equation

8B
421+ B, V-

C‘(p ;[—-\I_K(]-}-—QI)_M) t—1 +Jt!1’LAt] X[ 3k4 3 + (7PM —6)k6 5
' [+, * T ly2p, 20,420 -1,)% 340+ P, Xt -1,)%

= DK ol —2a4%(0-1,+ 84/2) ]+ <expl le-1,) ]
s

(3P,j + 3)k (3])\1 2P, + 3)1( F(w) " é‘nﬂf\/; exp[fs(t =i, )]
T304+ p,) (: Y 31+ P, )5 4251+ P, )
-k* > 5 1P, —6)k®
X exp -l A———(] +25,) [!—!“ + P A[H 2k 7 + (77, ~6) 7
1+ P, I+ P, 2P A -ty + )2 3A(1+ P, Nt =1, + A1)

........... (5.11.17)

abri -2p, +3k*  8YaBp; 22, 43 F (o ]

_3(1+PM )2(!—-[0+At)% (1+PM)5/2PAI1”2
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w
o %
where F(a))= e ™ J-e" dx
0

_k ALty P /f(;—to+Ari
Ty +8,

By setting 7 =0, j=i, dk = -27k*d(cos@)dk and E = 2frk2(1//,y/;) in equation (5.10.10)

we get the expression for magnetic energy decay law as

() .
e L2 S — (5.11.18)
2 0
Substituting equation (5.11.17) into equation (5.11.18) and after integration, we get
(h,h:) B N, 7o,

~exp| 3]

2 82 (T ar/2)"  ar(e P, Yir2r, )"
M

5 K . 58, (7P, ~6)

5 32 5 52 ) 72
16T~‘f{7'+ by &r] 16(7" + AY‘)"”[T A ---ATJ 16(1+ 2P, )’l"‘“[h ‘l"nifﬂ- A'[‘J

1+ 2P, 1+28, +2P,

sp,, (1P, —6) N 3558 BL 2B, 43)

72 9/2
: P . 1+P
16(1+2P, )(T+AT)-"~(T+ M _ A}"J 8(1+2P, )T"'[Y M. AIJ
EpP el 1+2P

+

+

35p,(3p2 - 2P, +3) . 8r, 3P -2p, +3)1+2P, )" .
[) 9f2 3‘22]/2 (1+PM )Il,"2

L

+2FP, }

8(1+2P, )T + AT)"Z(T +

2, 1,35, cisorne 0159) P (mar)z"”’”

gn!(2n+l)22”(l+PM)"X ( +AT/)(2~+IJ/2 (T AT/)(z,,+./2

;e (5.11.19)

where T=t-1; .

. For T

m

=T+ AV , equation (5.11.19) takes the form
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(h, h,> N, 70, -
exp| /s
28T AR, Nia2m, )
x[ 9 9
: xr Y "
O v I A )
N 5P, (7P, - 6) sp, (1P, - 6) o ].—(5.]1.20)

32 i 72 * 12 7/2
AT AT AT . AT
6l 828 B [ B 16+ 2P ) T T
( { 2 ) { 2(1+2PM)] e “{ wt ) { 2(1+2PM)}

This is the decay law of magnetic energy fluctuations of MHD turbulence before the

final period for the case of multi-point and multi-time in presence of dust particles.
5.12 Concluding Remarks:

In equation (5.11.20) we obtained the decay law of magnetic energy fluctuations in
MHD turbulence before the final period in presence of dust particles considering three-point

correlation terms for the case of multi-point and multi-time. If the fluid is clean then f =0,

the equation (5.11.20) becomes

Gy N, w,
2 82mAVPT, " AN (1+ P, N1 +2P, )

9 9
x s +

52 " = o
( e /)5/ ( " 1+2P J 16(Tm +A%) [Tm “mm]

(7P, -6) sp, (1P, -6) ,-(5.12.1)

+ -

o . 73 n 72
AT AT AT AT
BT . T 161422, ) 7, + B,
ol u{ 2 J [“,-PZ(H‘ZPM)] ( W{ 2 ) [ 2(]+2PM‘)

which was obtained earlier by Sarker and Islam [115].

If we put AT=0, we can easily find out
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() N, 1, Tﬁxv +3PM(7PM—6)+___}_A'r--vum'--* -(5.12.2)

- == ‘] e T TS T s
2 8/2ma (14 P, Y142P, ) 16 16 1+2P,

where

N o, { 2 .9 Py (7I)M = 6)_%___}

2t 033’ = 5;’2><_——+—
8/2mA? 2°(1+P, Y1+2P, ) |16 16 1+2P,

which is same as obtained earlier by Sarker and Kishore [108].

From the result (equation 5.11.20) of the study we conclude that due to the effect of
dust particles in the magnetic field, the turbulent energy decays more rapidly than the energy
for clean fluid. From the assumption we conclude that the higher-order correlation terms may
be neglected in comparison with lower-order correlation terms. By neglecting the quadruple
correlation terms in three-point, three-time correlation equation the result (5.11.20) applicable
to the dusty fluid MHD turbulence before the final period of decay were obtained. If higher-
order correlation equations are considered in the analysis, it appears that more terms of higher
power of time would be added to the equation (5.11.20). For large times the last term in the

equation (5.11.20) becomes negligible, leaving the -3/2power decay law for the final period.
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CHAPTER-V

PART-C

DECAY OF DUSTY FLUID MAGNETO-HYDRODYNAMIC TURBULENCE
BEFORE THE FINAL PERIOD IN A ROTATING SYSTEM FOR THE
CASE OF MULTI-POINT AND MULTI-TIME

5.13 Introduction:

From historical point of view it seems that the first attempt to study the problem of
MHD is due to Faraday. Later on in 1937 Hartmann took up Faraday’s idea in understood
conditions. There are two basic approaches to the problem, the macroscopic fluid continuum
model known as MHD, and the microscopic statistical model known as plasma dynamics we
shall be concerned here only with the MHD, that is electrically conducting fluids. Funada,
Tuitiya and Ohji [37] considered the effect of coriolis force on turbulent motion in pn—:sénce of
strong magnetic field with the assumption that the coriolis force term is balanced by the
geostropic wind approximation Sarker and Islam [117] studied the decay of dusty fluid
turbulence before the final period in a rotating system. Kishore and Sinha [59] studied the rate
of change of vorticity covariance in dusty fluid turbulence. Sinha [122] also studied the effect
of dust particles on the acceleration covariance of ordinary turbulence. Deissler [27,28]
developed a theory for homogeneous turbulence, which was valid for times before the final
period. Using Deissler’s theory Loeffler and Deissler [72] studied the temperature fluctuations
in homogeneous turbulence before the final period. Sarker and Kishore [108] studied the decay
of MHD turbulence before the final period. Sarker and Islam [117] also studied the decay of
“dusty fluid turbulence before the final period in a rotating system. Islam and Sarker [46]
studied the first order reactant in MHD turbulence before the final period of decay for the case
of multi-point and multi-time. Kumar and Patel [65] also studied on first-order reactant in

homogeneous turbulence before the final period of decay for the case of multi-point and multi-
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time. Sarker and Islam [116] studied the decay of temperature fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time. Shimomura and
Yoshizawa [119], Shimomura [120] discussed the statistical analysis of turbulent viscosity,
turbulent sealer flux respectively in a rotating system two-scale direct interaction approach.
Sarker and Islam [115] also studied the decay of MHD turbulence before the final period for
the case of multi-point and multi-time. In their approach they considered two and three-point
correlations and neglecting higher order correlation terms compared to the second-and third-

order correlation terms.

In this chapter, we have studied the decay of dusty fluid MHD turbulence before the
final period in a rotating system for the case of multi-point and multi-time. Here two-and three-
point correlation terms have been considered and the fourth order correlation terms are
neglected in comparison to the second-and third-order correlation terms. Finally the decay law
of magnetic energy fluctuations of dusty fluid MHD turbulence in a rotating system before the
final period for the case of multi-point and multi-time is obtained. If the fluid is clean and the
system is non-rotating, the equation reduces to one obtained earlier by Sarker and Islam [115].
It is an extension work of the part-A and part-B of this chapter. In part-A, we have considered
the rotating system and in part-B, have considered the dust particles. But in this part, we have

considered both the rotating system and dust particles.

5.14 Basic Equations:

The equations of motion and continuity for viscous, incompressible dusty fluid MHD

turbulent flow in a rotating system are given by

ou 0 ow ou,
—+— —hh)=—"—+ L —2e,, Qu + f(u —-v,), - (5.14.1)
o ox, (s =h) ox, v@x,‘ax,‘ " s )
. o’h.
M thy —uhy=2 2N e (5.14.2)
ot . P, Ox, 0x,
K
@wk @i:———(v, -u) e (5.14.3)
ot ox . m,



Chapter 5 163

! !

ou, _ v, _oh, _
ox, Ox, 0Ox,

L e —— (5.14.4)

Here, u; turbulence velocity component; h;, magnetic field fluctuation component; v;, dust

|

A 2
particle velocity component; w(p"&,t)=£+—<h2 )+%Qx>§ , total MHD pressure p(x,1),
p

2

hydrodynamic pressure; p, fluid density; v, Kinematic viscosity; Py, magnetic prandtl number;
Xk, space co-ordinate; the subscripts can take on the values 1, 2 or 3 and the repeated subscripts

in a term indicate a summation; (2, constant angular velocity component; €.y, alternating

KN . ' . :
tensor; f =——, dimension of frequency ; N, constant number density of dust particle

4 ; ' ; ; : :
m, =—nR’p, , mass of single spherical dust particle of radius Ry; ps, constant density of the

5 3

material in dust particle.

5.15 Two-Point, Two-Time Correlation and Spectral Equations:

Induction equations of a magnetic field at the point p and p’ separated by the vector r
could be written as

_ 2,
o O , 0w v o4 (5.15.1)

Ui i S
ot ox, o, By oxox,

oh, ,oh, ou, vy 62h;
e P —— (5.15.2)
o ox, ox,. By 0, o,

and

Multiplying equation (5.15.1) by h} and equation (5.15.2) by h; and taking ensemble

average, we get

a(h,h; Y @ v O (hH)
i, T Y- 4 gt VAR s 5.15.3
a o, )=t ) ] P, oxox, Eaitcl
anh, ) o y 0 (hh )
S o IR 5L W T R (S, i 1 — 5.15.4
and = +6x; [(u,(h,h, ) <ujh,h,( ) ] P axon, ( )
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Angular bracket ( ————— ) is used to denote an ensemble average.

Using the transformations

5, g 0 o (o), (@ g o0 0
e L L B . P uu - (5.15.5)
ox, or,  ox; 8}‘,{ a ot oA B oM
Equations (5.15.3) and (5.15.4) can be written as
o(hh)

i %[(u;h,h;)— (a7, A1) - 5‘} R ABICY NS YD)

k

o o> (hn,) |
hP_M_é?:;é;;— —————————— (5.15.6)
AmEY a1, s T v 0°(hh,)
and w—éz{—’—+a[<u,‘h,h,>~<ujh,hk>kr,At,t)= 7 Brkar,: e — (5.15.7)
Using the relations of Chandrasekhar [19]
<u,fh,h: ) = —(u;h,h‘: ), <u;h,h; > = (u,.hkhﬁ ;
Equations (5.15.6) and (5.15.7) become
hh' o (hh'
<a! >+2~—[ukh,h, ~(unh)|= 2~ aiar:> ----------- (5.15.8)
M
o(hh o hh'
and mgat—’z+£:[<u;h,h;>~<u,hkh;>]=uf}:: aiar:>' ----------- (5.15.9)

~ Now we write equations (5.15.8) and (5.15.9) in spectral form in order to reduce it to an

ordinary differential equation by use of the following three-dimensional Fourier transforms:

(1 )P, A1) = mj(z//,w;)(k,A;,z)exp[?(K.F)}lk I e — (5.15.10)

—o)

o0

<u hﬁhf>r Att = I(a %W (K At l)cxp[ (Kr)}]K e Gaa00)

-l
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Interchanging the subscripts i and j then interchanging the points p and p’ gives
(wih b WA, A ) = (u b )= Fo=Att + Ar)

= T(a,w,yx; )(— K,—AlLl+ At)exp[f (1(’ .r“)}iK ---------- (5.15.12)

-0

where K is known as a wave number vector and dK =dK, dK; dKj;. The magnitude of K has
the dimension 1/length and can be considered to be the reciprocal of an eddy size. Substituting
of equation (5.15.10) to (5.15.12) in to equations (5.15.8) and (5.15.9) leads to the spectral

equations

Aww') 2
a[ IJAI

(gu',y/» = 2ik, [(a,y/kgy; >(I&,At,t)ﬁ (a,(r//'i//',>(— Kb At) ] -(5.15.13)

a(ww)) L

n P (wv))=ik, [(a,wj >(kaﬂhl)—(akw,wj>(ﬂ R-0t1+ A1) | <(5.15.14)
M

The tensor equations (5.15.13) and (5.15.14) becomes a scalar equation by contraction

of the indices i and j

a(u;,;/f,) " 2;"' (ww)) =2ik, [(a,.wkgu:)(k,m,l)— (a,{w,w[)(u K ~Ati + At) | -5.15.15)
M

and

AN RN s 0 Ry B SRR RERCERD

oAl P,
The terms on the right side of equations (5.15.15) and (5.15.16) are collectively

proportional to what is known as the magnetic energy transfer terms.

5.16 Three-Point, Three-Time Correlation and Spectral Equations:

Similar procedure can be used to find the three-point correlation equations. For this

purpose we take the momentum equation of dusty fluid MHD turbulence at the point P, the
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induction equation of magnetic field fluctuations at p’ and p” separated by the vector 7and #'

as
au, ou, ch ow o’u
Sy =l e ey P Qe fl, =, esssse

k axk k (3}(,\ axl axkaxk mkl m | ( 1 VI) 3 (5'6])
oh’ i Oh! W oul v O°H
o b O, G, ¥ B,
o tax, tox, P, oxiox, (5.16.2)
ah;J uah:'r Hau:" 4 azh:' 5 ]6 3
o' *axl' *ex/ P, oxiox T (5.16.3)

Multiplying equation (5.16.1) by h'; hi"’, equation (5.16.2) by wh;" and equation

(5.16.3) by ujh/, taking ensemble average, one obtains

o(u,hh! ) o(whih! )

+ 2 kuku,h,'h;' )_<hkh{h:h; ) =

ot axk ax',
62 <ll ll:hj’ > rn.mn nLm n.n
+VW—2GM Qm(u,h,hj >+f(<u!h‘h[ )—(v,h‘.hj ), -------- (5.16.4)
a(”-'h;h.” > 0 [ BRI EREN v az(“"h‘rh; )
e (i ihy )= (i ] v B (5.16.5)
rpn 62 hrhrf
8<z£,h,hI >+ 6” [(u,ufh,'hf >~<u,u','h:h: ) ]~ i M _________ (5.16.6)

o ox! : P, ox'ox!

Using the transformations

N e ey
ox, ©r ox; O

= L= = At,At'—i— 9 ,
ot ot oAt OAt'

0 o o0 0
OAt'

B (a a}a 5 8 @

—_— ] —— —
ox, \or, or

o oMol

into equations (5.16.4) to (5.16.6), we have
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o(u,hh" 5
< faf / )_[E)Z-i-éi}ku u,h'h’ > <hkhfh:hf>]+gf‘[(“z“;h,’h_:')—<H,It:h;hf>]

Fy s

2
+a% [(u,ufh,'h:'> —<u,u:'h,'hf>]= —(:%wL 5‘,—}<Whh > (%Jra—i’_J <u,h,’h_:')

k

v li@%u,h,’h}’) . 82<u,h,'h:’>

}—2 g Q. <u,hr.’h_:.'>+f(<u,h,’hj>—<v,h,'hj”>) s (BB

Byl oneén or,or!
olu h:h" ) bl . s 52 u h:hf
< ’am_’—--f-a [(1,4,,1,;,(};[.}:1>—<l-!,.14',hkhJ )}:é a(r:ark :> ______ (5.16.8)
ou,hh" oo o (u,'h”
and <”;AI’J )+_(3%‘ [(u,ufh,'hj')—@,ujh,hk >]—PL é:ark ) ______ (5.16.9)

In order to convert equations (5.16.7)—(5.16.9) to spectral form, we can define the

following six dimensional Fourier transforms:

(1, IV, 7, At A 1) = ﬁ(¢,ﬁﬁ V&, &, ar, a0 tJexpli (R 7 + R 7 Jlakak | <s.16.10)
(u u h'h' )(f AL AL t> ] I{qb,é;;ﬁ,’ﬁ:')(l%,k’,A!,At',l)exp[f(]&.F+I%’.F’) i[%dl:f',(S.lé.l 1)
(uhh ><r FLALAY ) = mﬁ(yﬂ,’ﬁj)(}%,k’,Az,Ar’,r)exp[f(kﬁ+1%'ﬁ') KdK', -(5.16.12)

(w5700 = [ (et BB K b0, explf(7 + R ikaie, +5.16.13)

(bbb M7, F AL AL ) uj[?(/i’,\ﬂ,ﬂ:ﬁf)([%,l%’,Ar,At',t)exp[f(k.r“+]3’.?’) RdR' (5.16.14)

R RN ) U]‘Uj<¢,¢;ﬁ,’ﬁ;’>(l%,K’,At,At’,t)cxp[f([%.r’+1€”.F’) RdR' (5.16.15)
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oD

I(;z,ﬂfﬁf)(ﬁ%,]%',At,A!',f)exp[f(kf*+ [%'.F') KdK' . ~(5.16.16)

<v,hfhf>(f, f’,At,A!',I) = “j.

-0

Interchanging the points P and P along with the indices i and j result in the relations
<u, b h"> = <u,u,’(h;h_;'> ,

By use of these facts and the equations (5.16.10)-(5.16.16), we can write equations

(5.16.7)-(5.16.9) in the form

g@,ﬁ,’ﬁf)([{’,IQ’,A:,A:’,:)JrL[( Pk + 7% )+ 2P, ki +P Qe 0 ~f)}

M

(6,88 )NK.K At A1) =ik, + K X8, BB") ik, + KX BB BLBY)
~ilk, + KXo 8 BB ) + ik, + K X8 Bi B ) = ilk, + kX8,

- 1 {w,B.8]) ](k,K’,A:,A:’,t) s — (5.16.17)

- (a)(R R A A M(ww)(K ALAt)

~

e XA (R SRR ROV 1) YNNN) p— (5.16.18)

and

zt,(ma;ﬁ';)(l&,I“(',m,m’,t) (¢ B (R K, At AU, 1)

A

-kl (¢, 41 BBINR K s, !)+I/( O 9 S SN R—— (5.16.19)

If the derivative with respect to x, is taken of the momentum equation (5.16.1) for the

point P, the equation multiplied by hi'hj"" and time average taken, the resulting equation

P whh') 5 - N
_ éx,ax,»:ax,@xk O 3 S — B

Writing this equation in terms of the independent variables 7 and 7'

2 2 2 2, 2 2 aﬁ
o +2 i + 2 (wh:h:') = L + 5: + 2 il e } X
or,0r, or,0r,  oror/ ' or,0r,  Or/or, 0r0r, Oror
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R U ) D — (5.1621)

Taking the Fourier transforms of equation (5.16.21)

(k k, + Kk, + ki + ki N68,8.87) - (B.B.B57))

~(1B5)) = e Ty [ e (5.16.22)

Equation (5.16.22) can be used to eliminate (yﬁ,’ﬁ}’) from equation (5.16.17)

The tensor equations (5.16.17) to (5.16.19) can be converted to scalar equation by

contraction of the indices i and j

<¢“B”Bﬂ>([% ]% IAt”t)Jr']}V—[(H‘PM)(kE +kr2)+2PMkk’]+

I (1, X NV R O T
(K;K',At,m’,t) (k, +k} KBy ﬁBB”)( At, At’ t) i(k, +k})
(b0 PR R A, 51 )+ ik, + kL Xt B BINR K At A )= ik, + &)

(}fﬂfﬂ!’)(l’%»f’% AL~ flu BiB, o O GV YY) I — (5.16.17a)

(4,50 A A1)+ 2 —(¢,ﬁ BNR R, A, Al )

OAt
— it (4,0, 5 PE R A A1) i (98B BNR KAL) oo (5.16.18a)
and 20 ppR.R A+ P (0,87 R, At AL )

=ik (B B ANR R A, ) ik (4B BNR KAL) oo (5.16.19)

5.17 Solution for Times Before the Final Period:

It is known that the equation for final period of decay is obtained by considering the

two-point correlations after neglecting third-order correlation terms. To study the decay for
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times before the final period, the three-point correlations are considered and the quadruple

correlation terms are neglected because the quadruple correlation terms decays faster than the

lower-order correlation terms. Equation (5.16.22) represents that the term <yﬁj',6’ . > associated

with the pressure fluctuations should also be neglected. Thus neglecting all the terms on the

right hand side of equations (5.16.17a) to (5.16.19a)

<¢zﬁﬂﬂ>([€ K', At At’,t)+—}—:—[(l+PM)(k2 +k’2)+ 2P, kk' +

M
_—}iw—(z Eun’cl Qnr _ﬁ‘) K(ﬁlﬂf’ﬁi")(ka [%',At,At’,t): 0 s e (5171)
Vv
O (4,880 M)+ g g NR R AL A= 0 (5.172)
OAt B,
and
vk"

(¢ 1 YN [ Rp— (5.17.3)

MWK, K', At At t
- <¢ BB )
where < 1, ﬁ,’ﬂ,") = R(¢, ﬂ,’ﬁ,") and 1-R=S, here R and S are arbitrary constant.

Integrating equations (5.17.1) to (5.17.3) between t, and t, we obtain

k(9,88 =1, exp{wpi[(l + P, NK* + K7 )+ 2P, kk' cos 6 +

M

Pure, - f5) Ne-1,) }
V

k.' (¢Iﬂf’ﬂf”> =g exp[— ”;{C“At:!

and & ((ﬁ:ﬂﬁ/) 4, pr{ L }

For these relations to be consistent, we have
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kBB =k (8,887 expl=Al(1+P, N2 +k2 Y -1, )+ k2Ar + k7 A

2e¢,, Q
+ 2P, kk' cos Ot —t,,)+(—€ﬂ'~§-——"’~—'—§](l = 1 1 L — (5.17.4)
where 0 is the angle between K and K' and (¢,ﬂ,’,6’,”)o is the value of (qﬁ,ﬁfﬁ,"} at t=1,,

At=At' =0, } =~
P

M

By letting 7'=0 , At' =0 in the equation (5.16.10) and comparing with equations
(5.15.1T)and (5.15.12) we get

(ww&an)= [@pp)R & a0k (5.17.5)

and (crp ) R=a i+ At)= O S NN Y C— (5.17.6)

3'..-...8

Substituting equation (5.17.4) to (5.17.6) into equation (5.15.15), one obtains
g(w.w.')(li’ At )+ 22k (yy YR, A )= zzik, [(0,8:8)(&, R, AL0,1)
~{p BN k=K', 800,1) ], expl- A {0+ P, Yi? + k2 )1 =1

+k2At+2PM(t—tu)kk'cost9+(~2-E"—"‘i~9~’”— fj(r~t 17 — (5.17.7)

Now, dK' can be expressed in terms of k” and 0 as - 27k ‘d(cos0)dk’ (cf. Deissler [28])

ie. dK'=-27k'd(cos®)ak’ (5.17.7a)
Substituting of equation (5.17.7a) in equation (5.17.7) yields

S(W,w VR A e+ 2202y )R, A )= 2j2mk (6,88, &)

—(¢,ﬁ,fﬂf)(— K,—K’) ]k‘{lj’ exp{— /1[(! +P, )(!c2 +k'2Xt—tr,)
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+K’At+2P,, (t—to)kk’cosﬁﬁ-(ze#;g}ﬂ—%}(t—tg) | Jd(cos6) Jdk’ .- (5.17.8)

The quantity [(q)]B;Bf')(A,E”(')— (d)}B:Bf)(— I%,wl%’)_lo depends on the initial conditions of

the turbulence.

In order to find the solution completely and following Loeffler and Deissler [72] we

assume that

(o (R.R) - (appr- kR = (;f;g S G (5.17.9)

where §; is a constant determined by the initial conditions. The negative sign is placed in front

of & in order to make the transfer of energy from small to large wave numbers for positive

value of 8.

Substituting equation (5.17.9) into equation (5.17.8) we get

gzn(w,.w,’)(}%,m,t)+ 20k* 27:(1//,1;/,'}(!%,1\;,:): -25, g]‘(kzk"‘ — kK K
k . 0

“ exp{— /1[(1 o )(/c2 + k’z)(t ~1,)+ KA1+ 2P, (¢ —1, k' cos 6

+(——————-2 E“‘;'L “Q, —%J(l ~t,) | Jd(cos0) }df(' R (5.17.10)

Multiplying both sides of equation (5.17.10) by k%, we get

%E~+2/1k2E:F —————————— (5.17.11)
4

where, E=2mk’*(w,w!), E is the magnetic energy spectrum function and F is the magnetic

energy transfer term and is given by

F =—2§0wj(k2k"‘ — KK Jek x } expf- Al(1 + £, Y& +k'2)(:—ru
0

=1
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+k AL+ 2P, (t -1, k' cos O +(9—5;—Q —ff](z —t,) | }d(cos6) }zfc' o 5 1T

Integrating equation (5.17.12) with respect to cos0, we have

O]k k" ~k k'3 { exp{—,%[(l+PM)(k2 +k’2Xt-wt“)+k2At
O

—2P k't -1) +(2€—“9~ - é](t ~)]} :]dk'

A A

O}k k- °k”) [ expl- Al(1+ P, k2 + k2 e =1,)+ k2 A
0

Q

+2PMkk'(tAtu)+{_2_E%_L I:J(t—t Y13 }dk’ L e (5.17.13)

Again integrating equation (5.17.13) with respect to k', we have

F —— 5.’51JM '\/; )V exp{_(z Emfd Qm 51 j‘_s_J(t _I” )}X

- - k*A(l+2P,) oy o VRE, N} " 15P, k*
1+P, * U 1+2P, (-1, ) (1+P,)

g SP/& ,*E ke + PA:‘ . Py k®
a+r,) 2fvlt-1,) |(0+p,) 1+P,

5UPM‘\/; cxp{_(Z Sy Q" fﬁ](l_t )}

a2 =1, + A (14 R, V2 A A

- ~k2A(1+2R,) oy Pu A’] ) |5P,, k*
ey *1+P, a2 —t, +at)(1+P,)

sp2 3 k® b Py |y
— -+ - k e 5.17.14
+{(]+PM)2 2}V(!~['J+A!) (I+PM)3 E+PM ] ' ( :
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The series of equation (5.17.14) contains only even power of k and start with k* and the
equation represents the transfer function arising owing to consideration of magnetic field at

three-point and three-times.

If we integrate equation (5.17.14) for At=0 over all wave numbers, we find that

[Fg=g e (5.17.15)
0

which indicates that the expression for F satisfies the condition of continuity and homogeneity.
Physically it was to be expected as F is a measure of the energy transfer and the total energy

transferred to all wave numbers must be zero.

The linear equation (5.17.11) can be solved to give
E = expl- 2k (1~ 1, + A1/2) [Fexp2ak?(t ~ 1, + Adj2)}u
+J(K)expl-22k2 (=0, +A2)] . e (5.17.16)

;2 . ~ . . . . .
where j(k);NUk is a constant of integration. Substituting the values of F from equation
n

(5.17.14) into equation (5.17.16) gives the equation

E = Nk~ exp[ MZlkz(t—tu +At/2) ]+~—-—————§"P"“/E 254
n H2A1+p, )
, A - k(1 +2P,) 1+P
pr[_ (2 Emk.’ Qnr ﬂ)(t tu )] CXP{T(I = [D + ﬁﬂtj:‘
W (n -0kt 4Brl-2m, 3K

2P R (-1,) 3A(1+P Ne-tY2 3(1+P, ) (-1,)"

2 9
" 8\/2(3}),“ — 2PP\; + 3)/( F((()) )+ ;S‘r:PM‘\{; :
31+, )Vt (e, Vi

0 —kz/l(l+2PM)(r_t P NH[ 3k . (7P, - 6)k*
T+ M 2B A (t

expi_ (2 E:m’c.’ Qm = ﬁ)(! _Iu)]

L+ P, —1, + M) 34(1+ P, W =1, + A0)
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T . LT -

30+2, ) (-1, + A1) (L By B

(o)

where F(CU) =g _I.eIZ dx
0

= Al —t, + At
a)=k A [0 or k —0“‘—‘.
1+ P, 1+ P,

By setting 7 =0, j=i, dk = -27k *d(cos@)dk and E = 27k*(w,p, ) in equation (5.15.10)

we get the expression for magnetic energy decay law as

hh') =
LEJ:JEC”C o e (5.17.18)
0

Substituting equation (5.17.17) into equation (5.17.18) and after integration, we get

(h:h:) _ N, o 7,
2 82r AR (T +AT/2)"  44°(+P, Y1 +2P,)

5/2 exp[_ (2 Emk." Qm = ﬂ)]

9 9
* 1+ P 32 * p 5/2
T Tttt | T6{rEAr?| Te—tpT
1+2P, 1+2P,
+ 5PM (7PM “6) ; + SPM (7PM ﬁﬁ) o
2
2 I8 " 32| PM
160 + 22, 0| T4 — M- AT 16+ 28 X4 AT | T ¢ AT
(+ ,\r) [ +]+2PM J ( M)( ) { 1+2PM
35p, (3p2 - 2P, +3) . 35p, (3r% -2P,, +3)
9/2 92
’ P
8(1+2p, )T’”(T + TIEz]};_ AT} 8(1+2p, T + M‘)'f-(f' ot ;’P ATJ
M M
+8PM(3Pf, —op. +3(1+2E, 07 & 135 . nunlBnnd) )
e Snn+12(+P,)
T(Zml},ﬂ’l (T+AT)(ZH-|-I)/2

.......... (5.17.19)

(T+A%)(zn+1)/z t (T+A%)(2m|)/z )
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where T=t-1, .

For 7, =T+ AT/ cquation (5.17.19) takes the form

<hih:> _ NU 'I'I:F)0
RN L T (P (FETI i

9 9
X +

o 5/2 5 AT 5/2
A B AT A )

SPM(7PM Xz )

} /2
(1 + 2P ( m - A_[ J 7’:" + _L
2 2(1+22,)

. 5P, (7P, -6) me g e (5.17.20)

72
AT AT
16(l+2P,) T T B
(+ M{m"’ 2] {m 2(]{-2]’ )J

This is the decay law of magnetic energy fluctuations of dusty fluid MHD turbulence in

+

a rotating system before the final period for the case of multi-point and multi-time.

5.18 Concluding Remarks:

In equation (5.17.20) we obtained the decay law of magnetic energy fluctuations in
MHD turbulence before the final period in a rotating system in presence of dust particle
considering three-point correlation terms for the case of multi-point and multi-time. If the fluid

is clean and the system is non-rotating then f =0,Q =0, the equation (5.17.20) becomes

(hh)) N, . nd,
2 st_nx‘f2 a1+ P, X1+2P,)"

9

b, _Wz[ o

JS}'Z

S—
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SPM (7PM - 6)
32 /2
16(1+2P, (T ~ AT] % P
2 200+2P,)

5P (7P, - 6) b | s (5.18.1)
AT 32 AT 12
16(1+2P, )(Tm + —) P
2 2(1+2p,)

which was obtained earlier by Sarker and Islam [115].

+

If we put AT=0, we can easily find out

2
(h )= Ny o, nd, . g+_5_PM(7PM—6)+___
2 82mA” 20°(1+P, X1+2P, )" 16 16 1+2P,
L e eneue s (5.18.2)
where
Ao No
8/2n¥?
- 8, | PM(7PM—6)+___
2°(1+P, )1+2P, )" |16 16 1+2P,

which is same as obtained earlier by Sarker and Kishore [108].

This study shows that due to the effect of rotation of fluid in presence of dust particles
in the magnetic field, the turbulent energy decays more rapidly than the energy for non-rotating
clean fluid. From the assumption we conclude that the higher-order correlation terms may be
neglected in comparison with lower-order correlation terms. By neglecting the quadruple
correlation terms in three-point, three-time correlation equation the result (5.17.20) applicable
to the dusty fluid MHD turbulence in a rotating system before the final period of decay were
obtained. If higher-order correlation equations are considered in the analysis, it appears that
more terms of higher power of time would be added to the equation (5.17.20). For large times
the last term in the equation (5.17.20) becomes negligible, leaving the -3/2power decay law for

the final period.
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CHAPTER-VI

A REVIEW OF THE WORKS WITH CONCLUSIONS

The thesis entitled “Some Theoretical Studies on Turbulence and Magneto-

hydrodynamic turbulence” has been divided into five chapters.

The first chapter gives the general idea of turbulence and Magneto-hydrodynamic
turbulence and its principal concepts. A brief review of the past researches related to this thesis has

also been given.

The second chapter consists of three parts :

In Part-A, the decay of temperature fluctuations in homogeneous turbulence before the
final period for the case multi-point and multi-time in a rotating system are studied. In this
part we have considered correlations between fluctuating quantities at two-and three-point in a
rotating system. We obtained correlations equations in a rotating system and these equations
are converted to spectral form by fourier transforms. Lastly, we obtained the energy decay law
of temperature fluctuations in homogeneous turbulence at times before the final period for the
case of multi-point and multi-time in a rotating system. Equation (2.4.21) denotes this decay
law of temperature energy and it expresses that due to the rotation, the temperature energy
decays faster than the energy for non-rotating fluid for times before the final period. If Q,, = 0,
the equation (2.4.21) becomes the equation (2.5.1) which was obtained earlier by Sarker and
Islam [116]. If we put ATy = 0 in equation (2.5.1), we can easily find out the equation (2.5.2)
which was obtained by Loeffler and Deissler [72]. |

The first term of the right side of equation (2.4.21) corresponds to the temperature
energy for two-point correlation and the second term represents temperature energy for three
point correlation. For large times, the second term in this equation becomes negligible leaving

the —3/2 power decay law for the final period.
In Part-B, the decay of temperature fluctuations in homogeneous turbulence before the

final period for the case of multi-point and multi-time in presence of dust particles are studied.
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In this part, the same procedure is followed as in part [I-A. We obtained the energy decay law
of temperature fluctuations in presence of dust particles. The equation (2.9.21) points out the
fact that the energy of temperature fluctuations in presence of dust particles decays more
rapidly than the energy for clean fluid for times before the final period. If the fluid is clean,
then f = 0, the equation (2.9.21) becomes the equation (2.10.1), which was obtained earlier by
Sarker and Islam [116]. If we put ATy = 0 in equation (2.10.1), we can find out the equation
(2.10.2), which was obtained earlier by Loeffler and Deissler [72].

In Part-C, we have studied the decay of temperature fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time under the effect of
rotation with an angular velocity €, in presence of dust particles and we obtained the equation
(2.14.21). This equation indicates that the energy of temperature fluctuations in presence of
dust particles under the effect of coriolis force decays more rapidly. If the fluid is clean and the
system is non-rotating then = 0 and Q, = 0, the equation (2.14.21) becomes equation (2.15.1),

which was obtained earlier by Sarker and Islam [116].

If we considered the higher order correlation equations in the analysis it appears that

more terms of higher power of time would be added to the equation (2.4.21), (2.9.21) and
(2.14.21).

In the third chapter, we have been studied a hierarchy of distribution functions in the
statistical theory for simultaneous velocity, magnetic field, concentration and temperature
fluctuations in MHD turbulent flow in a rotating system in presence of dust particles. We have
derived the transport equations (3.6.17) and (3.6.18) for evolution of one point distribution
function F;'")" and two point distribution function Fy"? in dusty fluid MHD turbulent flow
under the effect of coriolis force. We can also derive the equations for evolution of
F3{123 g, 0239 and 50 on. It is possible to have an equation for every F, (n is an integer) but

the system of equations so obtained is not closed.

But it is a great difficulty that the N-point distribution function depends upon the N+1-
point distribution function and thus result is an unclosed system. This is so-called “closer
problem”. In this chapter, the closure difficulty is to be removed as in the case of ordinary

turbulence and some properties of distribution functions have been discussed.
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In Part-A of the fourth chapter, we have studied the decay of temperature
fluctuations in MHD turbulence before the final period in a rotating system. Here we have
considered correlations between fluctuating quantities at two and three point and fourth-order
correlation terms have neglected in comparison to the second- and third-order correlation
terms. Finally, we obtained the equation (4.5.19), which represents the energy decay law of
temperature fluctuations in MHD turbulence before the final period in a rotating system. The
first term of the right hand side of equation (4.5.19) corresponds to the temperature energy lor
two-point correlation and second term represents the temperature energy for three-point
correlation. The result (4.5.19) shows that due to the effect of rotation in the flow field the

turbulent energy decays faster than the energy for non-rotating fluid.

If the system is non-rotating then €, = 0, the equation (4.5.19) become the equation

(4.6.1), which was obtained earlier by Sarker and Rahman [113].

In Part-B of the fourth chapter, we have studied the decay of temperature
flustuations in dusty fluid MHD turbulence before the final period in a rotating system. In
equation (4.11.19) we obtained the energy decay law of temperature fluctuations of dusty fluid
MHD turbulence in a rotating system before the final period. The equation (4.11.19) shows
that under the effect of rotation in presence of dust particles in the flow field, the turbulent
energy decays more rapidly than the energy for non-rotating clean fluid. In the absence of a
magnetic field, magnetic Prandtl number coincides with the Prandtl number (i.e. P = Py) and
the system is non-rotating with clean fluid the equation (4.11.19) becomes

(%) N Bz

= +
2 gam (-1 )" Vo=t

which was obtained earlier by Loeftler and Deissler [72].

If the equation (4.11.10) is integrated with respect to k from zero to infinity and-use is
made of equations (4.11.14) and (4.11.17) the resulting equation is
T* &
_Qﬁml: v L_,__L IKZQdK
o 2 P, BJs
This equation points out the interesting fact that for a given viscosity and temperature

fluctuation spectrum the decay rate is inversely proportional to the Prandtl number.
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Chapter V divided into three parts :

In Part-A, we have studied the decay of MHD turbulence before the final period for
the case of multi-point and multi-time in a rotating system. By neglecting the quadruple
correlation terms in the three-point three-time correlation equation in a rotating system, the
result (5.5.20) applicable to the MHD turbulence before the final period of decay has been
obtained. If higher order correlation equations were considered in the analysis i.e. if the
quadruple correlations were not neglected, it appears that more terms in higher power of (t-tg)

. would be added to equation (5.5.20).

If the system is non-rotating the equation (5.5.20) becomes (5.6.1), which was obtained
earlier by Sarker and Islam [115]. If we put AT = 0 in equation (5.6.1), we can ecasily find out

equation (5.6.2) which is same as obtained earlier by Sarker and Kishore [108).

In Part-B, the same procedure is applied as in Part-A. In equation (5.11.20) we
obtained the decay law of magnetic energy fluctuations in MHD turbulence before the final
period in presence of dust particles considering three-point correlation terms for the case of
multi-point and multi-time. The result (equation 5.11.20) shows that in presence of dust
particles, the magnetic energy of MHD turbulence decays faster than the energy for clean fluid.
For large times the last term in the equation (5.11.20) becomes negligible, leaviﬁg the —

3/2power decay law for the final period.

For clean fluid, i.e. in absence of dust particles, we put f = 0, the equation (5.11.20)
becomes (5.11.1) which was obtained earlier by Sarker and Islam [l15]. Again if we put
AT = 0, in equation (5.12.1) we get the equation (5.12.2), which was obtained earlier by Sarker
and Kishore [108].

In Part-C, we have studied the decay of dusty fluid MHD turbulence before the final
period in a rotating system for the case of multi-point and multi-time. It is the extension work
of Part-A and Part-B of this chapter. In Part-A, we have considered the rotating system and in
part-B, have considered the dust particles. But in this part, we have considered both the
rotating system and dust particles. Here two and three point correlation terms have been

considered and the fourth order correlation terms are neglected in comparison to the second-
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and third-order correlation terms. In equation (5.17.20) we obtained the decay law of magnetic
energy fluctuations in MHD turbulence before the final period in rotating system in presence
of dust particles for the case of multi-point and multi-time. If the fluid is clean and the system
is non-rotating then f = 0, Q,, = 0, the equation (5.17.20) becomes (5.18.1), which was

obtained earlier by Sarker and Islam [115].

If we put AT=0 in equation (5.18.1) we can easily find out equation (5.18.2), which is

- same as obtained earlier by Sarker and Kishore [108].

The equation (5.17.20) shows that due to the effect of rotation in presence of dust
particles in the magnetic field, the turbulent energy decays more rapidly than the energy for

non-rotating clean fluid.

By using the equations (5.17.15) and (5.17.18), if we integrate equation (5.17.11) with

respect to k from 0 to oo, we get

L iL’-f—> ;1 jszdk ,
or\ 2 .

which shows that for a given magnetic field fluctuations, the decay rate is inversely

proportional to the magnetic Prandtl number.

If higher-order correlation equations were considered in the analysis i.e. if the
quadruple correlations were not neglected, it appears that more terms in higher power of (t-ty)

would be added to the equation (5.18.2).



Biblography

183

I

2
3
4

K.

B
7
8
9

10.
k.

13,
. Bray, K.N.C. and Moss, J.B.(1974):Univ. of South ampo, England, Report, AAsu, 335.
5.
16.
LE,
18.
19.
20.
2.
22,
23
24.
25.
26.
27
28.

BIBLOGRAPHY

Boussinesq, J. 1877: Mem . press. pardiv . Savants al” Acad. des. Sci. Paris 23, 46.
. Batchelor, G. K. and Townsend, A. A. (1947): Proc. Roy. Soc. London, A190, 534,
. Batchelor, G.K. and Townsend , A.A.(1948): Proc. Roy. Soc. London, A193,539.

. Batchelor, G.K . and Townsend, A.A. (1948) Proc. Roy . Soc. London , A194, 527.
. Batchelor, G.K.(1949): Aust. J.Sci. Res., 2, 437.

Batchelor, G.K.(1950): Pro. Roy. Soc. London, A201, 405.

. Batchelor, G.K. (1951): Proc. Camd. Phil. Soc., London, 47, 359.

. Batchelor, G.k.(1952): Proc . Camd. Phil. Soc., 48, 345. |

. Batchelor, G.K.(1952):Proc. Roy. Soc. London, A231, 349,

Batchelor, G.K.(1959): J. Fluid Mech, 5,113.
Batchelor, G.K.(1967):The theory of Homogeneous Turbulence, Cambridge Univ. Press,

London.

. Batchelor, G.K.(1967):An Introduction to Fluid Dynamics, Cambridge Univ. Press,

London.
Bigler, R.W.(1976):Combustion Sci. and Tech, 13, 155.

Chandrasekhar, S.(1949): Proc. Soc. London, A200, 20.
Chandrasekhar, S.(1950): Phil, Trans. Roy. Soc. London, A242, 557.
Chandrasekhar, S.(1950): Proc, Roy, Soc, London, A203, 358.
Chandrasekhar, S.(1951): Proc, Roy, Soc, London, A210, 18.
Chandrasekhar, S.(1951a): Proc, Roy, Soc, London, A204, 435.
Chandrasekhar, S.(1951b): Proc, Roy, Soc, London, A207, 301.
Chandrasekhar, S.(1955a): Proc, Roy, Soc, London, A229, 1.
Chandrasekhar, S.(1955b): Proc, Roy, Soc, London,A233,322.
Corrsin, S.(1951a): J. Aeronout, Sci, 18, 417.

Corrsin, S.(1951b): J. Applied Physics, 22, 469.

Corrsin, S.(1953): J. Aeronout, Sci, 20, 853.

Corrsin, S.(1958):Physics of Fluids , 1, 42.

Deissler, R. G. (1958) : Physics of Fluids, I, 111.

Deissler, R. G. (1960) : Physics of Fluids, 3, 176.



Biblography 184

29. Dixit, T. (1989) : Astrophysics and Space Sci. 159, 57.

30. Dixit, T. and Upadhyay, B. N. (1989a) : Astrophysics and Space Sci. 153, 257.

31. Dixit, T. and Upadhyay, B. N. (1989b ) : Astrophysics and Space Sci. 153, 297.

32. Edward, S.(1964) : J. Fluid Mech., 18, 239.

32(a). Ekman, V. W. (1910) : Arkiv. Mat. Astron. Fysik., 6, 12.

=33, Ferit, J. Kampe de (1948) : La Houille Blanch, Grand Rub, Grenoble, France, 23, 1.

34, Ferraro, V. C. A. and Plumpton, C. (1966) : An Introduction to Magneto-Fluid Mechanics.
Clarendon Press, Oxford.

35. Fox, R.L. (1971): Physics of Fluids, 14, 1808.

36. Fox, R. 1. (1975):Physics of Fluids, 18, 1245.

37. Funada, T., Tuitiya, Y. and Ohji, M. (1978): J. Phy. Soc. Japan, 44, 1020.

38. Ghosh, K.M. (1958): Nat. Sci, India, A24, 240.

39. Ghosh, K.M(1972): Indian. J. of Pure and Appl. Math., 3, 157.

39(a). Gibson, A. H. (1933) : Dublin Phil. Mag. and J. Sci., 15(99), 637, London.

40. Herring, J.R.(1965): Physics of Fluids, 8, 2219.

41. Hinze, J.0. (1959): Turbulence, McGraw Hill, New York.

42. Hinze, J.0 (1975): Turbulence, McGraw Hill, New York.

43. Hopf, E. (1952):). Of Rotational Mech. Anal,, 1, 87. .

44. Hopf, E. (1957): In Proc. Symp. Appl. Math, 7, American Mathematical Society, 41.

45. Hopf, E. (1962: In Proc, Symp. Appl. Math.13, American Mathematical society, 157.

46. 1slam, M. A. and Sarker, M. S. A (2001) : Indian J. Pure and appl. Math., 32(8), 1 173.

47. Jain, P.C.(1958): Proc. Nat. Inst. Sci, India, 24A, 230.

48. Jain, P.C.(1962): Proc. Nat. Inst. Sci., India, 28A, 401.

49, Jain, P. C. (1962) : Mathematics students, 30, 185.

50. Janicka, J., Kolbe, W. and Kollmann, W. (1979) : Non Equilib. Thermodyn., 4, 47.

51. Kishore, N. (1978) : J. Scientific Res., B. H. U., 28(2), 163.

52. Kishore, N. and Dixit, T. (1979) : J. Scientific Research, B. H. U., 30(2), 305.

53. Kishore, N. and Singh, S. R. (1984) : Bull. Tech. Univ., [stambul, 37, 91.

54. Kishore, N. and Singh, S. R. (1984) : Astrophysics and Space Sci., 104, 121,

55. Kishore, N. and Singh, S. R. (1985) : Prog. of Maths, B. H. U., 19(1 and 2), 13.

56. Kishore, N. and Dixit, T. (1982) : Prog. of Maths, 16, 87.

57. Kishore, N. and Golsefid, Y. T.(1988) : Astrophysics and Space Sci, 150, 89.



®Biblography 186

88.

89.
90.

£l

9.
93.
94,
95.
9.
97.
98,
99,
100
101
101
102

103.
104.
105.

106.
107.
108.
109.

110.
111.
112,
113.

114,

115
116

Ohji, M. (1964) : Phy. Soc.Japan, Vol. 19. 1430.

Ohji, M.(1964): Phy. Soc. Japan, Vol. 44, 1020.

Oruga, Y. (1958): J. Meteorol, 15, 539.

Pai, S.1.(1957): Viscous Flow Theory (11Turbulent Flow), D. Van Nostrand Company Inc .

Pai. S.1(1962): Magnetogas dynamics and Plasma Dynamics, Springer — Verlag.

Prandtl, L. (1925): Z. Angew. Math. u. Mech., 5, 136.

Prandtl, L. (1925): Z. Angew. Math. u. Mech,, 1, 421.

Prandtl, L. (1942): Z. Angew. Math. u. Mech., 22, 241.

Patel, S.R. (1974): Int.J. Engg. Sci., 12, 159.

Patel, S.R. (1976): Int.J. Engg. Sci., 14, 75.

Pope, S.B. (1979): Phil . Trans. Roy. Soc. London, A291, 529..

Pope, S.B. (1981a): Combustion Sci. and Tech., 25, 159.

. Pope, S.B. (1981b): Physics of Fluid, 24, 588.

. Proudman, 1. and Reid. W.H. (1954): Phil. Trans, Roy, Soc., London, A 247, 163.

(). Prengle, R. S. and Rothfus, R. R. (1955) : Ind. Eng. Chem., 47, 379.

. Renolds, O. (1883): Phil. Trans. Roy. Soc., London, 174, 935.

Renolds, O. (1884): Phil. Trans. Roy. Soc., London, 186, 123.

Rahman, M. L. and Sarker, M.S.A. (2000): J. Bangladesh Math. Soc. 20, 55.

Rahman, M. L. and Sarker, M.S.A. (2002): Accepted for publication in the South-east
Asian Bulletin of Math.

Saffman, P.G.(1962): J. Fluid. Mech., 13, 120.

Sarker, M.S.A. and Kishore, N. (1991a): Astrophysics and Space Sci., 181, 29.

Sarker, M.S.A. and Kishore, N. (1991b): Int. J. Engng. Sci., 29, 1479.

Sarker, M.S.A (1995) : Proc of Ninth Bangladesh Mathematical Conference, Rajshahi
Univ. 127, cont (1993).

Sarker, M.S.A.(1997): Int. J. Energy Research, 21, 1399.

Sarker, M. S. A (1998) : Rajshahi Univ. Studies Part-B, 25, In press.

Sarker, M.S.A. and Rahman, M.L. (1997): Rajshahi University Studies, Part-B, In Press.

Sarker, M.S.A and Rahman, M.L.(1998): North Bengle Uni. Review (Sci and Tech),

India, 9, 91.

Sarker, M.S.A. and Kishore, N. (1999): Prog of Math., B.H.U. India, Vol. 33(land 2), 83.

Sarker, M.S.A.and Islam, M.A.(2001): Indian J. of Pure and Appl. Math. 32(7), 1065.

Sarker, M.S.A. and Islam, M.A. (2001): Ph.D. Thesis, Dept. of Mathematics, R.U., 27-40.



Biblography 187

'

118.
119.
120.
121.
122,
123,

Sarker, M.S.A. and [slam, M.A.(((2001): J. Math and Math. Sci., 16, 35.

Sarker, M.S.A. and Islam; M;A. (2001): J. of Sci., Research, 19. 153.

Shimomura, Y.and Yoshizawa, A. (1986): J. Physical Soc., Japan, 55, 1904,

Shimomura, Y. (1986): J. Physical Soc., Japan, 55, 3388.

Shimomura, Y. (1989): J. Physical Soc., Japan 58, 352.

Sinha. A.(1988): J. Sci. Res., B.H.U., India, 38, 7.

Stanisic, M.M.(1985): Mathematical Theory of Turbulence, Springer- Verlag, New York.

123(a). Schubaner, G. B. and Skramstad, H. K. (1947) : J. of Aero. Sci., 14, 69.

124.
125.
126.
127.
128.

129,
130.

131:

132.

133.

134.
135.
136.

Tatsumi, T. (1957) : Proc. Roy. Soc., London, A230, 16.

Taylor, G. I. (1921) : Proc. Lond. Math. Soc., 20, 196.

Taylor, G. L. (1935a) : Proc. Roy. Soc., London, A151, 421.

Taylor, G. L. (1935b) : Z. Angew. Math. Mech., 15, 91.

Taylor, G. I. and Von Karman, T. (1937) : J. Roy. Aeronaut. Soc., 41, 1109.

Taylor, G. 1. (1938a) : Proc. Roy. Soc., London, A164, 15.

Taylor, G. L. (1938b) : Proc. Roy. Soc., L.ondon, A164, 476.

Ta-You Wu (1966) : Kinetic Theory of Gases and Plasma, Addision Wesley Phlelishing
Company.

Townsend, A. A. (1976) : The Structure of Turbulent Shear Flow, Cambridge Uni. Press,
London. ‘

Von Karman, T. (1937a) : Proc. U. S. Nat. Acad., Wash, 23, 98.

Von Karman, T. (1937b) : J. Aero. Sci., 4, 134.

Von Karman, T. and Howarth, L. (1938) : Proc. Roy. Soc., A164, 192.

Yuan, S. W. (1969) : Foundation of Fluid Mechanics, Prentic-Hall International Inc.,

London.

Rajshabi University Libragy
Pocuwi i 4 . uclion

DOCUJJI\;HL INu D-—n ZBHDZS
Date... o [{Qlo{f ........ .



