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ABSTRACT 

The purpose of the present study was to establish higher dimensional growth model 

and then to predict the final stature from a new 3D twostage growth model. To 

check the validity of the models, a secondary longitudinal data on age, weight and 

stature of Japanese boys and girls were used. The proposed 3D growth model 

showed more precise than that of the existing 2D growth models. After extracting 

the final stature and stature at different ages from the well fitted proposed model and 

eliminating the problem of multicollinearity using ‘Forward Stepwise Ridge 

Regression’ and ‘Least Absolute Shrinkage and Selection Operator (LASSO)’ 

techniques, this study propose four different equations for predicting final stature 

with higher precession, validity and stability compared to others. These equations 

are perfectly applicable in Japanese population. But, the form of the proposed model 

and its procedures can be applied to others populations. 



 

 

Prediction of Final Stature from a New 3D TwoStage Growth Model 
 

CHAPTER ONE 

INTRODUCTION 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

1.1  Outline 

This chapter includes prelude, importance of the study, aim of the study, concept 

and terminology, justification of the thesis title and organization of the study. 

1.2  Prelude 

Anthropometry is the science of measuring the size, weight and dimensions of the 

human body. Height, weight and skinfold thickness can be used to assess fat stores, 

adequacy of body weight and risk for chronic disease. Using height and weight, 

clinicians can compare your current weight with your ideal body weight and usual 

body weight. A current body height and weight may indicate a compromised 

nutritional status. 

1.3  Importance of the Study 

When the stature below the average length 50 cm (Needlman, 2003) of a child is 

unusual for age, there may be concerned about the individual’s final stature. In these 

circumstances, it is helpful to predict his/her final stature. The prediction may 

reassure the family or indicate a need for laboratory tests to establish the cause of 

the unusual growth. Growth failure is a very significant term, used in the medical 
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science to describe a growth rate that is below the appropriate growth velocity 

(speed) for age. In order to know the growth status of children, it is very important 

to understand whether a growth failure takes place or not. Prediction of the final 

stature is important to know the future stature of children and this prediction is based 

on the mathematical model or equation. Appropriate model is capable of predicting 

the final stature more accurately. All the existing human growth models consider 

that stature depends only on age. In fact, stature depends not only on age but also on 

many other factors, such as body weight, chest circumference, sitting height, genetic 

factors, maternal illnesses during pregnancy, socio-economic disadvantages during 

and after pregnancy, social/emotional problems during childhood, poor nutrition and 

environmental or emotional deprivation and so on. Therefore, a new higher 

dimensional growth model is essential for better prediction of the final stature.  

1.4  Aim of the Study 

Accurate predictions of final stature are very important for children who are growing 

or maturing at usual rates and also for children suffering from diseases, such as 

hypothyroidism, that can alter their potentials for growth in stature. So, it might have 

been great concern not only to pediatricians, but also parents having a child with 

short stature. In order to make better prediction of final stature, the better model is 

essential. A better model is not always better because of its limitation. It has been 

changing over time. For this, a good number of researchers used several models for 

estimating final stature. Some of them are Bayley and Pinneau (1952), Khamis and 

Guo (1993), Khamis and Roche (1994), Onat (1975), Roche et al. (1975a, b) and 

Wainer et al. (1978). Most of them predicted the final stature through skeletal age. 
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Ali and Ohtsuki (2001) predicted the adult stature using the biological parameters as 

well as different stature variables. Recently, Rahman et al. (2004) proposed more 

accurate equations for predicting the adult stature using biological parameters and 

stature variable compare to that from Ali and Ohtsuki (2001).  

There are many mathematical ways of parametric and non-parametric modeling the 

human growth curve for estimating biological parameters and distance curve was 

attempted. The popular growth models are Gompertz model (Merrell, 1931; Deming 

1957), Logistic growth model (Merrell, 1931; Deming, 1957), Jenss model (Jenss 

and Bayley, 1937), Count model (Count, 1943), Double logistic model (Bock et al., 

1973), PB models (Preece and Baines, 1978), ICP model (Karlberg, 1989), Reed 

model (Berkey and Reed, 1987), SSC model (Shohoji and Sasaki, 1987), JPPS 

model (Jolicoeur et al., 1988), JPA-1 and JPA-2 models (Jolicoeur et al., 1992), 

Modified ICP model (Johnson, 1993), BTT model (Bock et al., 1994), Kernel’s 

(Non-Parametric) growth model, Wavelet and Polynomial growth models. It is 

necessary to select a suitable model to achieve a good prediction. Jolicoeur et al. 

(1992) declared that, till then, JPA-2 showed the best fit as compared with other 

structural growth models. Ali and Ohtsuki (2001) and Rahman et al. (2004) were 

pointed out that the BTT model was better than JPA-2 model. All of these two 

dimensional growth models considered stature or weight as a function of age only. 

Necessary of higher dimensional growth model is obvious, but no one have 

attempted yet due to the difficulties and clumsiness of the estimation process, 

however, a higher dimensional growth model will definitely improve the precession 
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of the fitting procedures as well as the prediction of the final stature. Thus, the 

purpose of the study is to: 

o propose a higher dimensional growth model,   

o pointed out the estimation procedure of the proposed model, 

o introduce the procedure of finding velocity, acceleration, local maxima, 

local minima and saddle point of the proposed model, 

o establish the proper validation of the proposed model, and 

o finally, establish the estimating equations for predicting final stature for a 

certain population. 

1.5  Concept and Terminology 

Prediction: A prediction is a forecast, but not only about the weather. Pre means 

“before” and diction means has to do with talking. So, aprediction is a statement 

about the way things will happen in the future, often but not always based on 

experience or knowledge. A "prediction" may be contrasted with a "projection", 

which is explicitly dependent on stated assumptions. 

Final Stature: Stature is the distance from the bottom of the feet to the top of the 

head in a human body, standing erect. Stadiometer is used to measure the stature. 

The measurement unit usually is centimetres when using the metric system or feet 

and inches when using the imperial system. Final stature is a stature which is never 

significantly change during the life. The definition of age at final stature is differing 

by several researchers (Kato et al., 1998) but most of the researchers suggested that 

the age at 25 years (Bock et al., 1994), the final stature is occurred.   
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Three Dimensions (3D): In physics and mathematics, a sequence of n numbers can 

be understood as a location in n-dimensional space. When n = 3, the set of all such 

locations is called three-dimensional Euclidean space. It is commonly represented 

by the symbol   . This space is only one example of a great variety of spaces in 

three dimensions called 3-manifolds. In present study, three variables have been 

used according to the objective. Hence, the term Three Dimensions (3D) is 

appeared. 

Two Stages: Two stages modeling means the final model is estimated using the 

estimated value and that value comes from another estimated model.  

Growth Model: Growth model is a model which is used to estimate the distance 

curve as well as the growth parameters. There are many fields such as anthropology, 

botany, demography, economic, fisheries and zoology have been used as a growth 

model for modeling their own purpose. In the present study, growth model means 

human growth model. Fitting to parametric as well as non-parametric growth models 

are used in order to get the estimate of the biological parameters. Specific 

methodological approaches are required by the analysis of longitudinal growth data. 

To establish individual growth patterns and to estimate, so-called, biological 

parameters of the growth curve are one of the main interests of longitudinal growth 

studies.  
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1.6  Justification of the Thesis Title 

The title of the thesis is “prediction of final stature from a new 3D twostage growth 

model”. Let we have a data set that have three variables, namely age, weight and 

stature of Japanese boys and girls and we want to predict their final stature based on 

age and weight. Many researchers addressed that after age 25 there will be no 

increasing in human stature (Bock et al., 1994). Therefore, it is also assumed here 

that final stature will be attained at age 25. So, weight at age 25 will be predicted 

first and then in the second step final stature will be predicted. That is, prediction 

will be performed in three dimensional spaces within two stages –which justifies the 

title of the dissertation.  

1.7  Organization of the Study 

This dissertation contains six chapters organized in the following ways: 

Chapter 1 is the Introduction that includes outline, prelude, importance of the study, 

aim of the study, concept and terminology, justification of the thesis title, and 

organization of the study. 

Chapter 2 is the Genesis of the Study that contains outline, review of literature, 

research gap and objectives of the study. 

Chapter 3 is the Materials of the Study. It contains outline, definition of the variables 

studied, and description and estimation procedure of missing value of data set. 
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Chapter 4 is the Methods of the Study. It contains outline, different methods for the 

analyzing of data, software and R programming code. 

Chapter 5 is the Results and Discussion. It consists of outline, the research findings 

and discussion of the compering mean square error of the BTT model and the 

proposed model, estimate weight for final stature, prediction of final stature, forward 

stepwise ridge regression model and least absolute shrinkage and selection operator 

model for selecting appropriate variable with proper diagnostic checks and measures 

their accuracy. 

Chapter 6 is the Conclusion and Recommendation which includes concluding 

remarks consisting of outline, major findings, limitations of the study and scope for 

the further research. 

A bibliography is appended at the end. A sample data set is appended in the 

appendix-1. The summary of forward stepwise ridge regression model is affixed in 

the appendix-2. 

Title page, declaration, certification, dedication, acknowledgement, table of 

contents, list of tables, list of figures, list of abbreviations and notation, abstract are 

appended at the beginning of the dissertation.  
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CHAPTER 2 

GENESIS OF THE STUDY 

 

 

 

 

2.1  Outline 

This chapter includes genesis of the study, which contains the more important 

review of literature, research gap and objective of the study. 

2.2  Review of Literature 

Stature is one of the most important clinical parameters in the identification of an 

individual, living or dead. It is to be noted that a number of factors such as race, 

gender and nutrition play a significant role in determining the stature of an 

individual. When intact bodies are to be examined, stature estimation does not pose 

any problem. But when dismembered human body parts are the materials to work 

with, it is a far greater challenge for the forensic pathologists. The history of child 

growth and development study is not very old. In between 1927-32, several research 

centers and institutes developed on the multidisciplinary study of child growth of 

which Fels Research Institute (1929), Institute of Human Development, Berkeley the 

Child Research Council (Denver), Harvard School of Public Health Growth Study 

Center (Boston) are important. White House Conference (1933) on Child Health and 

Protection recommended the need for such studies. The idea behind such studies 

was partly to protect children from the worst effects of the great depression          
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and partly to acquire further knowledge to determine the effects of the great 

depression and the possible remedial measures to mitigate these effects. The 

modeling of human growth is very complicated because of insufficient longitudinal 

data. Collecting longitudinal data is very costly and time-consuming. Therefore, 

many researches have stopped due to the unavailability of longitudinal data.  

There are various kinds of research on the growth modeling and growth of human 

body and organs. 

Huxley (1932) proposed an allometric equation to find the rate of increment of one 

dimension of an organ with respect to another of the same or other organ, usually 

total body size. Huxley pointed out that if two parts (y and x) grow in accordance 

with the equation,  

x

dt
dx

b
y

dt
dy

  

After integrating on both sides of the above equation, we got the following form of 

the equation was as follows: 

axby logloglog  , or
baxy   

This was log linear relationship equivalent to non-linear relationship between y and 

x. Here, the dependent variable y, which represented a dimension whose increase, 

was considered relative to that of the independent variable x, which might represent 

a different dimension of the same organ or more commonly a measure of total body 

size. The logarithmic function could represent a rectilinear plot of the original 

variables using logarithmic coordinates. Where, „b‟ was the slope of the regression 



 

 

Genesis of the Study  

10 
  

line, which represented the rate of increment of y with respect to x, and the constant 

„log a‟ was the intercept on the y-axis, which represents the point of initial growth 

(Huxley and Tessier, 1936).  

Suski and Angeles (1935) was asked by American colleagues, what should be the 

height and weight of a Japanese child at a given age, but the answer would be that 

there was not much difference from the height and weight of white American 

children up to fifteen or sixteen years of age. This statement was based upon the 

annual measurements of Japanese children in Los Angeles for several years, and the 

comparison of these figures with American as well as Japanese standards. The 

children born in America of Japanese parents were found to surpass, between ages 

of seven and fifteen, Japanese children in Japan, by 7 percent in stature, 20 percent 

in weight, 9 percent in total leg length, and 7 percent in chest circumference. 

Jenss and Bayley (1937) described a four-parameter nonlinear model, namely Jenss 

model. This model was negatively accelerated exponential and approaches a linear 

asymptote with positive slope. This model could be written as: 

   tcctaay oo 11 exp  

where, t  was age (years), y was observed stature (cm) or body weight (kg), and 

was random error; oa , 
1a  and oc were positive parameters, and 

1c was negative.  

The )exp( 1c  be the growth or acceleration constant, was independent of scale and 

measures the ratio of the acceleration of growth at any given age, t  to the 

acceleration at the preceding age, 
1t  be noted by Jenss and Barley (1937). Thus, to 

compare the growth of different characteristics within the child, or to study the 
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growth of the same characteristic in different children could be needed by )exp( 1c . 

The acceleration‟s magnitude of the constant )exp( 1c was what largely determines 

the shape of an individual curve. Since then the model had been used by others 

(Berkey, 1982; Deming and Washburn, 1963; Manwani and Agarwal, 1973).   

Count (1943) proposed a growth model, namely Count model in human stature of 

Chinese population (children), this model had been applied within the age range 

three months to seven years. Many other researchers (Tanner et al., 1956; Israelsohn, 

1960; Wingerd, 1970 and Mata, 1978) had been applied this model. The linear 

Count model could be written as: 

 )ln(21 tataay o  

where, y was physical measurement (i.e., stature or body weight), t was age (years), 

  was random error, and oa , 
1a  and 

2a were the parameters of the model.  

The location of zero age was an implicit fourth parameter in the model. Some 

authors had used conception, or other points that make the interpretation of 

parameters especially convenient, for age zero. 

Bayley and Pinneau (1952) proposed a method to predict the percentage of adult 

stature achieved. These percentages were provided in tables for chronological age 

groups of children categorized by whether the Greulich and Pyle (1950) skeletal age 

differs from the chronological age by more or less than 1 year. This percentage was 

used with percentage stature to calculate a predicted adult stature. 
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Deming (1957) and Merrell (1931) discussed in detail the properties of the 

Gompertz and logistic functions for analyzing human growth process. The 

Gompertz growth model was used in different discipline, especially, in economic 

growth and demography. The Gompertz curve could be written as follows:  

btaekepy
  

where, y = Dependent variable (i.e., stature), t Independent variable (i.e., age), p = 

Lower asymptote (i.e., stature at the start of the adolescent growth cycle), k = 

Adolescent gain (i.e., stature gain during the adolescent growth cycle), a = Constant 

of integration (i.e., depending on the position of the origin), b = Rate of constant 

(i.e., 1/age). 

This curve might be considered as the individual‟s constant rate of maturation 

through the adolescent growth cycle according to Deming (1957).  

And, the mathematical form of the logistic curve was as follows:  

btae

k
py 


1
 

The parameters of logistic growth model had meanings were the same as in the 

Gompertz function. Marubini et al. (1971) clearly showed the asymmetry of the 

Gompertz and the symmetry of the logistic curve.  

Bock et al. (1973) showed that individual curves for growth in recumbent length 

from one year to maturity could be represented in good approximation by the sum of 

two (double) logistic components for the data from the Fels growth study. The first 
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component described growth occurring throughout the pre-pubertal period and 

continuing in same degree until maturity; the second described the adolescent 

growth spurt. The double logistic model could be written as: 

     22

1

11

1

exp1exp1 ctb

af

ctb

a
y







  

where, y was the stature (cm), t was the age (years), and 
1a , 

1b , 
1c , 

2b  and 
2c were 

the five parameters. Mature size )( f  had to be inserted in the function in this model.  

There were six parameters of components, five of which could be estimated by non-

linear least squares, and the sixth was the mature stature taken directly from the data. 

A reliability analysis of the parameter estimates for the Fels samples showed that 

most of the individual differences in the growth pattern, within sex, could be 

attributed to three, or at most four, out of the six parameters. Distributions of 

estimates of these four parameters were presented and discussed in relation to sex 

differences. 

Onat (1975) studied growth and sexual development of 119 normal girls aged 8.5 to 

13.4 years were followed from 7 years at 6-month intervals until adult height was 

reached. The correlation and regression studies showed that the percentage of adult 

height attained was dependent on age at onset of sexual development as well as the 

rate of skeletal development. The standard deviations of attained percentage of adult 

height in relation to age at onset of secondary sexual characteristics were much 

smaller compared to those based on chronological age and at about the same level as 

those based on skeletal age. The comparison of the standard errors of methods based 

on the onset of secondary sexual characters, skeletal age and chronological age 
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showed that the adult height of these girls could be estimated from the height 

attained at onset of secondary sexual characteristics with an error which was much 

smaller than that based on height at chronological age and about equal to that based 

on skeletal age. 

Roche et al. (1975a) used the Roche-Wainer-Thissen (RWT) method employs 

regression equations in which the length and weight of the child, mid-parent stature 

and Grculich-Pyle (1950) skeletal age, obtained as the median of bone-specific 

skeletal ages, were used to predict adult stature. The prediction errors with the RWT 

method were smaller than those with the method of Bayley and Pinneau (Bayley and 

Pinneau, 1952) and that was conformed when applied to data from three longitudinal 

growth studies. 

Preece and Baines (1978) proposed a new family of mathematical functions to fit 

longitudinal growth data and developed a procedure for fitting individual serial 

record of stature from age two to adulthood and also described the properties of 

biological parameters of their proposed growth model. The model was as follows: 

 
     







tsts

hh
htH

o 1

21
1

expexp

2
),(  

where, ),( tH was the stature (cm) at age t ,   was a growth parameter vector 

  , , , , 121 sshh o , 
1h was the equation parameter, which was the estimated adult 

stature. The parameters os  and 1s were rate constants, and 2h  and  were related to 

the stature and age at take-off of the adolescent growth spurt. 
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Several authors (Billiwicz and McGregor, 1982; Bogin et al., 1990; Bogin et al., 

1992; Brown and Townsend, 1982; Byard et al., 1993; Cameron et al., 1982; 

Hauspie, 1980; Hauspie et al., 1980a; Hauspie et al., 1980b; Jolicoeur et al., 1988; 

Jolicoeur et al., 1992; Ledford and Cole, 1998; Mirwald et al., 1981; Qin et al., 

1996; Tanner et al., 1982; Zemel and Johnston, 1994) were also used the above 

model. 

Wainer et al. (1978) discussed the RWT method for predicting adult stature from 

childhood variables used the current recumbent length and weight of the child, the 

stature of each parent, and the skeletal age of the child as predictor variables. There 

was only a small increase in the errors of prediction if population mean values were 

substituted in the prediction equations when the father‟s stature, the skeletal age of 

the child, or both these variables were unknown. This modified method was more 

generally applicable than the original RWT method.  

Onat (1983) used multivariate regressions for estimating adult height that were  

presented based on height, skeletal age (SA), chronological age and mid-parental 

stature (MPS) of Turkish prepubescent or early adolescent girls. Discriminating 

these regressions with regard to information on the presence or absence of secondary 

sex characters, as well as menarche improves the estimations, especially in those 

who developed either early or late in respect to secondary sexual development and 

in postmenarcheal girls. The 3-variable regressions, neglecting sexual maturity, 

resulted in over estimation of adult height in early maturing girls. These were 

corrected by regressions in which the states of secondary sex characters were used 

as dummy variables in addition to height, SA and MPS. 
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Berkey and Reed (1987) proposed a new models, namely Reed model which was 

appropriate for early childhood growth in length and possibly also for weight and 

head circumference of 229 Baston children. These models were actually the 

extension of the Count model (Count, 1943). The first-order Reed model could be 

written as follows: 

t

D
tCBtAy  )ln(

 

The first-order Reed model had four parameters and it was more flexible than the 

Count model since it allows an inflexion point. The second-order Reed model could 

be written as:  

2
)ln(

t

E

t

D
tCBtAy   

In the second-order Reed model, the fifth parameter allowed a second inflexion 

point. The first-order version was shown to perform well on height between 3 

months and 6 years but few children needed the second-order version (Berkey and 

Reed, 1987). An extra benefit of this model was that a wider variety of both normal 

and abnormal growth patterns could be accommodated by the curve.  

Shohoji and Sasaki (1987) described a growth model, which had six parameters. It 

could be written as the following form: 

 )](1)[()()( tWtftAWty  

where, t  was postnatal age, )(ty was stature at age t , A  was adult stature, )(tW was 

a weighting function given by )}](exp{exp[)( tGBtW  , )(tf was a function of 

stature in infancy given by tEDtCtf log)(   and   was an error. 
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The weighted average of adult stature A was the stature at age t  and stature 

predicted from an infancy model )(tf . The Gompertz function was the weight )(tW  

takes the value zero at 0t , then switches from 0 to 1 at G , with parameter B  

controlling the suddenness of the switch. The function )(tf was the Count model for 

infant stature and body weight. However, the Jenss-Bayley function 

)exp()( FtEDtCtf  was another infant stature model with one extra 

parameter, combining an exponential and a linear component, which performed 

appreciably better (Berkey, 1982), suggested modifying the Shohoji-Sasaki model to 

use the Jenss-Bayley rather than the Count model as its childhood component. 

Another seven-parameter model (KS7) was described by Kanefuji and Shohoji 

(1990) extending that of Shohoji and Sasaki (1987), replacing the Count model by

).log()( FtEDtCtf  This combined of an exponential infancy, linear 

childhood and logistic puberty component produced the SSC (Shohoji-Sasaki 

modified by Cole) model which was similar to Karlberg‟s ICP model (Karlberg, 

1989; Ledford and Cole, 1998). 

Jolicoeur et al. (1988) proposed a seven-parameter asymptotic growth curve, namely 

JPPS model that had been applied to longitudinal data on the height of 13 boys and 

14 girls from 1 month to 19 years of age. This new curve was expressed with respect 

to total age, passes through the origin, and fits infants as satisfactorily as older 

children. The form of this model could be written was as follows: 
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where, t was post-conceptual age; )(ty was stature at age t  ; A  was adult stature;

1D , 
2D  and 3D

 
were positive age scale factors; 

1C , 
2C  and 3C

 
were positive 

dimensionless exponents; and   was the error. Note that t   was age post-

conception, i.e., 75.0 tt  assuming a constant gestation of 9 months.  

The residual sums of squares with this new curve were 7.5 times lower on the 

average than with the currently-used five-parameter curve of Preece and Baines 

(1978) and 2.4 times lower than with the six-parameter curve of Shohoji and Sasaki 

(1987).  

Karlberg (1989) developed the ICP model and this model divided growth into three 

distinct phases of functional form, such as, Infancy, Childhood, and Puberty. These 

three distinct phases of functional form were described below: 

An Infancy component assumed to start during fetal life with a rapidly decelerating 

course ceasing at 3–4 years of age and also it was explained by an exponential 

function:  

  tcbay 111 exp1   

A Childhood component started during the first year of life having a slowly 

decelerating course and continuing until end of growth. A second degree polynomial 

function explained this component and this polynomial function could be written as: 

2tctbay ccc 
 

A Puberty component representing the additional growth induced by puberty and 

accelerating up to age at peak velocity (age = Vt ), then decelerating until the end of 
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the growth (age = 
Et ). A logistic function represented this component and that 

function was: 

  Vp

p

ttb

a
y




exp1
 

In all the above three functions y was stature for the relevant component at time t  

in years from birth, and 
Et was the middle of the first one year interval after age at 

peak velocity where the overall gain becomes less than that in the Childhood 

component.    

These components of the human growth curve from birth to adulthood strongly 

reflected the different hormonal phases of the growth process. This model provided 

an improved instrument for detecting and understanding growth failure.  

Lindgren and Hauspie (1989) conducted a longitudinal study of physical growth of 

Swedish School Children, born in 1955 and aged 10 to18 years. They showed the 

secular changes in height, weight and weight–for–height as expressed in BMI. They 

compared average heights and weights over 10-15 years for the samples of Swedish 

School Children born in 1955 and 1967. They showed that both boys and girls had 

been gaining more weight than height, especially around the ages at which peak 

velocity generally occurs. Since the increasing height of children born in 1967 

gradually diminished after age at peak height velocity, it seems that the height 

difference during puberty mainly reflects an earlier maturation of these child‟s, 

compared to the child‟s born in 1955. 

Tsuzaki et al. (1990) studied the difference in head circumference between Japanese 

and Caucasian Children. The subjects consisted of a total of 42392 Japanese 
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children between zero and four years of age surveyed from 1940 to 1980, and those 

data were compared with those of American and British children. They found that, 

there was a significant ethnic difference in head circumference, as large as one 

channel of usual percentiles, between Japanese and Caucasian children. The results 

indicated that smaller head circumference in Japanese children primarily reflects 

smaller stature of the Japanese. 

Feldesman (1992) examined the relationship between femur length and stature in 

children between the ages of 8 and 18 years. They showed that the femur stature 

ratios of children between the ages of 8 and 11 differ significantly from their older 

counterparts. Between the ages of 12 and 18, there were no significant differences 

due to age in the femur/stature ratio; however, there were significant differences in 

this age group attributable to gender. They also showed that the worldwide average 

adult femur/stature ratio does not adequately describe children in this age range. 

Their study strongly documents the adolescent growth spurt in the femur/stature 

ratios of both males and females at the precise time one would expect to see the 

spurt occur (10-12 in females; 12-14 in males). This growth follows a nearly 

identical trajectory in both genders, with relative femur growth dominating before 

the peak years of the growth spurt, and relative stature growth dominating afterward. 

This accounted for the ratio‟s rise to maximum values just before peak growth, and 

it‟s declined toward the adult ratio thereafter. These findings required us to use 

separate adolescent femur stature ratios of 27.16 (females) and 27.44 (males) to 

estimate the stature of children between the ages of 12 and 18. Preliminary testing 

showed these ratios to be more accurate in estimating stature than the properly 

selected Trotter and Gleser adult regression equation. Used of the adolescent male 
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ratio with the Homo erectus juvenile WT 15000 resulted in a lower stature estimate 

(157.4 cm) than previously reported. It was suggested that continued testing of the 

ratio occur, but that the values here in derived might be useful in routine forensic 

cases involving children in this age range, and with sub-adult paleontological 

specimens. 

Jolicoeur et al. (1992) discussed the eight different asymptotic models for the 

comparing with respect to their goodness of fit for the description of the longitudinal 

growth of stature in 27 healthy children from the French Auxological Survey. Some 

growth models were based on total age (measured from the time of fertilization) and 

some were based on postnatal age (age after birth). Their results showed that some 

of these models were the most accurate, but they would not be suitable for prenatal 

data or extrapolations. Finally, they proposed two models which were extensions to 

the model of Jolicoeur et al. (1988) where the age offset was estimated from the data 

rather than being constrained at 0.75, to improve the fit in infancy. The extended 

models were as follows:  
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JPA-1 was the nickname of the model in first equation and JPA-2 was the nickname 

of the model in second equation. The models JPA-1 retained the theoretically 
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desirable quality of passing through the origin with respect to total age while, JPA-2 

fitted human stature data better than all other asymptotic models proposed till 1991 

(Jolicoeur et al., 1992). 

Ashizawa et al. (1993) estimated the diversity of adolescent growth, spline-

smoothed individual velocity curves of stature, body weight and chest circumference 

of 44 girls in Tokyo, of which menarche was recorded correctly. Additionally, 25 

variables of ages at peak velocity, intensities, sizes and weight at the peak and at 

menarche, and terminal height were obtained. 

Johnson (1993) proposed the modified ICP model which was used to convert the 

non-stationary time series of growth observations into a stationary time series for the 

Fourier analysis. This model described the combined form of two phases such as 

Childhood and Puberty. The modified form was as follows:  

( ){ }Vip

p

iCCi
ttb

a
tbay

--+
++=

exp1
 

Khamis (1993) studied Roche-Wainer-Thissen (RWT) prediction model for the 

predicting the adult stature of a child based on age, current stature, current weight, 

current skeletal age and the average stature of the parents, and found out an 

improvement of this prediction equation. They investigated the seven variations of 

the current version of the RWT prediction model and compared in terms of the 

accuracy and reliability of prediction, culminating in a recommendation for the 

prediction of adult stature in Caucasian Americans. Their proposed method, called 

multivariate cubic spline smoothing, used cubic splines in the smoothing part of the 

RWT prediction model, resulting in a simpler (i.e., fewer steps) method with smaller 
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maximum deviations between predicted and actual adult statures than the current 

multivariate semi-metric smoothing method. 

Takai (1993) studied 6300 Japanese children from Ogi Growth Study 1979-1988 for 

the describing the velocity of the Tanner-Whitehouse 2 skeletal maturity. The cubic 

B-spline function fitted the velocities for the Carpal, RUS and 20-bone scores on the 

smoothed velocity curves. The maturity velocity curves showed single peak around 

the adolescent period exclusive of a bimodal curve for girls' RUS velocity. Its first 

peak appeared at 10.9 years and the second, 13.9 years. Just after the first peak their 

height reached the maximal velocity (11.0 years). The RUS velocity curve for the 

boys showed the peak maturity velocity at 15.6 years. Their height attained the peak 

velocity (at 12.9 years) before the RUS maturity did. The study also showed that the 

skeletal maturation affected the height growth during the duration of height spurt for 

the boys, but only during the accelerating period for the girls. 

Bock et al. (1994) described the triphasic generalized logistic model by summing up 

three phases of growth; early, middle and adolescent. This model was popularly 

known as BTT (Bock-Thissen-du Toit) model. This triphasic generalized logistic 

model could be written as: 

( )[ ] ( )[ ] ( )[ ] 321
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where, the set of parameters ( )111 ,, cba , ( )222 ,, cba  and ( )333 ,, cba  referred to the 

parameters of early, middle and adolescent phases of growth, respectively. And, d1, 

d2 and d3 were the fixed shape constant to the respective phases. 
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Khamis and Roche (1994) used longitudinal data (every 6 months) from participants 

residents of Southwest Ohio, 223 white males and 210 white females, at the time of 

their enrollment into the Fels Longitudinal Study. They applied a modification of the 

Roche-Wainer-Thissen stature prediction model to obtain reliable and accurate 

predictions of adult stature in white American children who were free of disease 

without using skeletal age. They concluded that adult stature predictions were 

needed commonly but the current methods were difficult to apply because they 

require a skeletal age assessed by a modem method. The Khamis-Roche method 

predicted adult stature in the absence of skeletal age with only a slight deterioration 

in accuracy and reliability. The applicability of the Khamis-Roche method was 

limited to white American children without pathologic conditions that alter the 

potential for growth in stature, but it should be useful for white children who were 

unusual in stature or in levels of maturity for age.  

Broeck et al. (1995) used 153 patients with Turner syndrome, padicipating in five 

European trials, were included to study final height after long-term growth hormone 

(GH) treatment in girls with Turner syndrome (TS). They found that at the last 

measurement, mean (SD) height was 150.7 (4.9) cm in group 1 and 148.5 (5.1) cm 

in group 2. The differences between final height (FH) and projected final height 

based on extrapolation of the initial height-standard deviation score on Turner 

syndrome reference values, were 2.9 (3.8) and 3.0 (3.3) cm, respectively. The mean 

gain over the Bayley-Pinneau prediction of FH was 3.3 (3.9) cm in both groups. 

They were found that no significant differences between countries. The range of 

gains over projected height (-4.7 to 12.1 cm) was large, and 25% of gains were 5 cm 

or more. Gain over initial projection was strongly related to initial growth delay and 
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to growth response during the first 2 years of treatment. A logistic regression model 

was presented that predicts gain of more than 5 cm with a positive predictive value 

of 62% and a negative predictive value of 84%. And, they concluded that long-term 

GH treatment in girls with TS, starting treatment at a relatively advanced age (>10 

years) resulted in a modest mean gain in FH of 3 cm, with wide inter individual 

variation.   

Rosique and Rebato (1995) studied on regional differences in the growth of Spanish 

Children by fitting the Preece-Baines Model 1 to cross sectional stature data. They 

compared children from seven different studies using the function parameters and 

derived biological variables. Regional differences in growth were interpreted as a 

result of a geographic variation among Spanish provinces in demographic, public 

health and nutritional conditions. Adult stature and the pattern of growth differed 

between urban and rural populations from the interior lands. Males from urban 

Extremadura, Barcelona and the Basque country showed that the tallest adult 

statures. Adult statures of males from Segovia, Extremadura emigrants and Cuenca 

were not only the lowest but the growth pattern showed delay in estimated ages at 

take-off and PHV compared to the other populations. Estimated age at PHV was 

later for all male samples compared to Vizcaya, except for the sample of Barcelona-

I. Females from Barcelona-II, Segovia and the Basque Country showed the tallest 

adult statures. All of the female samples, except that of urban Extremadura, had an 

earlier estimated age at PHV compared to the sample from Vizcaya. 

Tibshirani (1996) proposed a Least Absolute Shrinkage and Selection Operator 

(LASSO) method for estimation in linear models which minimizes the residual sum 

of squares subject to the sum of the absolute value of the coefficients being less than 
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a constant. Because of the nature of this constraint it tends to produce some 

coefficients that were exactly zero and hence gives interpretable models. Their 

simulation studied suggests that the LASSO enjoys some of the favourable 

properties of both subset selection and ridge regression. It produced interpretable 

models like subset selection and exhibits the stability of ridge regression. The 

LASSO idea was quite general and could be applied in a variety of statistical 

models: extensions to generalized regression models and tree-based models were 

briefly described. 

Chumlea et al. (1998) collected anthropometric data for stature, knee height, and 

sitting height from a gender and racial/ethnic-stratified sample of 4750 persons from 

the US population (1369 non-Hispanic white men, 1472 non-Hispanic white women, 

474 non-Hispanic black men, 481 non-Hispanic black women, 497 Mexican-

American men, 457 Mexican-American women) aged 60 years or older participated 

to develop new, nationally representative equations to predict stature for 

racial/ethnic groups of the elderly population in the United States. They used 

sampling weights to adjust the individual data to account for unequal probabilities of 

selection, nonresponse, and coverage errors so that all individual data used in these 

analyses represented national probability estimates. Regression analysis was 

performed to predict stature in each gender and ethnic group, and the results were 

cross-validated. Stature prediction models using knee height and age and sitting 

height and age were evaluated for each gender and racial/ethnic group. The 

equations with knee height and age were selected on the basis of root mean square 

error and pure errors in cross-validation and on the accuracy and validity of 

measures of knee height over sitting height. New stature prediction equations using 
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knee height and age were presented for non-Hispanic white, non-Hispanic black and 

Mexican-American elderly persons from current nationally representative data. 

These equations should be applied when a measure of stature couldn‟t be obtained.  

Henneberg and Louw (1998) discussed on the patterns of physical growth (height, 

weight, length of body segments, circumference and widths) and functions (grip 

strength, reflexes and pulse rates) “Cape Coloured” School children of the data on 

selected urban and rural groups with maximum contrasting socio-economic status 

(SES). They showed that the heights and weights of pre-pubertal urban children 

match American reference data, but post pubertally they decline somewhat, whereas 

these measurements of the rural children consistently lie~1 standard deviation below 

the urban group. Skin folds thickness of urban children match or exceed the 

American reference, implying that their nutritional needs were being met well. 

Functional indicators of rural children were much poorer than those of urban 

children. 

Kato et al. (1998) examined the three definitions of final height applied to the data 

were: (1) Final stature at 18 years of age; (2) Stature after a year with an annual 

increment less than 0.5 cm; and (3) The highest measurement, and their validity 

when practically applied to two different longitudinal data sets they were T-data (31 

boys and 35 girls born between 1967 and 1978) and H-data (113 girls born between 

1956 and 1966). Their results suggested that the greatest height of an individual 

measurement was the most effective definition of 'final stature' for practical use. 

This definition could be applied to various types of data, whether measurements 

were obtained from individuals during school periods, or whether measurements 

were obtained from individuals until the cessation of growth. 



 

 

Genesis of the Study  

28 
  

Ali and Ohtsuki (2000) estimated the maximum increment age (MIA) in height and 

weight of Japanese boys and girls during the birth years 1893-1990 using the 

published data of the ministry of education, science, sports and culture in Japan. 

They found that the estimated MIA showed an overall declining trend, except in 

birth year cohorts in 1934-1951. 

Cole (2000) compared the two midparent height calculations, and to see if they 

explained the imputation procedure used by Galton to adjust for the difference in 

adult height between daughters and sons. Galton multiplied daughters' heights by 

1.08 before averaging them with sons' heights. Using data from 17 national height 

references they shown that this procedure was equivalent to averaging the height 

standard deviation scores (SDSs) of the sons and daughters. It demonstrates that 

midparent height SDS obtained by averaging the height SDSs of the two parents was 

a valid alternative to conventional midparent height.  

Ali and Ohtsuki (2001) analyzed longitudinal growth in stature for 509 males and 

311 females of Japanese from childhood to adulthood. They were extracted the 

growth parameters from estimated distance and velocity curve for each individual 

using triphasic generalized logistic (BTT) growth model that was done AUXAL 

software program. The forward stepwise regression model was used to predict adult 

stature based on biological parameters and found that the adult stature depend on 

SPHV and STO for both boys and girls who had with and without mid growth spurt. 

For boys (whole sample) 

PAS = 1.534135 SPHV - 0.483147 STO 

For boys (with mid-growth spurt) 
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PAS = 1.539818 SPHV - 0.498201 STO  

For boys (without mid-growth spurt) 

PAS = 1.558884 SPHV - 0.503437 STO 

For girls (whole sample) 

PAS = 1.628559 SPHV - 0.580845 STO 

For girls (with mid-growth spurt) 

PAS = 1.488222 SPHV - 0.431707 STO 

For girls (without mid-growth spurt) 

PAS = 1.592562 SPHV - 0.534061 STO 

Leigh (2001) discussed the human pattern of growth and development appears to 

differ markedly from patterns of ontogeny in other primate species. Humans present 

complex and sinuous growth curves for both body mass and stature. Many human 

proportions changed dramatically during ontogeny, as we reach sizes that were 

among the largest of living primates. Perhaps most obviously, humans grow for a 

long time, with the interval between birth and maturation exceeding that of all other 

primate species. These ontogenetic traits were as distinctive as other key derived 

human traits, such as a large brain and language. Ontogenetic adaptations were also 

linked to human social organization, particularly by necessitating high levels of 

parental investment during the first several years of life. 

Fukami et al. (2003) studied of longitudinal auxological in a 14 year 9 month old 

Japanese girl with Lćri–Weill dyschondrosteosis accompanied by mesomelic short 

stature, who had a submicroscopic pseudoautosomal deletion involving SHOX, and 

pubertal development of an almost average tempo to report on auxological data in 

the combination of SHOX (short stature homeobox containing gene) 
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haploinsufficiency and normal ovarian function. The standard deviation scores 

(SDSs) for height, leg length (LL), and arm span remained below the normal range 

from childhood and worsened during puberty, whereas those for sitting height (SH) 

remained within the normal range and stayed almost constant throughout the 

observation period. Consequently, the SDSs for SH/LL ratio remained above the 

normal range from childhood and deteriorated during puberty. The decreased 

pubertal height gain was caused by a diminished pubertal height spurt and abrupt 

growth cessation shortly after menarche. The SDSs for hand length and palm length 

remained within the normal range but decreased during puberty, and those for head 

circumference remained within the normal range and stayed almost constant 

throughout the observation period. Their results suggested that, in individuals with 

SHOX haploinsufficiency and normal ovarian function, auxological abnormalities 

related to mesomelia were evident from childhood and worsen further during 

puberty because of the skeletal maturing effects of ovarian estrogens. 

Shahar and Pooy (2003) developed an equations using several anthropometric 

measurements of a cross sectional study such as body weight, height, arm span, half 

arm span, demi span and knee height of 100 adults (aged 30 to 49 years) and 100 

elderly subjects (aged 60 to 86 years) from three major ethnic groups of Malays 

(52%), Chinese (38.5%) and Indians (9.5%) participated for estimating stature in 

Malaysian elderly. The %CV of anthropometric measurements in adults and elderly 

subjects ranged between 5 to 6%, with standing height having the lowest %CV. 

When the equations derived from adults were applied to elderly subjects, it was 

found that percentage difference between actual height and the estimated value 

ranged from 1.0 to 3.3%. However, the percentage difference between estimated 
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heights from the equations developed in this study compared to those derived from 

the equations of other populations ranged between 0.2 to 8.7%. They concluded that 

the standing height was an ideal technique for estimating the stature of individuals.  

Ali et al. (2004a) analyzed longitudinal growth of stature for 509 boys and 311 girls 

from early childhood to adulthood to predict the average adult stature. They were 

extracted biological variables from the fitted triphasic generalized logistic model 

(BTT model) and this model was estimated by AUXAL software using the estimated 

population mean values and covariance matrix values for the Japanese population. 

They found that significant inter-correlations among the biological variables. 

Japanese boys and girls were characterized by earlier age at peak height velocity and 

shorter stature with medium peak height velocity, that were comparing with other 

populations; the parameters in the BTT model decomposed that, on average, 47.8%, 

38.7%, and 13.5% of the adult stature were completed respective during the early, 

middle and adolescent growth phases, for the Japanese boys. For the girls, these 

percentages were 44.0%, 42.9%, and 13.1%, respectively. Also, they found that the 

average predicted adult stature of Japanese boys was 172.59 cm and that of girls was 

159.68 cm for Japanese population. 

Ali et al. (2004b) used the stepwise regression approach to predict the final stature 

of Japanese children from the distance curve using the sample of 509 boys and 311 

girls. After removing the outliers and influential data points, regression equations 

were highly cross validated, and they proposed prediction equations for the final 

stature of Japanese boys and girls, separately. Finally, they proposed equations of 

predicting final stature for the Japanese were as follows: 
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For boys (average): 

PFS = 1.27066 S9 + 0.63875 S3–0.377094 S12 

For boys (who had mid-growth spurt) 

PFS = 1.281532 S9 + 0.493674 S3 -0.296906 S12 

For boys (who don‟t had mid-growth spurt) 

PFS = 1.080969 S9 + 0.730981 S2–0.304324 S5 

For girls (average) 

PFS = 3.20074 S13–3.29566 S12 + 1.11848 S11 

For girls (who had mid-growth spurt) 

PFS = 3.09039 S13–3.23795 S12 + 1.16692 S11 

and For girls (who don‟t had mid-growth spurt) 

PFS = 3.18652 S13–3.03767 S12 + 0.86965 S11 

Rahman et al. (2004) used 483 males and 262 females‟ longitudinal data to fit 

double phasic growth (JPA-2) and triphasic generalized logistic (BTT) models 

through the software AUXAL 2.01 for characterized individual growth of stature 

and find out more efficient prediction equations. They growth parameters extracted 

from the estimated distance and velocity curves for each individual. Six prediction 

equations of adult stature on growth parameters (an improvement of Ali-Ohtsuki 

equations) had been established for Japanese boys and girls.   

For boys (whole sample individuals) 

PAS = 1.046828 S9 + 0.397943 S3 

For boys (who had the mid-growth spurt) 

PAS = 0.881007 S10 + 0.543971 S4 

For boys (who do not had a mid-growth spurt) 
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PAS = 1.009736 S9 + 0.412471 S4 

For girls (whole sample individuals) 

PAS = 2.87668 S13-1.89627 S12 

For girls (who had the mid-growth spurt) 

PAS = 2.54599 S13-1.55950 S4 

For girls (who do not had a mid-growth spurt) 

PAS = 2.63537 S13-1.65255 S12 

Ashizawa et al. (2005) studied the longitudinal growth of Japanese subjects 

performed by applying the Preece–Baines model 1 (PB1) function. Ninety-three sets 

of longitudinally-followed height data from a series of girls in Tokyo were analyzed 

by fitting the PB1 model. They first compared the PB1 results with those previously 

obtained from the cubic spline function. They were then examined correlation 

among biological variables within this Japanese group, and then they compared the 

PB1-derived biological variables among populations. They found the following 

results. In comparison with previous results obtained by the cubic spline function for 

the same subjects, the PB1-derived velocity curve was found to be more 

emphasized. Ages at take-off and at peak were 0.2 years younger and older, 

respectively, and height was 1 cm less at take-off and 1.3 cm greater at peak. Many 

variables were significantly correlated within the Tokyo girls. Though, the number 

of variable pairs that showed a significant correlation was considerably smaller in 

the among-population comparisons than in the within-group analysis of the Tokyo 

girls.  

Jones et al. (2005) reviewed some of the possible biological maturity indicators that 

the pediatric exercise scientist could use. As a result, they recommend that any of 
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the methods discussed could be used for gender-specific comparisons. Gender-

comparison studied should either use skeletal age or some form of somatic index. 

Sunil et al. (2005) analyzed the regression analysis using the variables as height and 

hand length of 150 healthy individuals (75 males and 75 females) in various colleges 

of Delhi. Bilateral asymmetry in hand measurements were statistically insignificant. 

Regression equations were derived for right and left hand separately by which living 

stature might be fairly accurately estimated when a fragmentary or mutilated portion 

of upper extremity was recovered. Using the regression formula derived in this 

study, stature could be estimated within the error of +4.0 to 4.6 cm from hand 

length. 

Csukás et al. (2006) analyzed six longitudinally followed somatometric traits such as 

height, sitting height, iliospinal height (B–ic), upper limb length (a–da), biacromial 

diameter (a–a), and biiliocristal diameter (ic–ic) of Japanese boys of Ogi Growth 

Study for the mathematical growth modeling of Preece and Baines model. 

Biological variables derived from the estimated parameters were studied with 

emphasis on duration and velocity characteristics of the adolescent spurt. Ages for 

measurements at peak velocities tend to be younger than previously reported non-

Japanese ones. Spurt duration in limb measurements was significantly the shortest. 

Earlier age at minimal velocity (AMV) and later age at peak velocity (APV), thus 

the longest spurt duration, were the characteristic for transverse measurements (a–a, 

ic–ic). B–ic and a–da had the largest, while a–a and ic–ic had the smallest relative 

velocity at AMV. Another result for the transverse measurements was that the 

magnitudes of differences between relative minimal and peak velocities (RMV, 

RPV) were the largest. They suggested that a high level of RMV results from early 
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maturation of bones, thus leading to the shortest spurt duration in limb dimensions, 

while a low level of RMV results from late maturation of the bones, consequently 

leading to the longest spurt duration in transverse measurements. This tendency of 

reverse relation was present in the rest of the measurements as well. Transformation 

of velocity variables (minimal velocity (MV), peak velocity (PV)) to relative ones, 

proved to be useful in observing the relation of spurts in measurements. 

Maijanen and Niskanen (2006) compared the stature estimation methods on 

osteological material from medieval Westerhus, Sweden. They used a recently 

revised anatomical technique (Raxter et al., 2006) to estimate the living stature 

(XSTAT) of the individuals that compared with other anatomical methods and 

various regression equations on long bone lengths to examine their applicability to 

this skeletal sample and the accuracy of their estimates. They found considerable 

differences in estimates between techniques, especially in mean statures of tall and 

short stature classes based on long bone lengths. Thus they emphasized the 

importance of choosing the most appropriate estimation methods. 

Sarajlić et al. (2006) developed appropriate stature estimation formulae from the 

length of the femur, tibia and fibula from 50 male cadavers, of individuals who died 

between the ages of 23 to 54 years for use in the Bosnia and Herzegovina to help in 

identifications of the victims. The cadaver length was measured and the length of the 

long bones was obtained from X-ray photographs. The length of the cadavers of the 

individuals who died after age of 45 years was corrected according to Giles‟ table. 

This study established that using Trotter and Gleser‟s formulae under estimate 

stature of tall people in the current population of Bosnia and Herzegovina. Smallest 

standard error of estimate was observed in the formula that uses the sum of the 
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length of femur and fibula. There were no statistically significant differences 

between the length of the bones from the left and right sides of the body. Therefore, 

formulae developed from the average length of bone pairs were recommended for 

use. 

Mounir et al. (2007) used anthropometric assessment including weight, height, mid 

upper arm circumference (MUAC), waist circumference, hip circumference and 

triceps skin-fold thickness of sample 1606 girls was conducted in primary and 

preparatory schools in Alexandria to assess the mean age of menarche and the main 

nutritional factors affecting it. BMI and body fat percentage were calculated. A 24 

hours diet recall method was used to assess the dietary intake. They found the 

following results. The mean age of menarche was 11.98±0.96 years. The mean 

MUAC, triceps skin-fold thickness, waist circumference and hip circumference were 

significantly higher among menstruating girls as compared to non-menstruating. (p< 

0.01). Only 7.5% of the females less than the 5
th

 percentile of BMI (thinness) were 

menstruating, while the corresponding figure for those at or more than 85
th

 

percentile (overweight) was 65.6% and this was statistically significant (    =102.8, 

P < 0.001). Girls who attained menstruation demonstrated a higher significant mean 

percent of body fat (43.40±10.0) as compared to non-menstruating ones 

(35.41±7.87), (t = 17.09, P < 0.001). The oldest age at menarche was noted when the 

protein, iron and caloric intake was less than 80% of the RDAs. However, after 

adjustment of other variables direct relation was detected between age of girls and 

their age of menarche and those in private school had earlier age of menarche than 

those in governmental one. The nutritional status of the adolescents had a significant 

association with the onset of menstruation and the age at menarche. 
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Stovitz et al. (2008) used 2802 subjects from the Child and Adolescent Trial for 

Cardiovascular Health (CATCH) to examine the interaction of childhood height and 

childhood BMI in the prediction of young adult BMI. The associations and 

interactions between height (cm) and BMI (kg/m2) were assessed using mixed linear 

regression models with adult BMI as the dependent variable and they found that a 

significant interaction between childhood height and childhood BMI in the 

prediction of adult BMI (P < 0.0001). Stratification by Centers for Disease Control 

and Prevention (CDC) reference quintiles revealed that a positive association 

between childhood height and adult BMI existed only for those subjects in the top 

quintile of childhood BMI, within whom predicted adult BMI ranged from 27.5 

(95% confidence interval = 26.4–28.6) for those in the shortest height quintile to 

30.2 (95% confidence interval = 29.7–30.6) for those in the highest height quintile. 

Among children with high BMI levels, those who were taller, as compared to those 

who were shorter, had significantly higher young adult BMI levels. This pattern 

seems primarily due to the positive association of childhood height and childhood 

BMI. Clinicians should recognized the risk of excess body weight in young 

adulthood for all children who had a high BMI, and pay special attention to those 

who were tall, because their childhood height would not protect them from 

subsequent weight gain and elevated BMI. 

Bogin and Silva (2010) discussed the decomposing stature into its major 

components was proving to be a useful strategy to assess the antecedents of disease, 

morbidity and death in adulthood. Human leg length, sitting height and their 

proportions were associated with epidemiological risk for overweight, coronary 

heart disease, diabetes, liver dysfunction and certain cancers. Human beings 
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followed a cephalo-caudal gradient of growth, the pattern of growth common to all 

mammals. A special feature of the human pattern was that between birth and puberty 

the legs grow relatively faster than other post-cranial body segments. For groups of 

children and youth, short stature due to relatively short legs was generally a marker 

of an adverse environment. The development of human body proportions was the 

product of environmental × genomic interactions, although few if any specific genes 

were known. The HOXd and the short stature homeobox-containing gene (SHOX) 

were genomic regions that might be relevant to human body proportions. However, 

research with non-pathological populations indicates that the environment was a 

more powerful force influencing leg length and body proportions than genes. Leg 

length and proportion were important in the perception of human beauty, which was 

often considered a sign of health and fertility. 

Ilayperuma et al. (2010) used 258 subjects with an age span of 20-23 years to 

investigate the relationship and to propose a gender and age specific linear 

regression models between the ulna length and height of an individual. Their 

findings indicated that the significant differences of the ulna length between the 

genders. They found a significant positive correlation between height and ulna 

length. Regression equations for stature estimation were formulated using the ulna 

lengths for both males and females. The ulna length provided an accurate and 

reliable means in estimating the height of an individual. They proposed regression 

formulae that would be useful for clinicians, anatomists, archeologists, 

anthropologists and forensic scientists when such evidence provides the investigator 

the only opportunity to gauge that aspect of an individual‟s physical description. 



 

 

Genesis of the Study  

39 
  

Hui et al. (2011) used the data on height, weight and chest circumference obtained 

from two serial national cross‐sectional surveys for children aged 0 to 7 years in 

China, to describe the secular trends on physical growth of children during the year 

of 1985‐2005 and to analyze the urban‐suburban‐rural difference and its change. 

They showed that the average weight and height for both boys and girls from urban, 

suburban and rural areas had significantly increased in most age groups during the 

past 20 years; the average chest circumference increased slightly, ranging from 0.0 

to 2.0 cm. From 1985 to 2005, the urban‐suburban difference in height had become 

smaller, and that in weight showed similar trend for children under 3 years old but 

became larger after 3 years old; the suburban‐rural difference both in height and 

weight became larger after 6 months old. The increment per decade in height was 

the greatest in the suburban group while the greatest increment in weight was the 

urban group. They concluded that the positive secular trends were observed among 

urban, suburban and rural areas in Chinese children under 7 years old during the 

1980s and the 2000s, reflecting a rapid socio‐economic development in China. 

Johnson et al. (2011) investigated the secular trends in weight and length growth 

from birth to 3 years of age in 620 infants (318 boys and 302 girls)  born from 1930 

to 2008, and to assess whether these trends were associated with concurrent trends in 

pace of infant skeletal maturation and maternal body mass index. Their results 

showed that the most pronounced differences in growth occurred in the first year of 

life. Infants born after 1970 were approximately 450 g heavier and 1.4 cm longer at 

birth, but demonstrated slower growth to 1 year of age than infants born before 

1970. Growth trajectories converged after 1 year of age. There was no evidence that 

relative skeletal age, maternal body mass index, or maternal age were associated 
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with growth. They concluded that the recent birth cohorts might be characterized not 

only by greater birth size, but also by subsequent catch-down growth. And trends 

over time in human growth do not increased monotonically, and growth velocity in 

the first year might had declined compared with preceding generations. 

Bjelica et al. (2012) analyzed 285 students (178 men and 107 women) from the 

University of Montenegro to examine the body height in both sexes of Montenegrin 

adults nowadays. They used mean, standard deviation, t test, correlation coefficient 

and linear regression for the analyzing purpose. Their results showed that male 

Montenegrins were 183.21±7.06 cm tall and had an arm span of 185.71±8.17 cm, 

while female Montenegrins were 168.37±5.27 cm tall and had an arm span of 

168.13±6.58 cm. Comparing the results with other studies had shown that both sexes 

of Montenegrins make Montenegro the second tallest nation in the world, while arm 

span reliably predicts body height in both sexes. However, these estimated equations 

that had been obtained among the Montenegrins were substantially different than in 

all other populations, since arm span was close to body height: in males 2.50±4.15 

cm more than the body height and in females 0.24±3.88 cm less than the body 

height.  

Chittawatanarat et al. (2012) analyzed 2000 volunteers and were divided 

consecutively according to both age and gender to develop a formula for height 

prediction with acceptable validity. They used linear regression with ten parameters 

model to create a predictive formula. They showed that the demispan, sitting height 

and knee height were important for the predictive formula. All single parameters and 

the highest predictive value of double (sitting and knee height) and triple regression 

models (demispan, sitting and knee height) were proposed and these were modified 
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into a simple formula. The simple formula had more than 90% precision with an 

error of up to 10 cm in the validation group (89.7 to 99.0% in range). Of these, knee 

height had the least predictive error in all subgroups. The double and triple models 

had decreased error only in the younger group. And, they concluded that the 

anthropometric parameters with demispan, sitting height, knee height and 

combination could be applied to height prediction in the adult Thai with acceptable 

error. These formulas should be applied only in people who could not be directly 

measured. 

Pomeroy and Stock (2012) analyzed the regression equations using adult stature and 

body mass for estimating stature from bone lengths. They proposed new sample-

specific regression equations. Anatomical stature reconstruction was further 

complicated by artificial cranial modification (ACM) influencing cranial height in 

Andean samples, so this problem was investigated in the current sample. Although 

ACM had minimal impact here, the possibility should be explored in other samples 

before anatomical stature estimation was attempted. Recommendations were also 

made for estimating body mass from femoral head diameter. The mean of three 

previously published equations was shown to offer minimal bias and the most 

reliable estimate of body mass in the study samples.  

Choksi et al. (2014) analyzed the total number of 500 subjects that includes 200 

boys and 300 girls on the young adult population in the age range of 21-25 years to 

investigate the possible correlation between the palm lengths with the stature of 

individual. It was possible to deduce the significant correlation coefficient and 

multiplication factor for estimation of stature from palm length. The multiplication 

factor so deduced has been applied and regression analysis was done, and was found 

to be significant and reliable. 
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Kuninaka and Matsushita (2014) developed a numerical growth model that could 

predict the statistical properties of the height distribution of Japanese children. Their 

previous studied had clarified that the height distribution of school children showed 

transition from the lognormal distribution to the normal distribution during puberty. 

They demonstrated by simulation that the transition occurs owing to the variability 

of the onset of puberty. 

Rahmandad (2014) discussed the first mechanism-based model spanning full 

individual life and capturing changes in body weight, composition and height. 

Integrating previous empirical and modeling findings and validated against several 

additional empirical studies, the model replicates key trends in human growth 

including (1) Changes in energy requirements from birth to old ages (2) Short and 

long-term dynamics of body weight and composition, and (3) Stunted growth with 

chronic malnutrition and potential for catch up growth. From obesity policy analysis 

to treating malnutrition and tracking growth trajectories, the model could address 

diverse policy questions.  

2.3  Research Gap 

From the above review of literature, some of the researchers predicted final stature 

through skeletal age, and through the asymptotic curve fitting with longitudinal 

individual stature only. But, there has hardly been any research which has used the 

asymptotic curve to model the human stature as a function of several variables. 

Growth in stature in any living organism depends not only on their age but also body 

weight, chest circumference, sitting height, genetic factors, maternal illnesses during 

pregnancy, socio-economic disadvantages during and after pregnancy, 
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social/emotional problems during childhood, poor nutrition and environmental or 

emotional deprivation and so on. Most of the growth models (Gompertz model, 

Logistic model, Jenss model, Count model, Double logistic model, PB models, ICP 

model, Reed models, SSC model, JPPS model, JPA-1 model, JPA-2 model, 

Modified ICP model, and BTT model) have considered stature or weight as a 

function of age only. Among them, the JPA-2 model fitted better than all other 

asymptotic models till 1991 (Jolicoeur et al., 1992). While, BTT model was found to 

be better than JPA-2 model (Rahman et al., 2004). Like age, it is important to 

incorporate other possible predictors in the model as they have significant influence 

on stature. Thus, higher dimensional growth model is necessary for increasing 

precession of the growth model as well as prediction of the final stature. 

Theoretically, it is possible to address n-dimensional (higher dimensional) growth 

model (Shahin et al., 2013). But, to check the precession of the model, we need to 

have longitudinal data set. Presently, in our lab, we have longitudinal data sets of 

age, weight and stature. Thus, it is possible to check three dimensional growth 

model, numerically. Age at final stature is known exactly but, in case of weight at 

final stature, all data are missing that needs to estimate. So, if we estimate first the 

missing value of weight and then in the second step putting the value of weight in 

the model as stature = f(age, weight), we can estimate the final stature. 

2.4  Objectives of the Study 

To fulfill the above research gaps, the objectives of the study are to: 

i. develop new 3D two-stage growth model, and 

ii. develop equations for measuring final stature 
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CHAPTER 3 

MATERIALS OF THE STUDY 

 

 

 

 

3.1  Outline 

This chapter includes materials of the study, such as definition of age, stature and 

weight, and data source with missing value estimation procedure. 

3.2  Definition of the Variables Studied  

Age: A period of human life, measured by years from birth, usually marked by a 

certain stage or degree of mental or physical development and involving legal 

responsibility and capacity. 

Stature: Human stature is the distance from the bottom of the feet to the top of the 

head in a human body, standing erect. Usually the stature is measured by 

Anthropometer or Stadiometer. The technique used for the new-born child and 

during the first few years of life differs from the normal technique in that 

measurements are taken with a special instrument and in a horizontal position since 

the infants are unable to stand. As has been pointed out, at birth, the average length 

of a newborn is 20 inches; at 1 year, the average height is about 30 inches; at 2 

years, the average height is about 35 inches; and at 3 years, the average height is 

about 38 inches. After 3 years and until puberty, linear growth continues at a 
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relatively constant rate of 2 inches per year. There are variations of course, 

according to sex, environment and the ethnic or geographic group concerned.  

Weight: The term human body weight is used colloquially and in the biological and 

medical sciences to refer to a person's mass or weight. Body weight is measured in 

kilograms, a measure of mass, throughout the world. Body weight is the 

measurement of weight without items located on the person. Practically though, 

body weight is measured with clothes on, but without shoes or heavy accessories 

such as mobile phones and wallets and using manual or digital weighing scales. 

Excess or reduced body weight is regarded as an indicator of determining a person's 

health, with body volume measurement providing an extra dimension by calculating 

the distribution of body weight. The normal weight of the new-born child is between 

3000 and 3500 gr. However, in weight as in height, there are also natural variations 

because of sex, ethnic group, socio-economic status, geographic conditions, etc. 

3.3  Data 

Our study is theoretical based that need to check with real longitudinal data set. This 

type of data is unavailable in Bangladesh. Thus, secondary longitudinal data of age, 

weight and stature of 300 Japanese (180 boys and 120 girls), each between 0 to 20 

years old and covering birth-years of 1967 to 1977, have been used. Several 

universities from the Kanto District of Japan were selected and all students with 

complete information from several classes of the selected universities were included. 

I have got this data set from my supervisor who had also got the same data set from 

his supervisor Late Professor Fumio Ohtsuki, Laboratory of Human Morphology, 

Graduate School of Science, Tokyo Metropolitan University, Hachiojishi, Tokyo 
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192-0397, Japan. There are several missing values observed in the data set. The 

usual procedure of missing value estimate is not applicable in this data set because 

of longitudinal data (time dependent data). In case of first year, missing value is 

estimated using the average of all other first year values. The rest of the missing 

value was estimated by the following process. First, the missing value(s) is(are) 

filled up by the next observed value(s) to obtain the complete series of data for 

weight and stature. Second, the complete series was smoothed by resistant 

smoothing method, 4253H-twice, using Minitab software (Cook and Weisberg, 

1982). Third, the smoothing series were arranged according to the order of original 

series. And, finally, the stature or the weight was plotted against years to have 

smoothed curve, and the missing value was estimated by the visual initial inspection 

from the curve. 
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CHAPTER 4 

METHODS OF THE STUDY 

 

 

 

 

4.1  Outline 

This chapter includes methods of the study such as: descriptive statistics, triphasic 

generalized logistic human growth (BTT) model, extension of BTT model (proposed 

model), estimation procedure of the proposed model, finding velocity and 

acceleration of the proposed model, ARIMA model with Box-Cox transformation, 

Gompertz growth model, logistic growth model, double logistic growth model, 

model selection criteria, multiple linear regression model, multicollinearity 

diagnostic, modified HKB estimator of ridge parameter, forward stepwise regression 

model, regression diagnostic, least absolute shrinkage and selection operator model, 

relative bound and absolute bound, n-fold cross-validations, crossvalidity predicted 

power, and various software. 

4.2  Descriptive Statistics 

The descriptive statistics which include the well-known methods such as Mean, 

Standard Deviation and Correlation Coefficients have been used for measuring the 

central value, dispersion and degree of association, respectively. 
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4.3  Triphasic Generalized Logistic Human Growth (BTT) Model  

History of the BTT Model: Robertson (1908) proposed that the human growth of 

organism in general occurs in a number of additive, more-or-less independent phases 

during the course of development. Generally, the timing and intensity of each phase 

is assumed genetically programmed in the individual, but they may vary in 

expression according to environmental conditions. According to Robertson, the sum 

of the three logistic components can be describing human growth in stature but he 

cannot test the model because of no suitable data. Bock and Thissen (1976), first 

applied the concept to individual growth using the case from the Berkeley and Fels 

growth studies. Their analysis showed that the goodness of fit of the triphasic 

logistic model was good over the range from one year to maturity. In the Bock-

Thissen model, the phases represent early-childhood, middle-childhood, and 

adolescent growth. A further enhancement of the Bock-Thissen model was 

suggested by du Toit (1992). He suggested the additional of the „shape‟ constants of 

the positive exponentials to the denominators of the logistic functions to control the 

model in the region of change-over from early to middle childhood, and to provide 

some asymmetry of the adolescent component. They found values for these 

constants that tend to improve the fit of the model, by repeated trials with the 

Berkeley and Fels data. They refer to this triphasic generalized logistic model as the 

BTT model.  

Mathematical Explanation of the BTT Model: Bock–Thissen–du Toit developed 

the triple logistic functional model which is properly known as the BTT model. This 

model was based on the concept that mature size is a summation of three processes 

says early, middle and adolescent, each of which can be described by a logistic 
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function. Mathematically, the BTT model can be defined as sum of the three 

generalized logistic terms. The form of the logistic term is: 

 
1

d
bt c

a

e
  

 

where, t is the time (age) variable; a, b, c and d are the amount of growth, slope, 

intercept and fixed shape constant contributed by the term, respectively. The 

quantity z = (bt+c) in the exponential function is the „logit‟. 

Thus, the triphasic generalized logistic model can be written as 
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where, y is the stature at age t; the parameters 1a , 2a  and 3a decompose the amount 

of growth of stature contributed respectively by the early, middle and adolescent 

growth phase; the set of parameters  111 ,, cba ,  222 ,, cba  and  333 ,, cba
 
refer 

to the parameters of early, middle and adolescent phases of growth, respectively. 

And,
321 and, ddd  are fixed shape parameters for early, middle and adolescent 

phases of growth, respectively.  

4.4   Extension of Triphasic Generalized Logistic Human Growth Model 

4.4.1 Proposed Model 

Total body growth especially stature should be dependent on many factors e.g., age, 

body weight, chest circumference, sitting height, genetic factors, and maternal 

illnesses during pregnancy and so on. To the best of our knowledge, all growth 

models have proposed on age factor only. We have taken here the opportunity to 
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incorporate other factors (for example age and weight) in the BTT growth model. 

Why we have used BTT model? Because very recently, it is found that BTT growth 

model perform well than all other parametric growth models (Rahman et al., 2004). 

Now, let us consider a new proposed model, which is the extension of the BTT 

model. The general mathematical form of proposed model with (p + 1) variables can 

be written as follows: 
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In case of three variables, the above proposed model (Eq. 4.2) can be written as: 
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where, y, t and x are the different measurement of body which may be stature, age, 

and weight. The parameters 1a , 2a  and 3a  decompose the amount of growth of 

stature contributed by the early, middle and adolescent growth phase, respectively. 

The set of parameters  112111 ,,, caaa ,  222212 ,,, caaa and  332313 ,,, caaa  

refer to the parameters of early, middle and adolescent phases of growth in Euclidian 

space, respectively. Also, 
321 and,, ddd  are fixed shape parameters for early, 

middle and adolescent phases of growth in Euclidian space, respectively.  

Bock and Thissen (1980) imposed a linear restriction on the parameters of the first 

and second term to remove the over parameterization problem, but du Toit (1992) 

later found that setting 01 c  serves equally well. 
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4.4.2 Estimation Process of the Proposed Model 

There are two cases occur for the estimating proposed model, such as: 

1) The regressors are uncorrelated, and 

2) The regressors are correlated. 

Case (1): The regressors are uncorrelated 

When the regressors are uncorrelated, we can estimate the parameters of the model 

(Eq. 4.3) directly by Bayesian approach because there is no problem of 

multicollinearity. The method of Bayesian approach is described as follows:  

Before estimating the biological parameters of proposed model, we fixed up the 

shape parameters. The shape parameters can be estimated by trial and error methods. 

One way is to fix up the shape parameters such that the error is normal that is done 

by taking different value of shape parameters and fit the model then check normality 

of error. Remember that, the value of shape parameter of third phase must be greater 

than the other two phases. Generally, the value of shape parameters of the first two 

phases is equal. Now, let us consider the proposed nonlinear growth model (Eq. 4.3) 

is of the form: 







3

1
)(
]1[

),(
21

i
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iiiie
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where, y is the dependent variable, ),(  xtX  is the vector of independent variables, 

and )( 332313222212112111
 caaacaaacaaa is the parameters vector of the model. 

When observations of y and X are collected for observation i, the equation (4.4) 

becomes 
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 ,i i iy f X    ;  i=1, 2, 3 . . . n                        (4.5) 

where, the model error εi~N(0,σ2
) distribution. Since the number of parameters is 

two third of the number of observation hence the estimation by the conventional 

least squares method for complex growth models is less than the ideal. Even when 

the number of observations is sufficient for least squares, the parameters may not all 

be identifiable if the observations are poorly positioned. A much better method for 

fitting growth models is Bayes model estimation which chooses among a specified 

population of growth curves. 

The random vector of parameters   is assumed to follow N(μ,σ2
) distribution in the 

population. Let us consider a squared error loss function 

2ˆ ˆ( , ) ( )l      

Since, ε~N(0,σ2
), then  
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We consider a sample  nyyy
 
of size n from the density

2( , , )f y X  . Then 

the likelihood function is defined as follows: 
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 Posterior Bayes estimator of 
2( , )  with respect to prior 

2( , )g   can be written 

as:  
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The denominator in the above posterior distribution (Eq. 4.7) is constant. Thus, the 

posterior distribution can be represented by the form:    
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The most important part in the Bayesian regression analysis is to determine the prior 

distribution. However, it is very difficult to infer the probability distribution of the 

regression coefficient in the separated basins. Thus, a short of uniform prior 

distribution is selected to compute the posterior distribution in the study. Sorensen 

and Gianola (2002) suggested a sort of uniform distribution using variance:  
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From (Eq. 4.8) and (Eq. 4.9), we can write,  
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We know that, for a squared error loss function, the mean of the posterior density is 

the Bayes estimator of .  

Now, the Bayes estimator of  under squared error loss function is 
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The solution of above equation (Eq. 4.11) can be determined numerically. Fisher-

Scoring (Newton-Gauss) method is extremely fast, and nearly as robust as MEAP 

(Minimum Expected a Posteriori) estimation. 

Case (2): The regressors are correlated 

Principal components regression is applied in case of correlated regressors. We can 

write the equation (4.3) as follows: 
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Let, Z = XT, γi= T'βi; i=1, 2, 3. Then, T'X'XT = Z'Z = Λ and Λ= diag(λ0, λ1, λ2) is a 

3×3 diagonal matrix of the eigenvalues of X'X and T is a 3×3 orthogonal matrix 
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whose columns are the eigen vectors associated with λ0, λ1, λ2. We can define a new 

set of orthogonal regressors, such as Z = (Z0, Z1, Z2) which is the column of Z are 

referred to as principal components. 

Therefore, 
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The principal components regression approach used less than full set of principal 

components to combat multicollinearity in the model. In principal components 

estimators, we assume that the regressors are arranged in order of decreasing 

eigenvalues: 

0210  
 

Let us suppose that the last s of these eigenvalues approximately equal to zero. In 

principal components regression the principal components corresponding to near-

zero eigenvalues are removed from the analysis and Bayesian estimate defined in 

case (1) section is applied to the remaining components. That is, 

iipc B ˆˆ  ; i = 1, 2, 3 and the fitted model can be written as:
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Replacing Z by the linear combination of X, we get  
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Thus, the principal component estimator can be written as follows:  

ipcipc T ˆˆ  ; i=1, 2, 3 [since ii T  ˆ i=1, 2, 3 and 3ITT  ] 

4.4.3 Methods of Finding Velocity and Acceleration 

Velocity: Velocity is a term used for a rate of change. That is, velocity is defined as 

the ratio of the directed displacement r  (say) to the required time t  (say). That is, 
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Again, let us consider the proposed model as  
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Velocity for the variable x, when t is constant  
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Acceleration: Acceleration of a function ( , )y f X   is defined as the second 

derivative of y with respect to x. That is, Acceleration = 
2
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Acceleration for the variable t, when x is constant 
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Acceleration for the variable x, when t is constant  
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To compute the Hessian matrix, we need various derivative of ( , )y f X   with 

respect to t and, x as follows: 

Now, Partial derivative of y with respective the variable t and x 
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4.4.4 Methods of Finding Minimum and Maximum Values 

To compute the minimum and maximum values of the proposed model (Eq. 4.3), the 

Gradient vector and Hessian matrix can be used. The proposed model can be written 

as the following form: 
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The Gradient vector and Hessian matrix of a function of two variables f (t, x) are 

defined respectively as follows: 








































x

xtf

t

xtf

x

xtf
t

xtf

xtf
),(),(

),(

),(

),( and

































xx

xtf

tx

xtf
xt

xtf

tt

xtf

xtf
),(),(

),(),(

),(
22

22

2
 



 

  

Methods of the Study 

  58  
 

Let us consider any value of t and x are t* and x*, respectively such that 

0*)*,(  xtf  and satisfy any one of the following condition: 

Case 1: *)*,( xtf have a local minimum value if 
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Case 2: *)*,( xtf have a local maximum value if 
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Case 3: There is no local maxima or minima if *)*,( xtf does not satisfy the two 

conditions described above, and which is called a saddle point. 

4.5 Model Selection Criteria 

Model selection criteria are very important. There are different algorithms for 

selecting best model; however, the selection is difficult. Selection of model is data 

dependent. For this, mean squared error (MSE) and root mean squared error 

(RMSE) may be used. The mathematical formula of MSE and RMSE are as follows:  
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tt YY
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The MSE can be used to test the performance of the existence triphasic generalized 

logistic human growth (BTT) model and the proposed extension of triphasic 

generalized logistic human growth (BTT) model. 
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4.6  Predictions of Final Stature 

Suppose final stature attains at age 25. So, predicting the final stature, weight at age 

25 is needed which can be estimated in two stages. 

4.6.1 First Stage 

In this stage, the weight at final stature is estimated by one of the appropriate 

method, namely (i) autoregressive integrated moving average (ARIMA) model with 

BoxCox transformation, (ii) Gompertz, (iii) logistic and (iv) double logistic 

models. Smallest mean square error (section 4.5) is taken as the model selection 

criteria. The statistical software R i386 3.0.1 with the package “forecast” is used to 

automatically chosen the optimum order of ARIMA model and the optimum value 

of BoxCox parameter () for each data set. The remaining models are estimated by 

the STATISTICA 8.0 software. The description and mathematical form of these 

models are given bellow: 

Autoregressive Integrated Moving Average (ARIMA) Model with Box-Cox 

Transformation: Box and Cox (1964) have proposed a family of transformations 

that can be used with non-negative responses with transformations in common use, 

including reciprocals, logarithms and square roots. Transformations of data 

designated to achieve a specified purpose, e.g., stability of variance, additively of 

effects and symmetry of the density. If one is successful in finding a suitable 

transformation, the ordinary method for analysis will be available. Among the many 

parametric transformations, the Box-Cox family is commonly utilized. 
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Let    be a random variable on the positive half-line. Then the Box–Cox 

transformation of ty with power parameter   is defined as:  
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The formula 
     

 
  will be chosen so that   

   is continuous as   tends to zero and 

monotonic increasing with respect to     for any  . The power parameter   is 

estimated by a graphical technique or by the maximum-likelihood method. 

Unfortunately, a closed form for the estimator   can be rarely found. Hence, the plot 

of the maximum likelihood against   will give the value of  ̂ to have fit the 

transformed data for fitting any model.  

An autoregressive integrated moving average (ARIMA) model is a generalization of 

an autoregressive moving average (ARMA) model. The ARIMA model is applied in 

some cases where data show evidence of non-stationarity. The model is generally 

referred to as an ARIMA(p, d, q) model, where p, d, and q are integers greater than 

or equal to zero and refer to the order of the autoregressive, integrated, and moving 

average parts of the model, respectively. The ARIMA(p, d, q) model can be written 

in a compact way as follows: 

  tt

d BcyB  )(  

where, WN stands for white noise; B means backshift operator;  dd B 1  (The d 

order differencing operator); 
p

P BBBB    (The p order of AR 

mhtml:file://H:/Modem%20final/box%20coxx/Springer%20Online%20Reference%20Worksbox%20cox.mht!../m/m063100.htm
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operator);   q

q BBBB    (The q order of MA operator); t  is 

random shocks distributed normally with mean zero and constant variance   ; c is 

drift (i.e., constant) and ty is any Box-Cox transformed time series. 

Gompertz Growth Model: The Gompertz growth model can be used to measure the 

weight at final stature. The mathematical form and description of parameters have 

been explained in chapter 2 in review of literature section.  

Logistic Growth Model: The logistic growth model can be used to measure the 

weight at final stature. The mathematical form and description of parameters have 

been explained in chapter 2 in review of literature section.  

Double Logistic Growth Model: The double logistic growth model can be used to 

measure the weight at final stature. The mathematical form and description of 

parameters have been explained in chapter 2 in review of literature section. 

4.6.2 Second Stage 

In this stage, the final stature is predicted by the proposed model (Eq. 4.3). The 

regressand and regressors variable of the proposed model are stature; and age and 

weight, respectively. Using the data of stature, age and weight for each data set; the 

proposed model is estimated and the corresponding estimated values of all 

parameters were obtained. Suppose, the estimated proposed model for i
th 

(i = 1 to 

180 for boys and i = 1 to 120 for girls) data set was as follows: 
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where, iy ,25
ˆ , it ,25  and ix ,25  

represented the estimated final stature, age at final stature 

and weight at age 25 for i
th 

data set, respectively. The estimated parameters of the 

proposed model were denoted by ia ,1
ˆ , ia ,11

ˆ , ia ,12
ˆ , ic ,1

ˆ , ia ,2
ˆ , ia ,21

ˆ , ia ,22
ˆ , ic ,2

ˆ , ia ,3
ˆ , ia ,31

ˆ , 

ia ,32
ˆ  and ic ,3

ˆ for i
th 

data set. And, 1d , 2d  and 3d  were known fixed shape 

parameters. Using the estimated proposed model for each data set with 

corresponding age equal 25 and estimated weight at age 25 (from first stage), the 

value of estimated final stature can be obtained. 

4.7  Building Equations for Predicting Final Stature 

Suppose, we are interested to estimate the final stature using the earlier statures from 

fitted 3D model (Eq. 4.3) and parent statures. This can be done using forward 

stepwise ridge regression model and LASSO model. Before hand, we have to check 

the following steps. 

Linearity of Final Stature on Other Regressor: Stature at different ages can be 

extracted from fitted distance curve (Eq. 4.3). To check the linearity of final stature 

on earlier stature at different ages and parent stature, correlation matrix plot can be 

applied as in Figure 4.1a and 4.1b. Figure 4.1a and Figure 4.1b show linear 

relationships between the final stature and the stature at the ages 2–13 and parent 

statures for boys and girls, respectively. Thus, linear regression method can be 

applied. 
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Correlation between predicted final stature and stature at different ages, father stature, and mother stature for

boys
PFS

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

FS

MS

Figure 4.1a Correlation matrix plot between predicted final stature (PFS) and stature at different 

ages, father stature and mother stature for boys. The statures are drawn from the estimated distance 

curves of the proposed model. The father stature (FS) and mother stature (MS) come from the 

individual recode. Sj is the predicted stature at age j, j = 2, 3,…,13. In every element in the matrix, 

the X-axis is for PFS. Only the pattern, either linear or nonlinear, is of concern. No scales are shown 

here. 
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Correlation between predicted final stature and stature at different ages, father stature, and mother

stature for girls
PFS

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

FS

MS

Figure 4.1b Correlation matrix plot between predicted final stature (PFS) and stature at different 

ages, father stature and mother stature for girls. The statures are drawn from the estimated distance 

curves of the proposed model. The father stature (FS) and mother stature (MS) come from the 

individual recode. Sj is the predicted stature at age j, j = 2, 3, …, 13. In every element in the matrix, 
the X-axis is for PFS. Only the pattern, either linear or nonlinear, is of concern. No scales are shown 

here. 
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Multiple Linear Regression Model: We can consider the multiple linear regressions 

model of PFS on stature at each age from 2 to 13 years and parent statures as their 

relationships are linear. A regression equation without an intercept is applicable 

here. Let us suppose that the stature at the age j, j = 2, 3, …, 13, father stature, 

mother stature and predicted final stature are denoted by Sj, j = 2, 3, …, 13, FS, MS 

and PFS, respectively. Therefore, the multiple linear regression models without an 

intercept term can be expressed mathematically as follows: 

niMSFSSSSPFS iiiiii ,,2,1;i151413133322  

where,   , j = 2, 3, …, 13,     and     are the partial regression coefficients and n is 

the sample size. The variable PFS as regressand and the variables              

          are the regressors and   is error term assumed to be distributed as 

normally with mean zero and constant variance.  

The regression model in term of the observations, may be written in matrix notation 

as 

  SPFS  
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In general, PFS is an (n1) vector of the observations; S is an (n14) matrix 

generated by regressor variables, β is a (141) vector of the regression coefficients, 

and ε is an (n1) vector of random errors. 
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Thus the ordinary least squares estimator of β is  

  PFSSSS TT 1ˆ 
                                                                                                            (4.12) 

There may be possibility that the model to have the problem of multicollinearity 

which needs to diagnose.   

Multicollinearity Diagnostic: Tolerance and Variance Inflection Function (VIF) can 

be used to measure the problems of multicollinearity. The diagonal elements of 

the            matrix are very useful in detecting multicollinearity. Let     be 

the k 
th

 diagonal element of C, and can be defined as          
    , where,   

  

is the coefficient of the determination obtained when     is regressed on the 

remaining 13 regressors. The tolerance is defined as inverse of    . The closer is 

tolerance to zero, the greater the degree of collinearity of that variable with the other 

regressors. On the other hand, the closer tolerance is to 1, the greater the evidence 

that    is not collinear with the other regressors. Marquardt (1970) has called 

         
     the “variance inflation factor” (VIF). The VIF for each term in 

the model measures the combined effect of the dependencies among the regressors 

on the variance of that term. One or more large VIFs indicate multicollinearity. 

Practical experience indicates that if any of the VIFs equal to 1, then the regressors 

are not correlated, if VIFs is 1 to 5, then the regressors are moderately correlated, 

and VIFs exceeds 5, then the regressors are highly correlated. The tolerance and VIF 

(Table 5.6 in Chapter 5) clearly indicates the multicollinearity problem exists in the 

data set. Therefore, special types of regression method (namely stepwise, ridge 

regression, LASSO etc.) can be applied to reduce the problems of multicollinearity 

and select appropriate important variables. 
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Forward Stepwise Ridge Regression Model: Since the multicollinearity problems 

exist in the data set, hence the least squares produce very poor estimates of the 

regression coefficients because of the data are non-orthogonal. The variance of the 

least squares estimates of the regression coefficients may be considerably inflated, 

and the length of the vector of least squares parameter estimates is too long on the 

average. This implies that the absolute value of the least squares estimates are too 

large, and that they are very unstable. The least square estimate of the multiple linear 

regression model (eq. 4.12) is as follows: 

  PFSSSS TT 1ˆ 
  

The ridge estimator is found by solving a slightly modified version of the above 

equation. Specifically, we define the ridge estimator  ̂  as   

  PFSSkISS TT
R

1ˆ 
  

where, k ≥ 0 is a constant selected by the analyst. The parameter, namely k is called 

ridge parameter. The value of k is estimated by maximum likelihood estimator 

proposed by Hoerl, Kennard and Baldwin (HKB estimator) (Hoerl et al., 1975) 

which is properly known as Modified HKB Estimator of ridge parameter. 

The stepwise regression can be used to find out the „best‟ set of explanatory 

variables for a regression model. In this method, forward stepwise regression 

proceeds by introducing the regressor variables one at a time. Forward stepwise 

ridge regression to individually add the independent variables from the model at 

each step with including the value of ridge parameter of the regression (depending 

on your choice of F to enter) until the „best‟ regression model is obtained. The F to 
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enter value determines how significant the contribution of a variable in the 

regression equation has to be in order for it to be added to the equation.  

Least Absolute Shrinkage and Selection Operator (LASSO): A “LASSO” is 

usually recognized as a loop of rope that is designed to be thrown around a target 

and tighten when pulled. Least absolute shrinkage and selection operator is fittingly 

being used as a metaphor of    constraint applied to linear model. The ridge 

regression model can be used for the collinearity data. But, the ridge regression 

penalty (∑  
  ), although it helps with obtaining less variable estimates, has two big 

shortcomings in this setting: (1) Heavy bias toward zero for large regression 

coefficients (2) Interpretability: unimportant coefficients may be shrunken towards 

zero, but they're still in the model. We know that if many features are correlated, 

least absolute shrinkage and selection operator (LASSO) will just pick one. 

Consider the usual linear regression model with data (Sij, j = 2, 3, …13, FSi, MSi, 

PFSi), i =1,…,n, where PFSi is the response variable of the i 
th

 observation and all 

other variables are regressor. The Ordinary Least Squares (OLS) regression method 

finds the linear combination of the Sij, j = 2, 3, …13, FSi and MSi (i =1,…,n) that 

minimizes the residual sum of squares. However, if number of regressors is large or 

the regression coefficients are highly correlated (multicolinear), the OLS may yield 

estimates with large variance which reduces the accuracy of the prediction. A 

widely-known method to solve this problem is the ridge regression and the method 

of selecting subset. As an alternative to these techniques, Tibshirani (1996) 

presented “LASSO” which minimized the residual sum of squares subject to the sum 

of absolute values of the coefficient being less than a constant.  
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   , then the LASSO algorithm will yield the same estimate as OLS 
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λ > 0, It will be shown later that the relation between λ and LASSO parameter t is 

one-to-one. Due to the nature of the constraint, LASSO tends to produce some 

coefficients to be exactly zero. Compared to the OLS, whose predicted coefficient 

 ̂  is an unbiased estimator of β, both ridge regression and LASSO sacrifice a little 

bias to reduce the variance of the predicted values and improve the overall 

prediction accuracy. 

The tuning parameter ∑ | ̂ 
 |      

   is called LASSO parameter, which is also 

recognized as the absolute bound. Here we define another parameter, s, as the 

relative bound. 
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The relative bound can be seen as a normalized version of LASSO parameter. There 

are two algorithms mentioned in Tibshirani (1996) to compute the best s: (i) n-fold 

cross-validation and (ii) generalized cross-validation (GCV). 

Cross-validation is a general procedure that can be applied to estimate tuning 

parameters in a wide variety of problems. The bias in RSS is a result of using the 

same data for model fitting and model evaluation. Cross validity can reduce the bias 

of RSS by splitting the whole data into two subsamples: a training (calibration) 

sample for model fitting and a test (validation) sample for model evaluation. The 

idea behind the cross-validation is to recycle data by switching the roles of training 

and test samples. 

The optimal s can be denoted by  ̂. Prediction error can be estimated for the LASSO 

procedure by ten-fold cross-validation (Tibshirani, 1996). The LASSO is indexed in 

terms of s, and the prediction error is estimated over a grid of values of s from 0 to 1 

inclusive. We wish to predict with small variance, thus we wish to choose the 

constraint s as small as we can. The value  ̂ which achieves the minimum predicted 

error is selected (Tibshirani, 1996). 

4.8 Regression Diagnostic  

Coefficient of Determination: In case of the two-variables, the square of simple 

correlation coefficient (r
2
) measures the goodness of fit of the regression equation; 

that is, it gives the proportion of the total variation in the dependent variable 

explained by the (single) explanatory variable. This notation of r
2
 can be easily 

extended to regression models containing more than two variables. Thus, in the three 

or more variable models we would like to know the proportion of the variation in 
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dependent variable explained by the regressor variables jointly. The quantity that 

gives this information is known as the multiple coefficient of determination and is 

denoted by R
2
. 

Adjusted Coefficient of Determination: An important property of R
2
 is that it is a 

non-decreasing function of the number of explanatory variables or regressors present 

in the model; as the number of regressors increases, R
2
 almost invariably increases 

and never decreases. In view of this, in comparing two regression models with the 

same dependent variable but differing number of regressor variables, one should be 

very wary of choosing the model with the highest R
2
. To compare two R

2
 terms, one 

must take into account the number of regressor variables present in the model. This 

can be done readily if we consider an alternative coefficient of determination, is 

known as the adjusted R
2
, denoted by  ̅ . The term adjusted means adjusted for the 

degree of freedom associated with the sums of squares entering intoR
2
.  

Zero Intercept: Generally, a regression model has unknown an intercept and the 

regression coefficients terms and these terms have special meaning. The intercept 

and regression coefficients terms can be estimated by using sample data set. 

Sometimes, it is necessary to specify a regression equation without an intercept 

(intercept forced to zero, regression through the origin). In such a situation, the value 

of R
2 

is higher than the value of R
2
 in case of inclusion of an intercept term. 

Checking Outliers and Influential Data Points: Generally, an observation is called 

outlier when it is lie outside of 3 of standardized residuals. Cook (1977) proposed an 

estimator which is commonly used to estimate of the influence of a data point when 

performing least squares regression analysis. In a practical ordinary least squares 
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analysis, Cook's distance can be used in several ways: (i) to indicate data points that 

are particularly worth checking for validity and (ii) to indicate regions of the design 

space where it would be good to be able to obtain more data points. The Cook's 

distance is denoted by D and it is calculated as: 
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The following are the algebraically equivalent expressions (in case of simple linear 

regression): 
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In the above equations:  ̂   is the prediction from the full regression model for 

observation j;  ̂     is the prediction for observation j from a refitted regression model 

in which observation i has been omitted;     is the i
th

 diagonal element of the hat 

matrix           ;    is the crude residual (i.e., the difference between the observed 

value and the value fitted by the proposed model); MSE is the mean square error of 

the regression model; and p is the number of fitted parameters in the model. 

Remedies for Outliers: Particularly with small n (less than 100) multiple regression 

estimates are not very stable. In other words, single extreme observations can greatly 

influence the final estimates. Therefore, it is and visible always to use formal 
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statistical procedures to identify outliers and to repeat the analysis after omitting any 

outliers. Another alternative is to use robust techniques.  

Checking Normality of Residuals: The normal probability plot is useful for 

determining how well a specific theoretical distribution fits the observed data. In the 

P-P plot, the observed cumulative distribution function is plotted against a 

theoretical cumulative distribution function in order to assess the fit of the 

theoretical distribution to the observed data. If all points in this plot fall onto a 

diagonal line (with intercept 0 and slope 1), then we can conclude that the 

theoretical cumulative distribution approximates the observed distribution well. If 

the data points do not all fall on the diagonal line, then we can use this plot to 

visually assess where the data do and do not follow the distribution. 

CrossValidity Predicted Power: Cross validity predictive power (Stevens, 1996, 

pp-100) is used for testing the validity and stability of the fitted models. The fitted 

equations with high value of cross validity predicted power is assumed a better 

representation of the population. The cross validity predictive power, denoted by 2

cv

, is defined as: 
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where, N is the sample size, P is the number of predictors in the regression equation 

and the cross validated R is the correlation coefficient between observed and 

predicted values of the dependent variable. Using the above statistic, it can be 

concluded that if the prediction equation is applied to many other samples from the 
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same population, then ( 2

cv 100) % of the variance on the predicted variable would 

be explained by the regression equation (Stevens, 1996; pp-100).  

4.9  Software 

The popular software STATISTICA 8.0, Minitab 12.1, Statistical free software R 

i386 3.0.1 with packages „forecast‟, „MASS‟, „lars‟ and „lasso2‟, MS-Excel and MS-

Word have been used to the thesis, according to the objective. 

4.10 R Code 

Let us consider the all data files are located in D 

drive. 

#Read the boys data file, namely ‘Boys_weight.csv’ from D 

drive 

BoysWeight<- read.csv(file = "D:Boys_weight.csv", sep = 

",", header = TRUE) 

#Select the appropriate value of Box-Cox lambda, order of 

ARIMA model and forecast value for boys 

library(forecast) 

lambda<- BoxCox.lambda(BoysWeight, lower = -3, upper = 3) 

Model_ARIMA_Boys<- auto.arima(BoysWeight, lambda) 

Forecast_Weight_Boys<- forecast(Model_ARIMA_Boys, (25 - 

length(BoysWeight)))  
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#Read the girls data file, namely ‘Girls_weight.csv’ from D 

drive 

GirlsWeight<- read.csv(file = "D:Girls_weight.csv", sep = 

",", header = TRUE) 

#Select the appropriate value of Box-Cox lambda with ARIMA 

model and forecast value for girls 

library(forecast) 

lambda<- BoxCox.lambda(GirlsWeight, lower = -3, upper = 3) 

Model_ARIMA_Girls<- auto.arima(GirlsWeight, lambda) 

Forecast_Weight_Girls<- forecast(Model_ARIMA_Girls, (25 - 

length(GirlsWeight))) 

#Read the boys data file, namely ‘Boys_stature.csv’ from D 

drive 

BoysStature<- read.csv(file = "D:Boys_stature.csv", sep = 

",", header = TRUE);  

#Automatic selects the values of ridge regression 

parameters for boys 

library(MASS) 

ModelBoys<-lm.ridge(PFS ~ 0 + S2 + S3 + S4 + S5 + S6 + S7 + 

S8 + S9 + S10 + S11 + S12 + S13 + FS + MS, data = 

BoysStature, lambda = seq(0,0.1,0.001)) 

select(ModelBoys) 



 

  

Methods of the Study 

  76  
 

#Read the girls data file, namely ‘Girls_stature.csv’ from 

D drive 

GirlsStature<- read.csv(file = "D:Girls_stature.csv", sep = 

",", header = TRUE);  

#Automatic selects the values of ridge regression 

parameters for girls 

library(MASS) 

ModelGirls<- lm.ridge(PFS ~ 0 + S2 + S3 + S4 + S5 + S6 + S7 

+ S8 + S9 + S10 + S11 + S12 + S13 + FS + MS, data = 

GirlsStature, lambda = seq(0,0.1,0.001)) 

select(ModelGirls) 

#Read the boys data file, namely ‘Boys_data.csv’ from D 

drive 

BoysData<- read.csv(file = "D:Boys_data.csv", sep = ",", 

header = TRUE) 

yb<- as.numeric(BoysData[,15]) 

xb<- as.matrix(BoysData[,1:14]) 

#Estimate the parameters of LASSO regression model for boys  

library(lars) 

lasso_fit_Boys<- lars(xb, yb, type = "lasso", intercept = 

FALSE) 

plot(lasso_fit_Boys, breaks = F) 

abline(v = 0.1919, col = "2") 
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#Plot 10 folds cross validation plot for boys 

set.seed(123) 

lasso_cv_Boys<- cv.lars(xb, yb, K = 10, trace = F, plot.it 

= T, se = T, type = "lasso") 

#Find the optimal fraction that minimize the CV error for 

boys 

op_frac_Boys<-lasso_cv_Boys$index[which.min(lasso_cv_Boys$cv)] 

#Find the estimated coefficients of fitted LASSO regression 

model for boys 

beta_Boys<- predict(lasso_fit_Boys, s = op_frac_Boys, type 

= "coef", mode = "fraction")$coef 

beta_Boys 

#Find the fitted values of estimated LASSO regression model 

for boys 

pred_Boys<- predict(lasso_fit_Boys, xb, s = op_frac_Boys, 

type = "fit", mode = "fraction")$fit 

pred_Boys 

#Estimate the parameters and summary statistics of LASSO 

regression model for boys 

library(lasso2) 

Boyslasso<- l1ce(yb ~ xb, bound = 0.1919) 

summary(Boyslasso) 
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#Read the girls data file, namely ‘Boys_data.csv’ from D 

drive 

GrilsData<- read.csv(file = "D:Girls_data.csv", sep = ",", 

header = TRUE) 

yg<- as.numeric(GrilsData [,15]) 

xg<- as.matrix(GrilsData[,1:14]) 

#Estimate the parameters of LASSO regression model for 

girls 

library(lars) 

lasso_fit_Girls<- lars(xg, yg, type = "lasso",intercept = 

FALSE) 

plot(lasso_fit_Girls, breaks = F) 

abline(v =0.7879, col = "2")  

#Plot 10 folds cross validation plot for girls 

set.seed(123) 

lasso_cv_Girls<- cv.lars(xg, yg, K = 10, trace = F, plot.it 

= T, se = T, type = "lasso") 

#Find the optimal fraction that minimize the CV error for 

girls 

op_frac_Girls<- lasso_cv_Girls$index[which.min(lasso_cv_Girls$cv)] 

#Find the estimated coefficients of fitted LASSO regression 

model for girls 

beta_Girls<- predict(lasso_fit_Girls, s = op_frac_Girls, 

type = "coef", mode = "fraction")$coef 
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beta_Girls 

#Find the fitted values of estimated LASSO regression model 

for girls 

pred_Girls<- predict(lasso_fit_Girls, xg, s = 

op_frac_Girls, type = "fit", mode = "fraction")$fit 

pred_Girls 

#Estimate the parameters and summary statistics of LASSO 

regression model for girls 

library(lasso2) 

Girlslasso<- l1ce(yg ~ xg, bound = 0.7879) 

summary(Girlslasso) 



Prediction of Final Stature from a New 3D TwoStage Growth Model 
 

 

CHAPTER FIVE 

RESULTS AND DISCUSSION 
 

 

 

 

 

 

  

“If Data Analysis is to be well Done Mach of it must be a Matter of Judgment, and “Theory” 
whether Statistical or Non Statistical Well Have to Guide Not Command.”  - J.W. 
Tukey Chilli’s 



 

 

Results and Discussion 

 80   

  

CHAPTER 5 

RESULTS AND DISCUSSION 

 

 

 

 

5.1  Outline  

This chapter includes descriptive statistics for the model parameters and that of 

curve fitting, performance of the BTT and that of the proposed model, velocity and 

acceleration curves, weight estimation at final stature, predicted final stature and 

predicting equations for final stature with their precession, validity and stability. 

5.2  Descriptive Statistics of Model Parameters 

The STATISTICA 8.0 software was used to estimate the parameters for both BTT 

model (Eq. 4.1) and proposed model (Eq. 4.3) separately to the 300 sets of 

longitudinal data (described in materials section) using Bayesian method (described 

in methods section) and accumulated the parameters shown Table 5.1a and Table 

5.1b. Here, the maximum number of iterations and convergence criterion were used, 

respectively, as 10000 and 0.0000009999. For BTT model, on average 34.097%, 

4.757%, and 61.146% of the total final stature were completed during early, middle 

and adolescent phase of growth, respectively, for the male population and for the 

female population, these percentages were 21.929%, 23.829%, and 54.242%, 
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respectively (Table 5.1a). For proposed model, on average 30.102%, 29.933%, and 

39.965% of the total final stature were completed during early, middle and 

adolescent phase of growth, respectively, for the male population and for the female 

population, these percentages were 29.169%, 36.137%, and 34.694%, respectively 

(Table 5.1b). The correlation coefficient between different parameters of the BTT 

and proposed model were shown in the same Table 5.1a and Tale 5.1b. For BTT 

model (Table 5.1a), the correlation coefficient between different parameters (a1, b1), 

(a1, c1), (a1, a3), (b1, c1), (a2, a3), (b2, c2) and (b3, c3) for boys, and that of between 

(a1, b1), (a1, c1), (a1, a2), (b1, c1), (a2, b2), (a2, c2), (b2, c2) and (b3, c3) for girls were 

statistically significant (p ≤ 0.05). This table also implied that the average root mean 

square error of the estimate for boys was larger than that for girls. Similarly, for the 

proposed model (Table 5.1b), the correlation coefficient between different 

parameters (a1, a2), (a1, a21), (a1, a22), (a1, c2), (a11, a12), (a11, c1), (a12, c1), (a21, a22), 

(a21, c2), (a22, c2), (a31, a32), (a31, c3) and (a32, c3) for boys, and that of between (a1, 

a2), (a1, a3), (a11, a12), (a11, c1), (a12, c1), (a12, a3), (a3, c1), (a2, a22), (a2, c2), (a21, c2), 

(a3, c3), (a31, a32) and (a32, c3) for girls were statistically significant (p ≤ 0.05). Like 

Table 5.1a, average root mean square error of the estimate for boys was larger than 

that for girls here also. Average root mean square error of the proposed model was 

smaller than that of the BTT model for both boys and girls (Table 5.1a and Table 

5.1b). 
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Table 5.1a Estimated population mean, standard deviation (SD), and correlation matrix of BTT model parameters for boys and girls 

Parameter      a1    b1      c1    a2   b2      c2    a3  b3   c3 

Boys 
Mean (N= 180)  48.743 3.718 -29.675 6.801 5.124 -40.049 87.410 3.366 9.791 

SD    7.760 1.275     0.039 6.404 0.680     1.928   8.299 2.776 0.929 

           

Correlation a1          

Matrix b1 -0.212(**)         

 c1  0.193(**) -0.901(**)        

 a2  0.086  0.027 -0.030       

 b2  0.017 -0.069  0.057  0.002      

 c2 -0.028  0.073 -0.062 -0.001 -0.910(**)     

 a3 -0.527(**)  0.087 -0.085 -0.241(**)  0.128 -0.124    

 b3  0.063 -0.039  0.027  0.004 -0.036  0.035 -0.112   

 c3  0.135  0.001  0.011  0.000 -0.014  0.011 -0.071 -0.763(**)  

Average root mean square error of the estimate: 0.814738 

Girls 

Mean (N = 120)  43.449 4.813 -23.124 47.213 4.620 -27.469 107.471 7.938 -6.728 

SD    6.689 2.338    0.418   5.798 0.561     1.666     7.998 2.099  1.210 

           

Correlation a1          

Matrix b1 -0.212(*)         

 c1  0.312(**) -0.927(**)        

 a2 -0.302(**)  0.031 -0.027       

 b2  0.043 -0.078  0.057 -0.216(*)      

 c2 -0.124  0.074 -0.061  0.241(**) -0.952(**)     

 a3 -0.115 -0.002  0.003 -0.038 -0.009  0.013    

 b3  0.151  0.000  0.008  0.028 -0.134  0.090 -0.019   

 c3 -0.123  0.002 -0.007  0.019  0.094 -0.051 -0.001 -0.886(**)  

Average root mean square error of the estimate: 0.760471 

Note: The symbols *and ** indicate that the correlation are statistically significant at the 0.05 (p = 0.05) and 0.01 (p = 0.01) level (2-tailed), respectively.  
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Table 5.1b Estimated population mean, standard deviation (SD), and correlation matrix of proposed model parameters for boys and girls 

Parameter      a1      a11     a12     c1      a1   a21   a22  c2     a3  a31   a32    c3 

Boys 
Mean (N=180)  57.352 -26.367 14.330 -98.300 57.032 2.639 3.105 -61.723 76.146 7.014 -0.827 -4.926 

SD    6.551    1.632   1.314    0.289   5.761 4.023 2.097    3.058   9.903 2.920  1.748  0.602 
              

Correlation a1             

Matrix a11  0.119            

 a12 -0.122 -0.982(**)           

 c1  0.135  0.998(**) -0.998(**)          

 a2 -0.567(**)  0.055 -0.053  0.041         

 a21 -0.155(*)  0.003 -0.002  0.000 -0.018        

 a22  0.169(*)  0.006 -0.006  0.008 -0.040 -0.887(**)       

 c2 -0.154(*) -0.011  0.012 -0.014  0.110  0.680(**) -0.933(**)      

 a3 -0.030 -0.037  0.036 -0.035 -0.102  0.030 -0.017 -0.002     

 a31 -0.069  0.008 -0.007  0.003  0.138 -0.001 -0.003  0.007 -0.022    

 a32  0.080 -0.004  0.003  0.002 -0.140  0.000  0.001 -0.001  0.015 -0.992(**)   

 c3 -0.084  0.000  0.001 -0.006  0.117  0.000  0.002 -0.005 -0.005  0.970(**) -0.986(**)  

Average root mean square error of the estimate: 0.653058 

Girls 
Mean (N=120)  48.479 2.333 1.153 -27.639 60.060 6.375 -1.910 12.511 57.662 11.101 1.625 -39.635 

SD    6.151 2.026 1.639    0.381   5.902 4.951  1.894   2.864   4.941   1.527 2.787    1.113 
              

Correlation a1             

Matrix a11 -0.050            

 a12 -0.032 -0.918(**)           

 c1  0.144  0.657(**) -0.888(**)          

 a2 -0.511(**)  0.041 -0.025  0.027         

 a21  0.052 -0.007 -0.016  0.040 -0.169        

 a22 -0.012  0.008  0.008 -0.025  0.138 -0.961(**)       

 c2 -0.020 -0.010 -0.002  0.014 -0.094  0.891(**) -0.976(**)      

 a3 -0.404(**) -0.105  0.183(*) -0.285(**) -0.454(**)  0.079 -0.108  0.109     

 a31  0.064 -0.036  0.023 -0.015 -0.116  0.004 -0.001 -0.006  0.044    

 a32 -0.046  0.059 -0.057  0.058  0.125 -0.026  0.017 -0.003 -0.086 -0.682(**)   

 c3 -0.098 -0.064  0.087 -0.115 -0.071  0.041 -0.033  0.017  0.201(*)   0.092 -0.716(**)  

Average root mean square error of the estimate: 0.608818 

Note: The symbols * and ** indicate that the correlation are statistically significant at the 0.05 (p = 0.05) and 0.01 (p = 0.01) level (2-tailed), respectively.  
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5.3  Average Curve Fitting 

The average structural curve fitted values of stature for boys and girls with their 

stature differences, obtained from fitted BTT and proposed model, for every year 

from age 1 to 25 years were presented in Table 5.2. This results (Table 5.2) showed 

that the distribution of predicted stature, on average, the boys became taller than 

girls from age 1 to 9 and 12 to 25. But, the distribution of predicted stature, on 

average, showed that the girls became taller than boys from age 10 to 11.  

Table 5.2 The average structural curve fitted values of stature for boys and girls with their 

stature differences (boys less girls) by age (year) using BTT and proposed model 

Age 

(year) 

Stature (cm) of Boys  Stature (cm) of Girls  Difference in Stature 

BTT Proposed BTT Proposed BTT Proposed 

1 73.694 74.260 73.532 73.618 0.162 0.642 

2 85.268 85.024 84.331 84.337 0.937 0.687 

3 93.865 94.073 92.806 92.823 1.059 1.250 

4 100.920 101.052 100.278 100.291 0.642 0.761 

5 107.324 107.162 106.795 106.722 0.529 0.440 

6 113.700 113.612 112.862 112.863 0.838 0.749 

7 119.813 119.819 118.947 118.908 0.866 0.911 

8 125.696 125.757 124.604 124.695 1.092 1.062 

9 131.127 131.203 130.314 130.351 0.813 0.852 

10 136.424 136.425 136.461 136.446 -0.037 -0.021 

11 142.009 141.957 142.796 142.642 -0.787 -0.685 

12 148.463 148.448 148.297 148.418 0.166 0.030 

13 156.020 155.994 152.383 152.437 3.637 3.557 

14 162.669 160.405 155.088 155.144 7.581 5.261 

15 167.259 165.438 156.580 156.550 10.679 8.888 

16 169.624 168.752 157.423 157.366 12.201 11.386 

17 170.837 170.963 157.893 157.841 12.944 13.122 

18 171.592 171.102 158.113 158.171 13.479 12.931 

19 171.910 171.330 158.117 158.200 13.793 13.130 

20 171.923 171.412 158.388 158.320 13.535 13.092 

21 171.932 171.476 158.490 158.335 13.442 13.141 

22 171.941 171.481 158.500 158.346 13.441 13.135 

23 171.946 171.494 158.521 158.347 13.425 13.147 

24 171.951 171.503 158.532 158.348 13.419 13.155 

25 171.952 171.513 158.533 158.349 13.419 13.164 
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5.4  Comparisons Between the BTT Model and the Proposed Model 

The performance of the BTT and proposed model could be visually confirmed by 

plotting observed and fitted statures that shown in Figures 5.1a and 5.1b (for a single 

data set, say data set number 1) for boys and girls, respectively. Here, the shape 

parameters were assumed both models as d1= 0.75, d2= 0.75 and d3= 1.20. Similar 

graph can be shown for all other data sets for respective boys and girls but this line 

graphs were omitted because the performance of these models could easily be 

compared by mean square error. Thus, the mean square errors of the BTT and 

proposed model were computed for all data set. A single data set (data set number 1) 

was used to compare the precession of the BTT and proposed model due to changes 

of the shape parameters (Figure 5.2a for boys and Figure 5.2b for girls). These 

figures always divulge the superiority of the proposed model. On the other hand, the 

precessions of the BTT and proposed model was tested for all the 300 data sets 

shown in Figure 5.3a (Shown also in Table 1 within the Appendix-2) for boys and 

Figure 5.3b (Shown also in Table 2 within the Appendix-2) for girls and found that 

the proposed model was more precise everywhere.   
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Figure 5.1a Line graph for actual stature from the observed; fitted stature from BTT and 

proposed models of boys  

 

 

 

Figure 5.1b Line graph for actual stature from the observed; fitted stature from BTT and 

proposed models of girls  
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Figure 5.2a Clustered column bar diagram for the mean square error of BTT and 

proposed model of boys for data set number 1 
 

 

Figure 5.2b Clustered column bar diagram for the mean square error of BTT and 

proposed model of girls for data set number 1 
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(11) 

 

(12) 

Figure 5.3a Clustered column bar diagram (112) for the mean square error of BTT and 

proposed models of boys 
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(5) 

 

(6) 

 

(7) 

 

(8) 

Figure 5.3b Clustered column bar diagram (18) for the mean square error of BTT and 

proposed models of girls 
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5.5  Velocity, Acceleration, Minimum and Maximum Points of the 

Proposed  Model 

For data set number 1, for example, velocity, acceleration, local maxima, local 

minima and saddle points were calculated accordingly (details are methods section) 

and shown in Tables 5.3a and 5.3b for boys and girls, respectively. Table 5.3a 

showed one local minimum point, twelve local maximum points and seven saddle 

points for boys. Table 5.3b showed four local minimum points, seven local 

maximum points and seven saddle points for girls. These local minima and local 

maxima can be used as biological parameters. 

Table 5.3a Velocity and acceleration of proposed model for boys 

Stature Predicted Ft Fx Ftt Fxx Ftx Det(H) Comment 

75.00 75.32 -10.395 10.516 20.645 4.634 -10.067 -5.681 Saddle 

83.00 82.70 -6.400 8.041 25.820 5.793 -12.585 -8.796 Saddle 

91.80 91.66 -5.407 6.805 21.812 4.433 -10.275 -8.890 Saddle 

95.80 95.29 0.484 4.347 -36.623 -11.832 20.600 8.969 L. Max 

102.80 103.49 3.176 2.355 -36.454 -11.962 20.670 8.815 L. Max 

107.30 107.42 -7.777 8.333 -23.953 -8.473 14.102 4.090 L. Max 

116.70 116.85 8.895 -1.582 -34.502 -11.269 19.640 3.065 L. Max 

123.50 122.88 3.297 1.530 -35.088 -11.393 20.012 -0.706 Saddle 

126.90 127.12 17.190 -6.094 -15.378 -5.474 9.405 -4.275 Saddle 

134.60 135.27 13.166 -3.348 -36.565 -11.385 20.695 -12.000 Saddle 

141.30 140.17 21.962 -7.542 -11.624 -4.068 7.222 -4.865 Saddle 

145.30 145.86 23.031 -7.716 19.436 4.995 -9.751 2.005 L. Min 

153.50 153.50 5.668 0.766 -0.932 -0.041 -0.078 0.032 L. Max 

161.30 161.69 3.785 0.477 -1.241 -0.022 -0.150 0.005 L. Max 

166.30 165.67 2.322 0.292 -0.964 -0.016 -0.117 0.002 L. Max 

168.00 167.83 1.377 0.174 -0.640 -0.011 -0.077 0.001 L. Max 

169.00 169.23 0.713 0.090 -0.354 -0.006 -0.043 0.000 L. Max 

169.90 169.84 0.405 0.052 -0.208 -0.004 -0.025 0.000 L. Max 

169.80 170.22 0.213 0.028 -0.111 -0.002 -0.013 0.000 L. Max 

170.50 170.43 0.105 0.013 -0.055 -0.001 -0.007 0.000 L. Max 

Note: Ft, Fx; Ftt, Fxx; Ftx and Det(H) denote the velocity with respect to age and weight; 

acceleration with respect to age and weight; the partial derivative with respect to age and weight 

and determinant of 2×2 Hessian matrix, respectively. All L. Max are equal to local maximum in 

table in above. 

 



 

 

Results and Discussion 

 94   

  

Table 5.3b Velocity and acceleration of proposed model for girls 

Stature Predicted Ft Fx Ftt Fxx Ftx Det(H) Comment 

70.60 70.60 -244.804 171.046 -2532.180 -1220.007 1757.812 -0.148 Saddle 

80.60 80.60 -148.291 104.466 -2025.334 -975.997 1406.187 0.000 Saddle 

92.20 92.36 3.034 -0.242 1.340 0.114 -0.289 0.000 L. Min 

96.00 95.62 4.185 -0.435 1.561 0.126 -0.333 0.000 L. Min 

99.20 99.95 5.447 -0.653 1.473 0.115 -0.304 0.000 L. Min 

106.00 105.03 6.369 -0.770 0.504 -0.123 0.115 0.000 Saddle 

110.00 110.16 6.734 -0.746 0.267 0.105 -0.096 0.000 L. Min 

115.40 115.51 6.544 -0.570 -0.558 0.093 0.053 0.000 Saddle 

120.60 120.91 5.838 -0.284 -1.278 0.080 0.185 0.000 Saddle 

125.80 126.13 4.963 0.147 -1.611 0.076 0.245 0.000 Saddle 

131.10 131.04 3.708 0.530 -1.734 0.064 0.272 0.000 Saddle 

137.40 136.35 2.780 0.930 -1.645 0.018 0.279 0.000 Saddle 

141.10 141.82 2.037 1.149 -1.489 -0.069 0.293 0.000 L. Max 

149.50 149.89 2.928 0.329 -1.669 -0.213 0.394 0.000 L. Max 

153.80 152.96 2.058 0.329 -1.364 -0.189 0.329 0.000 L. Max 

155.40 155.52 1.756 0.099 -1.158 -0.141 0.270 0.000 L. Max 

156.10 156.19 0.573 0.524 -0.624 -0.151 0.181 0.000 L. Max 

157.10 157.11 0.226 0.538 -0.398 -0.136 0.135 0.000 L. Max 

157.60 157.76 0.024 0.527 -0.252 -0.123 0.103 0.000 L. Max 

Note: Ft, Fx; Ftt, Fxx; Ftx and Det(H) denote the velocity with respect to age and weight; 

acceleration with respect to age and weight; the partial derivative with respect to age and weight 

and determinant of 2×2 Hessian matrix, respectively. All L. Max are equal to local maximum in 

table in above. 

5.6  Predictions of Final Stature 

According to the Bock et al. (1994), stature at the age 25 year had been considered 

as a predicted final stature (PFS). However, the definition of age at final stature was 

different by researchers (Kato et al., 1998). The age was the only independent 

variable in BTT model and the value of age at final stature was known exactly. But, 

the proposed model had two independent variables they were (i) age and (ii) weight. 

Here, weight at age 25 needs to be estimated. For this, the following steps may be 

considered to predict the final stature. 
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5.6.1 First Stage 

In this stage, the weight at final stature was estimated. The statistical software R 

i386 3.0.1 with the package ‘forecast’ was used to choose the optimum order of 

ARIMA model as well as the optimum value of BoxCox parameter () and the 

remaining models were estimated by the STATISTICA 8.0 software. The summary 

of ARIMA model, values of Box-Cox parameter (, MSE of ARIMA with , MSE 

of Gompertz, MSE of logistic, MSE of double logistic models and predicted weight 

for boys and girls were presented in Tables 5.4a and 5.4b, respectively, where the 

selected best model indicated by asterisk. The estimated weight at the final stature of 

each data set for both boys and girls were presented in the last column of Tables 

5.4a and 5.4b, respectively. 

Table 5.4a Weight estimation using ARIMA model with Box-Cox transformation, 

Gompertz, logistic and double logistic models for boys 

D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 

Weight 

 

ARIMA 

with  

Gomp 

ertz 

Logistic 

 

Double 

logistic 

01 ARIMA(0,1,0) with drift    0.23 2.34 2.00 1.32 0.36* 63.06 

02 ARIMA(0,1,0) with drift 0.13 2.33 1.93 1.76 0.96* 60.34 

03 ARIMA(1,1,0) with drift   0.70 2.33 1.99 1.56 1.08* 57.85 

04 ARIMA(0,1,0) with drift   1.11 3.77 3.17 2.70 2.01* 76.19 

05 ARIMA(0,1,0) with drift 0.74 1.20 1.05 0.92 0.65* 64.52 

06 ARIMA(1,1,0) with drift  1.51 2.56 3.16 3.03 1.88* 77.42 

07 ARIMA(0,1,0) with drift  0.20 1.67 1.55 1.35* 2.16 58.99 

08 ARIMA(0,2,0) 0.35 2.06 2.26 1.83 0.50* 66.86 

09 ARIMA(0,1,0) with drift 0.24 1.85 1.83 1.67 0.56* 55.65 

10 ARIMA(0,1,0) with drift  0.08 1.70 1.39 1.28 0.63* 65.13 

11 ARIMA(0,1,0) with drift  0.86 2.30 1.58 1.70 1.20* 64.04 

12 ARIMA(0,1,0) with drift   0.99 2.12 2.29 2.29 1.23* 61.76 

13 ARIMA(0,1,0) with drift     0.73 1.34 1.35 1.25 0.50* 65.44 

14 ARIMA(1,1,0) with drift  0.58 2.23 2.85 2.38 1.12* 73.24 

15 ARIMA(0,1,0) with drift     0.70 0.78 0.72 0.69 0.44* 73.50 

16 ARIMA(0,2,1)    0.09 2.74 1.40 1.34 1.23* 69.39 

17 ARIMA(0,1,0) with drift          0.62 1.95 1.56 1.36 0.88* 59.84 

18 ARIMA(1,1,0) with drift    0.46 3.39 2.72 2.71 1.88* 62.95 

19 ARIMA(0,2,0)     -0.26 1.90 2.14 1.83 0.50* 51.82 

Continued… 
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D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 

Weight 

 

ARIMA 

with  

Gomp 

ertz 

Logistic 

 

Double 

logistic 

20 ARIMA(0,1,1) with drift    0.06 1.32 1.72 1.50 0.22* 56.83 

21 ARIMA(1,1,0) with drift 0.53 2.16 2.65 2.06 0.82* 65.69 

22 ARIMA(0,2,0)   -0.14 3.05 2.72 2.35 0.79* 57.50 

23 ARIMA(0,1,0) with drift   0.08 4.12 2.42 2.28 1.99* 55.68 

24 ARIMA(0,1,0) with drift       0.83 1.77 1.87 1.77 0.56* 59.82 

25 ARIMA(0,1,1) with drift      0.59 1.49 1.99 1.68 1.02* 64.75 

26 ARIMA(0,1,0) with drift      0.32 2.43 2.49 2.35 0.71* 60.48 

27 ARIMA(0,1,0) with drift 0.22 1.60 1.48 1.30 0.48* 52.44 

28 ARIMA(0,1,0) with drift  0.56 2.06 2.42 2.42 0.67* 57.03 

29 ARIMA(1,1,0) with drift          0.28 1.80 2.17 1.85 0.58* 59.66 

30 ARIMA(0,1,0) with drift    0.56 1.44 1.33 1.33 0.76* 65.09 

31 ARIMA(0,2,0)  -0.10 2.65 2.34 1.93 0.84* 65.23 

32 ARIMA(0,2,0)    0.14 1.83 1.84 1.53 0.67* 62.06 

33 ARIMA(1,2,0)      -0.06 2.34 2.30 2.04 0.57* 69.44 

34 ARIMA(0,1,0) with drift     0.77 1.23 0.99 0.93 0.78* 65.81 

35 ARIMA(1,1,0) with drift    0.65 1.42 2.09 1.89 0.63* 66.49 

36 ARIMA(1,1,0) with drift   0.19 2.21 2.75 2.33 0.89* 63.86 

37 ARIMA(0,2,0)  0.39 1.84 2.68 2.13 1.37* 63.90 

38 ARIMA(0,2,1)     0.29 6.21 5.27 4.77 4.28* 81.28 

39 ARIMA(1,1,0) with drift 0.27 1.55 1.74 1.34 0.57* 67.10 

40 ARIMA(1,1,0) with drift   0.50 1.19 1.83 1.51 0.45* 58.69 

41 ARIMA(0,1,0) with drift     0.57 1.08 0.87 0.71 0.42* 59.72 

42 ARIMA(1,2,0)      -0.11 2.06 1.31 1.30 0.61* 63.04 

43 ARIMA(1,2,0)   -0.30 3.41 1.49 1.31 1.21* 62.80 

44 ARIMA(0,2,0)        -0.08 2.97 2.84 2.38 0.72* 59.77 

45 ARIMA(0,2,0)     0.53 1.96 1.68 1.37 1.23* 65.37 

46 ARIMA(0,1,0) with drift 0.23 2.14 1.79 1.53 0.70* 65.50 

47 ARIMA(1,2,0)    -0.19 4.00 2.28 2.15 2.05* 73.66 

48 ARIMA(0,1,0) with drift 0.93 1.89 1.39 1.41 1.09* 78.87 

49 ARIMA(0,1,0) with drift 0.30 1.93 2.05 1.89 0.70* 55.92 

50 ARIMA(1,1,0) with drift          0.32 2.00 2.55 2.33 0.62* 61.93 

51 ARIMA(0,1,0)   2.90 16.26 9.85 10.30 8.06* 69.50 

52 ARIMA(2,1,0) with drift    0.54 2.19 3.82 3.24 1.98* 56.11 

53 ARIMA(1,1,0) with drift   0.07 1.73 2.27 1.79 0.44* 73.00 

54 ARIMA(0,1,0) with drift     1.10 1.75 1.31 1.30 0.63* 90.98 

55 ARIMA(0,1,0) with drift      0.44 1.84 1.48 1.32 0.95* 78.89 

56 ARIMA(0,1,0) with drift    -0.02 2.80 1.94 1.67 0.93* 92.78 

57 ARIMA(0,2,0)   0.28 1.98 2.52 2.04 0.72* 68.70 

58 ARIMA(0,1,0) with drift       0.49 2.12 1.73 1.59 1.00* 63.24 

59 ARIMA(0,1,0) with drift  0.60 3.51 2.60 2.28 2.13* 68.78 

60 ARIMA(0,1,0) with drift   0.71 2.20 2.12 1.76 0.97* 59.12 

61 ARIMA(0,1,0) with drift  0.21 4.40 4.21 3.53 1.53* 70.93 

62 ARIMA(0,1,0) with drift   0.73 1.65 1.65 1.55 0.82* 79.85 

63 ARIMA(0,1,1) with drift   -0.08 1.82 2.23 1.97 0.98* 84.97 

64 ARIMA(0,2,1)     -0.04 2.43 1.71 1.35 0.83* 68.45 

65 ARIMA(0,1,0) with drift   0.34 2.18 1.92 1.55 0.81* 111.34 

66 ARIMA(0,1,0) with drift   0.31 1.59 1.54 1.53 0.88* 68.65 

67 ARIMA(0,1,0) with drift   0.62 1.84 1.90 1.56 0.83* 58.81 

Continued… 
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D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 

Weight 

 

ARIMA 

with  

Gomp 

ertz 

Logistic 

 

Double 

logistic 

68 ARIMA(0,1,0) with drift   0.92 2.93 2.27 1.91 1.39* 76.93 

69 ARIMA(0,1,0) with drift      0.42 3.06 1.95* 1.95* 2.22 141.81 

70 ARIMA(1,1,0)  0.44 1.90 2.30 2.05 1.55* 66.25 

71 ARIMA(0,1,0) with drift    0.33 1.24 1.31 1.12 0.43* 56.22 

72 ARIMA(0,1,0) with drift   0.32 2.47 2.35 2.11 0.92* 54.32 

73 ARIMA(0,1,0) with drift  0.61 1.91 1.98 1.54 0.71* 62.06 

74 ARIMA(0,1,0) with drift   0.69 2.51 1.60 1.29 1.18* 72.39 

75 ARIMA(1,2,0)   0.21 2.08 1.88 1.28 0.84* 62.90 

76 ARIMA(1,2,0) 0.31 3.41 3.95 3.50 3.06* 60.63 

77 ARIMA(1,1,0) with drift 0.27 2.72 2.76 2.07 1.27* 83.01 

78 ARIMA(0,1,0) with drift    1.33 1.81 1.12 1.00 0.64* 64.93 

79 ARIMA(1,2,0)    0.00 2.83 2.63 2.27 1.00* 66.43 

80 ARIMA(1,1,0) with drift   0.47 1.43 2.18 1.71 0.51* 59.76 

81 ARIMA(0,1,0) with drift   0.47 1.97 2.03 1.78 0.72* 67.52 

82 ARIMA(0,1,0) with drift   0.47 1.26 1.22 1.19 0.85* 76.64 

83 ARIMA(1,1,0) with drift    0.41 2.20 2.86 2.31 0.99* 77.94 

84 ARIMA(1,1,0) with drift      0.67 1.68 1.91 1.55 0.80* 68.76 

85 ARIMA(0,1,1) with drift  0.34 1.49 1.62 1.37 0.81* 64.61 

86 ARIMA(1,2,0)   0.03 2.17 2.47 2.04 0.64* 74.76 

87 ARIMA(0,1,0) with drift   1.21 3.14 1.89 1.92 1.76* 73.35 

88 ARIMA(0,2,1)     0.26 1.83 1.33 1.11 0.92* 64.05 

89 ARIMA(0,1,0) with drift  0.89 1.90 1.50 1.47 1.28* 73.86 

90 ARIMA(1,1,0)  0.95 0.99 0.82 0.57 0.37* 53.25 

91 ARIMA(0,2,1)   0.30 1.46 1.12 0.97 0.51* 60.94 

92 ARIMA(0,1,0) with drift   0.40 2.34 2.15 1.80 0.75* 77.70 

93 ARIMA(0,1,0) with drift    0.96 3.68 3.02 2.66 1.83* 85.24 

94 ARIMA(0,1,1) with drift      0.42 1.18 1.49 1.17 0.62* 59.81 

95 ARIMA(0,1,0) with drift   0.56 2.48 1.91 1.71 1.51* 66.27 

96 ARIMA(0,2,1)   0.00 3.81 2.39 2.05 1.72* 64.50 

97 ARIMA(0,1,0) with drift     0.06 2.15 1.63 1.42 0.68* 64.57 

98 ARIMA(1,2,0)   0.17 2.46 1.91 1.61 0.85* 72.25 

99 ARIMA(0,1,0) with drift       0.07 2.13 1.62 1.41 0.68* 64.62 

100 ARIMA(1,2,0)         0.30 2.29 2.35 2.27 1.25* 62.05 

101 ARIMA(0,1,0) with drift  0.89 1.90 1.50 1.47 1.28* 73.86 

102 ARIMA(0,1,1) with drift  0.48 1.99 2.22 1.88 0.66* 78.09 

103 ARIMA(0,1,1) with drift    0.06 1.44 1.72 1.55 0.78* 61.90 

104 ARIMA(0,1,0) with drift  0.85 1.69 1.87 1.84 0.90* 54.73 

105 ARIMA(0,2,1)   0.16 4.03 2.83 2.54 2.44* 78.37 

106 ARIMA(0,2,0)    0.18 1.95 2.46 1.99 1.03* 68.72 

107 ARIMA(1,1,0)        0.95 0.99 0.82 0.57 0.37* 53.25 

108 ARIMA(0,1,0) with drift     0.75 0.53 0.29 0.29 0.29* 80.92 

109 ARIMA(0,1,0) with drift     0.30 1.77 1.60 1.51 0.67* 56.37 

110 ARIMA(0,1,0) with drift  0.03 2.73 2.08 1.64 0.58* 61.38 

111 ARIMA(0,2,1)      0.50 3.20 2.73 2.35 1.95* 79.31 

112 ARIMA(0,1,0) with drift 0.35 3.64 2.80 2.36 1.88* 70.42 

113 ARIMA(0,2,0)    0.19 1.70 2.64 2.18 0.58* 76.34 

114 ARIMA(0,1,0) with drift       0.07 2.13 1.62 1.41 0.68* 64.62 

115 ARIMA(1,1,0)        0.71 1.85 1.90 1.59* 1.87 55.07 

116 ARIMA(0,1,0) with drift   0.06 2.15 1.63 1.42 0.68* 64.57 

Continued… 
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D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 

Weight 

 

ARIMA 

with  

Gomp 

ertz 

Logistic 

 

Double 

logistic 

117 ARIMA(1,1,0)  0.71 1.70 2.92 2.49 1.21* 62.79 

118 ARIMA(1,1,0) with drift 0.87 1.25 1.49 1.38 0.53* 61.30 

119 ARIMA(0,1,0) with drift     0.06 2.15 1.63 1.42 0.68* 64.57 

120 ARIMA(0,2,1)       0.34 3.77 2.97 2.85 1.16* 81.79 

121 ARIMA(0,2,0)    0.29 1.09 1.82 1.47 0.39* 62.26 

122 ARIMA(0,2,0)   -0.08 2.67 2.26 1.81 0.93* 75.62 

123 ARIMA(0,1,0) with drift       0.04 2.28 2.09 1.76 0.71* 56.83 

124 ARIMA(0,1,0) with drift      0.46 1.69 1.19 0.97 0.80* 62.44 

125 ARIMA(0,1,0) with drift         0.25 2.34 1.99 1.62 0.88* 69.30 

126 ARIMA(0,1,0) with drift     0.14 3.55 2.17 1.75 1.44* 67.72 

127 ARIMA(1,1,0) with drift     0.67 1.68 1.91 1.55 0.80* 68.76 

128 ARIMA(1,1,0) with drift  0.41 2.20 2.86 2.31 0.99* 77.94 

129 ARIMA(0,1,0) with drift    0.47 1.26 1.22 1.19 0.85* 76.64 

130 ARIMA(0,1,0) with drift   0.47 1.97 2.03 1.78 0.72* 67.52 

131 ARIMA(1,1,0) with drift      0.47 1.43 2.18 1.71 0.51* 59.76 

132 ARIMA(1,2,0)           0.01 2.84 2.62 2.27 1.00* 66.46 

133 ARIMA(1,1,0) with drift    0.27 2.72 2.76 2.07 1.27* 83.01 

134 ARIMA(1,2,0)    0.27 3.41 3.97 3.51 3.05* 60.62 

135 ARIMA(0,1,0) with drift   0.66 1.95 1.95 1.52 0.77* 62.21 

136 ARIMA(0,1,0) with drift    0.69 2.51 1.60 1.29 1.18* 72.39 

137 ARIMA(1,2,0)     0.21 2.08 1.88 1.28 0.84* 62.90 

138 ARIMA(0,2,1)  -0.38 10.35 5.47 5.44 1.39* 108.01 

139 ARIMA(0,1,1) with drift      0.34 2.51 2.15 1.71 1.30* 70.19 

140 ARIMA(1,1,0) with drift  0.46 3.39 2.72 2.71 1.88* 62.95 

141 ARIMA(0,2,1)   0.26 1.83 1.33 1.11 0.92* 64.05 

142 ARIMA(1,1,0) with drift  0.65 1.42 2.09 1.89 0.63* 66.49 

143 ARIMA(0,1,0) with drift   0.30 1.93 2.05 1.89 0.70* 55.92 

144 ARIMA(1,1,0) with drift  0.19 2.29 2.66 2.19 0.91* 69.85 

145 ARIMA(0,1,0) with drift   0.77 1.23 0.99 0.93 0.78* 65.81 

146 ARIMA(0,2,0)     0.38 1.83 2.69 2.14 1.37* 63.89 

147 ARIMA(0,2,1)   0.29 6.21 5.27 4.77 4.28* 81.28 

148 ARIMA(0,2,0)    -0.08 2.97 2.84 2.38 0.72* 59.77 

149 ARIMA(0,2,0)      0.53 1.96 1.68 1.37 1.23* 65.37 

150 ARIMA(0,1,0) with drift   0.23 2.14 1.79 1.53 0.70* 65.50 

151 ARIMA(1,2,0)    -0.19 4.00 2.28 2.18 2.05* 73.66 

152 ARIMA(1,1,0) with drift  0.32 2.00 2.55 2.33 0.62* 61.93 

153 ARIMA(0,1,0) with drift   0.58 3.02 1.82 1.80 1.69* 82.30 

154 ARIMA(0,1,0) with drift    0.12 1.79 1.33 1.14 0.60* 106.73 

155 ARIMA(1,2,0)   0.37 1.17 1.06 0.71 0.46* 56.74 

156 ARIMA(0,1,1)    1.03 4.25 3.23 3.16 2.64* 56.85 

157 ARIMA(1,1,0)    0.65 0.99 1.76 1.40 0.42* 59.37 

158 ARIMA(1,1,0) with drift     0.61 1.75 2.42 2.08 0.61* 69.42 

159 ARIMA(2,1,0)      0.40 0.80* 2.18 1.97 0.90 50.81 

160 ARIMA(1,2,0)    0.21 1.57 1.82 1.55 0.68* 53.65 

161 ARIMA(0,1,0) with drift     0.69 2.42 2.10 1.95 1.05* 84.55 

162 ARIMA(0,1,0) with drift   0.34 2.50 2.65 2.43 1.02* 64.22 

163 ARIMA(0,1,0) with drift     0.37 3.65 2.43 2.13 1.93* 84.58 

164 ARIMA(0,2,0)    0.28 1.98 2.52 2.04 0.72* 68.70 

165 ARIMA(0,1,0) with drift 0.49 2.12 1.73 1.59 1.00* 63.24 
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D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 

Weight 

 

ARIMA 

with  

Gomp 

ertz 

Logistic 

 

Double 

logistic 

166 ARIMA(1,2,0)    0.41 1.31 1.33 1.03 0.42* 63.23 

167 ARIMA(0,1,0) with drift   -0.02 2.80 1.94 1.67 0.93* 92.78 

168 ARIMA(0,1,0) with drift    0.44 1.84 1.48 1.32 0.95* 78.89 

169 ARIMA(0,1,0) with drift  1.10 1.75 1.31 1.30 0.63* 90.98 

170 ARIMA(1,1,0) with drift    0.07 1.73 2.27 1.79 0.44* 73.00 

171 ARIMA(0,1,0) with drift   0.33 2.95 2.38 2.24 1.61* 80.20 

172 ARIMA(0,1,0) with drift    0.00 1.78 1.25 1.25 0.45* 73.51 

173 ARIMA(0,1,0) with drift      0.92 2.93 2.25 1.90 1.39* 77.05 

174 ARIMA(0,1,0) with drift    0.62 1.84 1.90 1.56 0.83* 58.81 

175 ARIMA(0,1,0) with drift   0.72 2.20 2.13 1.77 0.97* 59.13 

176 ARIMA(0,1,0) with drift   0.09 2.08 2.25 1.33 0.52* 72.41 

177 ARIMA(0,2,1)  -0.04 2.43 1.71 1.35 0.83* 68.45 

178 ARIMA(0,1,0) with drift   0.34 2.18 1.94 1.58 0.81* 111.48 

179 ARIMA(0,1,0) with drift    0.31 1.59 1.54 1.53 0.88* 68.66 

180 ARIMA(0,1,0) with drift    0.73 1.65 1.64 1.54 0.83* 79.95 

Note: The asterisk * indicates minimum MSE and selected the model and D.S. No. means Data 

Set Number 

Table 5.4b Weight estimation using ARIMA model with Box-Cox transformation, 

Gompertz, logistic and double logistic models for girls 

D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 

Weight 

 

ARIMA 

with  

Gomp 

ertz 

Logistic 

 

Double 

logistic 

01 ARIMA(0,1,0) with drift  1.41 1.61 1.61 1.79 0.72* 47.26 

02 ARIMA(0,2,0)   0.08 1.90 1.48 1.11 0.51* 50.57 

03 ARIMA(0,2,0)   0.18 2.15 1.83 1.61 0.62* 53.79 

04 ARIMA(0,1,0) with drift          1.29 1.58 1.55 1.39 0.72* 48.73 

05 ARIMA(0,1,0) with drift 0.69 2.14 1.85 1.58 1.00* 57.00 

06 ARIMA(0,1,0) with drift     0.84 2.17 1.42 18.51 1.12* 60.59 

07 ARIMA(0,1,1) with drift    0.99 1.18 1.65 1.49 0.68* 56.23 

08 ARIMA(1,2,0)   0.37 1.81 2.25 1.89 1.12* 50.85 

09 ARIMA(0,2,0)     0.44 1.81 2.59 2.17 0.75* 53.74 

10 ARIMA(0,1,0) with drift    0.83 2.05 1.81 1.62 0.87* 50.92 

11 ARIMA(0,2,0)     0.00 2.58 2.42 1.81 0.74* 63.07 

12 ARIMA(2,2,0)     -0.02 2.31 1.70 1.39 1.01* 48.41 

13 ARIMA(1,1,0) with drift    2.06 1.81 2.14 1.91 0.83* 46.27 

14 ARIMA(0,1,1) with drift  1.86 0.99 0.63 0.62 0.57* 45.23 

15 ARIMA(1,2,0)     -0.02 1.97 1.95 1.52 0.84* 49.50 

16 ARIMA(0,2,1) 0.42 1.96 1.69 1.45 0.83* 53.60 

17 ARIMA(1,2,0)      -0.02 1.97 1.95 1.52 0.84* 49.50 

18 ARIMA(0,1,1) with drift      1.86 0.99 0.63 0.62 0.57* 45.23 

19 ARIMA(0,2,1)     0.43 1.96 1.70 1.45 1.06* 51.02 

20 ARIMA(1,2,0)      0.62 2.01 3.17 2.70 1.77* 51.23 

21 ARIMA(0,2,0)  0.78 1.46 1.77 1.46 0.53* 48.18 

22 ARIMA(1,1,0)    0.08 2.23 2.42 2.07 1.49* 51.78 

23 ARIMA(1,2,0)   0.23 1.58 1.57 1.26 0.43* 56.38 

24 ARIMA(0,1,0) with drift 0.33 2.44 2.22 1.84 0.73* 60.28 

Continued… 
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D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 

Weight 

 

ARIMA 

with  

Gomp 

ertz 

Logistic 

 

Double 

logistic 

25 ARIMA(0,2,1)   0.74 1.51 1.84 1.60 0.62* 45.30 

26 ARIMA(1,2,0)    0.56 1.71 1.71 1.47 0.95* 45.96 

27 ARIMA(1,1,0) with drift     0.38 1.38 1.49 1.28 0.75* 54.60 

28 ARIMA(0,1,1) with drift      -0.09 1.85 2.00 1.66 0.63* 49.72 

29 ARIMA(0,1,1) with drift  0.96 1.41 1.60 1.43 0.51* 50.60 

30 ARIMA(0,2,0)      0.65 2.19 2.08 1.82 1.13* 50.30 

31 ARIMA(1,1,0) with drift  0.29 2.84 2.91 2.43 1.48* 55.48 

32 ARIMA(0,1,0) with drift   0.64 1.19 0.89 0.80 0.52* 47.93 

33 ARIMA(0,1,0) with drift   0.66 2.74 2.39 2.00 1.57* 55.86 

34 ARIMA(0,1,0) with drift 0.97 1.26 1.39 1.30 0.56* 46.60 

35 ARIMA(0,1,0) with drift  0.31 2.12 1.35 1.13 0.82* 45.45 

36 ARIMA(0,2,0)   1.08 1.13 1.03 0.74 0.50* 46.93 

37 ARIMA(1,2,0)       0.62 1.52 1.22 0.89 0.76* 55.94 

38 ARIMA(0,1,0) with drift  0.60 1.83 1.44 1.22 0.97* 50.66 

39 ARIMA(0,2,0)    0.18 1.93 1.82 1.30 0.59* 54.83 

40 ARIMA(0,1,0) with drift     0.66 1.38 1.23 1.05 0.67* 60.39 

41 ARIMA(0,2,0)   0.52 2.66 2.73 2.31 1.12* 52.77 

42 ARIMA(0,2,1)     0.09 1.52 1.17 0.96 0.55* 41.55 

43 ARIMA(0,2,0)    0.46 1.44 1.97 1.73 0.51* 57.23 

44 ARIMA(0,1,0) with drift   2.45 2.24 2.40 2.40 1.09* 46.98 

45 ARIMA(0,1,0) with drift   1.28 1.30 1.16 1.02 0.80* 51.45 

46 ARIMA(0,2,2) 0.37 3.87 2.35* 2.44   2.39 60.43 

47 ARIMA(0,2,0)  -0.35 1.66 1.12 0.70*   0.90 48.73 

48 ARIMA(0,2,0) 0.63 1.07 1.62 1.37 0.38* 43.52 

49 ARIMA(0,2,1)    0.44 1.68 1.41 1.33 0.43* 49.97 

50 ARIMA(2,2,0)     0.11 1.54 2.28 1.89 0.88* 53.62 

51 ARIMA(0,2,0)   0.14 2.27 1.65 1.23 0.98* 54.98 

52 ARIMA(1,1,0) with drift  0.91 1.21 1.10 0.75 0.49* 46.31 

53 ARIMA(0,1,0) with drift   1.08 2.91 2.12 1.76 1.49* 68.27 

54 ARIMA(1,2,0)     -0.09 1.24 0.93 0.77 0.45* 48.80 

55 ARIMA(1,1,0)    0.70 1.47 1.73 1.51 0.59* 52.47 

56 ARIMA(0,2,0)     0.01 1.86 2.24 1.98 0.84* 55.33 

57 ARIMA(0,1,0) with drift    0.95 1.92 1.23 0.99 0.90* 61.19 

58 ARIMA(1,2,0)   0.36 1.93 1.85 1.42 1.17* 52.69 

59 ARIMA(1,1,0) with drift  0.55 1.69 2.35 1.94 0.52* 54.95 

60 ARIMA(0,2,1)    0.99 1.98 1.79 1.54 0.91* 44.54 

61 ARIMA(0,1,1) with drift     0.37 1.55 1.74 1.46 0.74* 52.61 

62 ARIMA(0,2,1)  0.16 1.72 1.28 0.97 0.58* 52.13 

63 ARIMA(0,1,0) with drift   1.15 1.98 1.55 1.30 0.63* 49.43 

64 ARIMA(1,1,0) with drift      0.74 0.98 1.29 1.09 0.54* 49.09 

65 ARIMA(0,2,0)         0.26 1.60 1.46 1.11 0.46* 57.96 

66 ARIMA(0,1,0) with drift 0.49 3.03 2.28 1.86 1.57* 55.96 

67 ARIMA(1,1,0)     1.38 1.29 1.52 1.32 0.42* 44.91 

68 ARIMA(0,2,1)      0.63 1.86 1.72 1.49 1.01* 46.74 

69 ARIMA(1,2,0)   0.07 1.71 1.99 1.68 0.60* 48.19 

70 ARIMA(1,2,0)     0.41 1.75 1.91 1.52 0.62* 52.26 

71 ARIMA(1,2,0)     0.78 1.37 1.10 0.85 0.48* 48.69 

72 ARIMA(0,1,0) with drift   0.85 0.81 0.60 0.58 0.37* 53.18 

Continued… 
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D.S. 

No. 

 

ARIMA Model 

 

 

Box-

Cox 


 

Root Mean Square Error  Predicted 
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ARIMA 
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Gomp 

ertz 

Logistic 

 

Double 

logistic 

73 ARIMA(1,2,0)   0.98 1.33 1.12 0.89 0.52* 58.57 

74 ARIMA(0,1,0) with drift  0.96 0.99 0.87 0.82 0.55* 44.28 

75 ARIMA(0,1,0) with drift    1.35 1.91 1.32 1.07 0.84* 53.63 

76 ARIMA(0,1,0) with drift        1.86 2.14 1.45 1.22 1.06* 48.48 

77 ARIMA(1,2,0)      0.52 1.50 1.77 1.37 0.53* 51.22 

78 ARIMA(0,2,0)  0.16 1.85 1.86 1.46 0.72* 41.39 

79 ARIMA(0,1,0) with drift  0.95 2.51 1.65 1.43 1.27* 61.35 

80 ARIMA(0,2,0)    0.60 2.03 2.00 1.64 0.96* 52.23 

81 ARIMA(0,2,1)    0.14 1.31 2.09 1.54 0.42* 51.17 

82 ARIMA(0,2,1)    -0.32 2.57 1.80 1.37*   2.26 54.62 

83 ARIMA(0,1,0) with drift   0.14 3.29 2.61 2.53 1.65* 60.96 

84 ARIMA(0,1,0) with drift  0.80 1.92 1.77 1.56 0.93* 60.07 

85 ARIMA(0,2,0)   0.62 2.00 2.71 2.38 0.62* 53.38 

86 ARIMA(0,2,0)        0.31 1.38 2.16 1.86 0.63* 53.26 

87 ARIMA(0,1,0) with drift          1.06 1.06 0.79 0.76 0.36* 55.31 

88 ARIMA(0,2,0) 0.93 1.46 1.84 1.66 0.50* 50.68 

89 ARIMA(0,1,0) with drift   1.11 2.21 1.62 1.47 1.21* 55.46 

90 ARIMA(0,1,0) with drift    0.53 2.60 1.83 1.78 1.41* 73.92 

91 ARIMA(1,2,0)  0.15 2.77 2.10 1.77 1.27* 47.81 

92 ARIMA(1,2,0)     0.65 1.42 1.86 1.41 1.05* 45.19 

93 ARIMA(0,1,0) with drift      -0.12 3.47 2.09 2.08 1.36* 50.14 

94 ARIMA(1,1,0) with drift     0.64 1.40 1.63 1.36 0.61* 47.06 

95 ARIMA(0,2,0)       0.45 1.44 2.23 1.79 1.00* 49.72 

96 ARIMA(0,2,1)          -0.18 2.78 1.39 1.31 1.17* 42.07 

97 ARIMA(0,1,0) with drift     0.83 1.88 1.10 1.06 0.87* 58.64 

98 ARIMA(0,1,0) with drift 1.38 1.64 1.68 1.49 0.71* 49.29 

99 ARIMA(0,1,0) with drift   1.45 2.19 1.82 1.51 1.19* 56.30 

100 ARIMA(0,1,0) with drift     0.42 4.09 2.48 2.36 2.07* 67.46 

101 ARIMA(0,2,0)    0.40 1.51 2.08 1.64 0.77* 52.61 

102 ARIMA(0,2,1)    0.56 2.78 3.15 2.84 1.66* 47.94 

103 ARIMA(0,1,1) with drift    0.94 0.58 0.67 0.76 0.45* 45.68 

104 ARIMA(1,2,0)         0.60 1.44 1.11 0.80 0.51* 45.93 

105 ARIMA(1,2,0)     0.00 3.12 2.49 1.95 1.03* 50.95 

106 ARIMA(0,1,0) with drift   0.44 1.77 1.31 1.17 1.03* 47.48 

107 ARIMA(0,1,0) with drift   0.52 2.16 1.80 1.69 1.19* 54.36 

108 ARIMA(0,1,0) with drift    0.66 1.50 1.40 1.18 0.49* 58.37 

109 ARIMA(0,2,0)     0.69 1.33 1.81 1.56 0.53* 46.23 

110 ARIMA(0,1,0) with drift      0.78 1.73 1.68 1.46 0.81* 56.59 

111 ARIMA(0,2,1) 0.78 2.59 2.67 2.31 1.18* 53.28 

112 ARIMA(1,1,0) with drift   0.61 1.06 1.25 0.89 0.44* 48.41 

113 ARIMA(0,2,0)     1.29 1.06 1.29 1.28 0.42* 57.04 

114 ARIMA(0,1,0) with drift    0.41 2.41 2.31 1.92 1.10* 48.97 

115 ARIMA(0,2,0)      0.23 2.33 1.98 1.69 0.67* 53.91 

116 ARIMA(1,1,0)  0.06 2.23 2.42 2.07 1.48* 51.77 

117 ARIMA(2,2,0)       0.67 1.73* 3.16 2.69 1.75 46.33 

118 ARIMA(0,1,0) with drift  1.05 1.09 0.95 0.77 0.39* 46.82 

119 ARIMA(0,2,1)      0.74 1.51 1.66 1.60 0.62* 45.30 

120 ARIMA(0,1,0) with drift     0.33 2.44 2.22 1.84 0.73* 60.28 

Note: The asterisk * indicates minimum MSE and selected the model and D.S. No. means data 

set number 



 

 

Results and Discussion 

 102   

  

5.6.2  Second Stage 

In this stage, final stature was estimated from the proposed model. The value of age 

at the final stature was 25 and that of weight at age 25 was obtained from Tables 

5.4a and 5.4b for boys and girls, respectively. Using the estimated proposed model 

for each data set with corresponding age equal 25 and estimated weight at age 25, 

the value of estimated final stature could be obtained. The predicted (estimated) 

final statures for boys and girls were presented in Table 5.5a and Table 5.5b, 

respectively.  

Table 5.5a Predicted final stature for boys 

D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

01 170.62 
 

37 168.24 
 

73 168.52 
 

109 170.55 
 

145 172.21 

02 171.58 
 

38 175.67 
 

74 172.56 
 

110 176.98 
 

146 168.25 

03 173.42 
 

39 179.32 
 

75 175.29 
 

111 171.20 
 

147 172.08 

04 182.99 
 

40 165.53 
 

76 170.31 
 

112 185.10 
 

148 170.22 

05 175.18 
 

41 173.37 
 

77 180.39 
 

113 174.76 
 

149 170.68 

06 170.79 
 

42 170.11 
 

78 174.53 
 

114 168.26 
 

150 172.34 

07 170.93 
 

43 173.78 
 

79 168.70 
 

115 161.16 
 

151 165.39 

08 173.89 
 

44 170.07 
 

80 169.05 
 

116 168.18 
 

152 173.44 

09 166.30 
 

45 172.74 
 

81 176.76 
 

117 176.00 
 

153 169.50 

10 170.13 
 

46 172.42 
 

82 173.39 
 

118 163.65 
 

154 175.19 

11 176.78 
 

47 164.64 
 

83 178.53 
 

119 168.18 
 

155 169.20 

12 175.22 
 

48 171.77 
 

84 162.93 
 

120 177.02 
 

156 172.99 

13 171.62 
 

49 167.10 
 

85 177.17 
 

121 181.34 
 

157 173.58 

14 173.95 
 

50 173.14 
 

86 183.23 
 

122 179.94 
 

158 178.14 

15 180.31 
 

51 180.39 
 

87 164.71 
 

123 173.04 
 

159 163.49 

16 175.72 
 

52 172.33 
 

88 168.33 
 

124 170.12 
 

160 174.48 

17 166.70 
 

53 180.22 
 

89 176.12 
 

125 170.86 
 

161 170.08 

18 170.33 
 

54 170.04 
 

90 175.13 
 

126 173.70 
 

162 172.07 

19 168.60 
 

55 171.99 
 

91 172.01 
 

127 162.93 
 

163 178.38 

20 168.90 
 

56 180.38 
 

92 177.01 
 

128 178.63 
 

164 182.35 

21 177.29 
 

57 182.35 
 

93 185.02 
 

129 173.39 
 

165 168.88 

22 166.65 
 

58 168.88 
 

94 171.71 
 

130 176.16 
 

166 180.89 

23 169.55 
 

59 165.91 
 

95 172.60 
 

131 169.03  167 178.42 

24 169.45 
 

60 168.58 
 

96 178.14 
 

132 169.44  168 173.39 

25 170.04 
 

61 175.51 
 

97 168.18 
 

133 180.41  169 170.49 

26 170.56 
 

62 175.60 
 

98 176.60 
 

134 170.18  170 180.37 

27 169.04 
 

63 176.90 
 

99 168.26 
 

135 169.22  171 182.62 

Continued… 
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D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

28 171.24 
 

64 164.14 
 

100 166.94 
 

136 172.56  172 172.51 

29 173.92 
 

65 184.63 
 

101 176.12 
 

137 175.29  173 171.31 

30 175.94 
 

66 177.35 
 

102 177.33 
 

138 172.74  174 175.63 

31 177.89 
 

67 175.63 
 

103 161.29 
 

139 175.99 
 

175 168.61 

32 167.46 
 

68 168.28 
 

104 168.04 
 

140 170.44 
 

176 169.10 

33 176.64 
 

69 174.48 
 

105 184.95 
 

141 168.33 
 

177 164.14 

34 172.21 
 

70 178.03 
 

106 176.63 
 

142 168.45 
 

178 183.27 

35 168.45 
 

71 166.00 
 

107 175.13 
 

143 165.16 
 

179 177.22 

36 173.45 
 

72 168.26 
 

108 174.85 
 

144 174.40 
 

180 175.39 

Note: D.S. No. means Data Set Number 

Table 5.5b Predicted final stature for girls 

D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

 D.S. 

No. 

Final 

Stature 

01 157.67 
 

25 166.02 
 

49 166.23 
 

73 165.32 
 

97 158.82 

02 164.22 
 

26 150.59 
 

50 162.73 
 

74 154.38 
 

98 162.29 

03 157.63 
 

27 165.86 
 

51 156.14 
 

75 165.82 
 

99 162.50 

04 160.28 
 

28 158.05 
 

52 153.94 
 

76 156.88 
 

100 160.83 

05 163.80 
 

29 162.63 
 

53 161.50 
 

77 159.88 
 

101 158.29 

06 158.76 
 

30 161.16 
 

54 154.54 
 

78 157.92 
 

102 158.03 

07 168.37 
 

31 157.25 
 

55 160.50 
 

79 160.30 
 

103 158.77 

08 164.15 
 

32 162.14 
 

56 166.26 
 

80 163.52 
 

104 151.07 

09 150.34 
 

33 150.42 
 

57 156.20 
 

81 161.05 
 

105 154.25 

10 159.82 
 

34 165.06 
 

58 159.03 
 

82 162.01 
 

106 154.37 

11 160.38 
 

35 156.78 
 

59 154.43 
 

83 163.41 
 

107 157.94 

12 156.77 
 

36 155.76 
 

60 151.74 
 

84 161.60 
 

108 159.54 

13 154.49 
 

37 165.97 
 

61 155.41 
 

85 162.42 
 

109 154.13 

14 157.96 
 

38 162.22 
 

62 159.32 
 

86 158.75 
 

110 160.08 

15 157.43 
 

39 162.60 
 

63 152.14 
 

87 157.34 
 

111 155.26 

16 162.31 
 

40 165.29 
 

64 159.05 
 

88 158.16 
 

112 154.92 

17 157.43 
 

41 165.36 
 

65 160.52 
 

89 163.42 
 

113 157.12 

18 157.96 
 

42 148.21 
 

66 151.47 
 

90 161.64 
 

114 157.31 

19 161.24 
 

43 164.51 
 

67 152.84 
 

91 151.42 
 

115 164.60 

20 160.60 
 

44 157.99 
 

68 153.88 
 

92 148.93 
 

116 156.98 

21 155.37 
 

45 153.53 
 

69 160.81 
 

93 163.64 
 

117 159.41 

22 157.34 
 

46 152.59 
 

70 153.93 
 

94 155.08 
 

118 160.14 

23 161.36 
 

47 158.79 
 

71 162.11 
 

95 153.30  119 166.02 

24 169.56 
 

48 157.82 
 

72 157.66 
 

96 157.75  120 164.68 

Note: D.S. No. means Data Set Number 
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5.7  Building Equations for Predicting Final Stature 

The proposed model was run on the individual longitudinal data of stature to find 

out the distance curve for each individual data set. Predicted stature at age 25, from 

age 2 to 13 years and parents statures were considered here for further analysis to 

build up some prediction equations. Stature at age 2 (S2), stature at the age 3 (S3), 

stature at the age 4 (S4), stature at the age 5 (S5), stature at the age 6 (S6), stature at 

the age 7 (S7), stature at the age 8 (S8), stature at the age 9 (S9), stature at the age 10 

(S10), stature at the age 11 (S11), stature at the age 12 (S12), stature at the age 13 (S13), 

father stature (FS), mother stature (MS) and predicted final stature (PFS) were 

considered to build up some equations using selected important variables. At first, 

multicollinearity problems among the regressors could be checked. 

5.7.1 Checking Multicollinearity 

The tolerance and variance inflection function (VIF) presented in Table 5.6 that 

were used to identify the problem of multicollinearity in the regressors. Table 5.6 

showed that the calculated tolerance for both boys and girls were some close to zero 

and some close to one. The tolerance clearly indicated the multicollinearity problem 

exists in the data set. The maximum values of VIF for boys and girls were 81.198 

and 65.755, respectively, which were exceeded 5. Therefore, tolerance and variance 

inflection function were clearly indicated that the multicollinearity problem exists.   
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Table 5.6 Collinearity statistics of tolerance and VIF for boys and girls 

Dependent 

Variable 

 Boys  Girls 

   R
2
 value Tolerance     VIF R

2
 value  Tolerance   VIF 

S2 0.674 0.326 3.064 0.678 0.322 3.110 

S3 0.802 0.198 5.042 0.792 0.208 4.800 

S4 0.890 0.110 9.123 0.847 0.153 6.540 

S5 0.908 0.092 10.824 0.896 0.104 9.587 

S6 0.922 0.078 12.836 0.902 0.098 10.166 

S7 0.971 0.029 33.989 0.967 0.033 30.024 

S8 0.986 0.014 71.448 0.985 0.015 65.748 

S9 0.987 0.013 76.778 0.985 0.015 64.812 

S10 0.984 0.016 61.594 0.980 0.020 49.208 

S11 0.984 0.016 61.803 0.969 0.031 32.644 

S12 0.976 0.024 41.358 0.972 0.028 36.073 

S13 0.922 0.078 12.775 0.931 0.069 14.497 

FS 0.082 0.918 1.089 0.219 0.781 1.280 

MS 0.125 0.875 1.142 0.224 0.776 1.289 

5.7.2 Forward Stepwise Ridge Regression Model 

The tolerance and variance inflection function showed that the multicollinearity 

problem was present in the regressors (Table 5.6). The aim of the present phases was 

to select some important variables that variables could able to predict the final 

stature. These important variables could be selected by using forward stepwise ridge 

regression model. Although, stepwise regression model do not much affect by 

multicollinearity. The challenging issue was to select appropriate value of ridge 

regression parameter (say, k). There were many methods available to choose the 

optimum value of k. The modified HKB estimator (Hoerl et al., 1975) was used to 

select the value of k using the statistical software R i386 3.0.1 with the package 

‘MASS’. The appropriate values of k were found as 0.0037 and 0.0010 for boys and 

girls, respectively. Forward stepwise ridge regression model estimated the 

parameters and the important variables, by using the optimum value of k and 

STATISTICA 8.0 software. The full summary statistics of forward stepwise ridge 

regression model for boys and girls were shown in Appendix-3 (Tables 1 and 3). 
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And, a summary of selected step of the forward stepwise ridge regression model and 

previews investigation (Ali and Ohtsuki, 2001; Rahman and Ali, 2003) for the 

dependent variable PFS based on stature-variables were shown in Table 5.7a and 

5.7b for boys and girls, respectively. The regression coefficients were highly 

significant with high values of R
2
 as well as adjusted R

2 
and the standard errors of 

the estimate attained smaller amount (Table 5.7a). This Table also exhibited that 

threevariables regression equation which indicated that the ‘parent statures’ and 

‘stature at the age 9’ were needed to predict the final stature of boys. Similarly, 

Table 5.7b showed the regression’s coefficients were highly significant and standard 

errors of this estimate attained smaller amount. ‘Parent statures’ and ‘stature at age 

13’ were needed to predict the final stature of girls.  

Finally, the proposed equations of predicting the final stature for the Japanese boys 

and girls were as follows: 

For boys: FSSMSPFS 322908.0342368.0333572.0 9    

For girls:

 

FSMSSPFS 294889.0316876.00.387948 13   

Table 5.7a Summary of forward stepwise ridge regression model for the dependent 

variable PFS based on stature-variables for boys 

Sample 

Size 

Step 

+ in 

Variable Coefficient (p-value) Standard 

error 

Fto inter 

/remove 

(p-value)  

R
2
 

(Adj. R
2
) 

[DW Value] 

Present investigation  

180 1  MS  0.333572 (0.000001) 0.038531 34039.71 

(0.000001)  

 0.99926973  

(0.99824040) 

[2.0213] 

 2 S9 0.342368 (0.000001) 0.036509 

 3 FS 0.322908 (0.000001) 0.037915 

Ali and Ohtsuki(2001) investigation 

410 1 S9 1.270660 0.096113 377603.7 0.99892 

 2 S3 0.638750 0.079237 

 3 S12 -0.377094 0.072787 

Rahman and Ali (2003) investigation 

464 1 S9 1.046828 0.045456 548059.2 0.999156 

 2 S3 0.397943 0.063855 
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Table 5.7b Summary of forward stepwise ridge regression model for the dependent 

variable PFS based on stature-variables for girls 

Sample 

Size 

Step 

+ in 

Variable Coefficient (p-value) Standard 

error 

Fto inter 

/remove 

(p-value)  

R
2
 

(Adj. R
2
) 

[DW Value] 

Present investigation  

120 1 S13 0.387948 (0.000001) 0.051731 50900.09 

(0.000001) 

0.99973438 

(0.99921475) 

[1.6557] 

 2 MS 0.316876 (0.000001) 0.047571 

 3 FS 0.294889 (0.000001) 0.050045 

Ali and Ohtsuki(2001) investigation 

262 1 S13 3.20074 0.143402 393773.6 0.99934 

 2 S12 -3.29566 0.280664 

 3 S11 1.11848 0.155298 

Rahman and Ali (2003) investigation 

259 1 S13 2.87668 0.102438 345503.1 0.999254 

 2 S12 -1.89627 0.105918 

Diagnostic Checking: Although, the forward stepwise ridge regression model 

considered the variable(s) at each step when the variable(s) was significant. But the 

other tested such as line graph of predicted vs. observed values, outlier, influential 

data point, histogram of residuals, autocorrelation of residuals, and normal 

probability plot were must be checked for the validity of forward stepwise ridge 

regression model. The standardized residuals greater than 3 in absolute value were 

considered as outlier. Also, the Cook’s distance was greater than one, indicating the 

influential observation. The observed, predicted, residual, standard predicted, 

standardized residual, standard error of predicted and Cook's distance values of the 

predicted final stature of boys and girls were shown in Appendix-3 (Tables 2 and 4). 

Table 2 (Appendix-3) showed there were no points of absolute values of 

standardized residuals and Cook’s distance falls outside of 3 and greater than 1, 

respectively. Therefore, the predicting equation of boys was free from outlier and 

influential data point. The line graph of predict vs. observed value (Figure 5.4a), 

histogram of residuals (Figure 5.4b) and normal probability plot (Figure 5.4c) of 
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residuals showed that the fit was well and residuals were approximately normally 

distributed. The estimated DurbinWatson d value equal to 2.0213 (Table 5.7a), 

indicated no positive or negative autocorrelation in the residuals. Similarly, from 

Table 4 (Appendix-3), Figure 5.5a, Figure 5.5b, and Figure 5.5c, there were no 

outlier and influential points and the fit was also well and residuals were normally 

distributed. The estimated DurbinWatson d value was 1.6557 (Table 5.7b), which 

was fall in zone of inconclusion region. 

Predicted vs. Observed Values

Dependent variable: PFS

160 162 164 166 168 170 172 174 176 178 180 182 184 186

Predicted Values

160

165

170

175

180

185

O
b

se
rv

e
d

 V
a
lu

e
s

95% confidence

 
Figure 5.4a Predicted vs. observed values for predicting equation of boys 
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Figure 5.4b Histogram of residuals for predicting equation of boys 
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Normal Probability Plot of Residuals
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Figure 5.4c Normal probability plot of residuals for predicting equation of boys 
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Figure 5.5a Predicted vs. observed values for predicting equation of girls 
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Figure 5.5b Histogram of residuals for predicting equation of girls 
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Normal Probability Plot of Residuals
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Figure 5.5c Normal probability plot of residuals for predicting equation of girls 

Precision of the Estimated Model: Analysis of residual for boys and girls were 

considered to understand the precision of the prediction for final stature. Average of 

observed, predicted, residual, 95% confidence bounds of mean residuals and 

standard error (SE) of predicted equations of final stature for boys and girls were 

shown in Table 5.8. The average value of residual was 0.091 cm and standard error 

of residuals and prediction were as 3.93 cm and 0.28 cm, respectively for boys that 

were small, implying the prediction equation was sufficient for predicting the final 

stature. Similarly, the average value of residual was 0.023 cm and standard error of 

residuals and prediction were as 3.33 cm and 0.23 cm, respectively for girls that 

were also small, implying the prediction equation was sufficient for predicting the 

final stature. Therefore, the prediction of final stature based on different stature 

variables was, on average, under-estimated by 0.091 cm and 0.023 cm for boys and 

girls, respectively. 
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Table 5.8 Average of observed, predicted, residual, 90% confidence bounds of residuals and 

standard error (SE) of predicted equations of final stature for boys and girls. Values in the 

first bracket ( ) were of Ali and Ohtsuki (2001) and that in third bracket [ ] were of Rahman 

and Ali (2003) 

Data 

Set 

size 

Observed 

stature 

(cm) 

Predicted 

stature 

(cm) 

Residual (cm)  95% confidence 

bound of mean 

residuals (cm) 

SE of 

prediction 

(cm) 

Mean SD Lower Upper  

Boys 

180 

(410) 

[464] 

172.85 

(172.34) 

[171.69] 

172.76 

(172.23) 

[171.58] 

0.091 

(0.113) 

[0.109] 

3.93 

(5.17) 

[4.80] 

-0.35 

(-6.024) 

[-0.258] 

0.80 

(7.497) 

[0.476] 

0.28 

(0.42) 

[0.30] 

Girls 

120 

(262) 

[259] 

158.96 

(159.00) 

[158.44] 

158.94 

(159.19) 

[158.39] 

0.023 

(0.027) 

[0.046] 

3.33 

(2.80) 

[2.89] 

-0.54 

(-2.652) 

[-0.250] 

0.67 

(3.512) 

[0.344] 

0.23 

(0.29) 

[0.24] 

Cross Validity Predictive Power: The proposed predicted equations to predict the 

final stature of Japanese boys and girls were cross validated by the cross validity 

predictive power. Estimated cross validity predictive power of the predicted 

equations of Japanese boys and girls were shown in Table 5.9. Table 5.9 showed, for 

any independent sample of the Japanese population more than 99% of the variance 

on the predicted variable, PFS, would be explained by the proposed equations for 

both boys and girls. Therefore, the predicted equations for boys and girls were 

highly cross validated.    

Table 5.9 Estimated cross validity predictive power of the predicted equations for boys and 

girls. Values in the first bracket ( ) were of Ali and Ohtsuki (2001) and that in third bracket  

[ ] were of Rahman and Ali (2003) 

N P   R
2
      

Boys 

180 

(410) 

[464] 

3 

(3) 

[2] 

0.99926973  

(0.99910) 

[0.99922] 

0.999240353 

(0.99908) 

[0.99921] 

Girls 

120 

(262) 

[259] 

3 

(3) 

[2] 

0.99973438 

(0.99969) 

[0.99967] 

0.999718072 

(0.99968) 

[0.99966] 
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5.7.3 Least Absolute Shrinkage and Selection Operator (LASSO) Model  

The tolerance and variance inflection function showed the multicollinearity problem 

was presented in the regressors (Table 5.6). The aim of the present phases was to 

select the subset regression variables that variables could able to predict the final 

stature by using the LASSO model. The LASSO was a hybrid of a penalized 

estimation procedure and a variable selection procedure which not only helps to 

improve the prediction accuracy when dealing with multicollinearity data, but also 

carries several nice properties such as interpretability and numerical stability. 

Firstly, the optimal LASSO parameter s was obtained by using the 10-fold cross-

validated mean squared prediction error. Next, using the optimal value of s, the 

model was estimated and predicted with output its coefficient. Figure 5.6a showed 

the cross-validated error at each value of index and their corresponding standard 

error bands. From Figure 5.6a, one can saw that the speed of cross validity scores 

decreases dramatically until s = 0.1919. Thus, the optimum value of s was 0.1919. 

Since, the optimal fraction value was very small to one (i.e., s is 0.1919), the fitted 

model was not full model, which includes subset variables in the model.  

 
Figure 5.6a 10-fold cross-validated mean squared prediction error of boys 
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In order to saw how LASSO shrinks and predicts the coefficients more clearly, the 

LASSO estimated as a function of the standardized relative bound s as plotted. The 

x-axis (Figure 5.6b) on the graph presented as the ratio of the sum of the absolute 

current estimate over the sum of the absolute OLS estimates. And, for the y-axis 

(Figure 5.6b) was being standardized coefficients, generally when running LASSO, 

our S (data matrix of regressors) variables was standardized so that the penalization 

occurred equally over the variables. If they were measured on different scales, the 

penalization would be uneven. Intuitively, every coefficient would be squeezed to 

zero as s had gone to zero. Figure 5.6b showed that each monotone decreasing curve 

represented a coefficient as a function of relative bound s. The vertical red lines 

showed the optimum s value. The covariates enter the regression equation 

sequentially as s increased, in order i = 9, 14, 8, 13, 2, 12, 4, 6, 10, 1, 3, 7, 5, 11 and 

corresponding variables as S10, MS, S9, FS, S3, S13, S5, S7, S11, S2, S4, S8, S6, S12. 

 

Figure 5.6b LASSO coefficient shrinkage of boys 
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Secondly, using the optimum value 0.1919, the LASSO model was estimated. The 

LASSO estimate, standard error, Z-score, probability of exact level of significant 

and comment of significant levels were shown in Table 5.10a. The standard errors 

(SE) were estimated by bootstrap resampling of residuals from the original data set. 

LASSO chooses S3, S5, S7, S9, S10, S13, FS and MS. Notice that LASSO yielded 

smaller standard error for FS and MS. This showed that LASSO predicted the 

coefficients with more accuracy. The FS and MS were found significant respective 

at less than 1%, imply that had impact on PFS for boys. Table 5.10a also showed a 

tendency that LASSO estimate was subset of all predictor. This was due to its 

constraint nature, that all predictions were subtracted by a threshold value. 

Table 5.10a Summary statistics of LASSO model for boys 

Predictor Coefficients Standard Error Z-score Pr(>|t|) Significant at 

S2 0.0000 0.1065 0.0000 1.0000  

S3 0.0839 0.1410 0.5946 0.5521  

S4 0.0000 0.1924 0.0000 1.0000  

S5 0.0076 0.2060 0.0370 0.9705  

S6 0.0000 0.2029 0.0000 1.0000  

S7 -0.0034 0.3387 -0.0102 0.9919  

S8 0.0000 0.4534 0.0000 1.0000  

S9 0.2345 0.4650 0.5043 0.6141  

S10 0.1419 0.4002 0.3547 0.7228  

S11 0.0000 0.3240 0.0000 1.0000  

S12 0.0000 0.2807 0.0000 1.0000  

S13 0.0121 0.1502 0.0802 0.9361  

FS 0.2284 0.0585 3.9060 0.0001 < 1 percent 

MS 0.2724 0.0728 3.7434 0.0002 < 1 percent 
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Therefore, the prediction equations for boys using LASSO estimate as follows: 

For boys: 

MSFSSSSSSSPFS 2724.02284.00121.01419.02345.00034.00076.00839.0 13109753 
  

In the above equation, only FS and MS were found statistically significant at less 

than 1% level. 

Similarly, LASSO model was applied to the girl’s data. From Figure 5.7a, one can 

saw that the speed of cross validity scores decreased dramatically until s = 0.7879. 

Thus, the value as 0.7879 was picked as an optimized s value. Since, the optimal 

fraction value was near to one (i.e., s is 0.7879), the fitted model was near to full 

model, which included subset variables in the model.  

LASSO estimated as a function of the standardized relative bound s was plotted for 

seeing how LASSO shrinks and predicted the coefficients more clearly. Intuitively, 

every coefficient would be squeezed to zero as s goes to zero. Figure 5.7b showed 

that each monotone decreasing curve represented a coefficient as a function of 

relative bound s. The vertical red lines showed at which s value that each coefficient 

shrinks to zero. The covariates entered the regression equation sequentially as s 

increase, in order i = 12, 14, 13, 1, 10, 11, 8, 3, 2, 9, 5, 6, 4, 7 and corresponding 

variables as S13, MS, FS, S2, S11, S12, S9, S4, S3, S10, S6, S7, S5, S8. 

Table 5.10b showed the LASSO estimate, standard error, Z-score and exact 

significant level of the parameters, using the optimum value of s was 0.7879. The 

standard errors (SE) were estimated by bootstrap resampling of residuals from the 

original data set. LASSO chooses S2, S3, S4, S5, S6, S7, S10, S11, S12, S13, FS and MS. 

Notice that, the LASSO yielded smaller standard error for FS and MS. This showed 
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that LASSO predicted the coefficients with more accuracy. The S12, S13 and MS 

were found significant respective at less than 1%, imply that having impact on PFS 

for girls. Table 5.10b also showed a near tendency that LASSO estimate was subset 

of all predictor. This was due to its constraint nature, that all predictions were 

subtracted by a threshold value. 

 

Figure 5.7a 10-fold cross-validated mean squared prediction errors of girls 

Figure 5.7b LASSO coefficient shrinkage of girls 
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Table 5.10b Summary statistics of LASSO model for girls 

Predictor Coefficients Standard Error Z-score Pr(>|t|) Significant at 

S2 0.1085 0.1186 0.9153 0.3601  

S3 0.1036 0.1383 0.7490 0.4539  

S4 -0.1468 0.1339 -1.0961 0.2730  

S5 0.1377 0.1515 0.9087 0.3635  

S6 -0.0656 0.1489 -0.4405 0.6596  

S7 -0.1272 0.2569 -0.4952 0.6204  

S8 0.0000 0.3690 0.0000 1.0000  

S9 0.0000 0.3615 0.0000 1.0000  

S10 0.5287 0.2899 1.8233 0.0683  

S11 -0.3739 0.2355 -1.5878 0.1123  

S12 -0.8443 0.2545 -3.3173 0.0009 < 1 percent 

S13 1.3490 0.1801 7.4907 0.0001 < 1 percent 

FS 0.0750 0.0603 1.2439 0.2135  

MS 0.1579 0.0546 2.8934 0.0038 < 1 percent 

Therefore, the prediction equations for girls using LASSO estimate as follows: 

For girls: 

1110765432 3739.05287.01272.00656.01377.01468.01036.01085.0 SSSSSSSSPFS 
            

MSFSSS 1579.00750.03490.18443.0 1312   

In the above equation, only S12, S13 and MS were found statistically significant at 

less than 1% level. 

Precision of the Estimated Model: Analysis of residual for boys and girls were 

considered to understand the precision of the predicted final stature. Average of 

observed, predicted value and residual values, 95% confidence bounds of mean 

residuals and standard error (SE) of predicting the final stature for boys and girls 

were shown in Table 5.11. The average value of residual was 0.00 cm and standard 

error of residuals and prediction were as 3.84 cm and 0.24 cm, respectively for boys 

that were small, implying the prediction equation was sufficient for predicting the 

final stature. Similarly, the average value of residual was 0.00 cm and standard error 
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of residuals and prediction were as 2.59 cm and 0.32 cm, respectively for girls that 

were also small, implying the prediction equation was sufficient for predicting the 

final stature. Therefore, the prediction of final stature based on different stature 

variables using LASSO model accurately estimated the stature for both boys and 

girls. 

Table 5.11 Average of observed, predicted, residual, 90% confidence bounds of residuals 

and standard error (SE) of predicted equations of final stature for boys and girls. Values in 

the first bracket ( ) were of Ali and Ohtsuki (2001) and that in third bracket [ ] were of 

Rahman and Ali (2003) 

Data 

Set 

size 

Observed 

stature 

(cm) 

Predicted 

stature 

(cm) 

Residual (cm)  95% confidence 

bound of mean 

residuals (cm) 

SE of 

prediction 

(cm) 

Mean SD Lower Upper  

Boys 

180 

(410) 

[464] 

172.85 

(172.34) 

[171.69] 

172.85 

(172.23) 

[171.58] 

0.00 

(0.113) 

[0.109] 

3.84 

(5.17) 

[4.80] 

-0.57 

(-6.024) 

[-0.258] 

0.57 

(7.497) 

[0.476] 

0.24 (0.42) 

[0.30] 

Girls 

120 

(262) 

[259] 

158.96 

(159.00) 

[158.44] 

158.96 

 (159.19) 

[158.39] 

0.00 

(0.027) 

[0.046] 

2.59 

(2.80) 

[2.89] 

-0.47 

(-2.652) 

[-0.250] 

0.47 

(3.512) 

[0.344] 

0.32 

(0.29) 

[0.24] 

 

5.7.4 Comparisons of Precision 

Generally, the precision of least absolute shrinkage and selection operator (LASSO) 

model was better than that of the ridge regression model. The LASSO model 

produced less standard deviation of residuals and standard error of predicted stature 

than the forward stepwise ridge regression model. The forward stepwise ridge 

regression model under-estimated the PFS but LASSO accurately estimated the PFS 

for both boys and girls. Therefore, the LASSO fitted the model more adequately 

than the forward stepwise ridge regression model. The forward stepwise ridge 

regression model showed that the final prediction equations for boys and girls 

depended on ‘stature at the age 9 and parent statures’ and ‘stature at the age 13 and 
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parent statures’, respectively. But, the LASSO model implied that the ‘parent 

stature’ for boys, and ‘stature at the age 12, stature at the age 13 and mother stature’ 

for girls had a significant effect on the predicted final stature (PFS). In LASSO 

model, some unnecessary (insignificance) variables were included in an estimated 

model but that of not do by the forward stepwise ridge regression model. Therefore, 

the equation of forward stepwise ridge regression model can be used for predicting 

final stature. 

5.8  Comparisons with Other Studies 

According to Jolicoeur et al. (1992), JPA-2 model fitted to the human stature data 

better than all other asymptotic models till 1991. While, BTT model was found to be 

better than JPA-2 model (Rahman et al., 2004). The present study showed that the 

proposed model was better than BTT model. Hence, it was argued that the proposed 

higher dimensional growth model was better than all other asymptotic models till 

now. 

Comparing with Ali and Ohtsuki (2001), and Rahman and Ali (2003), the present 

study showed that the prediction of final stature based on statures at different ages 

and parent statures were more useful with higher precession for the Japanese 

population. Statures at the ages 9 and 13 were very important for PFS, respectively 

for boys and girls which was in accord with others (Ali and Ohtsuki, 2001; and Ali 

and Rahman, 2003). Here, the parent statures were also important for PFS for both 

boys and girls. On the other hand, the present prediction equations were easy to 

calculate and need three stature values only and need not to fit any model with 

longitudinal data from birth to maturity. 
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The mean residuals of the predicted final stature of the present study (Table 5.8 and 

Table 5.11) were smaller compared with that of others (Bayley and Pinneau, 1952; 

Khamis and Guo, 1993; Khamis and Roche, 1994; Roche et al., 1975a, b; Wainer et 

al., 1978; Ali and Ohtsuki, 2001; Rahman and Ali, 2003). Moreover, the LASSO 

estimated PFS more precisely than the forward stepwise ridge regression model. 

Average prediction failure was reported by Khamis and Guo (1993) as about 10% 

for boys and 8% for girls. Ali and Ohtsuki (2001) found 12% prediction failure for 

case 3 (who do not have a mid-growth spurt) of Japanese boys and 7% for case 1 

(whole sample individuals), 2% for case 2 (who have the mid-growth spurt), and 6% 

for case 3 (who do not have the mid-growth spurt) of Japanese girls. While, Rahman 

and Ali (2003) found in boys, 8% failure occurred for case 3 (who do not have a 

mid-growth spurt), but, in girls, failures of 6% for case 1 (whole sample 

individuals), 2% for case 2 (who have the mid-growth spurt), 4% for case 3 (who do 

not have the mid-growth spurt). In the present prediction, the average prediction 

failure was 0% for both boys and girls.  

Standard errors of the predicting final stature (Table 5.8 and Table 5.11) were 

smaller than those of some others (Onat, 1975 and 1983; Ali and Ohtsuki, 2001; 

Rahman and Ali, 2003). Comparing with 90% confidence bounds for residuals, the 

girls (Table 5.8 and Table 5.11) showed better prediction than those of some others 

(Ali and Ohtsuki, 2001; Rahman and Ali, 2003; Khamis and Roche, 1994; Roche et 

al., 1975a; Wainer et al., 1978). 

Finally, the values of R
2 

and cross validity predictive power were very high for both 

boys and girls compared with Ali and Ohtsuki (2001), and Rahman and Ali (2003). 

Therefore, the proposed prediction equations are also useful for predicting final 

stature of Japanese population. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATION 

 

 

 

 

6.1  Outline 

This chapter includes major finding with recommendation, limitation of study and 

scope of further study. 

6.2  Major Finding 

The secondary longitudinal data of age, weight and stature of 300 Japanese (180 

boys and 120 girls), each between 0 to 20 years old and covering birth-years of 1967 

to 1977, have been used. The estimated population mean, standard deviation (SD), 

and correlation matrix of the parameters of proposed model and their average root 

mean square errors for boys and girls were shown in Result and Discussion section. 

In the present study, our proposed model demonstrated that, on average, 30.102%, 

29.933%, and 39.965% of the total final stature were completed during early, middle 

and adolescent phase of growth, respectively, for the male population and for the 

female population, these percentages are 29.169%, 36.137%, and 34.694%, 

respectively. The correlation between (a1, a2), (a1, a21), (a1, a22), (a1, c2), (a11, a12), 

(a11, c1), (a12, c1), (a21, a22), (a21, c2), (a22, c2), (a31, a32), (a31, c3) and (a32, c3) for 

boys, and that of between (a1, a2), (a1, a3), (a11, a12), (a11, c1), (a12, c1), (a12, a3), (a3, 
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c1), (a2, a22), (a2, c2), (a21, c2), (a3, c3), (a31, a32) and (a32, c3) for girls are statistically 

significant at most 5%. The average root mean square error for boys is larger than 

that for girls for both boys and girls. The average root mean square error of BTT 

model is larger than that of the proposed model for both boys and girls. 

The distribution of predicted stature, one average, showed that the boys became 

taller than girls from age 1 to 9 and 12 to 25. But, the distribution of predicted 

stature, one average, showed that the girls became taller than boys from age 10 to 

11.  

The line graph of observed vs. fitted showed that the proposed model estimated the 

stature for boys and girls more precisely than the BTT model. A particular data set, 

the mean square error of the BTT model is always greater than the mean square 

error of the proposed model for different values of shape parameters, implying that 

the proposed model estimated the stature more precisely than the BTT model for 

different values of shape parameters also. For the different data set, the value of 

shape parameters assumed to be fixed and thus it is found that the mean square error 

of the proposed model were always smaller than the BTT model for both boys and 

girls. Therefore, the proposed model estimated the stature for both boys and girls 

more precisely than the BTT model. 

After extracting the final stature and stature at different ages from the well fitted 

proposed model and eliminating the problem of multicollinearity using Forward 
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Stepwise Ridge Regression and LASSO techniques, the following equations were 

established with higher precession, validity and stability: 

From Forward Stepwise Ridge Regression Technique 

For boys: FSSMSPFS 322908.0342368.0333572.0 9    

For girls:

 

FSMSSPFS 294889.0316876.00.387948 13   

From Least Absolute Shrinkage and Selection Operator (LASSO) Technique 

For boys:  

MSFSSSSSSSPFS 2724.02284.00121.01419.02345.00034.00076.00839.0 13109753 
  

In the above equation, only FS and MS were found significant at less than 1% level. 

For girls: 

1110765432 3739.05287.01272.00656.01377.01468.01036.01085.0 SSSSSSSSPFS 
          

MSFSSS 1579.00750.03490.18443.0 1312   

In the above equation, only S12, S13 and MS were found significant at less than 1% 

level. 

The above equations need not any longitudinal data, but also stature at age 9, 12, 13 

and parent statures to estimate final stature. 
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6.3  Limitations of the Study 

In the present study, only two regressor variables, i.e., age and weight have been 

considered and many other important variables on stature have been omitted. It 

would have been better if we could have included all the variables in the model, 

thereby better explaining the stature. Due to the limitation of research title and lack 

of data, only three variables have been considered. Finally, in age and weight there 

may be multicollinearity problems which are ignored.  

6.4  Scope for Further Research 

In further research, one can try to find out the asymptotic distribution of the growth 

parameters of the proposed model. Longitudinal data of human growth have not 

been collected and preserved in our country. After collecting this type of data our 

country may also predict the final stature of our children. Moreover, the present 

study considers three variables, and the prediction is based on the ages 2 to 13 and 

parent statures. In future, there’s still plenty of scope for including more than three 

variables in the model, and the prediction of final stature may also be carried out, 

based on the biological parameters in the days to come. 



 

 

Prediction of Final Stature from a New 3D TwoStage Growth Model 

 
BIBLIOGRAPHY 

 

 

 

 

 

 

  

“A Mathematician knows how to solve a problem but he can’t do it.”  - W.E. Milne 



 

 

Bibliography 

 125    
 

BIBLIOGRAPHY 

 

 

 

Ali MA and Ohtsuki F (2000). Estimation of maximum increment age in height and 

weight during adolescence and the effect of World War II. American Journal of 

Human Biology, 12:363–370. 

Ali MA and Ohtsuki F (2001). Prediction of adult stature for Japanese population: A 

stepwise regression approach. American Journal of Human Biology, 13:316–

322. 

Ali MA, Rahman JAMS, Ashizawa K and Ohtsuki F (2004a). Human growth in 

Japanese children: An application of triphasic generalized logistic model. 

International Journal of Statistical Sciences, 3:75–92. 

Ali MA, Rahman JAMS, Ashizawa K and Ohtsuki F (2004b). Stepwise regression 

for predicting final stature of Japanese children. International Journal of 

Statistical Sciences, 3:269–280. 

Ashizawa K, Kumakura C, and Kusumoto A (1998). Growth of the Philippine 

children in Reference to socioeconomic environment. Anthropological Science, 

106:77-94. 

Ashizawa K, Kato S and Eto M (1993). Individual adolescent growth of stature, 

body weight, and chest circumference of girls in Tokyo. Anthropological 

Science, 102(4):421–446. 

Ashizawa K, Kumakura C, Kato S, Kawabe T, Hauspie RC and Eto M (2005). 

Adolescent height growth of girls in Tokyo. Anthropological Science, 113:245–

252. 



 

 

Bibliography 

 126    
 

Bayley N and Pinneau SR (1952). Tables for predicting adult height from skeletal 

age: Revised for use with Greulich-Pyle hand standards. Journal of Pediatrics, 

40:423-441. 

Berkey CS (1982). Comparison of two longitudinal growth models for preschool 

children. Biometrics, 38:221–234. 

Berkey CS and Reed RB (1987). A model for describing normal and abnormal 

growth in early childhood. Human Biology, 49:973–987. 

Billewicz WZ and McGregor IA (1982). A birth-to-maturity longitudinal study of 

heights and weights in two West African (Gambian) villages, 1951-1975. 

Annals of Human Biology. 9:309-320. 

Bjelica D, Popovi S, Kezunovi M, Petkovi J, Jurak G and Grasgruber P (2012). 

Body height and its estimation utilizing arm span measurements in 

Montenegrin adults. Anthropological Notebooks, 18(2):69–83. 

Bock RD, Wainer H, Petersen A, Thissen D, Murray J and Roche AF (1973). A 

parameterization for individual human growth curves. Human Biology, 45:63–

80. 

Bock RD and Thissen D (1976). Fitting multi-component models for growth in 

stature. Proceeding of the 9th International Biometrics Conference, 1:431–442. 

Bock RD and Thissen D (1980). Statistical problem of fitting individual growth 

curves. In: Johnston FE, Roche AF, Susanne C (eds.), Human physical growth 

and maturation: methodologies and factors, New York, 30:265–290. 

Bock RD, du Toit SHC and Thissen D (1994). AUXAL: Auxological analysis of 

longitudinal measurements of human stature. Chicago: Scientific software 

international. 

Bogin B and Silva MIV (2010). Leg length, body proportion, and health a review 

with a note on beauty. International Journal of Environmental Research and 

Public Health, 7:1047–1075. doi:10.3390/ijerph7031047 



 

 

Bibliography 

 127    
 

Bogin B, Wall M and MacVean RB (1990). Longitudinal growth of high 

socioeconomic status Guatemalan children analized by the Preece-Baines 

function: An international comparison. Annals of Human Biology, 2:271-281. 

Bogin B, Wall M and MacVean RB (1992). Longitudinal analysis of adolescent 

growth of Ladino and Mayan school children in Guatemala: Effects of 

environment and sex. American Journal of Physical Anthropology, 89:447-457. 

Brown T and Townsend GC (1982). Adolescent growth in height of Australian 

Aboriginals analysed by the Preece-Baines function: a longitudinal study.  

Annals of Human Biology, 9:495-505.  

Byard PJ, Guo S and Roche AF (1993). Family resemblance for Preece-Baines 

growth curve parameters in the Fels Longitudinal Growth Study. American 

Journal of Human Biology, 5:151-157. 

Box GEP and Cox DR (1964). An analysis of transformations. Journal of the Royal 

Statistical Society, Series B (Methodological), 26:211–243. 

Broeck JVD, Massa GG, Attanasio A, Matranga A, Chaussain JL, Price DA, 

Aarskog D, Wit JM and European Study Group (1995). Final height after long-

term growth hormone treatment in turner syndrome. The Journal of Pediatrics, 

127:729–35. 

Cameron N, Tanner JM and Whitehouse RH (1982). A longitudinal analysis of the 

growth of limb segments in adolescence. Annals of Human Biology, 9:211-220. 

Chittawatanarat K, Pruenglampoo S, Trakulhoon V, Ungpinitpong W and 

Patumanond J (2012). Height prediction from anthropometric length parameters 

in Thai people. Asia Pacific Journal of Clinical Nutrition, 21 (3):347–354. 

Choksi A, Babu GR and Dahiya MS (2014). Study on the primary characteristics of 

identification estimation of stature from palm length among the native Guajarati 

population. NHL Journal of Medical Sciences, 3(2):13–17. 



 

 

Bibliography 

 128    
 

Chumlea WC, Guo SS, Wholihan K, Cockram D, Kuczmarski RJ and Johnson CL 

(1998). Stature prediction equations for elderly non-Hispanic white, non-

Hispanic black, and Mexican-American persons developed from NHANES III 

data. Journal of the American Dietetic Association, 98(2):137–142. 

Cole TJ (2000). Galton's midparent height revisited. Annals of Human Biology, 

27(4):401–405. 

CookRD (1977). Detection of influential observations in linear regression. 

Technometrics, 19(1):15–18. doi:10.2307/1268249. 

Cook RD and Weisberg S (1982). Residuals and influence in regression, New York: 

Chapman and Hall. 

Count EW (1943). Growth patterns of human physique: an approach to kinetic 

anthropometry. Human Biology, 15:1–32. 

Csukás A, Takai S and Baran S (2006). Adolescent growth in main somatometric 

traits of Japanese boys: Ogi longitudinal growth study. HOMO—Journal of 

Comparative Human Biology, 57:73–86. 

Deming J (1957). Application of the Gompertz curve to the observed pattern of 

growth in length of 48 individual boys and girls during the adolescent cycle of 

growth. Human Biology, 29:83–122. 

Deming J, and Washburn AH (1963). Application of the Jenss curve to the observed 

pattern of growth during the first eight years of life in forty boys and forty girls. 

Human Biology, 35:484–506. 

du Toit (1992). Multi-component models for non-consecutive data with ARMA(1,1) 

residuals. Department of Statistics, University of Pretoria. 

Feldesman MR (1992). Femur stature ratio and estimates of stature in children. 

American Journal of Physical Anthropology, 87:447–459. 



 

 

Bibliography 

 129    
 

Fukami M, Matsuo N, Hasegawa T, Sato S and Ogata T (2003). Longitudinal 

auxological study in a female with SHOX (short stature homeobox containing 

gene) haploinsufficiency and normal ovarian function. European Journal of 

Endocrinology, 149:337–341. 

Greulich WW and Pyle SI (1950). Atlas of Skeletal Development of the Hand and 

Wrist. Stanford University Press. 

Hauspie RC (1980). Adolescent growth. In Johnston FE, Roche AF, and Susanne C 

(eds.): Human Physical Growth and Maturation. New York: Plenum, 161-175. 

Hauspie RC, Das SR, Preece MA, and Tanner JM (1980a). A longitudinal study of 

the growth in height of boys and girls of West Bengal (India) aged six months 

to 20 years. Annals of Human Biology, 7:429-441. 

Hauspie RC, Wachholder A, Baron G, Cantraine F, Susanne C and Graffar M 

(1980b). A comparative study of the fit of four different functions to 

longitudinal data of growth in height of Belgian girls. Annals of Human 

Biology, 7:347-358. 

Henneberg GM and Louw JG (1998). Cross sectional survey of growth of urban and 

rural ―cape coloured‖ school children: Anthropometry and functional tests. 

American Journal of Human Biology, 10:73–85. 

Hoerl AE, Kennard RW and Baldwin KF (1975). Ridge regression: some 

simulation. Communications in Statistics, 4:105–123. 

Hui L, XinNan Z, Jing Z, and ZongHan Z (2011). Physical growth of children in 

urban, suburban and rural mainland china a study of 20 years’ change. 

Biomedical and Environmental Science, 24(1):1–11. 

Huxley JS (1932). Problems of relative growth. Lincoln Mac Veagh—The Dial 

Press, New York. 

Huxley JS and Tessier G (1936). Terminology of relative growth. Nature, 137:780–

781. 



 

 

Bibliography 

 130    
 

Ilayperuma I, Nanayakkara G and Palahepitiya N (2010). A Model for the 

estimation of personal stature from the length of forearm. International Journal 

of Morphology, 28(4):1081–1086. 

Israelsohn WJ (1960). Description and modes of analysis of human growth.  In 

Human Growth, J.M. Tanner (ed.), 21-42. New York: Pergamon Press. 

Jenss RM, and Bayley N (1937). A mathematical model for studying the growth of a 

child. Human Biology, 9:556–563. 

Johnson ML (1993). Methods for the analysis of saltation and stasis in human 

growth data. In: Lampl M (ed). Saltation and Stasis in Human Growth and 

Development: Evidence, Methods and Theory. London: Smith-Gordon, 

1999:27–32. 

Johnson W, Choh AC, Soloway LE, Czerwinski SA, Towne B and Demerath EW 

(2011). Eighty-year trends in infant weight and length growth: The 

Felslongitudinal study. The Journal of Pediatrics, doi: 

10.1016/j.jpeds.2011.11.002. 

Jolicoeur P, Pontier J, Pernin MO and Sempe M (1988). A lifetime asymptotic 

growth curve for human height. Biometrics, 44:995–1003. 

Jolicoeur P, Pontier J, and Abidi H (1992). Asymptotic models for the longitudinal 

growth of human stature. American Journal of Human Biology, 4:461–468. 

Jones ADGB, Eisenmann JC and Sherar LB (2005). Controlling for maturation in 

pediatric exercise science. Pediatric Exercise Science, 17:18–30. 

Kanefuji K and Shohoji T (1990). On a growth model of human height. Growth 

development and Aging, 54:155–165. 

Karlberg J (1989). A biologically-oriented mathematical model (ICP) for human 

growth. Acta Paediatrica Supplement, 350:70–94. 



 

 

Bibliography 

 131    
 

Kato S, Ashizawa K and Satoh K (1998). An examination of the definition 'final 

height' for practical use. Annals of Human Biology, 25(3):263–70. 

Khamis HJ and Guo S (1993). Improvement in the Roche-Wainer-Thissen stature 

prediction model: A comparative study. American Journal of Human Biology, 

5: 669-679. 

Khamis HJ and Roche AF (1994). Prediction adult stature without using skeletal 

age: The Khamis Roche method. Pediatrics 94(4):504–507. 

Khamis HJ (1993). Improvement in the Roche-Wainer-Thissen stature prediction 

model: A comparative study. American Journal of Human Biology, 5(6):669–

679. 

Kuninaka H and Matsushita M (2014). Multiplicative modeling of children’s growth 

and its statistical properties. Journal of the Physical Society of Japan. Draft 

Ledford AW and Cole TJ (1998). Mathematical models of growth in stature 

throughout childhood. Annals of Human Biology, 25:101–115. 

Leigh SR (2001). Evolution of human growth evolutionary. Anthropology, 10:223–

236. 

Lindgren WG and Hauspie CR (1989). Heights and weights of Swedish school 

children born in 1955 and 1967. Journal of Human Biology, 16(5):397–406. 

Maijanen and Niskanen (2006). Comparing stature-estimation methods on medieval 

inhabitants of Westerhus, Sweden. Fennoscandia archaeologica, 23:37–46. 

Manwani AH and Agarwal KN (1973). The growth patterns of Indian infants during 

the first year of life. Human Biology, 45:341–349. 

Marquardt DW (1970). Generalized inverses, ridge regression, biased linear 

estimation, and nonlinear estimation. Technometrics, 12:591–612. 



 

 

Bibliography 

 132    
 

Marubini E, Resele LF and Barghini G (1971). A comparative fitting of the 

Gompertz and logistic functions to longitudinal height data during adolescence 

in girls. Human Biology, 43:237–252. 

Mata LJ (1978). The children of Santa Maria Cauque. Cambridge, Massachusetts: 

MIT Press. 

Merrell M (1931). The relationship of individual growth to average growth. Human 

Biology, 3:37–70. 

Mirwald RL, Bailey DA, Cameron N and Rasmussen RL (1981). Longitudinal 

comparison of aerobic power in active and inactive boys aged 7.0 to 17.0 years. 

Annals of Human Biology, 8:405-414. 

Mounir GM, Sayed NAE, Mahdy NH and Khamis SE (2007). Nutritional factors 

affecting the menarcheal state of adolescent school girls in Alexandria. Journal 

of the Egyptian Public Health Association, 82:239–260. 

Needlman RD (2003). Growth and development. In: Behrman RE, et al. Nelson 

Textbook of Pediatrics. 17th ed. Philadelphia, Pa.: Saunders. 

Nocedal J and Wright SJ (1999). Numerical optimization. Springer-Verlag. ISBN 0-

387-98793-2. 

Onat T (1975). Prediction of adult height of girls based on the percentage of adult 

height at onset of secondary sexual characteristics, at chronological age, and 

skeletal age. Human Biology, 47(1):117–130. 

Onat T (1983). Multifactorial prediction of adult height of girls during early 

adolescence allowing for genetic potential, skeletal and sexual maturity. Human 

Biology, 55(2):443–461. 

Pomeroy E and Stock JT (2012). Estimation of stature and body mass from the 

skeleton among coastal and mid-altitude Andean populations. American 

Journal of Physical Anthropology, 147:264–279. 



 

 

Bibliography 

 133    
 

Preece MA and Baines MJ (1978). A new family of mathematical models describing 

the human growth curve. Annals of Human Biology, 5:1–24. 

Qin T, Shohoji T and Sumiya T (1996). Relationship between adult stature and 

timing of the pubertal growth spurt. American Journal of Human Biology, 

8:417-426. 

Rahmandad (2014). Human growth and body weight dynamics: An integrative 

systems model. PLoS ONE 9(12): e114609. doi:10.1371/journal.pone.0114609 

Raxter MH, Auerbach BM and Ruff CB (2006). Revision of the fully technique for 

estimating statures. American Journal of Physical Anthropology,130:374–384. 

Rahman and Ali (2003). Prediction of adult stature of Japanese boys and girls. 

Unpublished Ph.D. Dissertation. Department of Statistics, University of 

Rajshahi, Rajshahi-6205, Bangladesh.  

Rahman JAMS, Ali MA, Ashizawa K and Ohtsuki F (2004). Prediction of adult 

stature for Japanese population: an improvement of Ali-Ohtsuki equations. 

Anthropological science, 112:61–66. 

Robertson TB (1908). On the normal rate of growth of an individual, and its 

biochemical significance. Archiv fur Entwicklungsmechanik der Organismen, 

25:581–614. 

Roche AF, Wainer H and Thissen D (1975a). The RWT method for the prediction of 

adult stature. Pediatrics, 56(6):1027–1033. 

Roche AF, Wainer H, and Thissen D (1975b). Predicting adult stature for 

individuals. Monograph in Paediatrics. 3: Karger, Basel. 

Rosique J and Rebato E (1995). Comparative study of statural growth in Spanish 

populations. American Journal of Human Biology, 7:553–564. 



 

 

Bibliography 

 134    
 

Sarajlić N, Cihlarž Z, Klonowski EE and Selak I (2006). Stature estimation for 

Bosniam male population. Bosnian Journal of Basic Medical Sciences, 

6(1):62–67. 

Shahar S and Pooy NS (2003). Predictive equations for estimation of stature in 

Malaysian eldered people. Asia Pacific Journal Clinical Nutrition, 12(1):80–84 

Shahin MA, Ali MA, Ali ABMS (2012). Higher Dimensional Growth Model: An 

Extension of the Bock, Thissen and du Toit (BTT) Model. Proceedings of 

International Conference on Statistical Data Mining for Bioinformatics, Health, 

Agriculture and Environment. 21-24 December, 2012, 301-309, ISBN: 978-

984-33-5876-9. 

Shahin MA, Ali MA and Ali ABMS (2013). An extension of generalized triphasic 

logistic human growth model. Journal of Biometrics and Biostatistics, 4:162. 

doi:10.4172/2155- 6180.1000162 

Shohoji T and Sasaki H (1987). Individual growth of Japanese. Growth, 51:432– 

450. 

Sorensen D, Gianola D (2002). Likelihood, Bayesian, and MCMC Methods in 

Quantitative Genetics, Springer-Verlag, New York. 

Stovitz SD, Pereira MA, Vazquez G, Lytle LA and Himes JH (2008). The 

interaction of childhood height and childhood BMI in the prediction of young 

adult BMI. Obesity, 16:2336–2341. doi:10.1038/oby.2008.359 

Stevens J (1996). Applied multivariate statistics for the social sciences. Third 

Edition. Lawrence Erlbaum Associates, Inc., Publishers, New Jersey. 

Sunil, Dikshit PC and Aggrawal A (2005). Estimation of stature from hand length. 

Journal of Indian Academy of Forensic Medicine, 27(4):219–221. 

Suski PM and Angeles L (1935). Body measurements of Japanese children born in 

America. California and Western Medicine, 43(3):208–209. 



 

 

Bibliography 

 135    
 

Takai S (1993). Velocities for the Tanner-Whitehouse 2 skeletal maturity in 

northwest Japanese children. Okajimas Folia Anatomica Japonica, 70(2-

3):119–126. 

Tanner JM, Hayashi T, Preece MA and Cameron N (1982). Increase in length of leg 

relative to trunk in Japanese children and adults from 1957 to 1977: comparison 

with British and with Japanese Americans. Annals of Human Biology, 9:411-

423. 

Tanner JM, Healy MJR, Lockhart RD, MacKenzie JD, and Whitehouse RH (1956). 

The prediction of adult body measurements from measurements taken each year 

from birth to five years. Archives of Disease in Childhood, 31:372-381. 

Tibshirani R (1996). Regression shrinkage and selection via the LASSO. Journal of 

the Royal Statistical Society, Series B (Methodological), 58(1):267–288. 

Tsuzaki S, Matsuo N, Saito M and Osano M (1990). The head circumference growth 

curve for Japanese children between 0-4 years of age: Comparision with 

Caucasian children and correlation with stature. Annals of Human Biology, 

17(4):297–303. 

Wainer H,  Roche AF and Bell S (1978). Predicting adult stature without skeletal 

age and without paternal data. Pediatrics, 61(4):569–572. 

Wingerd J (1970). The relation of growth from birth to two years to sex, parental 

size and other factors, using Rao’s method of transformed time scale.  Human 

Biology, 42: 105-131. 

Zemel B and Johnston F (1994). Application of the Preece-Baines growth model to 

cross-sectional data: Problems of validity and interpretation. American Journal 

of Human Biology, 6:563-570. 

 



Prediction of Final Stature from a New 3D TwoStage Growth Model 
 

 
APPENDIX-1 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

“I know of no way of Judging the Future but by the Past.”  - Patrick Henry (1775) 



 

 

Appendix-1 

 136   
 

APPENDIX-1 

SAMPLE DATA SET 

 

 

 

 

All the data sets (total data set number 300) are available to the author. But, only one 

data set for the Japanese boys and one for girls are shown bellow. 

Table: Age, stature, weight, father stature and mother stature of Japanese boys and 

girls 

Boys 

 

Girls 

Data Set Number 1 Data Set Number 1 

Age 

(year) 

 

Stature 

(cm) 

 

Weight 

(kg) 

 

Father 

Stature 

(cm) 

Mother 

Stature 

(cm) 

Age 

(year) 

 

Stature 

(cm) 

 

Weight 

(kg) 

 

Father 

Stature 

(cm) 

Mother 

Stature 

(cm) 

01 75.0 10.0 171.0 155.5 01 70.6 8.6 168.0 156.0 

02 83.0 11.7   02 80.6 10.1   

03 91.8 13.7   03 92.2 13.5   

04 95.8 14.3   04 96.0 14.5   

05 102.8 16.2   05 99.2 15.4   

06 107.3 17.4   06 106.0 16.6   

07 116.7 20.0   07 110.0 18.5   

08 123.5 21.5   08 115.4 20.5   

09 126.9 24.0   09 120.6 22.4   

10 134.6 25.5   10 125.8 25.1   

11 141.3 27.8   11 131.1 26.8   

12 145.3 30.0   12 137.4 29.6   

13 153.5 37.5   13 141.1 32.5   

14 161.3 43.0   14 149.5 39.4   

15 166.3 45.5   15 153.8 41.2   

16 168.0 47.0   16 155.4 44.4   

17 169.0 50.0   17 156.1 43.0   

18 169.9 51.0   18 157.1 44.0   

19 169.8 53.0   19 157.6 45.0   

20 170.5 56.0   20    ---      ---   
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APPENDIX-2 

MEAN SQUARE ERRORS 

 

 

 

Table 1 Mean square errors for BTT and proposed models for boys 

D.S. 

No. 

MSE  D.S. 

No. 

 MSE  D.S. 

No. 

 MSE 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

01 0.81 0.46 61 0.89 0.82 121 0.73 0.41 

02 0.49 0.42 62 0.72 0.28 122 0.46 0.40 

03 0.47 0.34 63 0.78 0.65 123 0.73 0.34 

04 0.63 0.19 64 0.41 0.27 124 0.30 0.15 

05 0.81 0.72 65 0.56 0.32 125 0.25 0.18 

06 0.46 0.34 66 0.40 0.33 126 1.74 0.79 

07 0.85 0.60 67 1.38 0.34 127 0.30 0.28 

08 0.42 0.33 68 0.68 0.24 128 0.77 0.66 

09 0.89 0.31 69 0.65 0.62 129 0.76 0.38 

10 0.49 0.36 70 0.85 0.59 130 0.98 0.92 

11 0.74 0.70 71 0.48 0.41 131 0.67 0.35 

12 0.88 0.67 72 0.64 0.27 132 0.59 0.25 

13 0.97 0.92 73 0.58 0.18 133 0.99 0.64 

14 1.00 0.75 74 0.45 0.35 134 0.62 0.39 

15 0.56 0.48 75 0.34 0.31 135 0.58 0.25 

16 1.41 0.51 76 0.62 0.38 136 0.45 0.35 

17 0.96 0.72 77 1.02 0.66 137 0.34 0.31 

18 1.14 0.97 78 0.60 0.53 138 1.00 0.42 

19 0.29 0.28 79 0.62 0.32 139 0.58 0.42 

20 0.75 0.43 80 0.67 0.36 140 1.14 0.92 

21 0.56 0.17 81 1.38 0.42 141 0.60 0.53 

22 0.59 0.26 82 0.75 0.38 142 1.02 0.93 

23 0.87 0.51 83 0.77 0.66 143 1.30 1.11 

24 0.92 0.51 84 0.30 0.28 144 0.49 0.44 

25 0.84 0.34 85 0.60 0.40 145 0.44 0.31 

26 0.83 0.50 86 0.44 0.39 146 0.62 0.47 

27 0.77 0.33 87 0.62 0.47 147 0.65 0.62 

28 0.74 0.45 88 0.60 0.53 148 1.06 0.88 

29 1.33 0.48 89 0.49 0.30 149 0.83 0.81 

30 0.97 0.53 90 0.81 0.71 150 0.51 0.38 

31 0.78 0.36 91 0.67 0.29 151 0.52 0.46 

32 0.63 0.29 92 0.87 0.65 152 0.59 0.42 

33 0.87 0.33 93 0.35 0.19 153 0.70 0.67 

34 0.44 0.31 94 0.44 0.35 154 0.35 0.15 

35 1.02 0.93 95 0.77 0.57 155 0.71 0.52 

36 0.48 0.40 96 0.47 0.45 156 0.82 0.67 

Continued… 
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D.S. 

No. 

MSE  D.S. 

No. 

 MSE  D.S. 

No. 

 

 

MSE 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

37 0.82 0.47 97 0.75 0.33 157 0.39 0.22 

38 0.65 0.59 98 0.56 0.30 158 0.54 0.30 

39 0.72 0.53 99 0.74 0.32 159 0.25 0.19 

40 0.34 0.27 100 0.41 0.36 160 0.69 0.35 

41 0.73 0.64 101 0.49 0.30 161 0.48 0.28 

42 0.64 0.51 102 0.73 0.46 162 1.04 0.91 

43 0.57 0.22 103 0.51 0.31 163 0.48 0.34 

44 1.06 0.91 104 1.30 0.83 164 0.53 0.28 

45 0.92 0.79 105 0.63 0.60 165 0.77 0.29 

46 0.52 0.33 106 0.69 0.60 166 0.93 0.83 

47 0.52 0.43 107 0.82 0.71 167 0.97 0.61 

48 0.74 0.30 108 0.35 0.22 168 0.73 0.48 

49 0.71 0.30 109 0.31 0.23 169 0.63 0.33 

50 0.60 0.44 110 0.82 0.72 170 0.39 0.26 

51 0.89 0.77 111 0.51 0.43 171 0.89 0.76 

52 0.82 0.31 112 0.74 0.41 172 0.40 0.11 

53 0.39 0.25 113 0.68 0.41 173 0.66 0.30 

54 0.73 0.26 114 0.75 0.32 174 1.40 0.34 

55 0.66 0.56 115 0.42 0.30 175 0.40 0.32 

56 0.94 0.60 116 0.75 0.33 176 0.41 0.30 

57 0.53 0.28 117 0.94 0.53 177 0.41 0.27 

58 0.77 0.29 118 0.41 0.26 178 0.56 0.41 

59 0.40 0.20 119 0.74 0.33 179 0.40 0.34 

60 0.36 0.30 120 0.67 0.50 180 0.79 0.31 

Note: D.S. No. means Data Set Number 

Table 2 Mean square errors for BTT and proposed models for girls 

D.S. 

No. 

MSE  D.S. 

No. 

 MSE  D.S. 

No. 

 MSE 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

01 0.70 0.48 41 0.29 0.16 81 0.62 0.43 

02 0.38 0.36 42 0.53 0.38 82 0.77 0.47 

03 0.46 0.44 43 0.56 0.43 83 1.06 0.68 

04 0.69 0.44 44 0.46 0.31 84 1.18 0.88 

05 0.40 0.39 45 0.69 0.59 85 0.57 0.41 

06 0.43 0.32 46 0.46 0.41 86 0.51 0.36 

07 0.45 0.24 47 0.29 0.25 87 0.42 0.25 

08 0.28 0.24 48 0.50 0.34 88 0.30 0.22 

09 0.49 0.28 49 0.59 0.38 89 1.06 0.31 

10 0.73 0.49 50 0.68 0.32 90 0.89 0.63 

11 0.26 0.21 51 0.43 0.40 91 0.36 0.28 

12 0.46 0.24 52 0.47 0.21 92 0.31 0.26 

13 0.74 0.44 53 0.77 0.48 93 0.71 0.41 

14 0.31 0.19 54 0.71 0.57 94 0.81 0.56 

15 0.79 0.58 55 0.26 0.21 95 0.32 0.19 

16 1.03 0.30 56 0.88 0.21 96 1.07 0.75 

17 0.76 0.58 57 0.38 0.22 97 0.61 0.42 

18 0.31 0.19 58 0.46 0.39 98 0.78 0.57 

Continued… 
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D.S. 

No. 

MSE  D.S. 

No. 

 MSE  D.S. 

No. 

 MSE 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

BTT 

Model 

Proposed 

Model 

19 1.14 0.30 59 1.05 0.40 99 0.72 0.26 

20 0.30 0.24 60 0.64 0.62 100 0.72 0.68 

21 0.21 0.18 61 0.52 0.28 101 0.24 0.23 

22 0.81 0.61 62 0.79 0.68 102 1.05 0.31 

23 0.56 0.30 63 0.53 0.18 103 0.11 0.10 

24 0.32 0.25 64 0.55 0.21 104 0.30 0.19 

25 0.54 0.45 65 0.46 0.40 105 1.03 0.69 

26 0.32 0.23 66 0.46 0.43 106 0.69 0.45 

27 0.42 0.22 67 0.41 0.25 107 0.45 0.25 

28 0.74 0.32 68 0.84 0.54 108 0.83 0.60 

29 0.82 0.12 69 0.63 0.41 109 1.01 0.43 

30 0.59 0.44 70 0.69 0.50 110 1.02 0.60 

31 0.64 0.32 71 1.15 0.57 111 0.67 0.34 

32 0.60 0.48 72 0.43 0.39 112 0.45 0.29 

33 0.60 0.52 73 0.72 0.26 113 0.42 0.35 

34 1.27 0.43 74 0.60 0.51 114 0.27 0.22 

35 1.18 1.15 75 0.43 0.43 115 0.38 0.21 

36 0.81 0.59 76 0.91 0.28 116 0.66 0.67 

37 0.64 0.36 77 0.47 0.38 117 0.30 0.24 

38 0.39 0.15 78 0.72 0.28 118 0.90 0.78 

39 0.22 0.17 79 0.60 0.40 119 0.54 0.45 

40 1.08 0.75 80 0.31 0.31 120 0.35 0.33 

Note: D.S. No. means Data Set Number 
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APPENDIX-3 

FORWARD STEPWISE RIDGE REGRESSION MODEL 

  

 

 

Forward stepwise ridge regression model results of the Japanese boys and girls are 

available to the researcher. Results as summary of them are shown below.  

For boys 

Dependent variable: Predicted final stature (PFS) 

Table 1 Summary of forward stepwise ridge regression model for boys using ridge 

parameter: 0.0037, computed from modified HKB estimator 

Step Variable Coefficient (p-value) Standard 

error 

Fto inter 

/remove 

(p-value)  

DW- 

Value 

R
2
 

(Adj. R
2
) 

1 MS 0.995856 (0.000001) 0.005087  38331.41 

(0.000001) 

2.0182  0.99535191  

(0.99532594) 

2 MS 0.511742 (0.000001) 0.038311  36396.53 

(0.000001) 

2.0109 

 

 0.99756068  

(0.99753327) 

S9 0.486382 (0.000001) 0.038311 

3  MS  0.333572 (0.000001) 0.038531  34039.71 

(0.000001)  

2.0213  0.99926973  

(0.99824040) 

S9 0.342368 (0.000001) 0.036509 

FS 0.322908 (0.000001) 0.037915 

4 MS 0.272977 (0.000001) 0.036743  30447.29 

(0.000001) 

2.0253  0.99955697  

(0.99852417) 

S9 0.229365 (0.000001) 0.038503 

FS 0.268998 (0.000001) 0.035898 

S10 0.227805 (0.000001) 0.038488 

5 MS 0.233303 (0.000001) 0.035701  27314.93 

(0.000001) 

  

2.0929 

 

 0.99972029 

(0.99868373) S9 0.186539 (0.000002) 0.037474 

FS 0.234572 (0.000001) 0.034676 

S10 0.186001 (0.000002) 0.037409 

S3 0.158977 (0.000005) 0.033639 

6 MS 0.213970 (0.000001) 0.034889  24391.37 

(0.000001) 

2.0918 

 

 0.99981247   

(0.99877152) S9 0.152222 (0.000071) 0.037388 

FS 0.214886 (0.000001) 0.033925 

S10 0.148911 (0.000106) 0.037523 

S3 0.138225 (0.000044)  0.032985 

S13 0.131294 (0.000316) 0.035726 

Continued… 
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Step Variable Coefficient (p-value) Standard 

error 

Fto inter 

/remove 

(p-value)  

DW- 

Value 

R
2
 

(Adj. R
2
) 

7 MS 0.202341 (0.000001) 0.034292  21911.47 

(0.000001) 

2.0823 

 

 0.99987336  

(0.99882777) 

S9  0.122862 (0.001371) 0.037763 

FS  0.203117 (0.000001) 0.033362 

S10 0.122291 (0.001405) 0.037673 

S3 0.123091 (0.000219) 0.032599 

S13 0.111863 (0.001902) 0.035472 

S8 0.114002 (0.002585) 0.037283 

8 MS 0.193987 (0.000001) 0.033904  19795.92 

(0.000001) 

2.1138 

 

 0.99991510 

(0.99886464) S9 0.107795 (0.013214) 0.037623 

FS 0.195045 (0.000001) 0.032983 

S10 0.108592 (0.016611) 0.037457 

S3 0.102781 (0.008635) 0.033039 

S13 0.101755 (0.015176) 0.035130 

S8 0.097103 (0.006526) 0.037276 

S5  0.092558(0.027024) 0.035981 

9 MS 0.187364 (0.000001) 0.033699  17963.26 

(0.000001) 

 

2.1089  0.99994340  

(0.99888779) 

 

S9 0.094847 (0.000001) 0.037726 

FS 0.189917 (0.000001) 0.032733 

S10 0.093710 (0.000001) 0.037719 

S3 0.097045 (0.000001) 0.032810 

S13 0.087077 (0.000001) 0.035440 

S8 0.085253 (0.000001) 0.037307 

S5 0.084463 (0.000001) 0.035812 

S11 0.079968 (0.000001) 0.037361 

 

Table 2 Table for observed, predicted, residual, standard predicted, standard residual, 

standard error of predicted and Cook's distance values of predicted final stature of boys   

Sl. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

01 170.6221 172.0385 -1.4164 -0.0826 -0.1953 0.6186 0.000094 

02 171.5799 173.0780 -1.4981 0.0632 -0.2065 0.6845 0.000129 

03 173.4181 172.6632 0.7549 0.0050 0.1041 0.9540 0.000065 

04 182.9912 177.6363 5.3549 0.7024 0.7382 0.7061 0.001754 

05 175.1818 174.2058 0.9760 0.2213 0.1346 0.6382 0.000047 

06 170.7897 178.1026 -7.3130 0.7678 -1.0082 0.6394 0.002674 

07 170.9299 172.4188 -1.4889 -0.0293 -0.2053 0.6033 0.000099 

08 173.8874 168.3185 5.5690 -0.6043 0.7677 0.5401 0.001102 

09 166.2960 164.3938 1.9022 -1.1546 0.2622 0.6019 0.000160 

10 170.1347 170.8832 -0.7486 -0.2446 -0.1032 0.7758 0.000042 

11 176.7793 179.3159 -2.5365 0.9379 -0.3497 0.8253 0.000542 

12 175.2162 172.3364 2.8798 -0.0408 0.3970 0.6424 0.000419 

13 171.6245 173.7799 -2.1554 0.1616 -0.2971 0.5903 0.000197 

14 173.9456 175.0527 -1.1071 0.3401 -0.1526 0.5721 0.000049 

15 180.3147 180.1309 0.1838 1.0522 0.0253 1.2105 0.000006 

Continued… 
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D.S. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

16 175.7178 169.5234 6.1944 -0.4353 0.8540 0.6417 0.001932 

17 166.7038 171.4104 -4.7066 -0.1707 -0.6489 0.5773 0.000900 

18 170.3322 170.2104 0.1218 -0.3390 0.0168 0.6568 0.000001 

19 168.5970 169.7184 -1.1214 -0.4080 -0.1546 0.5562 0.000047 

20 168.8994 168.6840 0.2154 -0.5530 0.0297 0.6992 0.000003 

21 177.2901 174.8690 2.4212 0.3143 0.3338 0.6630 0.000316 

22 166.6451 172.0652 -5.4202 -0.0789 -0.7472 0.6262 0.001408 

23 169.5538 169.1504 0.4034 -0.4876 0.0556 0.5354 0.000006 

24 169.4539 172.1274 -2.6736 -0.0701 -0.3686 0.6565 0.000377 

25 170.0412 172.3862 -2.3450 -0.0339 -0.3233 0.6360 0.000272 

26 170.5650 173.6836 -3.1186 0.1481 -0.4299 0.6274 0.000468 

27 169.0415 165.8468 3.1947 -0.9509 0.4404 0.5271 0.000345 

28 171.2440 170.9932 0.2507 -0.2292 0.0346 0.6266 0.000003 

29 173.9174 172.8338 1.0836 0.0289 0.1494 0.7467 0.000081 

30 175.9431 169.9542 5.9889 -0.3749 0.8256 0.6260 0.001718 

31 177.8915 177.3960 0.4955 0.6687 0.0683 0.5689 0.000010 

32 167.4648 174.8593 -7.3945 0.3130 -1.0194 0.5667 0.002141 

33 176.6420 172.7159 3.9261 0.0124 0.5413 0.5898 0.000654 

34 172.2065 178.3625 -6.1561 0.8042 -0.8487 0.6203 0.001782 

35 168.4455 174.7607 -6.3152 0.2991 -0.8706 0.6328 0.001953 

36 173.4468 169.3221 4.1247 -0.4635 0.5686 0.5696 0.000673 

37 168.2408 168.5999 -0.3591 -0.5648 -0.0495 0.5374 0.000005 

38 175.6666 173.2984 2.3682 0.0941 0.3265 0.7858 0.000427 

39 179.3212 175.2515 4.0697 0.3680 0.5611 0.5591 0.000631 

40 165.5291 167.4789 -1.9498 -0.7220 -0.2688 0.5700 0.000151 

41 173.3740 173.6956 -0.3216 0.1498 -0.0443 0.5525 0.000004 

42 170.1054 174.4026 -4.2973 0.2489 -0.5924 0.5784 0.000753 

43 173.7782 177.3176 -3.5394 0.6577 -0.4879 0.5559 0.000472 

44 170.0710 166.7023 3.3687 -0.8309 0.4644 0.5842 0.000472 

45 172.7364 168.1283 4.6082 -0.6309 0.6353 0.5716 0.000846 

46 172.4249 173.5725 -1.1476 0.1325 -0.1582 0.6509 0.000068 

47 164.6380 171.8912 -7.2532 -0.1033 -0.9999 0.5461 0.001911 

48 171.7722 167.3839 4.3882 -0.7353 0.6050 0.6106 0.000877 

49 167.0966 164.3523 2.7444 -1.1605 0.3783 0.5633 0.000291 

50 173.1391 172.7129 0.4262 0.0120 0.0588 0.6325 0.000009 

51 180.3872 177.5876 2.7995 0.6956 0.3860 0.6042 0.000349 

52 172.3335 171.1696 1.1639 -0.2045 0.1605 0.5965 0.000059 

53 180.2242 171.0364 9.1878 -0.2231 1.2666 0.6130 0.003875 

54 170.0428 169.7345 0.3083 -0.4057 0.0425 0.5429 0.000003 

55 171.9944 176.9578 -4.9634 0.6072 -0.6843 0.6776 0.001386 

56 180.3848 171.6960 8.6889 -0.1306 1.1979 0.5704 0.002994 

57 182.3506 176.5083 5.8423 0.5442 0.8054 0.6961 0.002029 

58 168.8772 169.3022 -0.4249 -0.4663 -0.0586 0.6237 0.000009 

59 165.9051 173.3373 -7.4322 0.0995 -1.0246 0.6083 0.002496 

60 168.5783 168.5522 0.0260 -0.5715 0.0036 0.7301 0.000000 

61 175.5057 170.5603 4.9454 -0.2899 0.6818 0.5597 0.000934 

62 175.6034 174.6340 0.9694 0.2814 0.1336 0.6462 0.000048 
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D.S. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

63 176.8999 176.1259 0.7741 0.4906 0.1067 0.6493 0.000031 

64 164.1422 167.0685 -2.9263 -0.7795 -0.4034 0.6679 0.000468 

65 184.6309 180.7033 3.9276 1.1325 0.5415 0.5679 0.000606 

66 177.3452 178.1380 -0.7928 0.7727 -0.1093 0.6213 0.000030 

67 175.6300 173.3417 2.2883 0.1002 0.3155 0.6114 0.000239 

68 168.2848 172.1605 -3.8757 -0.0655 -0.5343 0.5769 0.000610 

69 174.4799 180.7063 -6.2264 1.1329 -0.8584 0.7014 0.002340 

70 178.0294 174.3458 3.6837 0.2410 0.5078 0.5684 0.000534 

71 165.9994 161.1532 4.8462 -1.6091 0.6681 0.5738 0.000943 

72 168.2601 170.9562 -2.6961 -0.2344 -0.3717 0.5779 0.000296 

73 168.5236 172.5302 -4.0066 -0.0136 -0.5524 0.5718 0.000640 

74 172.5603 173.7245 -1.1643 0.1538 -0.1605 0.5518 0.000050 

75 175.2881 173.4261 1.8620 0.1120 0.2567 0.6162 0.000161 

76 170.3066 174.0420 -3.7354 0.1984 -0.5150 0.5950 0.000603 

77 180.3895 174.6245 5.7651 0.2800 0.7948 0.5811 0.001369 

78 174.5264 176.6148 -2.0884 0.5591 -0.2879 0.6563 0.000230 

79 168.6951 169.6977 -1.0026 -0.4109 -0.1382 0.5398 0.000036 

80 169.0523 172.9066 -3.8543 0.0391 -0.5314 0.6417 0.000748 

81 176.7590 173.7547 3.0043 0.1581 0.4142 0.5962 0.000392 

82 173.3855 170.5828 2.8027 -0.2867 0.3864 0.5374 0.000276 

83 178.5322 179.8478 -1.3157 1.0125 -0.1814 0.6827 0.000099 

84 162.9345 169.0976 -6.1631 -0.4950 -0.8496 0.5593 0.001448 

85 177.1721 169.9594 7.2127 -0.3742 0.9944 0.6247 0.002481 

86 183.2272 177.9313 5.2959 0.7438 0.7301 0.7000 0.001686 

87 164.7118 172.4751 -7.7633 -0.0214 -1.0703 0.8935 0.005974 

88 168.3295 171.3122 -2.9827 -0.1845 -0.4112 0.7676 0.000645 

89 176.1231 173.2982 2.8249 0.0940 0.3894 0.7547 0.000559 

90 175.1326 175.6146 -0.4819 0.4189 -0.0664 0.6808 0.000013 

91 172.0134 170.1585 1.8548 -0.3462 0.2557 0.5872 0.000145 

92 177.0107 175.7663 1.2443 0.4402 0.1715 0.6410 0.000078 

93 185.0216 184.4193 0.6023 1.6536 0.0830 0.5845 0.000015 

94 171.7139 169.0919 2.6220 -0.4958 0.3615 0.6856 0.000396 

95 172.5972 172.6495 -0.0523 0.0031 -0.0072 0.5405 0.000000 

96 178.1410 176.5445 1.5965 0.5493 0.2201 0.6051 0.000114 

97 168.1752 167.8981 0.2771 -0.6632 0.0382 0.5469 0.000003 

98 176.5982 171.5978 5.0004 -0.1444 0.6894 0.5487 0.000917 

99 168.2614 167.9956 0.2659 -0.6495 0.0367 0.5499 0.000003 

100 166.9395 168.9537 -2.0143 -0.5152 -0.2777 0.5515 0.000150 

101 176.1231 173.2982 2.8249 0.0940 0.3894 0.7547 0.000559 

102 177.3322 175.3855 1.9467 0.3868 0.2684 0.6205 0.000178 

103 161.2900 169.0541 -7.7640 -0.5011 -1.0704 0.7484 0.004153 

104 168.0406 168.9070 -0.8664 -0.5217 -0.1194 0.6702 0.000041 

105 184.9472 181.3362 3.6110 1.2212 0.4978 0.9590 0.001496 

106 176.6280 176.0430 0.5850 0.4790 0.0807 0.6022 0.000015 

107 175.1326 175.6146 -0.4819 0.4189 -0.0664 0.6808 0.000013 

108 174.8539 176.5542 -1.7003 0.5507 -0.2344 0.5962 0.000125 

109 170.5492 167.5953 2.9538 -0.7057 0.4072 0.6804 0.000495 
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D.S. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

110 176.9766 176.4632 0.5135 0.5379 0.0708 0.9441 0.000029 

111 171.1965 174.9355 -3.7390 0.3237 -0.5155 0.6469 0.000716 

112 185.1041 179.7898 5.3143 1.0044 0.7326 0.7270 0.001834 

113 174.7571 172.3408 2.4163 -0.0402 0.3331 0.5414 0.000208 

114 168.2614 167.9956 0.2659 -0.6495 0.0367 0.5499 0.000003 

115 161.1550 172.6561 -11.5010 0.0040 -1.5855 0.5675 0.005192 

116 168.1752 167.8981 0.2771 -0.6632 0.0382 0.5469 0.000003 

117 175.9952 171.4538 4.5414 -0.1646 0.6261 0.7313 0.001355 

118 163.6482 172.0163 -8.3681 -0.0857 -1.1536 0.7890 0.005375 

119 168.1752 171.9590 -3.7838 -0.0938 -0.5216 0.5452 0.000518 

120 177.0218 172.0317 4.9901 -0.0836 0.6879 0.6514 0.001293 

121 181.3418 177.6302 3.7116 0.7015 0.5117 0.7598 0.000979 

122 179.9362 173.6558 6.2804 0.1442 0.8658 0.5516 0.001462 

123 173.0444 166.2022 6.8422 -0.9010 0.9433 0.5224 0.001554 

124 170.1188 172.2759 -2.1571 -0.0493 -0.2974 0.5431 0.000167 

125 170.8584 168.5219 2.3365 -0.5757 0.3221 0.5312 0.000187 

126 173.6972 173.0134 0.6839 0.0541 0.0943 0.6258 0.000022 

127 162.9345 169.0976 -6.1631 -0.4950 -0.8496 0.5593 0.001448 

128 178.6312 179.8478 -1.2166 1.0125 -0.1677 0.6827 0.000085 

129 173.3855 170.5828 2.8027 -0.2867 0.3864 0.5374 0.000276 

130 176.1629 174.2264 1.9365 0.2242 0.2670 0.5855 0.000157 

131 169.0283 172.8987 -3.8704 0.0380 -0.5336 0.6420 0.000755 

132 169.4439 169.6942 -0.2503 -0.4113 -0.0345 0.5397 0.000002 

133 180.4058 174.6203 5.7855 0.2795 0.7976 0.5810 0.001378 

134 170.1844 174.0749 -3.8905 0.2030 -0.5364 0.5950 0.000654 

135 169.2182 172.5046 -3.2863 -0.0172 -0.4531 0.5726 0.000432 

136 172.5603 173.7245 -1.1643 0.1538 -0.1605 0.5518 0.000050 

137 175.2881 173.4261 1.8620 0.1120 0.2567 0.6162 0.000161 

138 172.7382 175.2026 -2.4644 0.3611 -0.3397 0.5623 0.000234 

139 175.9935 176.1210 -0.1274 0.4899 -0.0176 0.5722 0.000001 

140 170.4385 170.3448 0.0937 -0.3201 0.0129 0.6641 0.000000 

141 168.3295 171.3122 -2.9827 -0.1845 -0.4112 0.7676 0.000645 

142 168.4455 174.7607 -6.3152 0.2991 -0.8706 0.6328 0.001953 

143 165.1618 164.4240 0.7378 -1.1504 0.1017 0.5650 0.000021 

144 174.4021 169.2482 5.1539 -0.4739 0.7105 0.5708 0.001055 

145 172.2065 178.3625 -6.1561 0.8042 -0.8487 0.6203 0.001782 

146 168.2493 168.6016 -0.3523 -0.5646 -0.0486 0.5374 0.000004 

147 172.0821 173.2016 -1.1195 0.0805 -0.1543 0.7805 0.000094 

148 170.2173 166.7266 3.4907 -0.8275 0.4812 0.5832 0.000505 

149 170.6790 168.3464 2.3325 -0.6003 0.3216 0.5702 0.000216 

150 172.3417 173.5771 -1.2354 0.1332 -0.1703 0.6510 0.000079 

151 165.3860 171.7516 -6.3656 -0.1228 -0.8776 0.5485 0.001485 

152 173.4419 172.6327 0.8092 0.0007 0.1116 0.6365 0.000032 

153 169.5003 168.9423 0.5579 -0.5168 0.0769 0.8684 0.000029 

154 175.1901 175.5192 -0.3291 0.4055 -0.0454 0.6600 0.000006 

155 169.1957 174.3308 -5.1350 0.2389 -0.7079 0.9564 0.003008 

156 172.9921 170.9995 1.9926 -0.2283 0.2747 0.6042 0.000177 
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D.S. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

157 173.5821 174.7967 -1.2146 0.3042 -0.1674 0.5675 0.000058 

158 178.1356 174.7861 3.3496 0.3027 0.4618 0.5805 0.000461 

159 163.4866 168.2588 -4.7722 -0.6126 -0.6579 0.8473 0.002023 

160 174.4793 175.1920 -0.7127 0.3596 -0.0983 0.6747 0.000028 

161 170.0847 177.0656 -6.9809 0.6224 -0.9624 0.6147 0.002249 

162 172.0748 168.1184 3.9564 -0.6323 0.5454 0.6896 0.000913 

163 178.3780 171.9695 6.4085 -0.0923 0.8835 0.7315 0.002701 

164 182.3472 176.5086 5.8385 0.5443 0.8049 0.6961 0.002026 

165 168.8772 169.3022 -0.4249 -0.4663 -0.0586 0.6237 0.000009 

166 180.8853 171.2596 9.6257 -0.1918 1.3270 0.6815 0.005274 

167 178.4214 171.4324 6.9890 -0.1676 0.9635 0.5783 0.001992 

168 173.3915 176.6237 -3.2321 0.5604 -0.4456 0.6969 0.000622 

169 170.4899 169.7062 0.7837 -0.4097 0.1080 0.5434 0.000022 

170 180.3727 171.0228 9.3498 -0.2250 1.2890 0.6132 0.004015 

171 182.6243 177.3921 5.2322 0.6681 0.7213 0.6116 0.001251 

172 172.5089 173.1368 -0.6280 0.0714 -0.0866 0.6914 0.000023 

173 171.3062 172.1293 -0.8231 -0.0699 -0.1135 0.5779 0.000028 

174 175.6300 173.3417 2.2883 0.1002 0.3155 0.6114 0.000239 

175 168.6143 168.5389 0.0754 -0.5734 0.0104 0.7301 0.000000 

176 169.0956 166.1521 2.9435 -0.9081 0.4058 0.6465 0.000443 

177 164.1421 167.0685 -2.9264 -0.7795 -0.4034 0.6679 0.000468 

178 183.2663 180.3776 2.8887 1.0868 0.3982 0.5706 0.000331 

179 177.2191 178.1409 -0.9218 0.7732 -0.1271 0.6213 0.000040 

180 175.3868 174.5981 0.7886 0.2763 0.1087 0.6442 0.000032 

Note: D.S. No. means Data Set Number 

For girls 

Dependent variable: Predicted final stature (PFS) 

Table 3 Summary of forward stepwise ridge regression model for girls using ridge 

parameter: ridge parameter: 0.0010, computed from modified HKB estimator  

Step Variable Coefficient (p-

value) 

Standard 

error 

Fto inter 

/remove 

(p-value)  

DW- 

Value 

R
2
 

(Adj. R
2
) 

1 S13 0.998669 (0.000001) 0.003762  70478.91 

(0.000001) 

1.8534  0.99831440 

(0.99830023) 

2 S13 0.559608 (0.000001) 0.048474  59367.00 

(0.000001) 

1.7921  0.99900717 

(0.99899034) MS 0.439848 (0.000001) 0.048474 

3 S13 0.387948 (0.000001) 0.051731  50900.09 

(0.000001) 

1.6557  0.99973438 

(0.99921475) MS 0.316876 (0.000001) 0.047571 

FS 0.294889 (0.000001) 0.050045 
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Step Variable Coefficient (p-

value) 

Standard 

error 

Fto inter 

/remove 

(p-value)  

DW- 

Value 

R
2
 

(Adj. R
2
) 

4 S13 0.329047 (0.000001) 0.052724  41447.49 

(0.000001) 

1.5846  0.99973581 

(0.99927670) MS 0.286799 (0.000001) 0.046546 
FS 0.239452 (0.000001) 0.050850 
S2 0.144564 (0.001204) 0.043546 

5 S13 0.269009 (0.000009) 0.058027  34375.80 

(0.000001) 

 

1.5213 

 

 0.99975137 

(0.99930230) MS 0.278478 (0.000001) 0.045858 

FS 0.220903(0.000028) 0.050593 

S2 0.109648 (0.017303) 0.045399 

S9 0.121874 (0.023680) 0.053156 

 

Table 4 Table for observed, predicted, residual, standard predicted, standard residual, 

standard error of predicted and Cook's distance values of predicted final stature of girls   

D.S. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

01 157.6700 154.5338 3.1362 -0.9476 0.7038 0.6917 0.004176 

02 164.2200 163.0973 1.1227  0.9119 0.2519 0.4822 0.000254 

03 157.6300 158.1579 -0.5279 -0.1607 -0.1185 0.5665 0.000078 

04 160.2800 154.4489 5.8311 -0.9661 1.3085 0.7009 0.014843 

05 163.8000 162.3004 1.4996  0.7389 0.3365 1.3067 0.003885 

06 158.7600 154.8400 3.9200 -0.8812 0.8797 0.5278 0.003721 

07 168.3700 166.6675 1.7025  1.6872 0.3820 0.5158 0.000670 

08 164.1500 163.7488 0.4012  1.0534 0.0900 0.7186 0.000074 

09 150.3400 153.7147 -3.3747 -1.1255 -0.7573 0.5886 0.003454 

10 159.8200 161.6613 -1.8413  0.6001 -0.4132 0.4517 0.000597 

11 160.3800 160.9394 -0.5594  0.4433 -0.1255 0.4791 0.000062 

12 156.7700 159.3170 -2.5470  0.0910 -0.5716 0.4681 0.001228 

13 154.4900 155.7193 -1.2293 -0.6902 -0.2759 0.4350 0.000246 

14 157.9600 158.3664 -0.4064 -0.1154 -0.0912 0.5636 0.000046 

15 157.4300 160.2552 -2.8252  0.2947 -0.6340 0.6122 0.002627 

16 162.3100 160.8629 1.4471  0.4267 0.3247 0.4565 0.000377 

17 157.4300 160.2552 -2.8252  0.2947 -0.6340 0.6122 0.002627 

18 157.9600 158.3664 -0.4064 -0.1154 -0.0912 0.5636 0.000046 

19 161.2400 160.8669 0.3731  0.4276 0.0837 0.4565 0.000025 

20 160.6000 159.8486 0.7514  0.2065 0.1686 0.8332 0.000356 

21 155.3700 154.6643 0.7057 -0.9193 0.1584 0.4748 0.000097 

22 157.3400 155.2941 2.0459 -0.7826 0.4591 0.5933 0.001291 

23 161.3600 157.5810 3.7790 -0.2860 0.8480 0.6013 0.004527 

24 169.5600 161.2427 8.3173  0.5092 1.8664 0.5002 0.015005 

25 166.0200 159.1167 6.9033  0.0475 1.5491 0.4121 0.006960 

26 150.5900 154.5151 -3.9251 -0.9517 -0.8808 0.4965 0.003292 

27 165.8600 160.1368 5.7232  0.2690 1.2843 0.4762 0.006425 

28 158.0500 151.4489 6.6011 -1.6175 1.4813 0.4884 0.009002 
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D.S. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

29 162.6300 161.3171  1.3129 0.5253  0.2946 0.5069 0.000384 

30 161.1600 163.5680 -2.4080 1.0141 -0.5404 0.7080 0.002586 

31 157.2500 158.8983 -1.6483 0.0001 -0.3699 0.4083 0.000389 

32 162.1400 159.1924  2.9477 0.0640  0.6615 0.4865 0.001781 

33 150.4200 150.0670  0.3530 -1.9176  0.0792 0.5887 0.000038 

34 165.0600 160.2070  4.8530  0.2843  1.0890 0.4327 0.003798 

35 156.7800 153.0070  3.7730 -1.2792  0.8467 0.8456 0.009259 

36 155.7600 158.3503 -2.5903 -0.1189 -0.5813 0.4658 0.001258 

37 165.9700 160.7882  5.1818  0.4105  1.1628 0.5754 0.007771 

38 162.2200 161.1494  1.0706  0.4889  0.2403 0.4559 0.000206 

39 162.6000 165.8806 -3.2806  1.5163 -0.7362 0.4565 0.001936 

40 165.2900 160.4920  4.7980  0.3462  1.0767 0.4300 0.003665 

41 165.3600 166.1404 -0.7804  1.5727 -0.1751 0.5055 0.000135 

42 148.2100 151.3743 -3.1643 -1.6337 -0.7101 0.4925 0.002104 

43 164.5100 161.9415  2.5685  0.6609  0.5764 0.4366 0.001084 

44 157.9900 155.8874  2.1026 -0.6537  0.4718 0.5918 0.001356 

45 153.5300 162.6664 -9.1364  0.8183 -2.0503 0.8423 0.053843 

46 152.5900 156.5272 -3.9372 -0.5148 -0.8835 0.4059 0.002195 

47 158.7900 156.7536  2.0364 -0.4656  0.4570 0.5771 0.001208 

48 157.8200 160.9336 -3.1136  0.4421 -0.6987 0.5601 0.002654 

49 166.2300 163.5931  2.6369 1.0196  0.5917 0.5404 0.001768 

50 162.7300 161.3525  1.3775  0.5330  0.3091 0.6122 0.000624 

51 156.1400 160.9056 -4.7656  0.4360 -1.0694 0.4433 0.003848 

52 153.9400 160.3523 -6.4123  0.3158 -1.4390 0.5286 0.009992 

53 161.5000 156.7614  4.7386 -0.4639  1.0634 0.4224 0.003448 

54 154.5400 147.0753  7.4647 -2.5673  1.6751 0.5033 0.012244 

55 160.5000 159.3877  1.1123  0.1064  0.2496 0.4197 0.000187 

56 166.2600 163.8279  2.4321  1.0706  0.5458 0.4907 0.001233 

57 156.2000 157.2815 -1.0815 -0.3510 -0.2427 0.5930 0.000360 

58 159.0300 160.4232 -1.3932  0.3312 -0.3127 0.4735 0.000376 

59 154.4300 158.2350 -3.8050 -0.1440 -0.8539 0.4093 0.002085 

60 151.7400 157.9194 -6.1794 -0.2125 -1.3867 0.4212 0.005831 

61 155.4100 156.4140 -1.0040 -0.5394 -0.2253 0.4884 0.000208 

62 159.3200 159.1768  0.1432  0.0606  0.0321 0.4305 0.000003 

63 152.1400 156.5903 -4.4504 -0.5011 -0.9987 0.4724 0.003822 

64 159.0500 160.8668 -1.8168  0.4275 -0.4077 1.1323 0.004088 

65 160.5200 164.1458 -3.6258  1.1396 -0.8136 0.4586 0.002387 

66 151.4700 154.0715 -2.6016 -1.0480 -0.5838 0.5586 0.001843 

67 152.8400 157.6272 -4.7872 -0.2759 -1.0743 0.4475 0.003958 

68 153.8800 156.6798 -2.7998 -0.4817 -0.6283 0.5293 0.001910 

69 160.8100 161.3723 -0.5623  0.5373 -0.1262 0.5923 0.000097 

70 153.9300 158.3092 -4.3792 -0.1278 -0.9827 0.5044 0.004232 

71 162.1100 163.3742 -1.2642  0.9720 -0.2837 0.5453 0.000414 

72 157.6600 157.8711 -0.2111 -0.2230 -0.0474 0.4079 0.000006 

73 165.3200 166.3763 -1.0562  1.6239 -0.2370 0.4384 0.000185 

74 154.3800 156.4169 -2.0369 -0.5387 -0.4571 0.5291 0.001010 

75 165.8200 164.6733  1.1467  1.2541  0.2573 0.5747 0.000380 

76 156.8800 157.3223 -0.4423 -0.3421 -0.0993 0.4659 0.000037 
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D.S. 

No. 

Observed 

Value 

Predicted 

Value 

Residual Standard 

Predicted 

Value 

Standard 

Residual 

Standard 

Error of 

Predicted 

Value 

Cook's 

Distance 

77 159.8800 160.9253 -1.0453  0.4403 -0.2346 0.6096 0.000356 

78 157.9200 157.4142  0.5058 -0.3222  0.1135 0.5855 0.000077 

79 160.3000 158.7440  1.5560 -0.0334  0.3492 0.5525 0.000644 

80 163.5200 161.9684  1.5516  0.6668  0.3482 0.6056 0.000775 

81 161.0500 159.6740  1.3760  0.1685  0.3088 0.5848 0.000567 

82 162.0100 164.5820 -2.5720  1.2343 -0.5772 0.5820 0.001960 

83 163.4100 157.3518  6.0582 -0.3357  1.3595 0.6118 0.012061 

84 161.6042 159.0135  2.5907  0.0251  0.5814 0.6191 0.002261 

85 162.4200 162.5588 -0.1388  0.7950 -0.0312 0.6534 0.000007 

86 158.7500 159.3093 -0.5593  0.0894 -0.1255 0.4336 0.000051 

87 157.3400 155.4660  1.8740 -0.7452  0.4205 0.5182 0.000819 

88 158.1600 161.1474 -2.9874  0.4885 -0.6704 0.4651 0.001668 

89 163.4200 159.8714  3.5486  0.2114  0.7963 0.7685 0.006677 

90 161.6379 160.2795  1.3584  0.3000  0.3048 0.4369 0.000304 

91 151.4200 156.2678 -4.8478 -0.5711 -1.0879 0.4494 0.004094 

92 148.9300 155.0689 -6.1389 -0.8315 -1.3776 0.5317 0.009268 

93 163.6400 159.8000  3.8400  0.1959  0.8617 0.4736 0.002860 

94 155.0800 158.2487 -3.1687 -0.1410 -0.7111 0.5255 0.002410 

95 153.3000 157.0817 -3.7817 -0.3944 -0.8486 0.4794 0.002844 

96 157.7500 154.0202  3.7298 -1.0592  0.8370 0.7336 0.006686 

97 158.8200 154.6381  4.1819 -0.9250  0.9384 0.4588 0.003178 

98 162.2900 160.4711  1.8189  0.3416  0.4082 0.6703 0.001315 

99 162.5000 162.1436  0.3564  0.7048  0.0800 0.4385 0.000021 

100 160.8300 158.7193  2.1108 -0.0388  0.4737 0.4877 0.000917 

101 158.2900 161.6096 -3.3197  0.5889 -0.7449 0.5536 0.002945 

102 158.0300 160.4656 -2.4356  0.3404 -0.5466 0.5242 0.001417 

103 158.7700 153.2875  5.4825 -1.2183  1.2303 0.5169 0.006975 

104 151.0700 154.6846 -3.6146 -0.9149 -0.8111 0.5829 0.003884 

105 154.2500 156.7295 -2.4795 -0.4709 -0.5564 0.4089 0.000884 

106 154.3700 154.4865 -0.1165 -0.9579 -0.0261 0.5185 0.000003 

107 157.9400 163.2141 -5.2741  0.9373 -1.1835 0.6659 0.010907 

108 159.5400 157.8173  1.7227 -0.2346  0.3866 0.4440 0.000505 

109 154.1300 155.7142 -1.5842 -0.6913 -0.3555 0.5335 0.000621 

110 160.0800 160.1757 -0.0957  0.2775 -0.0215 0.5327 0.000002 

111 155.2600 157.7967 -2.5367 -0.2391 -0.5692 0.6346 0.002282 

112 154.9200 153.2544  1.6656 -1.2255  0.3738 0.4251 0.000432 

113 157.1200 158.7710 -1.6511 -0.0275 -0.3705 0.5475 0.000712 

114 157.3100 157.7881 -0.4781 -0.2410 -0.1073 0.4707 0.000044 

115 164.6000 167.5579 -2.9579  1.8805 -0.6638 0.4970 0.001873 

116 156.9800 155.3224  1.6576 -0.7764  0.3720 0.5906 0.000839 

117 159.4100 159.8567 -0.4467  0.2082 -0.1002 0.8339 0.000126 

118 160.1400 158.3173  1.8227 -0.1261  0.4090 0.4276 0.000523 

119 166.0200 159.1167  6.9033  0.0475  1.5491 0.4121 0.006960 

120 164.6800 161.5016  3.1784  0.5654  0.7133 0.5200 0.002373 

Note: D.S. No. means Data Set Number  

 



 

 

 

 

 

 


