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ABSTRACT

The fundamental concept of a fuzzy set and fuzzy set operations was first introduced
by L. A. Zadeh [175] in 1965 and it provides a natural foundation for treating
mathematically the fuzzy phenomena, which exists pervasively in our real world and for
building new branches of fuzzy mathematics. This also provides a natural frame work for
generalizing various branches of mathematics such as fuzzy topology, fuzzy groups, fuzzy
rings, fuzzy vector spaces, fuzzy supra topology, fuzzy infra topology, fuzzy bitopology
etc. C. L. Chang [19] in 1968 first introduced the concept of fuzzy topological spaces by
using fuzzy sets. C. K. Wong [160, 161, 162, 162], R. Lowen [107, 108, 109, 110,111],
B. Hutton [70, 71, 72], T. E. Gantner et al. [54], P. P. Ming and L. Y. Ming [121, 122],
etc., discussed various aspects of fuzzy topology by using fuzzy sets. A. J. Klein [91]
defines o -level sets and « -level topology. Fuzzy compactness occupies a very important
place in fuzzy topological spaces and so does some of its forms. Fuzzy compactness first
discussed by C. L. Chang [19], T. E. Gantner et al. [54] introduced « -compactness,
A. D. Concilio and G. Gerla [27] discussed almost compact spaces and M. N. Mukherjee

and A. Bhattacharyya [130] discussed almost « -compact spaces.

The purpose of this thesis is to contribute about different types of fuzzy
compactness and establish theorems, corollaries and examples in fuzzy topological spaces
by using the definitions of C. L. Chang [19], T. E. Gantner et al. [54], A. D. Concilio and
G. Gerla [27] and M. N. Mukherjee and A. Bhattacharyya [130]. We study several
properties of these definitions along with the different theorems from existing there.
Moreover to suggest new definitions of fuzzy 6 -compact spaces, ¢ -compact fuzzy sets,

0 -« -compact spaces, partially o -compact and partially 6 -« -compact fuzzy sets,

Vi



Abstract

Q -compact and 6 - Q -compact fuzzy sets, Qo -compact and ¢ - Q « -compact fuzzy sets,
almost partially « -compact and almost partially 6 -a -compact fuzzy sets, almost
Qa -compact and almost 6 -Qa -compact fuzzy sets and also to study their several

properties in fuzzy topological spaces have been done in the work.

Chapter one incorporates some fundamental definitions and results of fuzzy sets,
fuzzy set operations, fuzzy mapping, fuzzy topology, fuzzy separation axioms, good
extension property and fuzzy productivity. These results are ready bibliographies for the
study in the next chapters. Results are stated without proof and can be found in the thesis

referred to.

Our works start from chapter two. Chapter two deals with fuzzy compact spaces due
to C. L Chang [19] which is global property. In this chapter, we have discussed some
theorems, corollaries and examples in fuzzy topological spaces, fuzzy subspaces,
mappings in fuzzy topological spaces, fuzzy T,-spaces, fuzzy Hausdorff spaces, fuzzy
regular spaces and good extension property about fuzzy compact spaces. Also we have
defined & -open fuzzy sets, & -cover, fuzzy & -compact spaces and investigated difference

between fuzzy compact and fuzzy & -compact spaces.

We aim to study « -compact spaces in the sense of T. E. Gantner et al. [54] in
chapter three which is global property and we have introduced « -level continuous
mapping. In this chapter, we have established some theorems, corollaries and examples in
fuzzy topological spaces, fuzzy subspaces, mappings in fuzzy topological spaces, fuzzy
T,-spaces, fuzzy Hausdorff spaces, fuzzy regular spaces, o -level topological spaces,
cofinite topological spaces, good extension property and fuzzy product spaces and give

some examples about «-compact spaces. Also we have constructed ¢ -« -shading,

Vil



Abstract

0 -a -compact spaces and identified difference between o -compact and 6 -« -compact

spaces.

We have discussed compact fuzzy sets due to C. L. Chang [19] in chapter four
which is local property. In this chapter, we have investigated some theorems, corollaries
and examples of compact fuzzy sets in fuzzy topological spaces, fuzzy subspaces, fuzzy
mappings, fuzzy T, -spaces, fuzzy Hausdorff spaces, fuzzy regular spaces, good extension
property and fuzzy productivity about compact fuzzy sets. Also we have introduced

o -compact fuzzy sets and found difference between compact and & -compact fuzzy sets.

In chapter five, we have defined partial « -shading, partial « -subshading, open
partial « -shading, partially « -compact fuzzy sets. We have discussed some theorems,
corollaries and examples of partially « -compact fuzzy sets in fuzzy topological spaces,
fuzzy subspaces, fuzzy mappings, « -level continuous mapping, fuzzy T,-spaces, fuzzy
Hausdorff spaces, fuzzy regular spaces, o -level topological spaces, good extension
property and fuzzy productivity about partially « -compact fuzzy sets. Also we have
introduced partial 6 -« -shading, partial 6 -o -subshading and partially ¢ - o -compact
fuzzy sets and indicated the difference between partially « -compact and partially

8 - a -compact fuzzy sets.

In chapter six, we have constructed Q-cover, Q-subcover, open Q-cover,
Q -compact fuzzy sets, Qa -cover, Qa -subcover, open Qe -cover, Qa -compact fuzzy
sets, 6 -Q-cover, & -Q-subcover, & -Q-compact fuzzy sets, & - Qa -compact fuzzy sets.
We have also studied some theorems, corollaries and examples in fuzzy topological

spaces, fuzzy subspaces, fuzzy T,-spaces, fuzzy Hausdorff spaces, fuzzy regular spaces,

viii
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o -level topological spaces, good extension property and fuzzy productivity about
Q -compact, Qa -compact, 6 - Q-compact, 6 - Qa -compact fuzzy sets. Furthermore, we
have found difference between Q-compact and Qa -compact fuzzy sets, Q -compact and
0 - Q-compact fuzzy sets, Qa -compact and 6 - Qo -compact fuzzy sets. Moreover, we
have compared compact fuzzy stes (Chang’s sense [19]) with Q-compact and
Qa -compact fuzzy sets, 6 -compact fuzzy stes (Chang’s sense [19]) with & - Q -compact

and ¢ - Qa -compact fuzzy sets.

In chapter seven, we have studied almost compact fuzzy sets due to A. D. Concilio
and G. Gerla [27] which is local property. We have established some theorems, corollary
and give some examples in fuzzy topological spaces, fuzzy subspaces, fuzzy mappings,
fuzzy T,-spaces, fuzzy regular spaces, good extension property and fuzzy productivity
about almost compact fuzzy sets. Also we have introduced proximate & -cover, proximate
o -subcover, almost 6 -compact fuzzy sets and found different characterizations between

almost compact and almost 6 -compact fuzzy sets.

We have dealth with almost o -compact spaces due to M. N. Mukherjee and A.
Bhattacharyya [130] in chapter eight which is global property. In this chapter, we have
established some theorems, corollary and give some examples in fuzzy topological spaces,
fuzzy subspaces, fuzzy mappings, fuzzy T, -spaces, fuzzy regular spaces, « -level
topological spaces, « -level continuous mapping and good extension property about
almost « -compact spaces. Also we have introduced proximate ¢ -« -shading, proximate
0 -« -subshading, almost ¢ -« -compact spaces and found difference between almost

o -compact and almost 6 - a -compact spaces.



Abstract

In chapter nine, we have introduced proximate partial « -shading, proximate partial
o -subshading, almost partially o -compact fuzzy sets. We have also established some
theorems, corollary and give some examples in fuzzy topological spaces, fuzzy subspaces,
fuzzy mappings, fuzzy T,-spaces, fuzzy regular spaces, « -level topological spaces,
o -level continuous mapping, good extension property and fuzzy productivity about
almost partially « -compact fuzzy sets. In addition to that, we have defined proximate
partial o -« -shading, proximate partial 6 - « -subshading, almost partially 6 -« -compact
fuzzy sets and investigated different characterizations between almost partially

o -compact and almost partially 6 -« -compact fuzzy sets.

In chapter ten, we have defined proximate Qa -cover, proximate Q« -subcover,
almost Q o -compact fuzzy sets. We have also studied some theorems, corollary and give
some examples in fuzzy topological spaces, fuzzy subspaces, fuzzy T,-spaces, fuzzy

regular spaces, « -level topological spaces, good extension property and fuzzy

productivity about almost Qa -compact fuzzy sets. Moreover, we have introduced
proximate & - Q « -cover, proximate ¢ - Q « -subcover, almost ¢ - Q & -compact fuzzy sets
and found different characterizations between almost Qo -compact and almost

6 - Qa -compact fuzzy sets.



Chapter One

Preliminaries

Introduction 1.1: In this chapter incorporates concepts and results of fuzzy sets,
fuzzy mappings, fuzzy topological spaces, subspace of a fuzzy topological space, fuzzy
product topological space and its characterizations which are to be used as references for
understanding the next chapters. Most of the results are quoted from the various research

articles. Through the sequel, we make use of the following notations.

X - Non-empty set
J > Index set
J, - Finite subset of J
R : Set of real numbers
+ 1 Sum
) : Union
N . Intersection
c : Strictly subset or proper subset
c : Subset
€ : Belongs to
2 : Not belongs to
= . Implies that
I =[0,1] : Closed unit interval
I,=[0,1) - Right open unit interval
l,=(0,1] : Left open unit interval
A,B,C,.. : Ordinary sets or Classical sets



Preliminaries

u, v, 4, u,... : Fuzzy sets

(X : T) : General topological space
(X,1) : Fuzzy topological space

(A t,) : Subspace of (X, t)

[T1x : Usual product of X,

i
(X x X, txt) : Product fuzzy topological space
au)={xe X:uxX)>a} : Subset of X

t, ={a(u):uet} : General topology on X

oT)={uel*:u'(a1eT, ael,} :Fuzzytopology on X
This thesis deals with various fuzzy compactness in fuzzy topological spaces. To present
our work in a systematic way, we consider in this chapter, various concepts and results on
fuzzy sets and fuzzy topological spaces found in various research papers. For this we

begin with.

Definition 1.2[175]: Let X be a non-empty set and | is the closed unit interval

[0,1]. Afuzzy setin X isa function u: X — | which assigns to every element x € X .

u(x) denotes a degree or the grade of membership of x. The set of all fuzzy sets in X is

denoted by I *. A member of I * may also be called a fuzzy subset of X .

Definition 1.3[121]: A fuzzy set is empty iff its grade of membership is identically

zero. It is denoted by 0, .

Definition 1.4[121]: A fuzzy set is whole iff its grade of membership is identically

onein X . Itis denoted by 1, .



Preliminaries

Definition 1.5[175]: Let X be a non-empty setand A < X . Then the characteristic

lif xeA

function 1,(x): X — {0, 1} defined by 1,(x) =< .
A(X) {0, 1} y 1,(x) {Olfng
Hence we say that A is fuzzy set in X and this fuzzy set is denoted by 1, . Thus we can

consider any subset of a set X as a fuzzy set whose range is {0, 1}.

Definition 1.6[19]: Let uand v be two fuzzy sets in X . Then we define
(i) u=v iff u(x) =v(x) forall x e X
(i) u c v iff u(x) <v(x) forall x e X
(i) A =uuv iff 2(x) =(uuVv)(x) =max[u(x),v(x)] forall x e X
(iv) u=unv iff u(x)=unv)(x) =minfu(x), v(x)] forall x e X
(V) y =u® iff y(x) =1—u(x) forall x e X and we say that u® is complement of u.

Remark: Two fuzzy sets u and v are disjoint iff unv =0.

Definition 1.7[19]: In general, if {u,: i€ J } is family of fuzzy sets in X, then
union | Ju; and intersection ("u; are defined by
Jui () = sup{u,(x): i €J and xe X }

ﬂui (x) = inf{u (x):i €J and x e X }, where J is an index set.

De-Morgan’s laws 1.8[175]: De-Morgan’s Laws valid for fuzzy setsin X i.e.if u
and v are any fuzzy setsin X, then
M1-(uuv)=(1-u)n(1l-v)

(i)l-(unv)=(1-u)u(l-v)
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For any fuzzy setin u in X , un (1-u) need notbe zeroand u u (1—u ) need not

be one.

Distributive laws 1.9[175]: Distributive laws remain valid for fuzzy sets in X i.e.

if u, vand w are fuzzy sets in X, then
MHuuvnw)= (Uuv)N (Uuw)

Munvow)= (unv)u UnNw).

Definition 1.10[121]: Let A be a fuzzy set in X, thentheset { x e X : A(x) >0}

is called the support of A and is denoted by A, or supp 4.

Definition 1.11[121]: A fuzzy set in X is called a fuzzy point iff it takes the value

0 forall y e X exceptone, say x € X . Ifitsvalueat x is r (0 <r <1), we denote this

fuzzy point by X, , where the point x is called its support.

Definition 1.12[121]: A fuzzy set A in X is called quasi-coincident (in short
g-coincident) with a fuzzy set u in X, denoted by Aqu iff A(X) + u(x) >1 for some

Xe X.

Definition 1.13[19]: Let f: X —Y be a mapping and u be a fuzzy set in X.
Then the image of u, written f (u), is a fuzzy set in Y whose membership function is
given by

| supfu():xefH ()} if £(y) 2 ¢
f(U)(y)— {O |f f—l(y)=¢ )
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Definition 1.14[19]: Let f : X — Y be a mapping and v be a fuzzy setin Y . Then

the inverse of v, written f *(v), is a fuzzy set in X whose membership function is given

by £7(v) (x) = v(f (x)).

Definition 1.15[131]: Let f : X —Y be a mapping. Then f is said to be one-one

(one-to-one) iff f(a)=f(b) = a=>D.

Definition 1.16[131]: Let f: X —Y be a mapping. Then f is said to be onto

(surjective) iff f(X) =Y.

Definition 1.17[131]: Let f : X — Y be a mapping. Then f is said to be bijective

iff it is both one-one and onto.

Theorem 1.18[168]: Let f : X —Y be a mapping and u, , u, be fuzzysetsin X.

If u cu,,then f(u)c f(u,).

Theorem 1.19[168]: Let f : X —Y be a mapping and v,, v, be fuzzy setsin Y .

If v, v,,then f(v,) c fi(v,).

Theorem 1.20[168]: Let f : X — Y be one-to-one mapping and u be a fuzzy set

in X, then f*(f(u))=u.

Theorem 1.21[168]: Let f : X — Y be onto mapping and v be a fuzzy setin Y,

then f (f *(v)) = v.
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Theorems (1.20) and (1.21) will be used again and again in our next works.

Theorem 1.22[159]: Let f: X — Y be a mapping, u, , i€ J be fuzzy sets in X

and v, ,ie J befuzzysetsinY . Then

® f[ﬂ“ijgﬂf(ui)

ied ied

(il f-l[ﬂvij =11 W)

ied ied

(iii) f[Uuij = Utw)

ied ied

(iv) f‘l[Uvij =UJfw).

ied ied

Definition 1.23[106]: Let X be a non-empty set and T be a family of subsets of
X . Then T is said to be topology on X if

Mg, XeT

(i) if AT foreachic J, then [ JA €T

iel
(i)if A, BeT=ANnBeT
The pair (X,T) is called topological space, any member U €T is called open set in the

topology T and its complement i.e. U€ is called closed set in the topology T .

Definition 1.24[106]: Let U denote the class of all open sets of real numbers R.

Then U is atopology on R; it is called the usual topology on R.
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Definition 1.25[106]: Let X be a non-empty set and T denote the class of all

subsets of X whose complements are finite together with the empty set ¢ . This class T

is also a topology on X . It is called the cofinite topology on X .

Definition 1.26[106]: A subset A of a topological space (X,T) is compact iff

every open cover of A has a finite subcover.

Definition 1.27[19]: Let X be a non-empty setand t < 1* i.e. t is a collection of
fuzzy setsin X . Thent is called a fuzzy topology on X if
(i)o,1let

(ii) if u; et foreach ie J, then Ju, et

iel
@i)ifu, vet ,thenunvet
The pair (X, t) is called a fuzzy topological space and in short, fts. Every member of t is

called a t-open fuzzy set. A fuzzy set is t-closed iff its complements is t-open. In the
sequel, when no confusion is likely to arise, we shall call a t-open (t-closed) fuzzy set

simply an open (closed) fuzzy set.

Definition 1.28[19]: A fuzzy topology t, is said to be coarser than a fuzzy topology

t, ifand onlyif t, — t,.

Definition 1.29[121]: Let A be a fuzzy set in an fts (X, t). Then the interior of A4
is denoted by 2° orint2 and definedby 2’ = J{ u: pc and pet}.

Remark [1]: The interior of a fuzzy set A is the largest open fuzzy set contained in

A and trivially, a fuzzy set A is fuzzy open if and only if 1 = 2°.
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Definition 1.30[121]: Let A be a fuzzy set in an fts (X, t). Then the closure of A

is denoted by 2 orclA and defined by 2 =(\{ x: Acu and pet’}.

Remark [1]: The closure of a fuzzy set A is the smallest closed fuzzy set

containing A and trivially, a fuzzy set A is a fuzzy closed if and only if 1 = 1.

Theorem 1.31[1]: Let (X, t) be a fuzzy topological space and u, v be two fuzzy
setsin X . Then
(()0=0,1=1
(i) ()° =, {u) =u
(i) \’cucu
(iVyunvcunv
(V) If ucv,then u® cv°

(viyIf uc v, thenu cv.

Theorem 1.32[27]: Let (X,t) be an fts and u be an open fuzzy set in t. Then

uc (ﬂ)o.

Definition 1.33[121]: Let (X,t) be an fts and A < X. Then the collection
t,={u|A: uet} is fuzzy topology on A, called the subspace fuzzy topology on A

and the pair (A, t,) is referred to as a fuzzy subspace of (X, t).
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Definition 1.34[19]: Let (X,t) and (Y,s) be two fuzzy topological spaces. A
mapping f : (X,t) - (Y,s) is called a fuzzy continuous iff the inverse of each s-open

fuzzy set is t-open or equivalently for each s-closed fuzzy set is t-closed.

Definition 1.35[161]: Let (X,t) and (Y, s) be two fuzzy topological spaces. Let
f: (X,t)— (Y,s) be a mapping from an fts (X, t) to another fts (Y,s). Then f is
called

(i) a fuzzy open mapping iff f(u) € s foreach u t.
(i1) a fuzzy closed mapping iff f(v) is a closed fuzzy set of Y, for each closed fuzzy set

v of X.

Definition 1.36[116]: Let f be a mapping from an fts (X, t) into an fts (Y, s).

Then f is fuzzy closed iff f(u) < f(ﬁ) for each fuzzy set u in X.

Theorem 1.37[122]: Let f : (X,t)— (Y, s) be a fuzzy continuous mapping. Then
0] f(ﬁ)g f(u), forany fuzzy set u in X.

(i) f(v) c f‘l(\_/), for any fuzzy set vin Y.

Definition 1.38[49]: Let (A, t,) and (B, s,) be fuzzy subspaces of fts’s (X, t) and
(Y, s) respectively and f is a mapping from (X,t) to (Y, s), then we say that f is a

mapping from (A, t,) to (B, s, ) if f(A)cB.
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Definition 1.39[49]: Let (A, t,) and (B, s,) be fuzzy subspaces of fts’s (X, t) and
(Y, s) respectively. Then a mapping f : (A t,) — (B, s,) is relatively fuzzy continuous

iff for each v e s, , then f*(v)| Aet,.

Definition 1.40[49]: Let (A, t,) and (B, s,) be fuzzy subspaces of fts’s (X, t) and
(Y, s) respectively. Then a mapping f : (A t,) — (B, s) is relatively fuzzy open iff for

each v e t,, theimage f(v) e s;.

Definition 1.41[3]: Let (X,T) be a topological space. A function f: X - R
(with usual topology) is called lower semi-continuous ( I. s. c.) if for each a eR , the set
f*(a, ) e T. Foratopology T onaset X, let o(T)be the set of all I. s. c. functions
from (X,T) to | (with usual topology); thus w(T) = {uel*: u'(a,1]eT, aecl,}.
It can be shown that o (T) is a fuzzy topology on X .

Let P be a property of topological spaces and FP be its fuzzy topology analogue. Then
FP is called a ‘good extension’ of P “iff the statement (X, T) has P iff (X, @ (T )) has
FP” holds good for every topological space (X,T). Thus characteristic functions are

l.s.c.

Definition 1.42[106]: Let { X, : i € J } be any family of sets and let X denote the

Cartesian product of these sets ie. X :Hxi. Note that X contains all points

ied

p=<a.:

i e J> where a e X;. Recall that, for each j, € J, we define the projection

m; from the product set X to the coordinate space X; ie. 7x; :

Jo Jo ©

X =X, by

m; (<@ :ied>)=a, . These projections are used to define the product topology.

10
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Definition 1.43[9]: Let A e 1* and u e 1”. Then (Ax ) is a fuzzy set in X xY

for which (Axu) (x,y) = min{ A(x), u(y)}, forevery (x,y) e X xY .

Definition 1.44[161]: Given a family {(X;,t):ieJ} of fts’s, we define their

product (X, t;) to bethe fts (X, t), where X = []X; is the usual product set and t is

ield iel
the coarsest fuzzy topology on X for which the projections =;,: X — X, are fuzzy
continuous for each i e J. The fuzzy topology t is called the product fuzzy topology on

X and (X, t) is a product fts.

Definition 1.45[150]: An fts (X,t) is said to be fuzzy T,-space iff for every
X, ye X, x#y, there exist u, vet such that u(x)=1, u(y)=0 and v(x)=0,

v(y)=1.

Definition 1.46[85]: An fts (X,t) is said to be fuzzy T,-space iff for all

X, ye X, x=#y, there exist u, v et such that u(x)>0, u(y)=0 and v(x)=0,

v(y)>0.

Definition 1.47[54]: An fts (X, t) is said to be fuzzy Hausdorff space iff for all

X, ye X, x#y,thereexist u, vetsuchthat u(x)=1, v(y)=landunv =0.

Definition 1.48[85]: An fts (X,t) is said to be fuzzy Hausdorff iff for all

X, ye X, x#y,thereexist u, vet suchthat u(x)>0, v(y)>0 and unv=0.

11
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Definition 1.49[93]: An fts (X, t) is said to be fuzzy Hausdorff iff for every pair of
distinct fuzzy points x,, y, in X, there exist u, vet suchthat x. eu, y,ev and

unv=~0.

Definition 1.50[116]: An fts (X,t) is said to be fuzzy Hausdorff iff for all

X, ye X, x=#y,thereexist u, vet suchthat u(x)=1, v(y)=1and ucl-v.

Definition 1.51[116]: An fts (X,t) is said to be fuzzy regular iff for each
x e Xand u et® with u(x)=0, there exist v, wet such that v(x)=1, ucw and

vcl-w.

Definition 1.52[27]: An fts (X, t) is said to be fuzzy regular iff each open fuzzy set

u of X isaunion of open fuzzy sets u, of X such that u_I c u foreachi.

12



Chapter Two

Fuzzy Compact Spaces

Fuzzy compact spaces was first introduced by Chang [19] in fuzzy topological
spaces and mentioned some properties which are global property. In this chapter, we have
discussed various other properties of this concept and established some theorems,
corollaries and examples. Also we have defined fuzzy & -compact spaces and found

different characterizations between fuzzy compact and fuzzy & -compact spaces.

Definition 2.1[19]: Let (X,t) be an fts and A be a fuzzy set in X. Let

M={u:

i €J} bea family of fuzzy sets. Then M ={u,} is called a cover of A iff
Ac U{ u: ieJ}. If each u, is open, then M ={u,} is called an open cover of 4.
Furthermore, if a finite subfamily of M is also cover A i.e. there exist Uy Uy e ,
u €M suchthat A cu, wu U ... U U, ,then M is said to be reducible to a finite

cover or contains a finite subcover or has a finite subcover.

Definition 2.2[19]: An fts (X,t) is compact iff each open cover has a finite

subcover.

Theorem 2.3: Let (X, t) be a compact fts, A c X with 1, is closed. Then 1, is

also compact.

13



Fuzzy Compact Spaces

Proof: Let M ={u,: ieJ} be an open cover of 1, i.e. 1A§UUi- Then

iel
1, = [UJ uij Ul thatis M ={u}u {1,.} is an open cover of 1,. But 1. is open,

since 1, is closed. So M ™ is an open cover of 1,. As (X, t) is compact; hence M~ has

a finite subcover i.e. there exist u; e M (k =1, 2, ... ,n) suchthatl, =u, Vu, U
...... vy wl.. But 1, and 1. are disjoint; hence 1, U VU U ... UU ;
u eM (k=1,2, ... , N'). We have just shown that any open cover M ={u,} of 1,

contains a finite subcover i.e. 1, is compact.

Definition 2.4[10]: A family M of fuzzy sets has the finite intersection property iff

the intersection of the members of each finite subfamily of M is non-empty.

Theorem 2.5: An fts (X, t) is compact iff each family of closed fuzzy sets which

has the finite intersection property has a non-empty intersection.

Proof: cf.[19].

Theorem 2.6: For an fts (X, t), the following statements are equivalent :
(i) (X,t) is compact.

(i) For each {1,: ieJ} of closed subsets of (X,t) ; [, =0y implies

ied
{1, : 1€ J} containsa finite subfamily {1, , 1, , ... 1, Fwithl, N1, N

N1, =0,.

'n
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Fuzzy Compact Spaces

Proof: (i) = (ii) : Suppose (1)1, =0y. Then by De-Morgan’s law, 1, = (0,)° =

ied

[ﬂl/}“j = UlAic . S0 {1,.} is an open cover of (X, t), since each 1, isclosed. As (X,1)

ied ied

is compact, then there exist 1o 1o, e BNRE {1Ap} such that 1, = 1.0l v
....... U1, . Thus by De-Morgan’s law, 0, =(1,)° = (Lo Ule U WL) ¢
=1, NI, N M1, and we have shown that (i) = (ii).

(i) = (i) : Let {u,: i€ J} beanopencover of (X, t) ie. 1, = U u, . By De-Morgan’s

ied
law, we have 0, =(1,)° = [U uij = (") uf . Since each u, is open, then {u’: ieJ}
ied ied

is a family of closed fuzzy sets and so by above has an empty intersection. Hence by

hypothesis, there exist uif , ufz, ufn e {u’} such that uif M ufz o N M ufn
=0, . Thus by De-Morgan’s law, we get 1, = (0,)° = ( uf N ul N ... nuf )
= U U U U U u, . Accordingly, (X, t) is compact and so (i) = (i).

Theorem 2.7: Let (X,t) beanftsand A — X . Then 1, is compactin (X, t) iff 1,
is compact in (A, t,).
Proof: Suppose 1, is compact in (X, t). Let {u,: ieJ} bean open cover of 1, in

(A t,). Then there exist v, e t such that u;=v,| Acv,. Hence 1, < Ju, <]V and

ied ied
therefore {v,: ie J} is an open cover of 1,. Since 1, is compact, so {v,: ieJ}
contains a finite subcover, say {v, : ke J } suchthat 1, c v, Uv, U...UV, . But,

then L, (v, Vv, V..U Vv, )[A = (v, [A) U (v, |A) U... (v [ A)

15



Fuzzy Compact Spaces

=Uu VU U vu . Thus {u: ieJ} contains a finite subcover
U, U ... , U and 1, iscompactin (A t,).
L1 12 In A p A

Conversely, suppose 1, is compact in (A, tA). Let {v,: i€ J} beanopencoverofl, in

ied ied ied

(X,t). Set u=v,| A, then 1, (v, implies that lAg[UVile =J(vi | A)

= |Ju;.Butu et,,s0{u:ieJ}isanopencoverof 1, in (At,). As 1, is compact

iel
in (A, tA), thus {u;: ieJ} contains a finite subcover, say {u,, U, ... U }.
Accordingly, 1,c u, wu U... vu o= (v [A) U (v, |A)U. (v |A)

= (v, Vy, U...uU V, )|A cVv, UV, U....uV, . Thus {v,: ieJ} contains a
n 1 2 n

Iy [

Corollary 2.8: Let (Y, t*) be a subspace of (X,t) and A be a subset of (Y, t*) such
that AcY < X . Then 1, is compactin (X, t) iff 1, is compact in (Y, t*).
Proof: Let t, and t, be the subspaces of fuzzy topologies on A. Then by preceding
theorem (2.7), 1, is compact in (X, t) or (Y, t") iff 1, is compactin (A t,) or (A t;);

but t, = t,.

Theorem 2.9: Let (X,t,) and (X,t,) be two fts’s and (X, t,) be compact. If t, is
coarser than t,, then (X, t,) is also compact.

The proof is easy.

Theorem 2.10: Let (X, t) be an fts and {1, } =1, , where {1, } be a finite family.

If each 1, is compact, then Ulvs is a compact subspace of (X, t).

16



Fuzzy Compact Spaces

Proof: Let {u,: i€ J} bean open cover of Ulvs . Then {u,: i €J }is an open cover
of 1, for each s € J. Since 1, is compact, then {u;: i€ J } contains a finite subcover,

say {u, : k € J,} which isacover of 1, . The union of these families is a finite subcover

of [ J1,, . Thus [ J1, is compact.

Theorem 2.11: Let (X,t) and (Y,s) be two fts’s and f: (X,t)—>(Y,s) be
bijective, fuzzy open and fuzzy continuous. Then (X, t) is compact iff (Y, s) is compact.
The necessary part of this theorem has already been proof by Chang [19].

Suppose (Y,s) is compact. Let M ={u,: i< J} be an open cover of (X,t) with

U u, =1, . Since f is fuzzy open, so f(u;) € s and hence { f(u;): i€ J } is an open

ied

cover of (Y, s). As (Y,s) is compact, then for each y Y, we have | J f (u)(y) =1,.

ied

Hence there exist f(u )e{f(u): ieJ} (keJ,) such that U fu,)(y)=1.

kel,

Again, let v be any fuzzy set in X . Since f is bijective, then f*(f(v))=v. Hence

1, = f(1,) = f‘l[Uf(uik)J = U(F2(f ) = Ju, . Thus (X, t) is compact.

keld, ked, keld,
Theorem 2.12: Let (X, t) be an fts and (A, t,) be a subspace of (X, t) with (X, t)
is fuzzy compact. Let f: (X,t) - (A t,) be fuzzy continuous and onto, then (A, t,) is

fuzzy compact.

Proof: Let M = {u;: ieJ} be an open cover of (At,) with | Ju, =1,. Put

iel
u =V, | A, where v,et. Since f is fuzzy continuous, then f*(u) et implies that

fv,|A)et. As (X,t) is fuzzy compact, then we have for each xe X,

17



Fuzzy Compact Spaces

U™ W 1A (X) =1y . Thus we see that { f (v, | A) : i € J } is an open cover of (X, t).

ied

Hence there exist (v, |A), f7(v, |A), ...... , £ v |A) e{f™(v,| A)} such that

U ft (v [A)(X) =1, forevery x e X . Again, let u be any fuzzy set in A. Since f is

k=1

onto, then we have f(f'(u))=u. Hence 1A=f(lx)=f[Uf‘l(vik|A)J
k=1

f (f‘l(vik |A)) = U, 1A = Ju, - Therefore (A, t,) is fuzzy compact.
k=1 k=1 k=1
Theorem 2.13: Let (A t,) and (B,s,) be fuzzy subspaces of fts’s (X,t) and
(Y, s) respectively with (A, t,) is compact. Let f: (A t,) — (B, s,) be relatively fuzzy
continuous and surjective mapping. Then (B, s, ) is compact.

Proof: Assume that f(A)=B, as f issurjective. Let {v,: v,es; } foreach i € J bean

open cover of (B,sy) ie. |Jv,=1;. As f s relatively fuzzy continuous, then

iel
f*(v)|Aet, and hence { f(v;)|A: ieJ} is an open cover of (A t,). Since

(At,) is compact, so { f*(v,)|A: ieJ} has a finite subcover i.e. there exist
v ) A e{ 7 (v)|AY (k=1, 2, ...... ,n) such that 1, =[J(f(v,)|A).
k=1

Again, let v be any fuzzy set in B. As f is surjective, so we have f(f‘l(v))z V.

=1

Therefore 1, = f(1,) = f[o(f‘l(vikﬂA)J:Uf ( f‘l(vik)| A)= U(vik | T(A))

= LnJ( v, |B)= LnJvik ,as v,| B cv,. Thus (B, s, ) is compact.
k=1

k=1

18



Fuzzy Compact Spaces

Theorem 2.14: Let (A t,) and (B,s,) be fuzzy subspaces of fts’s (X,t) and
(Y,s) respectively. Let f: (A t,)—(B,sy) be relatively fuzzy open and bijective
mapping with (B, s, ) is compact. Then (A, t,) is also compact.

Proof: We have f(A)=B, as f is bijective. Let {u,: u, et,} be an open cover of

(At,) for every ieJ ie |Ju =1,. As u et,, then there exists v, et such that

ied

u,=v,| A and so U( v,|A)=1,. As f is relatively fuzzy open, then f(u,) € s; and

icd
hence { f(u,) : ieJ} is an open cover of (B, sB) implies that { f(v,|A): ieJ}
= {f()|f(A): ied} = {f(v)|B: ieJ} is an open cover of (B,s,). Since
(B, sB) is compact, then {f(v,)|[B: ieJ} has a finite subcover, say

{f(v,)IB: keJ,} suchthat U(f(v,k)|B) = 1;. Let v be any fuzzy set in A. As f

keld,

is bijective, then we have f*(f(v))=v. Hence 1, = f'(1,) = f‘l[U(f V)] B)J

ked,

= v, 117B) = Jw, 1A) = Ju, . Thus {u, : ke, } is a finite subcover of

kel, kel, kel,

{u,: u et,}. Hence (A t,) is compact.

Theorem 2.15: Let (X, t) be a fuzzy T,-space (as def. 1.45), Ac X and 1, be a
compact subset in (X, t). Suppose x € A°, then there exist u, v et such that u(x) =1
and Acv™(0,1].

Proof: Let ye A. Since x¢ A(xe A%), then clearly x=y. As (X,t) is fuzzy
T,-space, then there exist u, , v, et such that u (x)=1, u,(y)=0 and v (x)=0,
v,(y) =1. Hence 1, U{ v,: yeA}ie {v,: ye A} isanopen coverof 1,. Since

1, is compact, then it has a finite subcover, say v, , v , vV, €{v,} such that

yp 1
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Fuzzy Compact Spaces

l,cv,Uv, U ... UV, .Now,letv=v, Uv, U .... UV, andu=u, nu, N
1 2 Yn Y1 Y2 Yn Y1 Y2
...... Nu, . Thus we see that v and u are open fuzzy sets, as they are the union and
finite intersection of open fuzzy sets respectively i.e. v, uet. Furthermore,

A cv'(0,1] and u(x) =1, since each u, (x) =1 individually.

Theorem 2.16: Let (X, t) be a fuzzy T, -space (as def. 1.45) and 1, , 1, be disjoint
compact subsets in (X,t) (A, Bc X). Then there exist u, vet such that
Acu™(0,1] and B cv*(0,1].

Proof: Let y e A. Then y ¢ B, as 1, and 1; are disjoint. Since 1, is compact, then by
theorem (2.15), there exist u,, v, et such that u(y)=1 and B gv;l(o, 1]. Since

u,(y) =1, then {u,: y e A} isanopencover of 1,. As 1, is compact, so it has a finite

subcoer, say P | , Uy e{uy} such that 1, c u, Uu, U vu, .
Furthermore, 1; cV, NV, N o nv,,as Bcv?'(0,1] for each k. Again, let
1 Y2 Yn Yk
u=u, U u, U ... vuu, and v=v, NV, N ... NV, . Thus we see that
1 Y2 Yn Y1 Y2 Yn

Acu™(0,1] and B cv'(0,1]. Hence u and v are open fuzzy sets, as they are the

union and finite intersection of open fuzzy sets respectively i.e. u, vet.

Theorem 2.17: Let (X, t) be a fuzzy T,-space (as def. 1.45) and Ac X . If 1, is
compact in (X, t), then 1, is closed.
Proof: Let x € A" . We have to show that, there exist u et such that u(x) =1 and
u < AP, where AP is the characteristic function of A°. Indeed, for each y € A, there
exist u,, v, et suchthat u (x)=1, u,(y)=0 and v, (x) =0, v,(y) =1. Hence we see

that 1, < U{ v,: yeA}ie {v,: yeA} isanopencoverofl,.Since 1, is compact

20



Fuzzy Compact Spaces

in (X,t), so 1, has a finite subcover, say {v, : yeA}(keld,) such that
lAgvluvzu ....... U v, . Now, let u= U, N Uy, Mo muyn.Thusweseethat
u(x) =1, as u, (x)=1 for each k. For, each z € A, there exists a k such that
U{vyk}(z) =1(k=1,2,.... ,n) and so u(z) =0. Hence u c A®. Therefore, 1 . is

openin (X,t). Thus 1, is closed in (X, t).

Theorem 2.18: Let (X, t) be a fuzzyT,-space (as def. 1.46), Ac X and 1, be a
compact subset in (X, t). Suppose x e A°, then there exist u, v et such that u(x) >0
and Acv™(0,1].

Such fuzzy T,-space have no compact subset. So the above theorem (2.18) is vacuously

true for there space.

Theorem 2.19: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47), Ac X and
1, be a compact subset in (X, t). Suppose x € A°, then there exist u, v et such that
ux) =1, Acv?™0,1]and u nv=0.
Proof: Let ye A. Since xe& A(xe A®), then clearly x = y. As (X,t) is fuzzy

Hausdorff, then there exist u,, v, et such that u,(x)=1, v (y)=1and u,nv, =0.

y !

Hence 1, c U{ v,: yeA} ie {v,: yeA} is an open cover of 1,. Since 1, is

compact, then there exist Vo Vo e
1 Y2
uvy.Now,Ietv=vyuv U e Uv, andu=u, N u, N ...... M U, . Thus we
n 1 Y2 Yn Y1 Y2 Yn
see that v and u are open fuzzy sets, as they are the union and finite intersection of open

fuzzy sets respectively i.e. v, u e t. Furthermore, A — v*(0,1] and u(x) =1, since each

u, (x) =1 individually.
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Finally, we claim that unv=0. We observe that u, nv, =0 implies that
unv, =0, by distributive law, we have unv=un (v, uUv, U.... v, )

n

=(umvyl)u(umvy2)u ...... u(umvyn)zo.

Corollary 2.20: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47), Ac X and
1, be a compact subset in (X, t). Let x ¢ A, then there exist u e t such that u(x) =1 and
u™(0,1] c A°.
Proof: By theorem (2.19), there exist u, v et such that u(x) =1, Acv'(0,1] and
unv=0.Hence u™(0,11 nv™'(0,1] = ¢. If not, there exists x € u™(0,1] N v'(0,1]
= xeu(0,1] and xev'(0,1] = u(x)>0 and v(x) >0 = unv =0. Hence

u™(0,1] » A = ¢ and consequently u(0,1] < A°.

Theorem 2.21: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47) and 1, , 1, be
disjoint compact subsets in (X, t) (A, Bc X ). Then there exist u, v et such that
Acu™(0,1], Bcv™(0,1]and unv=0.

Proof: Let y € A. Then y ¢ B, as 1, and 1, are disjoint. Since 1, is compact, then by
theorem (2.19), there exist u,, v, et such that u/(y)=1, Bc v;l(O, 1] and
u,nv,=0. Since u(y)=1, then {u,: ye A} is an open cover of 1,. As 1, is

compact, then there exist Uy, Uy

vu, . Furthermore, 1, < VNV, N NV, ,as Bc v;kl(O, 1] for each k. Now,

Yn,
let u=u, U u, U ... Uu, and v=v, NV, N ..... NV, . Thus we see that
1 Y2 Yn Y1 Y2 Yn

Acu™(0,1] and B cv'(0,1]. Hence u and v are open fuzzy sets, as they are the

union and finite intersection of open fuzzy sets respectively i.e. u, v et.
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Finally, we have to show that u n v = 0. First, we observe that u, Nv, = 0 for each k,

Theorem 2.22: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47), Ac X and
1, be a compact subset in (X, t). Then 1, is closed.
Proof: Let x € A°. We have to show that, there exists u et such that u(x) =1 and
u < AP, where AP is the characteristic function of A°. Now, let y € A, then there exist
u,, v,et such that u/(x)=1, v,(y)=1 and u,nv,=0. Thus we see that
1, c U{ v,: yeA}ie {v,: ye A} isanopen cover of 1,. Since 1, is compact, so
it has a finite subcover, say vy, Vv

Y2

uvy.Again,Ietu=uymu M s Nu, and v=v, UV, U ...... U v, . Hence
n 1 Y2 Yn Y1 Y2 n

we observe that u(x) =1, as u, (x) =1 for each k and un(v, v, U ...

wv, )=0.Foreach z € A, itis clear that U{vyk}(z) =1(k=1,2,.... ,N ). Thus

u(z) =0 and hence u c AP. Therefore, 1. is openand so 1, is closed.

Theorem 2.23: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48), Ac X and
1, be a compact subset in (X, t). Suppose x € A°, then there exist u, v et such that
ux) >0, Acv'(0,1]and unv=0.

Such fuzzy Hausdorff space have no compact subset. So the above theorem (2.23) is

vacuously true for there space.
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Theorem 2.24: Let (X, t) be a fuzzy Hausdorff space (as def. 1.49), Ac X and
1, be a compact subset in (X, t). Suppose x € A°, then there exist u, v et such that
x.eu, Acv'(0,1]and unv=0.

Such fuzzy Hausdorff space have no compact subset. So the above theorem (2.24) is

vacuously true for there space.

Theorem 2.25: Let (X, t) be a fuzzy Hausdorff space (as def. 1.50), A< X and
1, be a compact subset in (X, t). Suppose x € A, then there exist u, v et such that
ux) =1, Acv?™0,1]and u c1-v.
Proof: Let ye A. Since x¢ A( xe A°), then clearly x = y. As (X,t) is fuzzy
Hausdorff, then there exist u,, v, et such that u (x)=1, v (y)=1and u,cl-v,.
Hence lAgU{ v,: ye A} ie {v,: ye A} is an open cover of 1,. Since 1, is
compact, then there exist v, , v,

vy.Now,Ietv=vyuv U e Uv, andu=u, N u, N ...... M U, . Thus we see
n 1 Y2 Yn Y1 Y2 Yn

that v and u are open fuzzy sets, as they are the union and finite intersection of open
fuzzy sets respectively i.e. v, u et. Furthermore, A < v'(0,1] and u(x) =1, since each

u, (x) =1 foreach k.

Finally, we have to show that ucl-v. As ucl-v, implies u gl—vy. Since
u, (x)<1-v, (x) for all xe X and for each k, then u c1-v. If not, there exists
x € X such that u,(x) >1-v, (x). We have u (x) <u, (x) for each k. Then for some
k, u, (x)>1-v, (x). But this is a contradiction, as u, (x) <1-v, (x) for each k.

Hence u c1-v.
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Theorem 2.26: Let (X, t) be a fuzzy Hausdorff space (as def. 1.50) and 1, , 1, be
disjoint compact subsets in (X, t) (A, Bc X ). Then there exist u, v et such that
Acu™0,1], Bcv'(0,1] and uc1-v.

Proof: Let y e A. Then y ¢ B, as 1, and 1; are disjoint. Since 1, is compact, then by

theorem (2.25), there exist u,, v, et such that u/(y)=1, Bgv;l(o,l] and
u,cl-v,. Since u,(y)=1, then {u,: ye A} is an open cover of 1,. As 1, is

compact, then there exist Uy o Uy e

v, . Furthermore, 1; c vV, NV N NV, ,a Bc v;kl(O, 1] for each k. Now,
let u= u, U u, U o vu, and v = vV, OV, N NV, . Thus we see that
Acu™(0,1] and B cv'(0,1]. Hence u and v are open fuzzy sets, as they are the

union and finite intersection of open fuzzy sets respectively i.e. u, v et.

Finally, we have to show that u < 1—v. First, we observe that u, < 1- vy, for each k,

implies that u, cl-v foreach k and itisclearthat u c1-v.

Theorem 2.27: Let (X, t) be a fuzzy Hausdorff space (as def. 1.50), A< X and
1, be a compact subset in (X, t). Then 1, is closed.
Proof: Let x e A°. We have to show that, there exists u et such that u(x) =1 and
u c A® , where A’ is the characteristic function of A°. Now, let y € A, then there exist
u,, v,et such that u(x)=1, v, (y)=1 and u,cl-v,. Thus we see that
1, c U{ v,: yeA}ie {v,: yeA} isanopen cover of 1,. Since 1, is compact, so

it has a finite subcover, say v, , v , vV, €{v,} such that 1, cv, Uv, U

yp 1t

...... U v, . Again, let u=u, N u, N ... NU, and V=V, UV, U L UV
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Hence we observe that u(x) =1, as u, (x) =1 for each k and u,c1-v, implies that
ucl-v,.As u, (x)<l-v, (x) forall xe X and for each k, then u c1-v. If not,
there exists x € X such that u,(x) >1-v,(x). We have u,(x) <u, (x) for each k. Then
for some k , u, (x) >1-v, (x).Butthis is a contradictionas u, (x) <1-v, (x) foreach
k. Hence ucl-v. Foreach z € A, itis clear that U{vyk}(z) =1(k=1, 2, ...... ,

n).Thus u(z) =0 and hence u — A". Therefore, 1. is open and so 1, is closed.

Theorem 2.28: Let (X, t) be a fuzzy regular space (as def. 1.51), Ac X and 1,
be a compact subset in (X, t). Suppose x € A and u e t° with u(x) = 0. Then there exist
v, wetsuchthat v(x) =1, ucw, Acv’(0,1] and vcl-w.

Proof: Suppose x € A and u € t° we have u(x) =0. Since (X, t) is fuzzy regular, then

there exist v,, w,et such that v (x)=1, u cw, and v, cl-w,. Hence

1, c U{ v,: xe A}ie {v,: xe A} isanopencover of 1,. Since 1, is compact, so it

has a finite subcover, say Ve s V

Xy 1t

uv, .Now, letv=v, Uv, U... Uv,and w=w, N W, N M W, . Thus we

see that v and w are open fuzzy sets, as they are the union and finite intersection of open
fuzzy sets respectively i.e. v, wet. Furthermore, Acv(0,1], v(x)=1land ucw,
as u < w, individually.

Finally, we have to show that vcl-w. As v, c1-w, for each k implies that

v, €l-w for each k and it is clear that v 1— w.
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Theorem 2.29: A topological space (X,T) is compact iff (X, o (T )) is fuzzy
compact.

Proof: Suppose (X, T) is compact. Let {u,: i< J} be an open cover of (X, (T))

ie 1, =|Ju;- Then u*(a,1]eT for ae 1, and {u;*(a,1]: u;*(a,1] €T } is an open

icd
cover of (X,T). Since (X,T) is compact, so it has a finite subcover, say
{u(a,1]: keJ }suchthat X = u*(a,1] U u'(a,1] U ... U u;*(a,1]. Now, we
canwrite 1, =u, U U, U...uuanditis seenthat {u, : k e J,} is a finite subcover
of {u:ied} Thus (X, @ (T)) is fuzzy compact.

Conversely, suppose that (X, (T )) is fuzzy compact. Let {V;: jeJ} bean open

cover of (X, T) ie X=UVJ.. Since 1, are | . s. c. then 1, ew(T) and

jed
{1, : 1, eo(T)} is an open cover of (X, 0 (T)). Since (X, (T)) is fuzzy
compact, so it has a finite subcover, say {1VJk : keld,} such that
=1, v, v...vl . Now, we can write X =V, UV, U ... UV, anditis

seenthat {V; : k € J,} is afinite subcover of {V,: j e J}.Thus (X, T) is compact.

Theorem 2.30: If {(Xi t)iield } is a family of fuzzy compact fuzzy topological
spaces, then the product space [H X, Htij is also fuzzy compact.
iel iel

Proof: cf.[108].
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Definition 2.31: Let (X,t) bean ftsand 0 <& <1. A fuzzy set u et is said to be
o-openin X iff u(x)>¢6 forall xeu,.If 6 =0, then u is open. A fuzzy set is said to

be ¢ -closed iff its complement is & -open.

Example 2.32: Let X ={a,b}, 1 =[0,1] and 0 <& <1. Again, let u, ve I*
defined by u(a) =04, u(b)=0.3 and v(a) =0.7, v(b) =0.5. Consider t={0, u,
v, 1}, then (X, t) is an fts. Take & = 0.4. Then u is not 5 -open in X, as u(b) <& for

beu, Butvisd-openin X, as v(a), v(b)>o fora, bev,.

Definition 2.33: Let M ={u,: i€ J} be a family of & -open fuzzy sets in an fts
(X,t) and A be a fuzzy set in X. Then M is said to be &-cover of A iff

A c U{ u: u, €M }. Asubfamily of a 6 -cover of 4 which is also a & -cover of 4 is

ied

said to be & -subcover.

Example 2.34: Let X ={a,b}, 1 =[0,1] and 0 <5 <1. Let u,, u,, U,e I*
defined by u,(a) =1, u,(b)=0.4; u,(a) =05, u,(b)=1and u,(a) =05, u,(b) =0.4.
Now, take t={0, u,, u,, u,, 1}, then we see that (X, t) is an fts. Again, let 1 € 1*
defined by A(a) =06, A(b)=0.7. Take 6 =0.4. Clearly u,, u, and u, are & -open
fuzzy sets in (X, t). Now, we observe that 4 — u, U u,. So {u,, u,} isa & -cover of 1

in (X,t).

Definition 2.35: Let (X, t) be an ftsand 0 <& <1. An fts (X, t) is & -compact iff

every & -cover of X has a finite & -subcover.
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Theorem 2.36: Any fuzzy & -compact space is fuzzy compact. The converse is not
necessarily true in general.
The proof is straightforward.

Now, for the converse, we consider the following example.

Let X =[0,1], 1=[0,1] and 0<s&<1. Let u,, u,, Uu,el” defined by
1 for 0<x<04 05 for 0<x<04

u(x) =41 forx=04 : u,(x) =<1 forx=0.4 and
0.6 for 0.4<x<1 1 for 04<x<1

05 for 0<x<04

U,(x) =<1 forx =0.4 . Now, take t={0, u,, u,, u,, 1}, then we see that
06 for 04<x<1

(X,t) is an fts. Clearly (X, t) is fuzzy compact. Take & =0.8. Then there is no finite

& -open fuzzy sets u, for k =1, 2, 3 in (X, t). Thus (X, t) is not & -compact.
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Chapter Three

a -Compact Spaces

o -compact spaces have been introduced first by Gantner et al. [54] in fuzzy
topological spaces and discussed some characterizations of this concept. We aim to study
various other properties of this concept and established some theorems, corollaries and
examples. Also we have defined & -a -compact spaces and found different properties

between o -compact and & - & -compact spaces.

Definition 3.1[54]: Let (X, t) be an ftsand o« e | . A collection M of fuzzy sets is

called an o -shading, 0 <o <1 (res. a -shading, 0 <a <1) of X if for each x € X there

exists a u e M such that u(x)>a (resp. u(x)>a). A subcollection of an « -shading
(res. a"-shading) of X which is also an « -shading (resp. o -shading) is called an

a -subshading (res. o -subshading) of X .

Definition 3.2[54]: An fts (X,t) is said to be o -compact, 0<oa <1 (res.
a”-compact, 0 <a <1) iff each « -shading (res. o -shading) of X by open fuzzy sets

has a finite o -subshading (res. o -subshading), where o € I .

Theorem 3.3: Let (X,t) be an fts and Ac X. Then 1, is «a-compact (resp.
" -compact) in (X, t) iff 1, is a -compact (resp. " -compact) in (A, t,).
Proof: Suppose 1, is a-compactin (X,t). Let M ={u,: i € J } be an open « -shading

of 1, in (A t,). Then there exist v, e t suchthat u,=v,| A cv,. Hence {v,: ieJ}is
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o -Compact Spaces

an open ¢ -shading of 1, in (X, t). Since 1, is o -compact in (X,t), then {v,: ie J}
has a finite o -subshading, say {v; : k € J,} such that v, (x) >« for each x e A. For,
if x e A, then there exists Vi, such that Vi, (X) >a implies that (viko | A)(X) >a and
consequently Ui, (X) >a,as Ac X. Hence u, €M and so {u; : keJ,} isa finite
o -subshading of M . Therefore, 1, is a -compactin (A, t,).

Conversely, suppose 1, is a -compact in (A, tA). Let H={v,: ieJ} be an open
a -shading of 1, in (X,t). Put u =V, | A. To show this, let x e X. If x € A, then there
exists v, € H such that u; =v;, [A. But u; et, , so u, (x)>a for each xe A.
Therefore, {u,: i€ J } be an open «a -shading of 1, in (A, tA). Since 1, is o -compact
in (A't,), then {u,: ieJ} has afinite «-subshading, say {u, : k € J,} such that
u, (x) >a foreach x e A. For, if x e A, then there exists Ui, such that Ui, xX)>a =
(viko [A(X)>a = viko(x)>a, as AcX. Thus {v, : kelJd,} is a finite
o -subshading of H . Hence 1, is a -compactin (X, t).

Similar proof for ¢ -compactness can be given.

Corollary 3.4: Let (Y, t*) be a fuzzy subspace of (X,t)and AcY < X .Then 1,

is o -compact (resp. « -compact) in (X,t) iff 1, is a-compact (resp. o -compact) in

(v, t").
Proof: Let t, and t, be the subspace fuzzy topologies on A. Then by preceding theorem

(3.3), 1, is a -compact in (X, t) or (Y, t*) iff 1, is o -compact in (A, t,) or (A, tA) But

Similar work for o -compactness can be given.
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Theorem 3.5: Let (X,t) be an fts and Ac X. If (X,t) is a-compact (resp.
o -compact) and 1, is closed, then (A, tA) is o -compact (resp. o -compact) subspace of
(X, 1).
Proof: Let M ={u,: ie J} be an open « -shading of (A, tA). Then there exist v, e t
such that u, =v,| A. Let H={v,et: v,| AeM }. Then H U {1, ,} is a family and
is an open « -shading of (X, t). To prove this, let x € X . If x € A, then there exists
u, €M such that u, (x)>oa. Let v/ et such that v/|A=u,. Thus vieH and
V(X)>a. If xeX—A, then (I, ,)(X)>a. Since (X,t) is «-compact, so
H U {1, _,} has a finite « -subshading, say {v, , 1, ,} (ke J,). Also 1, and 1, ,
are disjoint, so we can exclude 1, , from this « -shading. Hence {v, |A} (ke J,) is
a finite a -subshading of M. For if xe A and {v, , 1, ,} (keJ,) is an open
a -shading of (X,t), then there exists v, such that v, (x)>a. Therefore
(v, |A)(x) > and v; | Ae M . Hence (A t,) is a -compact.

The proof is similar for " -compactness can be given.

Note: This theorem have been proved in Gantner et. al. [54] in a different form.

Theorem 3.6: Let (X, t) and (Y, s) be two fuzzy topological spaces with (X, t) is
o -compact (resp. o -compact). Let f: (X,t)—(Y,s) be fuzzy continuous and
surjective mapping. Then (Y, s) is a -compact (resp. a”-compact).
Proof: Let {u,: u, € s} be an open « -shading of (Y, s) for every i e J. Since f is
fuzzy continuous, then f*(u,) € t. We see that, for each x € X, f™*(u;)(x) > o and so
{f*(u)} is an open «-shading of (X,t), ie J. Since (X,t) is a-compact, then
{f *(u)} has a finite o -subshading, say { f‘l(u,k): keld,}. Now, if yeY, then
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y = f(x) for some x e X . Then there exists u, e {u;} such that f‘l(uik)(x) >a which
implies that u, (f(x))>a or u (y)>a. Thus {u} has a finite « -subshading
{u; : keJ,} Hence (Y,s) is o -compact.

Similar proof for ¢ -compactness can be given.

Note: This theorem was proved in Gantner et. al. [54] in a different form.

Theorem 3.7: Let (X, t) and (Y, s) be two fuzzy topological spaces with (Y, s) is
o -compact (resp. o -compact). Let f: (X,t)—(Y,s) be fuzzy open and bijective
mapping. Then (X, t) is o -compact (resp. a " -compact).
Proof: Let M ={u,: i e J} beanopen «-shading of (X,t). Since f is fuzzy open,
then f(u)es andhence f(M)={ f(u): ieJ} isalsoanopen «-shading of (Y,s).
For, if yeY, then f'(y)e f(Y). So there exists u_c M such u, (f*(y)) >«
which implies that f(u; )(y) >a. As (Y,s) is a-compact, then f (M) has a finite
a -subshading, say { f (u; ): k € J,} such that f(u, )(y) >a for each yeY. For, if
xe f'(Y), then x=f*(y) for yeY. Therefore, there exists u, €M such that
f(u;, )(y) >« which implies that uik(f‘l(y)) >a or U; (X) >a. Thus M has a finite
o -subshading {u; : k € J, }. Hence Then (X, t) is a -compact.

Similar work for o -compactness can be done.

Theorem 3.8: Let (X, t) be an fts and (A, t,) be a subspace of an fts (X, t). Let
f: (X,t)>(At,) be fuzzy continuous and onto mapping with (X, t) is « -compact

(resp. o -compact). Then (A, tA) is o -compact (resp. o -compact).
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Proof: Let M ={u,: ie J} be an open o -shading of (A t,). Put u =v,| A, where
v, et.Since f is fuzzy continuous, then f*(u,) et and so f *(v,| A) e t. Thus we have
for every xe X, f7*(v|A)((X)>a and hence f'(M)={f'(u):u,eM} ie
f*M)= {f'(v|A): ied} is an open «-shading of (X,t). As (X,t) is
a -compact, then (M) has a finite o -subshading, say { f(v, |A), f7 (v, |A),
...... : f‘l(vin | A) }. Now, if y € A, then y = f (x) for some x € X . Then there exists
k such that f(v, |A)(x)>a which implies that (v, | A) (f(x))>a or u, (y) >a.
Hence (A, t,) is o -compact.

Similar work for " -compactness can be given.

Theorem 3.9: Let (A, t,) and (B, s, ) be fuzzy subspaces of fts’s (X, t) and (Y, s)
respectively and f : (A t,) — (B, s,) be relatively fuzzy continuous and onto mapping
with (A t,) is o-compact (resp. a”-compact). Then (B, s;) is «-compact (resp.
a” -compact).

Proof: We have f(A)=B, as f isonto. Let {v,: v, e s;} be an open « -shading of
(B, sB) for every ie J ie v,(y)>a for each y e B. Since v, € s;, then there exists
u,es suchthat v,=u, | B andso (u;|B) (y) >« foreach y e B. As f is relatively
fuzzy continuous, then f'(v)|Aet,. Thus we observe that, for each xe A,
(f*(v)|A)(x) >a and hence { f*(v)|A: ie J} is an open a-shading of (A,t,)
implies  that  { fu [B)JA: ied}= {f W) (fB)nA): ied}
= { f*u)|A: ieJ} isan open «-shading of (A,t,). Since (A, t,) is o -compact,

then { f *(u;)]A: ie J} has a finite « -subshading, say { f‘l(uik)|A} (ked,) such

34



o -Compact Spaces

that (f‘l(uik)| A)(x) >a for each xe A. Now, if yeB, then y= f(x) for some
xe A. Then there exists k we have (f‘l(uik)|A)(x) >q implies that
(u, [ f(A) (f(x)) >a implies that (u; [B)(Y) >, as f isontoor v, (y) >a. Hence it
is clear that {v; : ke J,} is a finite o -subshading of {v;: v, € sg }. Thus (B,sg) is
o -compact.

The proof is similar for " -compactness can be given.

Theorem 3.10: Let (A t,) and (B, s,) be fuzzy subspaces of fts’s (X,t) and
(Y,s) respectively. Let f: (At,)—(B,ss) be relatively fuzzy open and bijective
mapping with (B, s;) is a -compact (resp. o -compact). Then (A, t,) is also a -compact
(resp. o -compact).

Proof: We have f(A)=B,as f is bijective. Let {u;: u, € t, } be an open « -shading of
(A, tA) for every ie J ie u;(x)>a for each x e A. Since u; €t,, then there exists
v, et such that u, =v,| A andso (Vv,| A) (x) >« foreach xe A. As f is relatively
fuzzy open, then f(u;) € s;. Thus we observe that, for each y e B, f(u;)(y) >a and
hence {f(u): ieJ} is an open a-shading of (B,s,) implies that
{f(v,|A: ied}= {f(v)If(A: ied} = {f(v)|B: iel} is an open
a -shading of (B, s, ). Since (B, s, ) is a-compact, then { f(v,)|B: i J} has a finite
a -subshading, say { f(v; )|B: k € J,} such that (f(vik)| B)(y) > o for each y e B.
Now, if xe f *(B), then x=f '(y) for ye B. Then there exists k, we have
(f(v,)1B)(y) > & implies that (v, | f *(B)) (f *(y)) > implies that (v, | A)(x) > & or
u, (x)>a. Hence it is clear that {u, : keJ,} is a finite «-subshading of

{u,:u et} Thus (A t,) is o -compact.
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Similar work for o”-compactness can be done.

Theorem 3.11: Let (X, t) be an fts. If every family of closed fuzzy sets in (X, t)
which has empty intersection has a finite subfamily with empty intersection, then (X, t) is
o -compact (resp. o -compact). The converse is not true in general.

Proof: Let M ={u,: i € J } be anopen « -shading of (X, t). From the first condition of

the theorem, we have ﬂuiC =0,. Thus Uui =1, . Again, by the second condition of the

ied ied

theorem, we get ﬂufk =0, implies that Uuik =1, and hence u, (x) >a for each
kel, kel,

x e X . Itisclearthat {u; : k e J,} isafinite o -subshading of M . Therefore (X,t)is

a -compact.

Now, for the converse, consider the following example.

Let X ={a,b}, 1=[0,1] and 0<a <1. Let u, ve I* defined by u(a)=0.3,
u(b) =0.4 and v(a) =0.6, v(b)=0.7.Put t={0, u, v, 1}, then we see that (X, t)
is an fts. Take a =0.5. Then (X,t) is an «-compact. Now, closed fuzzy sets are
u‘(@)=0.7, u‘(b) =0.6 and v°(a) =0.4, v°(b) =0.3. We observe that u®* nv°=0.
Thus the converse of the theorem is not necessarily true in general.

The work is similar for a”-compactness can be given.

Definition 3.12[91]: Let (X,t) be an fts and O<a <1, then the family
t, ={a(): uet} ofall subsets of X of the form a(u) ={ x e X : u(x)>a } is called

o -level sets, forms a topology on X and is called the « -level topology on X and the

pair (X, t,) is called « -level topological space.
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Theorem 3.13: Let 0 <o <1. An fts (X,t) is « -compact iff (X,t,) is compact

topological space.

Proof: For proof cf.[12].

Theorem 3.14[106]: If T is a cofinite topology on X , then (X,T) is compact.

Theorem 3.15: Let (X, t) be an fts and if t, becomes a cofinite topology on X,
then (X, t) is o -compact.
Proof: Let M ={u: ieJ} be an open a-shading of (X,t). Then
t ={a(): uet}, where a(u)={xe X : u(x)>a} and by the theorem t_ is a
cofinite topology on X . We see that H = { a(u,) : i € J } is an open cover of ( X,t,) .
For let, x € X, then there exists a u; € M such that u, (x) > a. Therefore, x € a(u; )
and a(u, ) e H. As (X, ta) is cofinite, hence compact which implies that H has a finite
subcover, say {a(u; ) } (ke J,), where u, et and a(y; ) €t,. Then the family {u; }

(k € J,) forms afinite « -subshading of M and hence (X, t) IS « -compact.

Definition 3.16: A mapping f : (X,t,)— (X, t) is said to be o -level continuous
iff o(f *(u))et, foreveryuet.

Example 3.17: Let X ={a,b,c}, | =[0,1] and 0<a <1. Let u,, u,, U,
u, e I* defined by u,(a)= 0.4, u,(b)=0.2, u,(c)=06; u,(a)=0.2, u,(b)=0.4,
u,(c)=0.6; us(a)=04, u,b)=04,u,(c)=06 and u,(a)=02, u,(b)=0.2,
u,(c) =0.6. Now, put t={0, u,, u,, u,, u,, 1}, then we see that (X, t) is an fts.

Now, we have t, ={a(u): pet}and a(u)={xe X : u(x)>a }.Put a =0.3. Then
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we have 03(0)=¢, 031 =X, 03(u)={ac}, 0.3(u,)={bc}, 03(u;)=X,
03(u,) ={c}. Therefore, t,,={¢, X, {ac}, {b.c},{c}} is a topology on X .
Let f: (X,t,)—>(X,t) defined by f(a)=b, f(b)=a, f(c)=c. Now,
F10)(X) =0(f(X))=0, fr)(X)=1 for all xeX; fiu)@= u(f(a)
=u(() =02, fru)b= u(f®)= u@=04, F7u)c)= u(f(c)
=u(c)=06; frUu)@ = ul(f(@)= u,0)=04, 7 (u,)b)= u,(f(b))
=U,(@) =02, fu)(e)= u(f@)= u()=06; f7u)@)= uylf(a)
=u;(0) =04, FHU)0)= u(fM)= u(@=04, F7U))= uyf(c))
=u(c) =0.6; fiu)@= u(f@)= u®=02, )b = u(f()
—u,(@) =02, fu)c)= u(f(c)= u,(c)=06. Then we observe that
03(fH(0)= ¢, 03(f"@)=X, 03(f"(u)= {bc}, 03(f"(u,))={arc},
0.3(f “(uy)) = X , 0.3(f “(u,)) ={c}. Therefore ¢, X , {b,c}, {a, c}, {c}ety, ie.
0.3(f1(0)) , 0.3(f (1)), 0.3(f “(u,)), 0.3(f (u,)), 0.3(f “(us)), 0.3(f *(u,)) € t,.

Hence f is « -level continuous.

Theorem 3.18: Let f: (X,t,)—>(X,t) be a-level continuous and bijective
mapping with (X, t,) is compact. Then (X, t) is o -compact.
Proof: Let M ={u,: ieJ} be an open «-shading of (X,t). As f is a-level
continuous, then a(f *(u)) et, and hence {a(f *(u)): ie J} is an open cover of
(X,t,). Since (X,t,) is compact, then { a(f *(u)) : i< J } has a finite subcover, say
{a(f ‘l(uik))}( keld,). Now, we have f(x)=y for ye X, as f is bijective. But

{a(f *(u, )} is finite subcover of {a(f 7(y)): i€ J}, there exist some k such that
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u, (f(x)) >aimplies that u; (y) >a for each y e X. Thus {u, : ke J } is a finite

o -subshading of M . Therefore (X, t) is o -compact.

Theorem 3.19: Let (X, t) be a fuzzy T,-space (as def. 1.45), Ac X and 1, be an
a -compact (resp. o -compact) subset in (X, t). Let x € A°, then there exist u, vet
such that u(x) =1 and A< v(0,1].
Proof: Let y e A. Since xg A (xe A®), then clearly x = y. As (X,t) is fuzzy
T,-space, then there exist u,, v, et such that u(x)=1, u,(y)=0 and v (x) =0,
v,(y) =1. Letus take a € I, suchthat v (y) >a > 0. Thus we see that {v,: y e A} is
an open q-shading of 1,. Since 1, is «-compact in (X,t), so it has a finite
a -subshading, say {v, : y e A} (ke J,) suchthat v, (y)>a foreach y e A. Now,
let v=v, UV, U .. vv,and u=u, N U, N oL M u, . Thus we see that v
and u are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets
respectively i.e. v, u et. Moreover, Acv™(0,1] and u(x) =1, as u, (x) =1 for each
k.

Similar proof for ¢ -compactness can be given.

Theorem 3.20: Let (X, t) be a fuzzy T, -space (as def. 1.45) and 1, , 1, be disjoint
o -compact (resp. ¢ -compact) subsets in (X,t) (A, Bc X ). Then there exist
u, vetsuchthat Acu'(0,1] and B cv™*(0,1].
Proof: Let y € A. Then y ¢ B, as 1, and 1, are disjoint . Since 1, is « -compact, then
by theorem (3.19), there exist u,, v, €t such that u,(y)=1and B c v;l(O, 1]. Let us

take a € 1, such that u (y) >a >0. As u (y) =1, then we see that {u,: ye A} isan
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open « -shading of 1, . Since 1, is a -compact in (X, t), so it has a finite « -subshading,
say {u, : ye A} (kelJ,) suchthat u, (y)>a foreach y e A. Furthermore, since
1z is a-compact, so 1; has a finite o -subshading, say {v, : xe B} (ke J,) such
that v, (x) >« foreach x e B, as B < v;kl(O, 1] for each k. Now, letu=u, U u, U

...... vu, and v= v, v, N ... NV, . Thus we see that A cu™(0,1] and

B < v(0,1]. Hence u and v are open fuzzy sets, as they are the union and finite

intersection of open fuzzy sets respectivelyi.e. u, v et.

Similar work for ¢“-compactness can be given.

Theorem 3.21: Let (X, t) be a fuzzy T,-space (as def. 1.45) and Ac X . If 1, is
a -compact (resp. o -compact) subset in (X, t), then 1, is closed.
Proof: Let x € A" . We have to show that, there exist u et such that u(x) =1 and
u < AP, where AP is the characteristic function of A°. Indeed, for each y € A, there

exist u,, v, et such that u (x)=1, u,(y)=0 and v, (x) =0, v, (y)=1. Let us take

yo
a € |, suchthat v, (y) > a >0. Thus we see that {v,: y e A} is an o -shading of 1,.
Since 1, is a-compact in (X,t), so it has a finite o -subshading, say
{v, : yeA}(keld,) such that v, (y) >« for each y e A. Now, let u= u, N
U, N eeeens Nu, . Thus we see that u(x) =1, as uy, (x) =1 for each k. For, each z € A,
there exists a k such that v, (z) >a >0 and so u(z) =0. Hence u < A®. Therefore, 1 .
is openin (X, t). Thus 1, is closed in (X, t).

The proof is similar for " -compactness can be given.
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Theorem 3.22: Let (X, t) be a fuzzy T,-space (as def. 1.46) and Ac X . If 1, is
o -compact (resp. o -compact) subset in (X, t) and x € A°, then there exist u, vet

such that u(x) >0 and A < v™*(0,1].The converse of the theorem is not necessarily true

in general.
The proof is similar as that of theorem (3.19).

Now, for the converse, consider the following example.

Let X ={a,b}, I= [0,1] and O<a <1. Let u,, u,, usel” defined by
u(@ =02, u)=0; u,(d=0, u,(b)=0.3 and us(a) =0.2, u,(b) =0.3. Now, put
t={0, u,, u,, uy, 1}, then we see that (X, t) is a fuzzy T, -space. Again, let 1, € | X
defined by 1,(a)=0, 1,(b) =1. Hence we observe that A ={b} and a e A°. Now
u,, u,et where u(a)>0 and u,*(0,1] ={b}. Hence A cu,'(0,1]. Take a =0.8.
Then we see that 1, is not o -compactin (X ,t),as u,(b) <o forbe Aand k =1, 2,
3. Thus the converse of the theorem is not true in general.

Similar work for ¢"-compactness can be given.

Theorem 3.23: Let ( X, t) be a fuzzy T,-space (as def. 1.46) and A, Bc X. If
1, and 1 are disjoint a -compact (resp. a -compact) subsets in (X, t), then there exist

u, vetsuchthat Acu™(0,1] and B < v™(0,1]. The converse of the theorem is not

true in general.
The proof is similar as that of theorem (3.20).

Now, for the converse, consider the fuzzy T,-space (X, t) in the example of the theorem
(3.22). Let 1, , 1, € I * defined by 1,(a) =1, 1,(b) =0 and 1,(a) =0, 1,(b) = 1. Hence
we observe that A={a} and B ={b}. Now u,, u, et where u;*(0,1] ={a} and
u,*(0, 1] ={b}. Hence we observe that A c u,*(0,1] and B < u,*(0, 1], where 1, and 1,
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are disjoint. Take a =0.8. Then we see that 1, and 1; are not o -compact in (X, t), as
u (@) <a forae A and u,(b) <o for b e B, where k =1, 2, 3. Thus the converse
of the theorem is not true in general.

Similar proof for ¢ -compactness can be given.

The following example will show that the « -compact subsets in fuzzy T,-space

(as def. 1.46) need not be closed.

Example 3.24: Consider the fuzzy T,-space (X, t) in the example of the theorem
(3.22). Again, let 1, € 1 defined by 1,(a) =0, 1,(b) =1. Take a =0.2. Then clearly

1, is o -compact in (X, t). But 1, is not closed, as its complements 1 . is not open in

(X, t).

Theorem 3.25: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47), Ac X and
1, be an «a -compact (resp. o -compact) subset in (X, t). Let x € A°, then there exist
u, vetsuchthat u(x) =1, Acv?*(0,1] and unv=0.
Proof: Let ye A. Since xg A (xe A°), then clearly x = y. As (X,t) is fuzzy

Hausdorff, then there exist u,, v, et such that u (x)=1, v (y)=1and u,nv, =0.

yo
Let us take « € I, such that v (y) >a >0. Thus we see that {v,: y e A} is an open
o -shading of 1,. Since 1, is « -compact in (X, t), so it has a finite o -subshading, say
{v,: yeA} (keJ,) such that v, (y)>a for each yeA. Now, let
V=V, UV, U ... vv,and u=u, N U N o N u, . Thus we see that v and

Y1 Y2

u are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets
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respectively i.e. v, u et. Moreover, Acv™(0,1] and u(x) =1, as u, (x) =1 for each
k.

Finally, we claim that unv=0. As u, nv, =0 implies that unv, =0, by
distributive law, we seethat u v = un ( v, UV, U v, )= 0.

Similar work for " -compactness can be given.

Corollary 3.26: Let (X, t) be a fuzzy Hausdroff space (as def. 1.47), Ac X and
1, be an «a -compact (resp. a” -compact) subset in (X, t). Let x ¢ A, then there exists
u et suchthat u(x) =1 and u™(0,1] < A°.
Proof: By theorem (3.25), there exist u, v et such that u(x)=1, Acv™(0,1] and
unv=0.Hence u™(0,1] nv(0,1] = ¢. If not, there exists x e u™(0,1] N v™"(0,1]
= xeu(0,1] and x ev'(0,1] = u(x)>0 and v(x) >0 = unv=0.Hence
u™(0,1] » A = ¢ and consequently u(0,1] c A°.

Similar proof for o -compactness can be given.

Theorem 3.27: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47) and 1, , 1, be
disjoint o -compact (resp.a” -compact) subsets in (X, t) (A, Bc X ). Then there exist
u, vetsuchthat Acu™(0,1], B cv*(0,1]and u nv=0.

Proof: Let y € A. Then y ¢ B, as 1, and 1; are disjoint. Since 1; is o -compact , then
by theorem (3.25), there exist u,, v, et such that u/(y)=1, Bgc v;l(O, 1] and
u,Nv,=0.Letustake o € I, suchthat u,(y) >a >0.As u,(y) =1, then we see that
{u,: ye A} isanopen «a-shading of 1,. Since 1, is a-compact in (X, t), so it has a

finite o -subshading, say {u, : ye A} (k e J,) suchthat u, (y) >« foreach y e A.
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Furthermore, since 1; is a -compact, so 1, has a finite « -subshading, say {v, : xe B}
(ked,) such that v, (x) >« for each xeB, as B gv;j(o, 1] for each k.

Now, let u = u, U u, U Ju, andv=v, NV, N ..... "V, . Thus we see that
1 Y2 Yn Y1 Y2 Yn

Acu™(0,1] and B cv'(0,1]. Hence u and v are open fuzzy sets, as they are the
union and finite intersection of open fuzzy sets respectively i.e. u, v et.

Lastly, we have to show that u m v = 0. First, we observe that u, Nv, =0 for each k
implies that u, m v =0, by distributive law , we see that unv= (u, U u, U ......
vu, ) Nv=0.

Similar proof for o -compactness can be given.

Theorem 3.28: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47), Ac X .If 1,

is o -compact (resp. o -compact) subset in (X, t), then 1, is closed.

Proof: cf. [54].

Theorem 3.29: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A < X . If
1, is «a-compact (resp. a -compact) subset in (X,t) and x e A°, then there exist
u, vetsuchthat u(x) >0, Acv™(0,1] and u n v =0.The converse of the theorem

is not necessarily true in general.
The proof is similar as that of theorem (3.25).

Now, for the converse, consider the fuzzy topology t in the example of the theorem

(3.22), then (X,t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1, e 1*
defined by 1,(a)=0, 1,(b) =1. Hence we observe that A ={b} and a e A". Now

u,, u,et where u(a) >0 and u,*(0,1] ={b}. Hence A cu,*(0,1] and u,Nu,=0.
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Take o = 0.8. Then we see that 1, is not o -compactin (X ,t), as u (b) <o for b e A
and k =1, 2, 3. Thus the converse of the theorem is not true in general.

Similar work for ¢"-compactness can be given.

Corollary 3.30: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A c X . If
1, is a -compact (resp. o -compact) subset in (X, t) and x ¢ A, then there exists u e t

such that u(x) >0 and u™(0,1] < A°. The converse is not true in general.

The proof is similar as that of corollary (3.26).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(3.22), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Let 1, 1 * defined by
1,(a)=0, 1,(b) =1. Hence we observe that A={b} and a ¢ A. Now u, et where
u,(a) > 0and then u;*(0,1] ={a}. Hence we have u;*(0,1] c A°. Take a =0.8. Thus
we see that 1, is not o -compactin (X, t)i.e. u (b) <o for b e A, where k =1, 2,
3. Thus the converse of the corollary is not true in general.

Similar proof for o -compactness can be given.

Theorem 3.31: Let (X,t) be a fuzzy Hausdorff space (as def. 1.48) and
A, Bc X.If1, and 1; are disjoint o« -compact (resp. a”-compact) subsets in (X, t),
then there exist u, vet such that Acu™(0,1], Bcv™(0,1] and unv=0. The

converse of the theorem is not true in general.
The proof is similar as that of theorem (3.27).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(3.22), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Let 1, , 1, € 1 defined

by 1,(a)=1, 1,(b) =0 and 1;(a) =0, 1;(b) =1. Hence we observe that A ={a} and
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B ={b}. Now u,, u, et where u;*(0,1] ={a} and u,*(0, 1] ={b}. Hence we observe
that Acu,*(0,1], B <cu,*(0,1] and u,nu,=0, where 1, and 1, are disjoint. Take
a =0.8. Then we see that 1, and 1, are not a -compact in (X,t), as u,(a) <a for
aeAand u (b) <a for b e B, where k =1, 2, 3. Thus the converse of the theorem
iS not true in general.

Similar work for ¢"-compactness can be given.

The following example will show that the o -compact subsets in fuzzy Hausdorff

space (as def. 1.48) need not be closed.

Example 3.32: Consider the fuzzy topology t in the example of the theorem
(3.22), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1, e I *
defined by 1,(a) =1, 1,(b) =0. Take o = 0.1. Then clearly 1, is o -compact in (X, t).

But 1, is not closed, as its complement 1. is not open in (X, 1).

Theorem 3.33: Let (X, t) be a fuzzy Hausdorff space (as def. 1.49), Ac X and
1, be an a -compact (resp. o -compact) subset in (X, t). Suppose x, be a fuzzy point in
1, .thenthereexist u, vetsuchthat x. eu, Ac v'(0,1]and unv=0.
Proof: Let y, (s> o« ) be fuzzy point in 1,, then clearly x = y ie. x. and y, are

distinct . As (X, t) is fuzzy Hausdorff, then there exist u v, et such that x, uy, ,

Ys !
y;ev, and u, N v, =0 and this is true for any value of s. Hence this is also true for
s>a. Letustake a € |, suchthat v, (y) >« >0. Thusweseethat {v, :y,el, } is

an open « -shading of 1,. Since 1, is o -compact in (X,t) , S0 it has a finite

o -subshading, say {vysk ¥y, €1,} (keld,) such that vy, (Y)>a.Letv= vy, Yy,

2
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U ..., vv, and u=u,_Nu,_ N.... M u, . Thus we see that v and u are open
Sn SL s2 Sn

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e.

vV, uet.Moreover, Acv'(0,1] and x, € u, since x, € uy, for each k.

Finally, we claim that unv=0. As U, Nv, = 0 for each k implies that
unv, =0, by distributive law, we therefore observe that unv=
um(vy&uvyszu ...... uvySn)zo.

The proof is similar for " -compactness can be done.

Corollary 3.34: Let (X, t) be a fuzzy Hausdroff space (as def. 1.49), Ac X and
1, be an «a -compact (resp. o -compact) subset in (X, t). Let X, ¢1,, then there exists
Uetsuchthat x. eu and u™(0,1] < A°.
Proof: By theorem (3.33), there exist u, v et such that x. eu, Acv™(0,1] and
unv=0. Hence u™(0,1] nv*(0,1] = ¢. If not, there exists x € u™(0,1] N v *(0,1]
= xeu™(0,1] and x ev'(0,1] = u(x)>0 and v(x) >0 = unv=0.Hence
u™(0,1] » A =¢ and consequently u(0,1] c A°.

Similar proof for ¢ -compactness can be given.

Theorem 3.35: Let (X, t) be a fuzzy Hausdorff space (as def. 1.49) and 1, , 1, be
disjoint o -compact (resp. o"-compact) subsets in (X,t) (A, Bc X ). Then there
exist u, vetsuchthat Acu™(0,1], Bcv'(0,1]and unv=0.

Proof: Let y,e1, (s> a ), thenclearly y, ¢1,,as 1, and 1, are disjoint . Since 1; is
a -compact, then by theorem (3.33), there exist u,, v, et such that y,eu ,
B c v;sl(O, 1] and u, nv, =0 and this is true for any value of s. Hence this is also true
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for s>a. Let us take a el such that u, (y)>a >0. Since y,eu, , then
{u,, : y,€l, } isanopen « -shading of 1,. Since 1, is o -compact in (X, t), so it has a
finite « -subshading, say { u, : Y€ 1,} (keJ,) such that Uy, (y) > a . Furthermore,
since 1; is « -compact, so 1; has a finite « -subshading, say {vysk X, e} (keld,))
such that vy, (X)>a, as B QV;:k (0,1] for each k. Now, let u= u, Vu, ...

U uy, and v= vy, OV N NV, . Thus we see that Acu™(0,1] and

B cv™(0,1]. Hence u and v are open fuzzy sets, as they are the union and finite
intersection of open fuzzy sets respectively i.e. u, v et.

Finally, we have to show that u nv =0. First , we observe that u, ~v, =0 for each

k implies that u, ~ v =0, by distributive law, we see that u nv=_(u,_wu,_U......
Sk s s2

vy, )Nv=0.

Similar work for ¢"-compactness can be given.

The following example will show that the o -compact (resp. o -compact) subsets in
fuzzy Hausdorff space (as def. 1.49) need not be closed.

Example 3.36: Let X ={a,b}, 1 =[0,1] and 0 <« <1. Again, let u, u,,
u,el* with u(@) =06, u(M®)=0; u,@=0, u,(b)=08 and u,(a)=0.6,
u,(b)=0.8.Put t={0, u,, u,, u,, 1}, then (X, 1) is an fts. Now, let a,, and b, be
fuzzy points in X . Therefore (X, t) is also a fuzzy Hausdorff space (as def. 1.49). Again,
let 1, 1” defined by 1,(@)=1, 1,(b)=0. Take « =0.5. Then clearly 1, is

o -compactin (X, t). But 1, is not closed, as its complement 1 . is not open in (X, t).
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Theorem 3.37: Let (X, t) be a fuzzy Hausdorff space (as def. 1.50), A< X and
1, be an a -compact (resp. o -compact) subset in (X, t). Suppose x € A°, then there
exist u, vetsuchthat u(x) =1, Acv?*(0,1]and uc1-v.
Proof: Let y e A. Since xg A (xe A%), then clearly x = y. As (X,t) is fuzzy
Hausdorff, then there exist u, , v, € t such that u (x)=1, v,(y)=1and u,c1-v,. Let
us take a e I, such that v (y)>a >0. Thus we see that {v,: y e A} is an open
o -shading of 1,. Since 1, is «-compact in (X, t), so it has a finite « -subshading, say
{v,, - yeA} (kelJ,) suchthat v, (y)>a foreach y e A. Now, let v=v, Uv,
U ... vv, and u=u, N U N oL M u, . Thus we see that v and u are open

Yn

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e.
v, uet.Moreover, Acv™'(0,1] and u(x) =1, as u, (x) =1 foreach k.

Finally, we claim that u c1-v. As u,c1-v,,s0o ucl-v,. Since u, (x) <1-v, (X)
for all xe X and for each k, then uc1-v. If not, there exists x € X such that
u,(x)>1-v,(x). We have u,(x)<u,(x) for each k. Then for some Kk,
u, (x) >1-v, (x). But this is a contradiction, as u, (x) <1-v, (x) for each k. Hence
ucl-v.

Similar proof of ¢ -compactness can be given.

Theorem 3.38: Let (X, t) be a fuzzy Hausdorff space (as def. 1.50) and 1, , 1, be
disjoint « -compact (resp. o -compact) subsets in (X, t) (A, Bc X ). Then there
exist u, vetsuchthat Acu™(0,1], B<c v*(0,1] and u c1-v.

Proof: Let y € A. Then y ¢ B, as 1, and 1, are disjoint. Since 1, is « -compact, then

by theorem (3.37), there exist u,, v, et such that u (y)=1, Bgvgl(o, 1] and
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u,cl-v,. Letustake a €I, suchthat u,(y) >a >0. As u,(y) =1, then we observe
that {u,: y e A} is an open « -shading of 1,. Since 1, is a -compact in (X, t), SO it
has a finite « -subshading, say {u, : ye A} (ke J,) such that u, (y) >a for each
y € A. Furthermore, since 1, is a-compact, so 1, has a finite o -subshading, say
{v, i xeB} (kel,) suchthat v, (x) >a foreach xeB,as B gv;kl(o, 1] for each

k.Now,Ietu:uyu u, U ...... Ju, andv=v, NV, N ..... NV, . Thus we see
1 Y2 Yn Y1 Y2 Yn

that Ac u™(0,1] and B cv™(0,1]. Hence u and v are open fuzzy sets, as they are the
union and finite intersection of open fuzzy sets respectively i.e. u, vet.

Finally, we have to show that u —c1-v. First we observe that u, <l-v, for each k
implies that u, < 1-v foreach k and itis clearly shows that u c1-v.

Similar proof for o -compactness can be done.

Theorem 3.39: Let (X, t) be a fuzzy Hausdorff space (as def. 1.50) and A c X . If
1, is o -compact (resp. o -compact) subset in (X, t), then 1, is closed.
Proof: Let x € A°. We have to show that, there exist u et such that u(x) =1 and
u < AP, where AP’ is the characteristic function of A°. Suppose, for each y € A, there
exist u,, v, €t suchthat u (x)=1, v,(y)=1and u,cl-v,. Letustake € I, such
that v, (y) >a >0. Thus we see that {v,: y € A} isan open « -shading of 1. Since 1,
IS o -compact in (X, t), so it has a finite « -subshading, say {v, : ye A}(kelJ,)
such that v, (y) >« for each y e A. Now, let u= u, N u, N ...... Nu, and

Yn

V=V, UV, U ... U v, . Thus we see that u(x) =1, as u, (x) =1 for each k and

u,cl-v, impliesthat u c1-v, . Butu, (x) <1-v, (x) forall xe X and for each k,
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then ucl-v. If not, there exists xe X such that u,(x)>1-v (x). We have
u,(x) <u, (x) for each k. Then for some k, u, (x)>1-v, (x). But this is a
contradiction, as u, (x) <1-v, (x) for each k. Hence u c1-v. For, each z € A, there
exists k suchthat v, (z) >« >0 and so u(z) =0. Hence u c A®. Therefore, 1 . is open
in (X,t). Thus 1, is closed in (X, t).

The proof is similar for " -compactness can be done.

Theorem 3.40: Let (X, t) be a fuzzy regular space (as def. 1.51), Ac X and 1,
be an o -compact (resp. a -compact) subset in (X, t). If for each x € A, there exists
u et® with u(x) =0, we have v, wet suchthat v(x) =1, ucw, Acv?*(0,1] and
vcl-w.

Proof: Suppose x € A and u et® we have u(x) =0. As (X, t) is fuzzy regular, then
there exist v, , w, e t such that v,(x) =1, u,cw, and v, c1-w,. Let us take @ € |,
such that v,(x) > a > 0. Thus we observe that { v, : x € A} isan open « -shading of 1,.
Since 1, is o -compact in (X, t), then it has a finite o -subshading, say {v, : x € A}
(keJ,) such that v, (x) >« for each xe A. Let v= v, UV, U ... vv, and
W= w, "W, N ... N W, . Thus we see that v and w are open fuzzy sets, as they are
the union and finite intersection of open fuzzy sets respectively ie. v, wet.
Furthermore, Acv™(0,1], v(x) =1,and u c w,as u c W, for each k.

Finally, we have to show that vcl-w. As v, c1-w, for each k implies that

v, €l-w for each k and hence it is clear that v 1— w.

Similar proof for ¢ -compactness can be given.
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Theorem 3.41: A topological space (X, T) is compact iff (X, o (T )) is
a -compact (resp. ¢ -compact).
Proof: Suppose (X,T) is compact. Let M ={u,: ieJ} be an open « -shading of
(X,®(T)). Then u*(a,1]eT and {u™(a 1] : u*(a,1]e T} is an open cover of
(X, T). As (X, T) is compact, so it has a finite subcover i.e. there exist u,*(a, 1] T
(keJ,) suchthat X = u;*(a,1] Uu;'(a,1]uU ..... U u;*(a,1]. Now, we observe that
there exist u, e {u;} (ke J,) suchthat u; (x) >a foreach x e X and it is shows that
{u.} (kel,) isafinite a -subshading of M . Therefore, (X, (T )) is & -compact.
Conversely, suppose that (X, o (T )) is o -compact. Let {V, : i e J} be open cover of

(X,T) ie. X=[J{V;: Vv, €T} sSince 1,is I s c, then 1, ew(T) and

jed
{4, 4, co(T)} is an open a-shading of (X,w(T)). As (X, (T)) is
o -compact, so it has a finite o -subshading, say {1VJk : 1VJk ew(T) } (keld,) such
that 1VJk (X)>a for each x e X. Therefore, we can write X = V; OV, U ...
UV, and it is clear that {v; } (k e J,) is a finite subcover of (X, T). Hence (X,T) is

compact.

Similar work for o -compactness can be given.

Theorem 3.42: Let (X,t) and (Y, s) be two fuzzy topological spaces. Then the
product space (X xY, txs) is a -compact iff (X,t) and (Y, s) are a -compact.
Proof: First suppose that (X xY,o), where o ={g,xh: g, et and hes} is
a -compact. Now we can define a fuzzy projection mappings 7, : (X xY,8)— (X, t)

such that 7z,(x, y)=x for all (x,y)e XxY and z,: (XxY,5)—(Y,s) such that
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7, (% y)=y forall (x,y)e XxY which we know are continuous. Hence (X, t) and
(Y, s) are continuous images of (X xY, o) which are therefore o -compact when
(X xY, o) is given to be a -compact.

Conversely, let (X,t) and (Y,s) be a-compact. Let o ={g,xh: g,et and h es},
where g, and h, are open fuzzy sets in t and s respectively. Therefore { g;: i e J } isan
a -shading of (X,t) and {h,: ie J} isan a-shading of (Y,s). Thatis g;(x) >« for
al xeX, h(y)>a for al yeY. We see that (g,xh)(XxVYy)=
min{ g,(x), h(y)}>a.As (X,t) and (Y,s) are a-compact, there exist g, et such
that g; (x) >a for each xe X and h_es such that h (y)>a for each yeY
respectively. Hence we have o ={ g, xh,: g, et and h, e s} has a finite o -subshading,
say {g; xh : kel } such that (g; xh ) (X y)>a for each (x,y)e XxY . Thus

(X xY, o) is a-compact.

Definition 3.43: Let (X,t) be an fts and 0<5 <1, ael. A family M of

&5 -open fuzzy sets is called a § - -shading, 0 <a <1 (resp. & -a -shading, 0 < o <1)

of X if for each x € X there exists a ue M with u(x) >a (resp. u(x) >a). A

subfamily of a & -« -shading (resp. & - -shading) of X which is also a & -« -shading

(resp. & -a -shading) of X is called a & -« -subshading (resp. & - o -subshading) of X .

Example 3.44: Let X ={a,b}, I =[0,1] and 0 <6 <1, 0<a <1. Let u,,
u,, u;e I* defined by u,(a) =1, u,(b) =0.6; u,(a) =0.7, u,(b) =1 and u,(a) =0.7 ,
u,(b) = 0.6. Now, take t={0, u,, u,, u,, 1}, then we see that (X, t) is an fts. Take

5 =0.6. Clearly u,, u, and u, are §-open fuzzy sets in (X,t). Again, take a = 0.8.
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Hence we observe that u(a) >a, u,(b)>a for a, beX. So {u,, u,} is a
6 -a -shading of X .

Similarly, we can give of § - -shading of X .

Definition 3.45: Let (X,t) beanftsand 0 <& <1, a e I . Then (X, 1) is said to
be &-o-compact, 0 <o <1 (resp. §-a -compact, 0 < a <1) iff every & - -shading

(resp. & -a " -shading) of X has a finite & -« -subshading (resp. & - o -subshading).

Theorem 3.46: Every & -« -compact (resp. & -o -compact) spaces is o -compact
(resp. a”-compact). But the converse is not true.
The proof is straightforward.

Now, for the converse, consider the following example.

Let X =[0,1], 1 =[0,1] and 0 <5 <1, 0 <a <1. Let u,, u,, u,e 1* defined by
for 0<x<0.7 0.6 for 0<x<0.7

u(x) =41 forx=0.7 : u,(x) =41 forx=0.7 and
0.4 for 0.7<x<1 1 for 0.7<x<1

0.6 for 0<x<0.7
U;(x) =41  forx=0.7 . Now, take t={0, u,, u,, u,, 1}, then we see that
0.4 for 0.7<x<1

(X,t) is an fts. Take a =0.8. Clearly (X, t) is a -compact. Again take § =0.9. Then
there is no finite & -open fuzzy sets u, for k =1, 2, 3 in (X,t). Thus (X,t) is not
0 - a -compact.

Similarly, we can prove for § -a” -compact spaces.
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Chapter Four

Compact Fuzzy Sets

Compact fuzzy sets due to Chang [19] is local property. In this chapter, we have
discussed various properties of this concept and established some theorems, corollaries
and examples. Also we have defined & -compact fuzzy sets and found different properties

between compact and & -compact fuzzy sets.

Definition 4.1[19]: A fuzzy set A in X is said to be compact iff every open cover

of 2 has a finite subcover ie. there exist u; , U, ...... , U e{u} such that
AcU VU U ... U u; orequivalently, a fuzzy set 4 in X is said to be compact iff
every open cover of A has a finite subcover. If x <A and pe 1™, then u is also
compact. Thus we can say that, any other subsets of a compact fuzzy set is also compact.
If 1(x)=1 for all x € X, then this definition coincides an fts (X, t) with that of Chang

[19].

Theorem 4.2: Let (X,t) be an fts, Ac X and A be a fuzzy set in X with
Ao < A.Then A is compactin (X, t) iff A is compactin (A, t,).
Proof: Suppose A is compact in (X,t). Let {u,: i€ J} be an open cover of A in

(A t,). Then there exist v; et such that u;=v;| Acv,. Hence A< |Ju, <(Jv and

ied ied
consequently {v,: i e J} is an open cover of A in (X,t). As A is compact in (X, t),
then {v;: ieJ} contains a finite subcover i.e. there exist v; , v, , ...... Vi e{v}
such that Acv, uv, U ... vy . But, then Ac (v, uv U..uv )| A
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=(v, [A)u (v, [A)uU...... V(v [A)=u VU V... U U ,as 4, A. Thus
{u;: ieJ} contains a finite subcover {u; , U , ...... , U; } and hence A4 is compact
in (At,).

Conversely, suppose A is compact in (A, tA). Let {v,: ieJ} beanopencoverof 1 in

(X,t). Set u;=v,|A, then 2c|Jv, implies that A< (| Jv)IAcJ(vilA)

ied ied ied

c Uui .Butu,et,,so{uy: ieJ} isanopencoverof A in(At,). As A is compact

ied

in (A't,), then {u: ieJ} contains a finite subcover, say {u, : kelJ }.
Accordingly, A cu; U U U........ vu < (v |A)u (v [A)U...... U (v [A)
c (v, uv, U.... UV, )[Acv, Uy UL UV, ,as A, c A . Thus{v;:iel}

contains a finite subcover {v; : k € J, } and therefore 4 is compact in (X, t).

Note: This theorem is different form of H. K. Abdulla and N. R. Kareem [1].

Corollary 4.3: Let (Y,t*) be a fuzzy subspace of (X,t) and AcY < X. Let
el and A, < A. Then A is compact in (X, t) if and only if A is compact in (Y, t*).
Proof: Let t, and t, be the subspace fuzzy topologies on A. Then by theorem (4.2), A is

compact in (X, t) or (Y, t") if and only if 4 is compactin (A,t,) or (A t;). But t,=t;.

Theorem 4.4: Let (X,t) and (Y,s) be two fuzzy topological spaces and
f: (X,t) = (Y,s) be fuzzy continuous and onto mapping. If A is compact fuzzy set in
(X,t), then f (1) is also compact fuzzy setin (Y, s).

Proof: cf.[107].
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Theorem 45: Let (X,t) and (Y,s) be two fuzzy topological spaces and
f: (X,t)—>(Y,s) be fuzzy open and bijective mapping. If A is compact fuzzy set in
(Y,s), then f*(1) is also compactin (X, t).

Proof: Let {u;: i eJ} bean opencover of (1) in (X, t)ie f*(A)<Ju.As f

icd
is fuzzy open, then f(u;) € s and hence { f(u;): i € J } isan opencover of 1 in (Y, s).
Since A is compact fuzzy set in (Y, s), then A has a finite subcover i.e. there exist
fu), ), ... (U ) e{f(u)} such that A< fu)v f(u)ou ... )
f(u ). Again, let u be any fuzzy set in X. Since f is bijective, then we have
f7(f(u)y=u.Hence f*(A)cf (flu)v flu)uv.... v f(u)) cu vy

U.....U U, . Therefore f*(1) is compactin (X, t).

In

Theorem 4.6: Let (X,t) be an fts, (At,) be subspace of (X,t) and
f: (X,t)— (A t,) be fuzzy continuous and onto mapping. If 1 is compact fuzzy set in
(X,t), then f (1) isalso compact fuzzy setin (A, t,).

Proof: Let {u,: i< J} be an open cover of f(1) in (A,t ie. f(4)c Uu Put

ied
u =V, | A, where v,et. Since f is fuzzy continuous, then f*(u) et implies that
f'(v,] A) et and consequently { f*(u): ieJ} ie { f(v,|A): ieJ} isan open
cover of 1 in (X,t). As A is compact fuzzy set in (X,t), then 1 has a finite

subcover i.e. there exist f‘l(vik [A) e{f(v,|A)} (k=1, 2,...... ,N) such that

c U f‘l(vik | A). Again, let u be any fuzzy set in A. Since f is onto, then we have
k=1

57



Compact Fuzzy Sets

n

f(f'(u)=u. Hence f(1)c f[of‘l(vikM)J: Lan (v 1A))= UM IA

k=1

= |Ju, - Therefore f(1) is compactin (A t,).
=1

Theorem 4.7: Let (A, t,) and (B, s, ) be fuzzy subspaces of fts’s (X, t) and (Y, s)
respectively. Let A be a compact fuzzy set in (A t,) and f: (At,)—(B,s,) be
relatively fuzzy continuous and onto mapping. Then f(A4) is also compact in (B, sB).
Proof: Assume that f(A)=B, as f is onto. Let A be compact in (A, tA) and

M = {v,: ieJ} beanopencoverof f(1)in (B,s;)ie f(1)c|]Jv.Sincev, es,,

iel

then there exist u,e s such that v, =u;| B. Hence f(4)c U(ui |B). As f is

i3
relatively fuzzy continuous, then f*(v,)| Aet, and hence { f*(v,)|A: ieJ} isan
opencover of A in (A t,)ie. {f*(u|B)|A:ied}={f'W)|(f*B)NA):
ieJ}={f"u)|A:ieJ}isanopencoverof 1 in (A t,).Since 1 is compactin
(At,), then there exist f'(u)|Ae{f(u)|A} (kel,) such that

A c U( f‘l(uik)| A). Again, let v be any fuzzy set in B. Since f is onto, then we

kel,

have f(f'(v))=v. Therefore f(1) < f(U(f‘l(uik)|A)) implies that f(1) <

keld,

L f(fu,)IA) impliesthat f(2) = (J(u; | f(A)) impliesthat f(1) = (J(u, | B)

keld, kel, kel,

implies that f(1) = Jv, . Thus f(2) is compactin (B, s;).

kel,
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Theorem 4.8: Let (A, t,) and (B, s, ) be fuzzy subspaces of fts’s (X, t) and (Y, s)
respectively. Let 1 be a compact fuzzy set in (B,sy) and f: (At,)—>(B,s,) be
relatively fuzzy open and bijective mapping. Then f*(1) is compactin (A, t,).

Proof: We have f(A)=B, as f is bijective. Let {u;: u, et,} be an open cover of

f(a) in (At,) for every ieJ ie f*(1) < (Ju. Since u et,, then there exists

ied

v, et suchthat u =v,| A and so f (1) < U( v;| A). As f is relatively fuzzy open,

iel
then f(u,) €s, and hence { f(u,) : i e J} isanopen cover of 4 in (B, s,) implies that
{fv,|A:ied}={fW)|f(A):iedJ} ={f(v)B:ieJ} isan open cover of

A in (B, sg). Since A is compact in (B,s;), then { f(v,)|B: ieJ} has a finite

subcover, say { f(v;, )|B: ke J,} such that 1 ¢ U(f(vik)| B). Again, let u be any
k=1

fuzzy set in X. Since f is bijective, then we have f'(f(u)=u. Hence
f*() < f‘l[U(f(Vik)lB)J = UF(fe)iB) = Y, 117B) = U, 1A)
k=1 k=1 k=1 k=1

= Uuik . Therefore {u;, : k e J,} is a finite subcover of {u;: u; et }. Thus f (1)

=1

is compact in (A, t,).

Theorem 4.9: Let (X, t) be an fts and A be a fuzzy set in X . If every family of
closed fuzzy sets in (X, t) which has empty intersection has a finite subfamily with empty

intersection, then A is compact. The converse is not true in general.
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Proof: Let {u,: i €J} be an open cover of 4 in (X, t) ie. 1 ¢ Uui. By the first

ied

condition of the theorem, we have ﬂuf =0, . Hence we can write Uui =1, . Again, by

ied ied

the second condition of the theorem, we can write ﬂufk =0, implies that Uuik =1y
kel, kel,

and hence A c Uuik. Thus we see that {u, : keJ, } is a finite subcover of
kel,

{u;:ied}. Therefore A iscompact.

Now, for the converse, we consider the following example.

Let X ={a,b} and 1 =[0,1]. Let u,, u, e I * defined by u,(a) =0.3, u,(b) =0.6 and
u,(a) =0.4, u,(b) =0.8. Now, take t={0, u,, u,, 1}, then we see that (X, t) is an
fts. Let A e 1” defined by A(a) =0.2, A(b)=0.7. Clearly A is compact in (X, t).
Now, closed fuzzy sets are u;(a) =0.7, u;(b) =0.4 and u,(a)=0.6, us(b) =0.2. We
observe that u; mu; # 0. Thus the converse of the theorem is not necessarily true in

general.

Theorem 4.10: Let A and u be compact fuzzy sets in an fts (X, t). Then AU u is
also compact.

Proof: Let M ={u;: i€ J} be any open cover Au u. Then M is an open cover of

both 4 and u respectively. Since A is compactin (X, t), then A has a finite subcover

i.e. there exist u, e M (ke J,) suchthat A < Ju; . Again u is compact in (X, t),

keld,

n
then u has a finite subcover i.e. there exist u, e M (reJ; ) suchthat 1 Uuir .

rel,

Therefore {v, , w; } is a finite subcover of M . Hence AU u is compact in (X, t).
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Theorem 4.11: Let A and u be compact fuzzy sets (A nu # 0) inan fts (X, t).

Then A~y is also compact.
Proof: Since Anpuc A, Anucu and A, u are compact in (X, t), then 1y is

also compact.

The following example will show that the compact fuzzy sets in an fts need not be

closed.

Example 4.12: Let X ={a,b} and | =[0,1]. Letu,, u,, u,, u, e I* defined by
u(@) =04, u=07; u(a)=05, u,(b)=03; u,(a)=05, u,b)=07;
u,(@ =04, u,(b)=0.3. Now, take t={0, u,, u,, u,, u,,1}, then we see that
(X,t) is an fts. Let 1 e 1* defined by A(a) =0.5, A(b) =0.4. Clearly 4 is compact.

But A is not closed, as its complement A° is not open in (X, t).

The following example will show that the closure of compact fuzzy sets in an fts

need not be compact.

Example 4.13: Let X ={a, b} and | =[0,1]. Let u,, u,, u,, u, e 1* defined
by u(a) =01, uy()=03; u,(a)=04, u,(b)=0.5; uy(a)=0.6, u,(b)=0.7;
u,(@ =08, u,(b)=0.9. Now, take t={0, u, u,, u;, u,, 1}, then we see that
(X,t) isan fts. Let 1 e I* defined by A(a) =0.2, A(b)=0.7. Clearly A is compact.
Now, closed fuzzy sets are 0°(a) =1, 0°(b) =1; u;(a)=0.9, u/(b) =0.7; uy(a) =0.6,

u,(b) =05; wus;(@)=04, u;(b)=03; u;(@=02, u;{)=01. So we have
A=[}0°, uf}=uf ie. A(a)=09, A(b)=0.7. Hence we observe that, there is no

finite subcover of 4 in (X, t). Thus A is not compact.
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Theorem 4.14: Let (X, t) be a fuzzy T,-space (as def. 1.45) and A be a compact

fuzzy set in X with 1, X . Let x¢ 4, (A(x) =0), then there exist u, v et such
that u(x) =1 and 4, < v™7(0,1].
Proof: Let y e 1,. Then clearly x = y. As (X, t) is fuzzy T,-space, then there exist

u,, v, €t suchthat u(x)=1, u/(y)=0 and v,(x) =0, v,(y)=1. Hence we see that

rc| J{vy: yea }ie {v,: yea,} isan open cover of A in (X,t). Since A is

compact, then {v,: yeA,} has a finite subcover i.e. there exist v, , v, ,...... ,

v, e{v,} suchthat A cv, v, U ....... uv, . Now, letv=v, Uv, U ... OAY
and u=u, N u, N ... N u, . Thenwe see that v and u are open fuzzy sets, as they
are the union and finite intersection of open fuzzy sets respectively ie. v, uet.

Furthermore, 1, < v '(0,1] and u(x) =1, as u, (x) =1 foreach k.

Theorem 4.15: Let (X, t) be a fuzzy T, -space (as def. 1.45) and A and u be

disjoint compact fuzzy sets in X with 1,, u, < X . Then there exist u, v et such that

0
A, cU™(0,1] and u, < v(0,1].
Proof: Let y e 1,. Then y ¢ u,, as A and pu are disjoint. Since u is compact in (X, t),

then by theorem (4.14), there exist u,, v, et such that u (y)=1and u,c v;l(O, 1]. As

y i)
u,(y) =1, then {u, : y e 4,} isanopen cover of 1 in (X, t). Since A is compact, then

{u,: yea,} hasafinite subcover i.e. there exist u, , u , u, e{u,} such that

yp 1t

Acu, VU, U ... v u, . Furthermore, ucv, nv, N....... NV as
1 2 Yn Y1 Y2

-1 _ _
Ho< Vv, (0,1] foreach k. Now, let u=u, U u, U ... vu,andv=v, NV, N

..... NV, . Thus we see that 1, < u™(0,1] and x, < v*(0,1]. Hence u and v are open
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fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e.

u, vet.
Remark: If A(x) #0 for all xe X ie. A1,= X, then the above two theorems

(4.14) and (4.15) are not at all true.

The following example will show that the compact fuzzy sets in fuzzy T,-space
(as def. 1.45) need not be closed.

Example 4.16: Let X ={a,b} and | =[0,1]. Let u, vel* defined by
u(@) =1, u(b)=0 and v(a) =0, v(b)=1. Now, put t={0, u, v, 1}, then we see
that (X, t) is a fuzzy T,-space. Let 2 e |1* defined by A(a) =0.3, A(b) =0.7. Clearly

2 is compact in (X, t). But A is not closed, as its complement A° is not open in (X, t).

Theorem 4.17: Let (X, t) be a fuzzy T, -space (as def. 1.46) and A be a fuzzy set in
X with 4, X . If 4 is compact in (X, t) and x e 1, (A(x) =0), then there exist
u, v et such that u(x) >0 and A,<v™'(0,1]. The converse of the theorem is not

necessarily true in general.

The proof is similar as that of theorem (4.14).

Now, for the converse, we consider the following example.

Let X ={a,b} and I =[0,1]. Let u,, u,, u e I * defined by u,(a) =0.2, u,(b)=0;
u,(@)=0, u,(b)=0.3 and us(a) =0.2, u,(b) =0.3. Now, take t= {0, u,, u,, u,,
1}, then we see that (X, t) is a fuzzy T,-space. Again, let 1 € 1 defined by A(a) =0,

A(b) =0.6. Hence we observe that 1,={b} and a¢ 1,. Now u,, u,et where
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u(a) >0 and u,*(0,1] ={b}. Hence i, < u,*(0,1]. But A is not compact, as there is

no finite subcover of A in (X, t). Thus the converse of the theorem is not true in general.

Theorem 4.18: Let (X, t) be a fuzzy T,-space (as def. 1.46) and 2, u be fuzzy
setsin X with 1,, u,c X.If 2 and u are disjoint compact fuzzy sets in (X, t), then
there exist u, v et suchthat A, cu™(0,1] and u, <v(0,1]. The converse of the

theorem is not true in general.
The proof is similar as that of theorem (4.15).

Now, for the converse, consider the fuzzy T, -space (X, t) in the example of the theorem
(4.17). Let 1, pe 1™ defined by A(a) =08, A(b)=0 and u(a) =0, u(b)=0.6.
Hence we observe that 1, = {a} and u,= {b}. Now u,, u, et where u;*(0,1] ={a}
and u,'(0,1] ={b}. Thus we see that 1, < u,*(0,1] and x, < u,"(0,1], where A and
u are disjoint. But A4 and x are not compact, as there is no finite suvcover of 4 and u

in (X, t) respectively. Thus the converse of the theorem is not true in general.

Remark: If A(x) #0 for all xe X ie. A,= X, then the above two theorems

(4.17) and (4.18) are not at all true.

The following example will show that the compact fuzzy sets in fuzzy T,-space
(as def. 1.46) need not be closed.

Example 4.19: Consider the fuzzy T,-space (X, t) in the example of the theorem
(4.17). Again, let 1 € 1 defined by A(a) =0.1, A(b)=0.2. Clearly A is compact in

(X, t). But A is not closed, as its complement A° is not open in (X, t).
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Theorem 4.20: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47) and 1 be a
compact fuzzy set in X with 4, < X. Suppose x ¢ A, ( A(x) =0), then there exist
u, vetsuchthat u(x) =1, A,cv?*(0,1]andunv=0.

Proof: Let y € 1,. Then clearly x = y. As (X, t) is fuzzy Hausdorff, then there exist

u,, v, etsuchthat u (x)=1, v (y)=1land u,nv,=0.Hence 1 c U{vy: yel,}
i.e. {v,: yea,} isanopen cover of 1. Since A is compact in (X, t), then there exist
v Vo eeens .V e{v,} such that Ac v, UV, U vv, . Now, let
V=V, UV, U ... vv, andu=u, Nu N oL M u, . Then we see that v and
u are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets

respectively i.e. v, uet. Furthermore, 1,<v'(0,1] and u(x) =1, as u, (x)=1 for

each k.

Finally, we have to show that u nv=0.As u, nv, =0 implies that u nv, =0, by

distributive law, we see that u Nnv =u N ( v, UV, U uv, )=0.

Corollary 4.21: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47) and A be a

compact fuzzy set in X with 4, < X. Let x ¢ 1, ( A(xX) =0), then there exists u e t
such that u(x) =1 and u™(0,1] c 5.

Proof: By theorem (4.20), there exists u, v et such that u(x) =1, i,<v™(0,1] and
unv=0.Hence u'(0,1] nv™*(0,1] = ¢. If not, there exists x € u™(0,1] N v *(0,1]
= xeu™(0,1] and xev'(0,1] = u(x)>0 and v(x) >0 = unv =0. Hence

u™(0,1] " 2, = ¢ and consequently u™(0,1] c 5.
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Theorem 4.22: Let (X, t) be a fuzzy Hausdorff space (as def. 1.47) and A, u be

disjoint compact fuzzy sets in X with 4,, u, < X.Then there exist u, v et such that
A, U™(0,1], p, cv™(0,1]and u v =0.
Proof: Let y € ,. Then y & u,, as A and u are disjoint. Since x is compact in (X, t),

then by theorem (4.20), there exist u,, v, et such that u (y) =1, u,c v;l(O, 1] and

yl
un v,=0.As u(y)=1, then {u,: yei,} is an open cover of 1. Since 1 is

compact in (X, t), then there exist u, , u , u, €{u,} suchthat A cu, Uu, U

yp 1t

-1
....... v u, . Furthermore, u cv, Nv, N ... "V, ,as u, < v, (0,1] foreach k.

Yn !
Now, let u = u, Uu, U vu, and v = vV, NV, N NV, . Thus we see that
A,cU™(0,1] and u,<Vv™(0,1]. Hence u and v are open fuzzy sets, as they are the

union and finite intersection of open fuzzy sets respectively i.e. u, vet.

Lastly, we have to show that u n v =0. First, we observe that u, Nv, =0 implies that

u, Nv=0, by distributive law, we see that unv=( u, U U, U

vu, )Nnv=0.
Remark: If A(x) =0 for all xe X ie. A,= X, then the above two theorems

(4.20), (4.22) and corollary (4.21) are not at all true.

Note: The compact fuzzy sets in fuzzy Hausdorff space (as def. 1.47) need not be
closed.
Consider the fuzzy topology t in the example (4.16), then (X, t) is also a fuzzy Hausdorff
space (as def. 1.47) and will serve the purpose that the compact fuzzy sets in fuzzy

Hausdroff space need not be closed.
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Theorem 4.23: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A be a
fuzzy set in X with A, X. If A is compact in (X,t) and x ¢ 1, ( A(x) =0, then
there exist u, v et such that u(x) >0, A, <v(0,1] and u nv =0. The converse of

the theorem is not necessarily true in general.
The proof is similar as that of theorem (4.20).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(4.17), then (X,t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1 e 1*
defined by A(a) =0, A(b)=0.6. Hence we observe that 1, ={b} and a¢ 1,. Now
u,, U, et where u(a) >0 and u,*(0,1] ={b}. Hence A, cu,*(0,1] and u, " u,=0.

But A is not compact, as there is no finite subcover of A in (X, t). Thus the converse of

the theorem is not true in general.

Corollary 4.24: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and 1 be a
fuzzy set in X with A, X . If A is compact in (X,t) and x & 1, ( A(x) =0, then
there exists u et such that u(x) >0 and u™(0,1] c 45.

The proof is similar as that of corollary (4.21).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(4.17), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Let 1 e | * defined by

A(a) =0, A(b) =0.6. Hence we observe that 1, ={b} and a ¢ A,. Now u, € t where
u(a) >0 and then u;*(0,1] ={a}. Hence we have u;*(0,1]c A,. But 1 is not

compact, as there is no finite subcover of A in (X, t). Thus the converse is not true in

general.
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Theorem 4.25: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A, u be

fuzzy setsin X with A,, u,c X.If A and u are disjoint compact fuzzy sets in (X, t),
then there exist u, vet suchthat 1,cu™(0,1], u,<v™(0,1] and u nv=0. The

converse of the theorem is not true in general.
The proof is similar as that of theorem (4.22).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(4.17), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1, ue 1
defined by A(a) =0.8, A(b)=0 and wu(a) =0, u(b)=0.6. Hence we observe that
A,={a} and u,={b}. Now u,, u,et where u;"(0,1]={a} and u,*(0,1] ={b}.
Thus we see that 1, < u;*(0,1], x, <u,*(0,1] and u,~u, =0, where A and u are
disjoint. But A and pu are not compact, as there is no finite subcover of A and u in
(X, t) respectively. Thus the converse of the theorem is not true in general.

Remark: If A(x) =0 for all xe X ie. 1,= X, then the above two theorems

(4.23), (4.25) and corollary (4.24) are not at all true.

The following example will show that the compact fuzzy sets in fuzzy Hausdorff
space (as def. 1.48) need not be closed.

Example 4.26: Consider the fuzzy topology t in the example of the theorem (4.17),
then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 2 € 1* defined by
A(@) =02, A(b)=0.1. Clearly A is compact in (X,t). But A is not closed, as its

complement A° is not open in (X, t).
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Theorem 4.27: Let A be a compact fuzzy set in a fuzzy Hausdorff space (X, t)
(as def. 1.50) with 1, < X . Suppose x ¢ 1, ( A(x) =0 ), then there exist u, v et such
that u(x) =1, 1,cv™(0,1] and u c1-v.
Proof: Let y € 4,. Then clearly x # y. As (X, t) is fuzzy Hausdorff, then there exist
u,, v,etsuchthat u(x)=1, v (y)=1and u,cl-v,. Hence 1 c U{ Vi Ye i}
i.e. {v,: yea,} isanopencoverof 1.Since 4 is compact in (X, t), then there exist
v Vo eeens WV e{v,} such that Ac v, UV, U wv, . Now, let

V=V, UV, U L vv,and u=u, Nou N M u, . Then we see that v and u
are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets
respectively i.e. v, uet. Furthermore, A, v '(0,1] and u(x) =1, as u, (x)=1
individually.

Lastly, we have to show that ucl-v. As ucl-v, implies that u cl-v,. Since
u, (x)<1-v, (x) forall x e X and for each k, then u c1—v. If not, then there exist
x € X such that u,(x) >1-v, (x). We have u,(x) <u, (x) for each k. Then for some
k, u, (x)>1-v, (x). But this is a contradiction, as u, (x) <1-v, (x) for each k.

Hence u c1-v.

Theorem 4.28: Let A and u be disjoint compact fuzzy sets in a fuzzy Hausdorff

space (X,t) (as def. 1.50) with A,, u,c X. Then there exist u, vet such that
A, cu™(0,1], u, cv(0,1] and u c1-v.
Proof: Let ye A,. Then y & u,, as A and u are disjoint . Since u is compact in

(X, t), then by theorem (4.27), there exist u, , v, € t such that u,(y) =1, u,<Vv,*(0,1]

y !
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and u,cl-v,.As u/(y)=1,then {u,: yel,} isanopencover of 1. Since 4 is

compact in (X, t), then there exist u, , u , u, e{u,}suchthat Ac u, U u,

yp 1t

-1
Ui v u, . Furthermore, u cv, Nv, N ....... NV, ,as u,c v, (0,1 for each

k.Now,Ietu=uyu u, U ...... Uu, andv=vVv, NV, N ..... MV, . Thus we see
1 Y2 Yn Y1 Y2 Yn

that 1, cu™(0,1] and u, v (0,1]. Hence u and v are open fuzzy sets, as they are
the union and finite intersection of open fuzzy sets respectivelyi.e. u, vet.
Finally, we have to show hat u c 1-v. First, we observe that u, <l-v, for each k
implies that u, cl-v foreach k and itisclearthat u c1-v.

Remark: If A(x) #0 for all xe X ie. A,= X, then the above two theorems

(4.27) and (4.28) are not at all true.

Note: The compact fuzzy sets in fuzzy Hausdorff space (as def. 1.50) need not be
closed

Consider the fuzzy topology t in the example (4.16), then (X, t) is also a fuzzy Hausdorff

space (as def. 1.50) and will serve the purpose that the compact fuzzy sets in fuzzy

Hausdorff space need not be closed.

Theorem 4.29: Let A be a compact fuzzy set in a fuzzy regular space (X, t)
(as def. 1.51) with A, < X . If for each x € 1, and u e t® with u(x) =0, there exist
v, wetwehave v(x) =1, ucw, /logv‘l(o,l] and vcl-w.
Proof: Let (X, t) be a fuzzy regular space and A be a compact fuzzy set in (X, t). Now,
if each x € 4,, there exists u e t® with u(x) =0, by fuzzy regularity of (X, t), we have

v

X !

w, et suchthat v,(x) =1, u,cw, and v, c1-w, .Hence 2 c| J{v,: xe,}
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ie. {v,: xel,} is an open cover of A. Since A is compact in (X,t), then

{v,: xe 4y} has a finite subcover i.e. there exist v, , v , vV, €{v,} such that

Xy 1t

ACV, UV, U uv, . Now, let v=v, UV, U.... vv, and w=w, N

Xn

W, N M W, . Then we see that v and w are open fuzzy sets, as they are the union
and finite intersection of open fuzzy sets respectively i.e. v, wet. Furthermore,
Aycv(0,1], v(x) =1and ucw,asu cw, individually.

Lastly, we have to show that vc1-w.Asv, c1-w, impliesthat v, c1-w foreach

k and hence itis clear that vc 1— w.

Theorem 4.30: Let (X,T) be a topological space and (X, o (T )) be an fts. If 4
is any compact fuzzy set in (X, o (T )), then 4, is compact in (X,T). The converse is

not true in general.

Proof: Suppose A be any compact fuzzy set in (X, o (T )). Let {V, :ieJ} bean

open cover of A, in (X,T) ie A, = (JV;- As 1, is Lsc., then 1, € »(T) and

iel
{%,: 4, eo(T)} is an open cover of 1 in (X, 0 (T )). Since A is compact in

(X, (T)),then A has a finite subcover i.e. there exist Lo L, o e , 1, {4, } such

that 1 < 1V., ) 1VI2 U e, U 1, . Hence, wecanwrite 4, V, UV, U ... vV, and

therefore A, is compact in (X, T).

Now, for the converse, we give the following example.

Let X ={a,b,c}and T ={¢, {b}, {c}, {b,c}, X}, then (X,T) is a topological
space. Let u, u,, u;el* with u(@) =0, u()=06, u(c)=0; u,@=0,

u,(b)=0, u,(c)=08 and u,(@)=0, ub)=06, U,(c) =0.8. Then
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o(T)={0, u, U,, u,, 1} and (X, (T)) is an fts. Again, let A e I* with
A(@)=0, A(b)=0.7, A(c)=0.9. Hence 1,={b,c}. Then clearly 1, is compact in
(X,T). But 4 is not compact in (X, (T)), as there do not exist u, € {&(T)}
(k =1, 2, 3) suchthat A cu, U u, Uu,. Thus the converse of the theorem is not

true in general.

Theorem 4.31: If A and u are compact fuzzy sets in an fts (X,t), then
(Ax u) is also compact in (X x X, txt).
Proof: Suppose A and u are compact fuzzy sets in an fts (X, t). Let {u;: ieJ} and
{v,: ieJ} beopencoverof 1 and u respectively, where u, , v, € t. Hence it can be

easily shown that, min( A(x) , u(y)) < Umin (u;(x), v,(y)) forevery (x,y) e XxX.

iel
Then {u,xv,: ieJ} is an open cover of (Axu) in (XxX,txt) ie. (Axu)c

U(UiXVi)- Since 4 and p are compact, then {u,: ieJ} and {v,: ieJ} have

ied

finite subcovers, say {u, : keJ,} and {v, : keJ } such that 1c Uuik and

kel,

uc Uvik respectively. Thus we can write (Axu)c U(uik xV, ). Therefore

kel, kel,
{u, xv;, : k €J, } isafinite subcover of {u; xv;: i€ J}. Thus (A x u) is compact in

(X x X, txt).

Definition 4.32: Let (X, t) beanfts, 0 <5 <land A beafuzzysetin X . Then A

is said to be & -compact iff every & -cover of A has a finite ¢ -subcover. If 4 < A and
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wel*, then u is also &-compact. Thus we can say that, any other subsets of a

o -compact fuzzy set in an fts is also 6 -compact.

Theorem 4.33: Any 6 -compact fuzzy set in an fts is compact. The converse is not

true in general.
The proof of the theorem is straightforward.

Now, for the converse, consider the following example.

Let X ={a,b}, 1 =[0,1] and 0< & <1. Let u,, u,, u,e 1* defined by u,(a) =1,
u,(b)=04; u,(a)=0.7, u,(b)=1and u,(a) =0.7, u,(b) =0.4. Now, take t ={ 0,
u,, u,, us, 1%}, then we see that (X,t) is an fts. Again, let 1 e 1 defined by
A(a) =0.9, A(b)=0.8. Clearly A is compact in (X, t). Take 6 =0.6. Then we observe
that there is no finite & -subcover of 4 in (X, t). Hence A is not & -compact in (X, t).

Thus the converse of theorem is not necessarily true.
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Chapter Five

Partially « -Compact Fuzzy Sets

In this chapter, we have introduced partially « -compact fuzzy sets. Furthermore,
we have established some theorems, corollaries and examples of partially « -compact
fuzzy sets. Also we have defined partially 6 -« -compact fuzzy sets and found different

properties between partially « -compact and partially 6 - a -compact fuzzy sets.

Definition 5.1: Let (X,t) beanftsand o e | . A family M of fuzzy sets is called
a partial «-shading, 0 <o <1 (resp. partial o -shading, 0 <ea <1), in short,
pa -shading (resp. pe” -shading) of a fuzzy set A in X ifforeach xe 1,, (4, # X )
there exists a u € M with u(x) >« (resp. u(x) >« ). If each u is open, then M is
called an open pe -shading (resp. open pe” -shading) of A in (X, t).
A subfamily of a pe -shading (resp. pa’ -shading) of A which is also a pe -shading
(resp. pa” -shading) of 4 is called a pe -subshading (resp. pa’ -subshading) of A .

If A(x)=0 for all xe X ie A,=X, then pa-shading (resp. po” -shading) and

a -shading (resp. o -shading) will be same.

Example 5.2: Let X ={a,b,c}, 1=[0,1] and 0<a <1. Let u, u,el”
defined by u(a)=0.7, u()=04, u(c)=02 and u,(a)=03, u,(b)=0.9,
u,(c) =0.1. Again, let A e1” with A(a)=0.8, A(b)=0.4, A(c)=0. Now, take
o =0.6. Hence we observe that u,(a) >a, u,(b) >a where a, be 1,. Therefore
{u,, u,}isa pa-shading of 4.
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Again, if we take o =0.7, then {u,, u,} isa pa’ -shading of 1.

Example 5.3: Let X ={a,b,c}, I =[0,1] and 0 <a <1. Let u,, U,, Uy e I*
defined by u(a)=1, u()=1, u(c)=0; u,(@)=0, u,(b)=02, u,(c)=1 and
u,(@) =0, uyb)=02, uy(c)=0.Put t={0, u,, u,, uy, 1}, then (X,t) is an fts.
Again, let 1 € 1 with 1(a) =0, A(b) =04, A(c) =0.6. Now, take a =0.7. Hence
we observe that u,(b) >« , u,(c) >a where b, ce 4,. Therefore {u,, u,} isanopen
pa -shading of A in (X, t).

Again, if we take « =1, then {u,, u,} isanopen pa”-shading of 4 in (X, t).

Definition 5.4: Let (X, t) be an fts and o € | . A fuzzy set 1 in X is said to be
partially o -compact, 0 <a <1 (resp. partially « -compact, 0 <a <1), in short,
pa -compact (resp. pa’” -compact) iff every open pa -shading (resp. pa’ -shading) of A

has a finite pa -subshading (resp. pa’ -subshading).

Theorem 5.5: Let (X,t) be an fts, Ac X and A be a fuzzy set in X with
A, < A. Then A is pa-compact (resp. pa’ -compact) in (X,t) iff A is pa-compact
(resp. pa”-compact) in (A, t,).

Proof: Suppose A is pa-compact in (X,t). Let M ={u,: ieJ} be an open
pa -shading of A in (A, t,). Then there exist v, e t such that u =v,| Acv,. Hence
{v,: ieJ} isanopen pa-shading of A in (X,t). As A is pa-compact in (X, t),
then {v;: ie J} hasa finite pa-subshading, say {v, : k € J,} suchthat v, (x) >«
for all x e A4,. For, if x e A,, then there exists Vi, such that Vi, (X) > « implies that
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(viko | A)(x) > and consequently Ui, (X)>a, as A, A. Thus u, €M and hence
{u, : ke, }isafinite pa-subshading of M . Therefore 4 is po -compact in (At,).
Conversely, suppose A is pa-compact in (A t,). Let {v,: ieJ} be an open
pa -shading of A in (X, t). Put u, = v, | A. To show this, let x € X . If x € A, then there
exists v, e{v;:ieJ}suchthat u =v,_ |A.Butuy et,, sou (x)>a forall xe ,.
Therefore, {u,: i€ J} isanopen pa-shadingof A in (A, t,). Since A is pa -compact
in (A't,), then {u,: ieJ} has afinite po-subshading, say {u, : k € J,} such that
u, (x) >a forall xe i,. For, if x e 4,, then there exists Ui, such that Ui, xX)>a =
(viko [A)(X) >a = Vi, X)>a, as A,cA. Thus {v, : kelJ,} is a finite
pa -subshading of {v,: i € J}. Hence A is pa -compactin (X, t).

The proof is similar for po” -compactness can be given.

Corollary 5.6: Let (v,t") be a fuzzy subspace of (X,t) and AcY < X. Let
A e 1* with A, A. Then 4 is pa -compact (resp. pe” -compact) in (X, t) iff A is
pa -compact (resp. pa” -compact) in (A, t,).
Proof: Let t, and t, be the subspace fuzzy topologies on A. Then by preceding theorem
(5.5), 4 is pa-compact in (X, t) or (Y, t*) if and only if A4 is po -compact in (A, tA) or
(A t;). But t, =t.

Similar work for pa”-compactness can be done.

Theorem 57: Let f: X —>Y be any mapping and Ael”. Then

f ()“0) = (f ()“))o :
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Proof: Let y € f(4,), then there exists an x € A, such that y = f(x). Now, A(x) >0
and therefore sup{A(x): xe f*(y)}>0 which implies that f(A1)(y)>0. Hence
y € (f(1)),. Therefore f(4,) < (f(1)),.

Again, let y e (f(4)),, then f(1)(y)>0 which implies that sup{ A(x): f(X) =y,
f(y)# ¢}>0. Then there exists an x,€ X, y=f(x,) and x e A,. Therefore
f(x) e f(4,) implies that ye f(4,). Therefore (f(1)), < f(4,). Hence

f(2o) = (F(A)),.

Theorem 5.8: Let (X,t) and (Y,s) be two fuzzy topological spaces and
f:(X,t)—> (Y,s) be fuzzy continuous and onto mapping. If 1 is pa -compact (resp.
po” -compact) in (X, t), then (1) is pe -compact (resp. pe” -compact) in (Y,s).
Proof: Let M ={u;: ieJ} be an open pa-shading of f(4) in (Y,s). Since f is
fuzzy continuous, then f '(u)et and hence f*(M)={f"(u): u €M } is an open
pa -shading of A in (X, t). For, if x € ., then f(x) e (f(4)),. So there exists u, € M
such that uio(f(x))>a which implies that f‘l(uio)(x) >a. As A is pa-compact in
(X,t), then f*(M) has a finite pe-subshading, say { f*(u,), f™*(u,), ... ,
f(u,)}. Now, if ye(f(2)),, then y = f(x) for some x € A,. Then there exists k
such that f‘l(uik)(x) >« which implies that uik(f(x)) >a or y; (y) >a. Hence f(1)
is po -compactin (Y, s).

Similar work for pa”-compactness can be given.
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Theorem 5.9: Let (X,t) and (Y,s) be two fuzzy topological spaces and
f: (X,t)— (Y,s) be fuzzy open and bijective mapping. If 1 is pa -compact (resp.
pa”-compact) in (Y, s), then f (1) is pa-compact (resp. pa”-compact) in (X, t).
Proof: Let M ={u,: ieJ} be an open pa-shading of f*(1) in (X,t). As f is
fuzzy open, then f(y;) es andso f(M)={ f(u,): u, € M } isanopen pa -shading of
A in (Y, s). For, if y e 4,, then f'(y) e (f‘l(/l))o. So there exists u, € M such that
uio(f‘l(y))>a which implies that f(u,)(y) > . Since A is pa-compact in (Y, s),
then f(M) has a finite pa -subshading, say { f(u,), f(u ), ...... , f(u; )} For, if
X € (f‘l(/l))o, then x = f*(y) for some y e A,. Therefore, there exists k such that
f(u,)(y) >a which implies that u, (f(y))>a or u (x)>a. Hence f(1) is
pa -compact in (X, t).

The work is similar for pe” -compactness can be given.

Theorem 5.10: Let (X,t) be an fts, Ac X and A be a fuzzy set in X with
Ao A. Let (A t,) be a fuzzy subspace of (X,t) and f: (X,t)— (A t,) be fuzzy
continuous and onto mapping. If A is pa -compact (resp. pa’ -compact) in (X, t), then
f (1) is pa-compact (resp. pa” -compact) in (A t,).

Proof: Let M ={u: ieJ} be an open pa-shading of (1) in (At,). Put
u= Vv,|A, where v.et. Since f is fuzzy continuous, then f~*(u)et implies that
f(v,|A) et and hence f*M)={f"U): ueM} ie f'M)={f"(v|A):

ieJ}isanopen pa-shading of 4 in (X,t). For, if x € A,, then f(x) € (f(1)),. So

there exists u; € M such that uio(f(x))>a which implies that f‘l(uio)(x)>a i.e.
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f v, [A(X)>a. As A is pa-compact in (X,t), then f*(M) has a finite
pa -subshading, say { f7'(v, |A), f7(v [A), ... . (v, [A)}. Now, if
y €(f(1)),, then y=1f(x) for some xeA,. Then there exists k such that
f (v, | A)(x) > which implies that (v; | A) (f(x))>a or u, (y) >a.Hence f(1) is
pa -compactin (A, t,).

Similar work for peo” -compactness can be given.

Theorem 5.11: Let (A t,) and (B, s,) be fuzzy subspaces of fuzzy topological
spaces (X,t) and (Y,s) respectively and f: (At,)— (B,s,) be relatively fuzzy
continuous and onto mapping. If A is po -compact (resp. po” -compact) in (A, tA), then
f(1) is pa-compact (resp. pa”-compact) in (B, s;).

Proof: We have f(A)=B, as f isonto. Let {v,: v, e s; } be an open pa -shading of
f(2) in (B,s,) for every i € J i.e v,(y) >a forevery y e (f(1)),. Since v, € s, then
there exists u, € s such that v, =u, | B and so (u,|B) (y) >a for every y e (f(1)),.
As f is relatively fuzzy continuous, then f*(v,)| A e t,. Thus we observe that, for each
Xe Ay, (f7(v)|A)(X) > and hence { f(v,)|]A: ie J} isanopen pa-shading of A
in (A t,) implies that { (f(u,|B))|A: ieJ}= { f2u)|(fB)nA): icl} =
{ f*u)|A:iel}isanopen pa-shading of A in (A t,). Since A is pa-compact in
(Aty), then { f(u)|A: ieJ} has a finite po-subshading, say { f*(u;)A}
(keJd,) such that (f*(u )l A)(x)>a for each x € A,. Now, if ye(f(1)),, then
y = f(x) for some x € 4,. Then there exists k we have (f‘l(uik)|A)(x) > a implies

that (u; |f(A) (f(x)) >a implies that (u; [B)(Y) >, as f is onto or v, (y) >a.
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Hence it is clear that {v; : k € J, } is a finite po -subshading of {v;: v, e sy }. Thus
f(1) is pa-compactin (B, s,).

The work is similar for po” -compactness can be given.

Theorem 5.12: Let (A t,) and (B, s,) be fuzzy subspaces of fts’s (X,t) and

(Y,s) respectively. Let f: (At,)—(B,ss) be relatively fuzzy open and bijective
mapping. If A is pa-compact (resp. pa’ -compact) in (B, sB), then (1) is
pa -compact (resp. pa’ -compact) in (A, t,).
Proof: We have f(A)=B,as f is bijective. Let {u,: u, et,} beanopen pea-shading
of f7(1) in (A't,) forevery ieJ ie u(x)>a forevery x e (f‘l(i))e. Since u; et,,
then there exists v,et such that u,=v,|A and so (v,|A) (x)>a for every
X e (f‘l(/l))o. As f is relatively fuzzy open, then f(u;) € s;. Thus we observe that, for
each ye 4,, f(u,)(y) >a and hence { f(u,) : ie J} isanopen poa-shading of 4 in
(B, sg) implies that { f(v;|A): ieJ}={f()|f(A):ied} ={f(V)B:icl}
is an open pa-shading of A in (B,s,). Since A is pa-compact in (B,s;) , then
{f(v)IB: ieJ} has a finite po-subshading, say { f(v, )|B: k € J,} such that
(f(vik)| B)(y) >q for each y e A,. Now, if xe (f‘l(/l))o, then x = f *(y) for each
yeld,. Then there exists k we have (f(vik)l B)(y) >a implies that
(v, | £7(B)) (f'(y)) >a implies that (v, | A)(x) >a or u, (x) >a. Hence it is clear
that {u, : keJ,} is a finite pa-subshading of {u;: u et }. Thus f7(2) is
pa -compact in (A, t,).

Similar work for pa”-compactness can be done.
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Theorem 5.13: Let (X, t) be an fts and A be a fuzzy set in X with 1, X . If
every family of closed fuzzy sets in (X, t) which has empty intersection has a finite

subfamily with empty intersection, then A is pa-compact (resp. pa’” -compact). The
converse is not true.

Proof: Let M ={u,: ieJ} bean open pa-shading of A in (X,t) i.e. u,(x)>a for

all x e 4,. First condition from the given theorem, we have ﬂuf =0, . Hence we can

ied

write Uui =1, . Again, by the second condition of the theorem, we get ﬂufk =0y

ield kel,

implies that Uuik =1, and hence u; (x) >a for all x e 4,. Hence it is clear that
kel,

{u, : ke, }isafinite pa-subshading of M . Therefore 4 is pa -compact.

Now, for the converse, consider the following example.

Let X ={a,b,c}, 1=[0,1] and 0 <« <1. Let u,, Uu,, U,, u, el defined by
u(@) =04, u()=03, u(c)=02; u(a)=08, u,(b)=04, u,(c)=0.1;
u,(a@) =0.8, uy(b) =0.4, u,(c) =0.2 and u,(a) = 0.4, u,(b) =0.3, u,(c) =0.1. Now,
put t={0, u,, u,, u,, u,, 1}, then we see that (X, t) is an fts. Let 1 € 1* defined
by A(a) =0.2, A(b) =0.5, A(c)=0.Take a =0.2. Then clearly 1 is pa -compact in
(X, t). Now, closed fuzzy sets are uf(a)=0.6, uf(b)=0.7, uf(c)=0.8; ui(a)=0.2,
u,(b) =06, u;(c)=0.9; u;(@=02, u;(b)=06, uz(c)=08 and u;(a)=0.6,
u;(b) =0.7, uz(c)=0.9. Thus we see that u’ mu; Nu; Nu;=0. Therefore the

converse of the theorem is not necessarily true.

The work is similar for po” -compactness can be given.
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Note: The pa-compact (resp. pa’ -compact) fuzzy sets in an fts need not be

closed.

Consider the example in the theorem (5.13), then we have A is pa -compact in (X, t).
But A is not closed, as its complement A° is not open in (X, t).

Again, take o =0.4. Then A is pa”-compactin (X, t) and A is not closed.

Theorem 5.14: Let A be a pa -compact (resp. pa’ -compact) fuzzy set in fuzzy
T,-space (X,t) (as def. 1.45) with A, X . Let x & A, ( A(x) =0), then there exist
u, vetsuchthat u(x) =1and 1, < v™(0,1].

Proof: Suppose y € 4,. Then clearly x # y. As (X, t) is fuzzy T,-space, there exist
u,, v,et such that u(x)=1, u,(y)=0 and v,(x)=0, v, (y)=1. Let us take
0<a <1. Then v (y)>a >0, as v, (y)=1. Hence we see that {v,: ye,} isan
open pa -shading of A in (X,t). Since A is pa-compact, then {v,: y e 1,} has a
finite pa-subshading, say {v, : yei,}(keJ,) such that v, (y)>a for each
y € 2,. Now, let v =V, UV, U ... UV, and u = U, NUy, N e AUy . Thus we

see that v and u are open fuzzy sets, as they are the union and finite intersection of open
fuzzy sets respectively i.e. v, uet. Moreover, A,cv*(0,1] and u(x) =1, as
u, (x) =1 foreach k.

Similar proof for pa” -compact can be done.

Theorem 5.15: Let A and u be disjoint pe -compact (resp. po’ -compact) fuzzy

sets in fuzzy T,-space (X, t) (as def. 1.45) with A,, pu,c X . Then there exist u, vet

suchthat A, cu™(0,1] and w, < v(0,1].
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Proof: Suppose y € 1,. Then y ¢ u,,as A and u are disjoint. Since u is pa -compact
in (X,t), then by theorem (5.14), there exist u,, v, et such that u,(y)=1 and
U, < v;l(O, 1]. Letustake 0 <a <1 with u,(y) >a >0, as u,(y) =1. Thus we see that
{u,: yel,} isanopen pa-shading of 1 in (X,t). Since A is pa -compact, then
{u,: yea,} has a finite pa-subshading, say {u, : yei,}(keJ,) such that
u, (y) >a foreach y e 4,. Furthermore, u is pa-compact, so {v,: xe uy} hasa
finite po -subshading, say {v, : xe u,}(keJd,) such that v, (x)>a for each

X€ p,, @ pocV, (0,1] for each k. Now, let u=u, U u, U ... vu, and

V=V, NV, N o M v, . Hence we see that 2, < u™(0,1] and u, < v™(0,1]. Thus

u and v are open fuzzy sets, as they are the union and finite intersection of open fuzzy

sets respectivelyi.e. u, v et.
Similar proof for pa” -compact can be given.
Remark: If A(x) =0 for all xe X ie. 4,= X, then the above theorems (5.14)

and (5.15) are not at all true.

The following example will show that the pa -compact (resp. peo’ -compact) fuzzy
sets in fuzzy T,-space (as def. 1.45) need not be closed.

Example 5.16: Let X ={a, b}, 1 =[0,1] and 0 <o <1. Let u,, u, e 1’ defined
by u(a) =1, u()=0 and u,(@)=0, u,(b)=1. Put t={0, u,, u,, 1}, then we
have (X,t) is a fuzzy T,-space. Again, let 1 e 1* with A(a)=0.2, A(b)=0. Now,
take o =0.4. Then A is pa-compactin (X,t). But A4 is not closed, as its complement
A%is not open in (X, t).

Again, if we take o =1, then this example is also applicable for pa”-compactness.
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Theorem 5.17: Let (X, t) be a fuzzy T, -space (as def. 1.46) and A be a fuzzy set in
X with 1, X. If A is pa-compact (resp. pa’ -compact) in (X,t) and x & A,
(A(x)=0), then there exist u, vet such that u(x) >0 and A,cv*(0,1]. The

converse is not true in general.
The proof is similar as that of theorem (5.14).
Now, for the converse, we give the following example.

Let X ={a,b}, 1=[0,1] and O0<a<1. Let u, u,, usel” defined by
u (@) =02, u() =0; u,(@)=0, u,(b)=0.3 and us(a) =0.2, u,(b) =0.3. Now, put
t={0, u,, u,, u,, 1}, then we see that (X, t) is a fuzzy T,-space. Again, let 1  1*
defined by A(a) =0, A(b)=0.3. Hence we observe that A,={b} and a ¢ 1,. Here
u,, u,et where u(a) >0 and u,*(0,1] ={b}. Therefore A, < u,"(0,1]. Now, take
o =0.4. But we see that A is not pa-compact in (X,t), as u, (b) <a where b € 4,,
for k =1, 2, 3. Thus the converse of the theorem is not true in general.

This example is also valid for pa” -compactness.

Theorem 5.18: Let (X, t) be a fuzzy T,-space (as def. 1.46) and A, u be fuzzy
sets in X with A,, p,cX. If A1 and u are disjoint pa-compacts (resp.
pa”-compacts) in (X,t), then there exist u, vet such that A,cu™(0,1] and
1, < V*(0,1]. The converse is not true in general.

Similar proof as theorem (5.15).

Now, for the converse, consider the fuzzy T,-space (X, t) in the example of the theorem
(5.17). Let A, u e 1™ with A(a) =0.3, A(b) =0 and u(a) =0, wu(b)=0.1. Thus we

see that i,={a} and u,={b}. Now u,, u,et where u*(0,1]={a} and
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u,*(0, 1] = {b}. Hence we observe that 1, < u;*(0,1] and x, < u,*(0,1], where A and
u are disjoint. Take o = 0.4. Hence we observe that 4 and u are not pa -compacts in
(X,t), as u, (@) < where a e 4, and u, (b) < where b e u,, for k =1, 2, 3. Thus
the converse of the theorem is not true in general.

This example is also applicable for pa”-compactness.

Remark: If A(x) =0 for all xe X ie. 4,= X, then the above theorems (5.17)

and (5.18) are not at all true.

The following example will show that the pa -compact (resp. pea’ -compact) fuzzy
sets in fuzzy T, -space (as def. 1.46) need not be closed.

Example 5.19: Consider the fuzzy T,-space (X, t) in the example of the theorem
(5.17). Again, let 1 e 1* defined by A(a)=0, A(b)=0.8. Then A,={b}. Take
a =0.2.Clearly A is pa -compact in (X, t). But A is not closed, as its complement A°
is not open in (X, t).

Again, if we take a = 0.3, then this example is also applicable for po” -compactness.

Theorem 5.20: Let A be a pa-compact (resp. pa’ -compact) fuzzy set in a fuzzy
Hausdorff space (X,t) (as def. 1.47) with 1, X . Let x ¢ 4, ( A(x) =0, then there
exist u, v et suchthat u(x) =1, A,cv*(0,1]and unv=0.

Proof: Let y € 4,. Thenclearly x # y. Since (X, t) is fuzzy Hausdorff space, there exist
u,, v, etsuchthat u(x)=1, v,(y)=1and u, n v, =0. Letustake 0 <a <1 such

that v, (y)>a >0, as v, (y)=1. Hence we see that {v,: ye,} is an open

pa -shading of A in (X,t). As A is pa-compactin (X,t), then {v,: y e A, } hasa
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finite pa -subshading, say {v, : yei,}(keJ,) such that v, (y)>a for each

y € 2,. Now, let v =V, UV, U ... UV, and u = U, MU, N e Ny . Thus we

see that v and u are open fuzzy sets, as they are the union and finite intersection of open

fuzzy sets respectively ie. v, u et. Moreover, 1,cv*(0,1] and u(x) =1, as
u, (x) =1 foreach k.

Finally, we have to show that u nv=0.As u, nv, =0 implies that u v, =0, by
distributive law, we see that u " v = u N ( v, UV, U uv, )=0.

Similar work for peo” -compactness can be given.

Corollary 5.21: Let 1 be a pa -compact (resp. pe’ -compact) fuzzy set in a fuzzy

Hausdorff space (X, t) (as def. 1.47) with A, X . Let x ¢ A, ( A(x) =0, then there
exists u e t suchthat u(x) =1 and u™(0,1] c A5.

Proof: By theorem (5.20), there exist u, v et such that u(x)=1, 1,<v™(0,1] and
unv=0.Hence u(0,1] nv™*(0,1] = ¢. If not, there exists x € u™(0,1] » v *(0,1]
= x eu™(0,1] and x ev™(0,1] = u(x) >0 and v(x) >0 = unv = 0. Hence
u™(0,1] N A, = ¢ and consequently u™(0,1]  4;.

Similar work for peo” -compactness can be given.

Theorem 5.22: Let 1 and u be disjoint po -compact (resp. pe’ -compact) fuzzy

sets in a fuzzy Hausdorff space (X, t) (as def. 1.47) with A, , u, < X . Then there exist

u, vetsuchthat A,cu™(0,1], u,cv'(0,1]and unv=0.
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Proof: Suppose y € 1,. Then y ¢ u,,as A and u are disjoint. Since u is pa -compact

fuzzy set in (X, t), then by theorem (5.20), there exist u,, v, et such that u (y) =1,

y o
yogv;l(o, 1] and u,» v, =0. Let us take 0 <a <1 such that u,(y)>a >0, as
u,(y) =1. Then we see that {u,: y € A, } is an open pe -shading of A in (X, t). Since
A IS pa-compact in (X,t), then {u,: yeA,} has a finite pa-subshading, say
{u, 1 yei,}(ked,) suchthat u (y)>a foreach ye,. Furthermore, u is
pa-compact, then {v,: xewu,} has a finite po-subshading, say
{v, : xeu,}(keJ,) suchthat v, (x) >a foreach xe u,,as uogv;j(o, 1] for
each k. Now, let u=u, v u, v ...... vu,and v=v, NV, N oL N v, . Hence
we see that 1, cu™(0,1] and u, < v™(0,1]. Thus u and v are open fuzzy sets, as they
are the union and finite intersection of open fuzzy sets respectively i.e. u, vet.

Finally, we have to show that u mn v =0. We observe that u, Nv, =0 for each k

implies that u, Nv=0 for each k, by distributive law, we see that unv=

Similar proof of pa”-compactness can be given.
Remark: If A(x) =0 for all xe X ie. A,= X, then the above two theorems

(5.20), (5.22) and corollary (5.21) are not at all true.

Note: The po -compact (resp. pa’ -compact) fuzzy sets in fuzzy Hausdorff space

(as def. 1.47) need not be closed.
Consider the fuzzy topology t in the example (5.16), then (X, t) is fuzzy Hausdorff space

(as def. 1.47) and also will serve the purpose.
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Theorem 5.23: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A be a
fuzzy set in X with A, X. If 1 is pa-compact (resp. pa”-compact) in (X, t) and
X¢g A, (A(x)=0), then there exist u, vet such that u(x) >0, 1,<v™(0,1] and

u N v =0. The converse of the theorem is not necessarily true in general.
The proof is similar as that of theorem (5.20).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(5.17), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1 e 1*
defined by A(a) =0, A(b)=0.3. Hence we observe that 1,={b} and a ¢ 1,. Here,
u,, u,et where u(a)>0 and u,'(0,1]={b}. Therefore 1,cu,'(0,1] and
u,Nu,=0. Now, take & =0.4. But we see that A is not pa-compact in (X, 1), as
u,(b) <a where b € 1,, for k =1, 2, 3. Thus the converse of the theorem is not true

in general.

Similar work for pa”-compactness can be done.

Corollary 5.24: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and 1 be a
fuzzy set in X with A, X . If A is pa-compact (resp. pa’ -compact) in (X, t) and
X ¢ A, (A(x) =0), then there exists u e t such that u(x) >0 and u™(0,1] c ;.

The proof is similar as that of corollary (5.21).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(5.17), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Let 1 e | * defined by

A(a) =0, A(b) =0.3. Hence we observe that 1,={b} and a ¢ A1, and. Now, u, et

where u,(a) >0 and then u;*(0,1] ={a}. Hence we have u;*(0,1] < ;. Now, take
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o = 0.4. Thus we see that A is not po -compact, as u, (b) <« where b € 4,, for k =1,
2, 3. Thus the converse is not true in general.

The work is similar for po” -compactness can be given.

Theorem 5.25: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A, u be
fuzzy sets in X with A4,, y,c X. If 2 and u are disjoint poa-compact (resp.
po” -compact) fuzzy sets in (X, t), then there exist u, v et such that 1, < u™(0,1],
1, =V (0,1] and u N v = 0. The converse of the theorem is not true in general.

The proof is similar as that of theorem (5.22).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(5.17), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 2, ue1*
with A(a) =0.3, A(b) =0 and u(a) =0, u(b)= 0.1. Thus we see that 1, ={a} and
i, ={b}. Now u,, u, e t where u;*(0,1] ={a} and u,*(0,1] = {b}. Hence we observe
that 1, < u,*(0,1] and u,<u,'(0,1] and u,Nu,=0, where A and u are disjoint.
Take a =0.4. Hence we observe that A and u are not pa-compacts in (X,t), as
u, (@ <a where ae i, and u,(b) <a where b e pu,, for k=1, 2, 3. Thus the

converse of the theorem is not true in general.

Remark: If A(x) #0 for all xe X ie. 1,= X, then the above two theorems

(5.23), (5.25) and corollary (5.24) are not at all true.

The following example will show that the pa -compact (resp. pea’ -compact) fuzzy

sets in fuzzy Hausdorff space (as def. 1.48) need not be closed.
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Example 5.26: Consider the fuzzy topology t in the example of the theorem (5.17),
then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, Let A e |* defined by
A(@) =0, A(b) =0.3. Hence we observe that 1, ={b}. Now, take o =0.2. Clearly 1 is
pa -compact in (X, t). But 4 is not closed, as its complement A°is not open in (X, t).

Again, if we take o = 0.3, then this example is also applicable for pa” -compactness.

Theorem 5.27: Let (X, t) be a fuzzy Hausdorff space (as def. 1.49) and A be a
fuzzy set in X with A(x) =0 for at least one x e X . If 4 is pa-compact (resp.
pa’ -compact) in (X, t), then there exist u, vet suchthat x. eu, 1,<v™"(0,1] and
unv=0,where x isafuzzypointin X . The converse is not true in general.

Proof: Suppose (X, t) is a fuzzy Hausdorff space and A is a pa-compact fuzzy set in
X . Let X,, Yy, be two fuzzy points in X with y, (s>a ) in 4. Now, we see that

X#Yy,a A(x)=0.As (X, t) is fuzzy Hausdorff, then there exist u, , v, et such that

v
X, €U, , Yev, and u, N v, =0 and this is true for any value of s. Hence this is also
true for s>a. Let us take « e, such that v, (y)>a >0. Thus we see that
{v, : y;€4} isanopen pa-shading of 1. Since 1 is pa-compact in (X, t), S0

{v, : y,e 4} has a finite pa -subshading, say {Vys, y.eA} (keld,) such that

vy, (y)>a. Let v= vy, YV U A and u = U, DUy, N AUy, Thus

we see that v and u are open fuzzy sets, as they are the union and finite intersection of

open fuzzy sets respectively i.e. v , uet. Moreover, 1, Vv*(0,1] and X, €u, since

x, € u, foreach k.
Sk
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Finally, we claim that unv=0. As U, NV, = 0 for each k implies that
unv, =0, by distributive law, we therefore observe that unv=
um(vy%uvyszu ...... UVysn)ZO'

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(5.17). Let a,, and b,, be fuzzy points in X . Then (X,t) is fuzzy Hausdorff space
(as def. 1.49). Again, let 1 € 1 defined by A(a) =0, A(b) =0.6. Hence we observe
that A1,={b}. Now wu,, u,et where a,eu and u,"(0,1]={b}. Hence
Ay < U,°(0,1] and u, nu,=0. Take a =0.8. Then we see that A is not pa -compact
in (X,t), as u(b) <a where bei,, for k=1, 2, 3. Thus the converse of the

theorem is not true in general.

Similar work for pa”-compactness can be given.

Corollary 5.28: Let (X,t) be a fuzzy Hausdroff space (as def. 1.49) and A be a
fuzzy set in X with A(x) =0 for at least one x e X . If 4 is poa-compact (resp.
pa’ -compact) in (X, t), then there exist u et such that x. eu and u™(0,1] < A5,
where X, is a fuzzy point in X . The converse is not true in general.

Proof: By theorem (5.27), there exists u, v et suchthat x, eu, 4,<v(0,1] and
unv=0.Hence u(0,1] nv™*(0,1]=¢. If not, there exists x € u™(0,1] N v*(0,1]
= xeu'(0,1] and x ev'(0,1] = u(x)>0 and v(x)>0 = unv=0. Hence
u™"(0,1] n A, = ¢ and consequently u™(0,1] < 5.

Now, for the converse, consider fuzzy Hausdorff space (as def. 1.49) in the example of the

theorem (5.27). Again, let 1 € 1* defined by A(a) =0, A(b) =0.6. Hence we observe
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that A, ={b}. Now, u, et where a,, €u, and u;*(0,1] ={a}. Hence u;*(0,1] c 4;.
Take o =0.8. Then we see that A is not pe -compact in (X, t) ie. u (b) <a where
b e, for k=1, 2, 3. Thus the converse of the theorem is not true in general.

Similar work for peo” -compactness can be given.

Theorem 5.29: Let (X, t) be a fuzzy Hausdorff space (as def. 1.49) and A, u be
disjoint fuzzy sets in X with A,, p,c X. If A and u are po-compacts (resp.
pa’-compacts) in (X,t), then there exist u, vet such that A,cu™(0,1],
1, <V (0,1] and u v =0. The converse is not true in general.

Proof: Let y, (s >« ) be a fuzzy point in A. Then vy, is not a fuzzy pointin u,as 4
and u are disjoint. Since u is pa-compact, then by theorem (5.27), there exist
u,, v, etsuchthat y.eu, , u,c v;sl(O, 1] and u, Nv, =0 and this is true for any

value of s. Hence this is also true for s > a . Letustake « € I, suchthat u, (y) >a >0.

Since y,eu,, then {u, : y,ed} is an open pa-shading of 1. Since 1 is

yS L
pa-compact in (X,t), so {u,: y,eA} has a finite pa-subshading, say
{uysk Yy, €A} (keld,) such that uy, (y)>e. Furthermore, u is pa -compact, so
{vysk : X, € u} has a finite pe -subshading, say {vysk X, € u} (keld,) such that

vy, X)>a,as u,c v;slk (0,1] for each k. Now, let u= Uy, YU, U v u, and

VE VNV, N MV, . Thus we see that 2, c u™(0,1] and u,cv(0,1].

Hence u and v are open fuzzy sets, as they are the union and finite intersection of open

fuzzy sets respectively i.e. u, v et.
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Finally, we have to show that u n v =0. First we observe that U, Nv, = 0 for each k
implies that u, Nv=0, by distributive law, we see that u N v =( U, YU, U
vy, )Nv=0.

Now, for the converse, consider fuzzy Hausdorff space (as def. 1.49) in the example of the
theorem (5.27). Again, let 1, uel* with A(a)=0.3, A(b)=0 and wu(a)=0,
u®) =0.1. Thus we see that A,={a} and u,={b}. Now u,, u,et where
u'(0,1]={a} and u,'(0,1]={b}. Hence we observe that A,cu;*(0,1] and
Lo < U;7(0,1] and u,~u, =0, where A and u are disjoint. Take o = 0.4. Hence we
observe that A and u are not po -compacts in (X, t), as u,(a) <a where ae 1, and
u,(b) <a where b € u,, for k =1, 2, 3. Thus the converse of the theorem is not true

in general.

Similar work for pe” -compactness can be given.

The following example will show that the pa -compact (resp. peo’ -compact) fuzzy
sets in fuzzy Hausdorff space (as def. 1.49) need not be closed.

Example 5.30: Let X ={a,b}, 1 =[0,1] and 0 <a <1. Again, let u, u,,
u,el* with u(@) =06, u(M®)=0; u,@=0, u,(b)=08 and u,(a)=0.6,
u,(b)=0.8.Put t={0, u,, u,, u,, 1}, then (X, 1) is an fts. Now, let a,, and b, be
fuzzy points in X . Therefore (X, t) is also a fuzzy Hausdorff space (as def. 1.49). Again,
let 1el” defined by A(a)=0, A(b)=09. Take « =0.5. Then clearly A is
pa -compact in (X, t). But 4 is not closed, as its complement A° is not open in (X, t).

Similar work for peo” -compactness can be given.
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Theorem 5.31: Let 1 be a pa-compact (resp. pa’ -compact) fuzzy set in a fuzzy
Hausdorff space (X, t) (as def. 1.50) with A, X . Let x ¢ 4, ( A(x) =0), then there
exist u, vetsuchthat u(x) =1, A,cv*(0,1] and ucl1-v.

Proof: Suppose y € 1,. Then clearly x # y. Since (X, t) is fuzzy Hausdorff space, there
exist u,, v, et such that u (x)=1, v (y)=1and u cl-v, . Letustake 0 <a <1
such that v, (y) >a >0, as v, (y)=1. Thus we see that {v,: y e A,} is an open
pa -shading of A in (X, t). Since 4 is pa -compactin (X, t), then {v,: y e A,} hasa
finite pa-subshading, say {v, : yei,}(keJ,) such that v, (y)>a for each
y € 4,. Now, Ietv:vyluvhu ..... vV, and u=u, Nu, N ...... muyn.Thuswe

Yn

see that v and u are open fuzzy sets, as they are the union and finite intersection of open

fuzzy sets respectively ie. v, u et. Moreover, 1,cv™'(0,1] and u(x)=1, as
u, (x) =1 foreach k.

Finally, we have to show that u c1-v. Since ucl-v, implies that u cl-v,. As
u, (x)<1-v, (x) forall xe X and for each k, then u c1-v. If not, then there exist
x € X such that u,(x) >1-v, (x). We have u,(x) < u, (x) for each k. Then for some
k, u, (x)>1-v, (x). But this is a contradiction, as u, (x) <1-v, (x) for each k.
Hence u c1-v.

Similar proof for pa” -compactness can be given.

Theorem 5.32: Let A and u be disjoint pe -compact (resp. po’ -compact) fuzzy

sets in fuzzy Hausdorff space (X, t) (as def. 1.50) with 4, , u,< X . Then there exist

u, vetsuchthat A,cu™(0,1], p,cv?'(0,1]and ucl-v.
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Proof: Suppose y € 1,. Then y ¢ u,,as A and u are disjoint. Since u is pa -compact
in (X,t), then by theorem (5.31), there exist u,, v, et such that u,(y)=1,
Uy S v;l(O, 1l and u, c1-v,. Letusassumethat 0 <« <1suchthat u (y)>a >0,as
u,(y) =1. Then we see that {u,: y € A, } is an open pe -shading of A in (X, t). Since
A IS pa-compact in (X,t), then {u,: yeA,} has a finite pa-subshading, say
{u, 1 yei,}(ked,) suchthat u (y)>a foreach ye,. Furthermore, u is
pa-compact , then {v,: xepu,} has a finite pa-subshading, say
{v, : xeu,}(keJ,) suchthat v, (x) >a foreach xe u,,as uogv;j(o, 1] for
each k. Now, let u=u, v u, v ...... vu,and v=v, NV, N oL N v, . Hence
we see that 1, cu™(0,1] and u, < v™(0,1]. Thus u and v are open fuzzy sets, as they
are the union and finite intersection of open fuzzy sets respectively i.e. u, vet.

Finally, we have to show that u c1-v. Since u, <l-v, for each k implies that
u, cl-v for each k and itisclearthat u c1-v.
Similar proof of pa”-compactness can be given.

Remark: If A(x) #0 for all xe X ie. 4,= X, then the above two theorems

(5.31) and (5.32) are not at all true.

Note: The pa -compact (resp. pa’ -compact) fuzzy sets in fuzzy Hausdorff space
(as def. 1.50) need not be closed .
Consider the fuzzy topology t in the example (5.16), then (X, t) is fuzzy Hausdorff space

(as def. 1.50) and also will serve the purpose.
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Theorem 5.33: Let 1 be a pa-compact (resp. pa’ -compact) fuzzy set in a fuzzy
regular space (X, t) (as def. 1.51) with A, < X . If for each x € 4,, there exist u € t°
with u(x) =0, we have v, wet such that v(x)=1, ucw, 4,cv'(0,1] and
vcl-w.

Proof: Let (X, t) be a fuzzy regular space and A be a pa -compact fuzzy set in (X, t).
Then for each x € 4,, there exists u e t° with u(x) =0. As (X, t) is fuzzy regular, we
have v,, w, et such that v,(x)=1, u,cw, and v, c1-w,. Let us take 0 <o <1,
then v, (x)>a >0, as v,(x)=1. Hence we see that {v,: xeA,} is an open
pa -shading of Ain (X,t). Since 1 is pa-compactin (X,t), then {v,: x € A, } hasa
finite pa-subshading, say {v, : xeA,}(keJ,) such that v, (x)>a for each
Xe€d, Now, let v=v, Uv, U ... vUv,and w= w, Aw, N N W, . Thus v
and w are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets
respectively i.e. v, wet. Moreover, 1,cv*(0,1], v(x)=1land ucw, as uc W,
for each k.

Finally, we have to show that v c1- w. First we observe that v, <1-w, for each k

implies that v, < 1-w foreach k and hence it is clear that v c 1- w.

Similar proof for pa” -compactness can be given.

Theorem 5.34: Let (X, t) bean ftsand A be a fuzzy setin X with A, < X . If 1,
is compact in (X,t,), then A is pa-compact in (X,t). The converse is not true in
general.

Proof: Suppose A, is compact in (X,t,). Let M ={v,: i e J} isan open pa -shading

of A in (X, t). Then the family W ={ a(v,) : i € J } is an open cover of 1, in (X,t,).
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For, let x € 4,. Then there exists a v, € M such that v, (x) >« . Therefore x € a(v, )
and thus a(v, ) e W. Since 4, is compact in (X, ta), so W has a finite subcover, say
{a(v,): ked,}. Thenthe family {v;, : k € J, } forms a finite pc -subshading of M

and hence 1 is pa -compact in (X, t).

Now, for the converse, we consider the following example.

LetX ={a,b,c}, 1 =[0,1] and 0<a <1. Let u,, u,, u;, u,el” defined by
u(@) =03, u(M)=09, u(c)=01; u(a)=05, u,(b)=04, u,(c)=06;
u;(@) =0.5, uy(b) =0.9, u,(c) =0.6 and u,(a) = 0.3, u,(b) =04, u,(c) =0.1. Now,
putt={0, u,, u,, Uy, u,, 1}, then we see that (X, t) isan fts. Let 1 € 1* defined
by A(a) =0.8, A(b)=0.7, A(c) =0. Then A,={a, b}. Take o =0.3.Then clearly 4
is pa -compact in (X, t). Now, we have t,, ={¢, {b}, X }. Itis clear that A, is not

compact in (X, t,5).

Theorem 5.35: Let A be afuzzysetin X with A, X and f: (X,t,)—(X,t)
be « -level continuous and bijective mapping. If A, is compact in (X,t,), then (1) is
pa -compact in (X, t).

Proof: Let M ={u,: ieJ} be an open pa-shading of f(1) in (X,t). As f is
a -level continuous, then a(f (u;)) et, and hence {a(f (u)): ie J} is an open
cover of 4, in (X, t,). Since A, is compactin (X,t ), then {a(f *(u)): ie J} hasa
finite subcover, say { a(f ‘l(uik N}I(keld,). Now, if ye f(41),, then y= f(x) for
X € Ay, as T isbijective. But { ar(f *(u; )) } is finite subcover of {er(f *(u;)): i€},

there exist some k such that u; (f (x)) > aimplies that u; (y) >« for each y e f(4),.
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Thus {u; : ke J,} isafinite pa-subshading of M . Therefore f(4) is pa -compact in

(X, t).

Theorem 5.36: Let (X, T) be a topological space, (X, (T )) beanftsand A be
a fuzzy set in X with A, X. If 1 is pa-compact (resp. po’ -compact) in
(X, (T)), then A, is compactin (X, T). The converse is not true in general.
Proof: Suppose 4 is pa -compact fuzzy set in (X, o (T )). Let W={V,:ieJ} bean
open cover of 4, in (X, T). Then, since for each V,, there exists a u, € @ (T) such that
V, = u(0,1], we have W ={u;*(0,1] : i€ J }. Then the family G ={u,: ie J } isan
open pa -shading of A4 in (X, o (T )). Since W is an open cover of 4,, then there
exists a V, € W such that x eV, . But V; = uigl(O, 1] for some u, € @(T). Therefore
X € uigl(O, 1] which implies that u; (x) > a . By pa -compactness of 1, G has a finite
pa -subshading, say {u; : k € J,}. Then {uil(O, 1]: ke J,} forms a finite subcover

of W and hence A, is compactin (X, T).

Now, for the converse, we consider the following example.

Let X ={a,b,c}, 1 =[0,1], O<a<land T ={{b}, {c}, {b,c}, ¢, X }. Then
(X,T) is a topological space. Let u,, u,, u;el* with u(a)=0, u(b)=0.6,
u,(c)=0; u,(@)=0, u,(b) =0, u,(c)=0.8 and us(a) =0, uy(b)=0.6, u,(c) =0.8.
Then o(T)={ u,, Uy, u;, 0, 1}and (X, 0 (T )) is an fts. Again, let 1 € 1* defined
by 2(a) =0, A(b)=0.4, A(c) =0.3. Then A1, ={b, c}. Then clearly A, is compact in

(X, T). Now, take & =0.9. Then 2 is not pa-compactin (X, @ (T)), asthere do not
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exist u, e {w(T)} (k=1, 2, 3) suchthat u,(b) >« for b € 4,. Thus the converse of

the theorem is not necessarily true in general.

The work is similar for pe” -compactness can be given.

Theorem 5.37: Let A, u e 1. Then A, x i, = (Ax p),.
Proof: Let (X,y) e A,xu,. Then xe A, and ye u,. So A(x) >0 and wu(y)>0.
Therefore (Axu) (X, y) >0 implies that (x,y) e (Axu),. Hence A,xu, < (Ax u),.
Again, let (x,y) e (Axu),. Then (Axu)(x,y)>0. Thus A(x) >0 and wu(y)>0
implies that x € A, and y € u,. Therefore (X,y) € A,xu,. Hence (Ax u), < A, x iy -

Therefore A, x u, = (A x u),.

Theorem 5.38: Let A and u be pa-compact (resp. pa’ -compact) fuzzy sets in
an fts (X, t). Then (Ax u) isalso pa -compact (resp. pe” -compact) in (X x X, txt).
Proof: Suppose {u,: i€ J} is an open pe-shading of 4 in (X,t) i.e. u(x)>a for
each x e 4, and {Vv,: i e J} isan open pa-shading of u in (X,t) i.e. v,(y)>a for
each y € u,. Now, let M ={u, xv,: u,, v, et} beanopen pa-shading of (1x ) in
(X x X,txt). Thus we see that (u,xV,) (X, y)=min(u,(x),v,(y))>ea, for each
(X, y)e (Axu),. As A and u are pa-compact in (X,t), then {u: ieJ} and
{Vv;: ieJ} have finite pa-subshading, say {u, : ke J } and {v, : keJ } such
that u; (X) >a and v; (y) >« foreach x e 4, and y € u, respectively. Hence we have
M has a finite pa-subshading, say {u; xv; : ke J } such that (u, xv, ) (X, y)=
min(u;, (x), Vv, (y)) >a for each (x,y) e (Axpu),. Therefore (Axu) is pa -compact

in (XxX,txt)
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Similar proof for pa” -compactness can be given.

Definition 5.39: Let (X,t) be an fts and 0 <5 <1, a e l. A family M of
o -open fuzzy sets is called a partial 6-a-shading, 0<a <1 (resp. partial
S -a -shading, 0 < a <1), in short, pda -shading (resp. pda’-shading) of a fuzzy set A
in X if for each xe 4,, (4,# X ) there exists a ue M with u(x) >a (resp.
u(x) > a ). A subfamily of a pda -shading (resp. pda’-shading) of A which is also a
pda -shading (resp. pda -shading) of A is called a pda-subshading (resp.
pda” -subshading) of A .

If A(x)=0 forall xe X ie. 1,=X, then pda-shading (resp. pda’-shading) and

8 -a -shading (resp. & - o -shading) will be same.

Example 5.40: Let X ={a,b,c}, I =[0,1] and 0 <6 <1, 0<a <1. Let u,,
u,, Uge l* defined by u(a) =1, u(b)=1, u(c)=03; u,(@)=0.4, u,(b)=0.2,
u,(c)=1and u,(a) =0.4, u,(b) =0.2, uy,(c) =03.Put t={0, u,, u,, u,, 1}, then
(X,t) is an fts. Again, let 2e1* with A(@)=0, A(b)=04, A(c)=0.6. Then
Ao ={b, c}. Now, take 56 =0.2 and o =0.7. Hence we observe that u,, u,, u, are
o -open fuzzy sets and u,(b) >« , u,(c) >a for b, ce A,. Therefore {u,, u,} isan
pdo -shading of 2 in (X, 1).

Again, if we take a =1, then {u,, u,} isan psa-shading of A in (X, t).

Definition 5.41: Let (X, t) beanftsand 0 <5 <1, a € | . Afuzzyset 1 in X is
said to be partially & -o -compact, 0 < a <1 (resp. partially & -o -compact, 0 < a <1),
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in short, pda-compact (resp. pda -compact) iff every pda-shading (resp.

pda”-shading) of 1 has a finite pda -subshading (resp. pde” -subshading).

Theorem 5.42: Every pda-compact (resp. pda’ -compact) fuzzy set in an fts is
pa -compact (resp. pa’ -compact). But the converse is not true.

The proof is straightforward.

Now, for the converse, we consider the following example.

Let X ={a,b,c}, 1 =[0,1]and 0 <5 <1, 0<a <1.Letu,, u,, u,e I* defined by
u(@) =02, uM)=1, y()=1; u@=1, u()=04, u,(c)=0.7 and us(a) =0.2,
u,(b) =04, u,(c) =0.7. Put t={0, u,, u,, u,, 1}, then (X,1t) is an fts. Again, let
Ael” with (@) =0.9, A(b) =04, A(c) =0.Then A,={a, b}. Now, take a = 0.7.
Clearly 4 is pa-compact in (X, t). Again take & = 0.5. Hence we observe that there is
no finite & -open fuzzy sets in (X, t) such that u, (@) >« for k=1, 2, 3 and ae A,.
Thus A is not pda -compactin (X, t).

Similarly we can prove for psa” -compact fuzzy sets.
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Chapter Six

Q-Compact Fuzzy Sets

In this chapter, we have introduced Q-compact and Qa« -compact fuzzy sets.
Furthermore, we have established some theorems, corollaries and examples of Q -compact
fuzzy sets and discussed different characterizations of Q-compact and Q« -compact fuzzy
sets. Also we have defined 6 -Q-compact and ¢ - Qa -compact fuzzy sets and found
different properties between Q-compact and 6 - Q -compact fuzzy sets, Qa -compact and

0 - Qa -compact fuzzy sets.

Definition 6.1: Let (X,t) be an fts and A be a fuzzy set in X. Let

M={u:

i € J } be a family of fuzzy sets. Then M ={u,} is called a Q-cover of A iff
A(X) + u,(x) 21 for each x € X and for some u;. If each u, is open, then M ={u,} is
called an open Q-cover of 4. A subfamily of Q-cover of a fuzzy set 1 in X which is

also a Q-cover of A4 is called Q-subcover of A .

Example 6.2: Let X ={a,b} and 1 =[0,1]. Let u,, u,el” defined by
u(a) =04, u((®)=01 and u,(a)=03, u,(b)=02. Again, let Ael* with
A(@)=0.6, A(b)=0.8. Hence we observe that A(a) + u,(a) 21, A(b) + u,(b)>1.

Therefore {u,, u,} isa Q-cover of 1.

Example 6.3: Let X ={a, b} and | =[0,1]. Let u,, u,, u,e I* defined by
u(@) =1, u()=03; u,(a)=04, u,(b)=1 and wuy,(a)=04, u,(b)=0.3.
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Putt={0, u, u,, Uy, 1}, then (X,1t) is an fts. Again, let 1 € I* with A(a) =0.2,
A(0)=0.6. Hence we observe that A(a) +u(a)>1, A(b)+ u,(b)>1. Therefore

{u,, u,} isan open Q-cover of A in(X,t).

Definition 6.4: A fuzzy set 4 in X is said to be Q-compact iff every open

Q-cover of 2 has a finite Q-subcover i.e. there exist u, , u;

i e , U, e {u;} such that
A(X) +u; (x) 21 foreach xe X . If A cu and p e I*, then u is also Q-compact i.e.

every super sets of Q-compact fuzzy set is also Q -compact.

Theorem 6.5: Let (X, t) be an fts, Ac X and A be a fuzzy setin A. Then 1 is
Q-compactin (X, t) iff A is Q-compact in (A, t,).
Proof: Suppose 2 is Q-compact in (X, t). Let {u,: ieJ} beanopen Q-coverof 1 in
(A, t,). Then there exist v, € t such that u; = v, | A < v;. Hence A(x) + u,(x) > 1 for each
x € A and consequently A(x) + v,(x) 21 for each x € A. Therefore {v,: i€ J} isan
open Q-cover of A in (X,t). As 1 is Q-compact in (X,t), then 2 has finite
Q-subcover i.e. there exist v, e{v,} (ke J,) such that A(x) +v; (x) =1 for each
x € A. But, then A(x) + (v, |A)(x) =21 for each x € A and therefore A(x) + u; (x) =21
for each x € A. Thus {u; } contains a finite Q-subcover {u, , u; , ..... , U, } and hence
. is Q-compact in (A, t,).
Conversely, suppose A is Q-compact in (A, tA). Let {v,: ieJ} beanopen Q-cover of
A in (X,t). Set u;=v,|A, then A(x)+v;(x)>1 for each xe A and hence
A(X) + (v, | A)(x) >1 for each x € A implies that A(x) + u,(x) =1 for each x € A. But

uet,,so {u: ied} isan open Q-cover of A in (A, tA). As A is Q-compact in
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(A t,), then there exist u, e{u;} (k eJ,) suchthat A(x) + u, (x) 21 for each x € A.
Thus we have A(x) + (v, | A)(x) =1 for each x € A and consequently A(x) +v; (x) =21
for each x e A. Thus {v,} contains a finite Q-subcover {v; , v,

12

therefore A is Q-compactin (X, t).

Corollary 6.6: Let (Y, t*) be a fuzzy subspace of (X, t) and AcY c X. Let A be
a fuzzy set in A. Then A is Q-compact in (X, t) if and only if 4 is Q-compact in
(v, 1)
Proof: Let t, and t, be the subspace fuzzy topologies on A. Then by preceding theorem
(65), A is Q-compact in (X,t) or (Y,t") if and only if A is Q-compact in (A t,) or

(A t;). But t, =t.

Theorem 6.7: Let (X,t) be an fts and A be a Q-compact fuzzy set in X . If
pcAand uet®, then u isalso Q-compactin (X, t).
Proof: Let {u,: i€ J } beanopen Q-cover of x. Then {u;} w u° isanopen Q-cover
of 2. As u(x)+ u,(x) >1 for each x € X, then A(x) + max ( u;(x), u°(x)) =1 for each
x € X . Hence u(x)+ u,(x) <A(X) + u;(x) =1 for each x € X . Since 4 is Q-compact
in (X, t), then each open Q-cover of A has a finite Q-subcover i.e. there exist a finite
subset J, < J such that {u, : keJ,}u u° is an open Q-cover of A. Then
{u, : ke, } isafinite subfamily of {u,: ie J} andisanopen Q-coverof u i.e.

{u, : keld,}isafinite Q-subcover of u.Hence u is Q-compact.
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Theorem 6.8: Let (X, t) be an fts and A and u be Q-compact fuzzy sets in X .
Then A~ u isalso Q-compactin (X, t).
Proof: Let M ={u,: ie J} beanopen Q-cover of Anu.Then M isopen Q-cover
of both 4 and u. Since 4 is Q-compact in (X, t), then each open Q-cover of A hasa
finite Q-subcover i.e. there exist, say u; € M (k € J,) such that A(x) + u; (x) =21 for
each x € X . Again, u is Q-compactin (X, t), then each open Q-cover of x has a finite
Q-subcover i.e. there exist, say u, e M (reJ;) such that u(x) +u; (x) =1 for each
x € X . Therefore {u, , u; } isa finite Q-subcover of M. Hence 1 m u is Q-compact

in (X, ).

Theorem 6.9: Let 1 and p be Q-compact fuzzy sets in an fts (X, t). Then AU u
is also Q-compact in (X, t).
Proof: Since AcAuu, ucAupand A, u are Q-compacts in (X, t), then 1 U u

is also Q-compact in (X, t).

Theorem 6.10: Let (X, t) be an ftsand A be a fuzzy set in X . If every family of
closed fuzzy sets in (X, t) which has empty intersection has a finite subfamily with empty
intersection, then A is Q-compact. The converse is not true in general.

Proof: Let {u,: i €J} beanopen Q-cover of A i.e. A(x) + u;(x)>1 foreach x e X..

By the first condition of the theorem, we have ﬂuiC =0, . Hence we can write Uui =1.

ied ied

Again, by the second condition, we have ﬂufk =0, implies that Uuik =1, and

kel, kel,
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consequently A(x) + u; (x) >1 for each x e X . Hence it is clear that {u, : ke J } isa

finite Q-subcover of {u;: i€ J }. Therefore 1 is Q-compact.

Now, for the converse, we consider the following example.

Let X ={a,b} and | =[0,1]. Let u, ve I” defined by u(a) =0.4, u(b)=0.3 and
v(@)=0.6, v(b)=0.8. Take t={0, u, v, 1}, then (X,t) isan fts. Let 1 € I* with
(@) =0.8, A(b) =09. Clearly 1 is Q-compact in (X,t). Now, closed fuzzy sets are
u‘(a)=0.6, u‘(b)=0.7 and v°(a)=04, v°(b)=0.2. Hence We observe that

u® nv® = 0. Therefore the converse of the theorem is not necessarily true.

The following example will show that the Q-compact fuzzy sets in an fts need not
be closed.

Example 6.11: Let X ={a,b} and I =[0,1]. Let u,, u,e1* defined by
u(@) =02, u(b)=04 and u,(a)=0.5, u,(b)=0.6. Now, put t={0, u,, u,,1},
then we see that (X, t) isan fts. Let A € I* defined by A(a) =0.9, A(b) =0.7. Clearly

A is Q-compact in (X, t). But A is not closed, as its complements A° is not open in

(X,1).

The following example will show that the subsets of Q -compact fuzzy set in an fts

need not be Q-compact.
Example 6.12: Let X ={a,b} and 1 =[0,1]. Let u,, u,e I* defined by
u,(a@) =03, u(b)=05 and u,(a) =0.6, u,(b)=0.7. Now, put t={0, u,, u,, 1},

then we see that (X, t) is an fts. Let 2, u € 1* defined by A(a) =0.8, A(b) =0.6 and
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u(a) =0.3, u(b) =0.6. Hence we see that u — A. Clearly A is Q-compact in (X, t).

But u(a) + u,(a) <1forae X and k =1, 2. Hence u isnot Q-compactin (X, t).

Theorem 6.13: Let A be a Q-compact fuzzy set in fuzzy T,-space (X,t)

(as def. 1.45) with A, < X . Let x ¢ 1, ( A(X) =0), then there exist u, v et such that
u(x) =land 1, < v*'(0,1].

Proof: Let y € 1,. Then clearly x # y. As (X, t) is fuzzy T,-space, then there exist
u,, v,et such that u(x)=1, u/(y)=0 and v, (x)=0, v,(y)=1. Therefore

A(x) +u,(x) 21, xe X and A(y) +v,(y)21, yed,ie {u,, v:

yi YeA,}isan
open Q-cover of A. Since A is Q-compact fuzzy set in (X,t), then A has a finite

Q-subcover i.e. there exist u,, u , u, ef{u} and Vy o,V

yg 1 e S EEETTEEEE y

v, e{v,} such that A(x) +u, (x)=1 for each xe X when A(x)=0 and some
u, €{u,} and A(y) +v, (y)=>1 foreach y e X when A(y)>0 and some v, e{v,}.
Now, let v = v, UV, U UV, and u= u, Nu, N . nu, . Hence v and u

Yn

are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets
respectively i.e. v, uet. Furthermore, A, Vv(0,1] and u(x) =1, as u, (x)=1 for

each k.

Theorem 6.14: Let A and pu be disjoint Q-compact fuzzy sets in fuzzy T,-space

(X,t) (as def. 1.45) with 1,, u, < X. Then there exist u, vet such that
A,cu™(0,1] and u,<v(0,1].
Proof: Let y e A,. Then y ¢ u,, as A and p are disjoint. Since u is Q-compact in

(X,t), then by theorem (6.13), there exist u,, v, et such that u,(y)=1 and
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uogvgl(o, 1]. As u,(y) =1, then A(x) +v,(x) 21, xe X and A(y)+u,(y) =1,
yei,ie {v,, u: yei,} isanopen Q-cover of A.Since A is Q-compact fuzzy
setin (X, t), then A has a finite Q-subcover i.e. there exist v, , v, , ....... v, e{v,}
and U, , U, e , u, e{u,} suchthat A(x) +v, (x) 21 for each x € X when
A(X) =0 and some v, e{v,} and A(y)+u, (y)=1 for each y e X when A(y)>0
and some Uy, e{uy}. Again, since u is Q-compact in (X, t), then we have
u(x) +v, (x) 21 for each xe X when u(x)>0 and some v, e{v,} and

u(y) +u, (y)=1 for each ye X when u(y) = 0 and some u, {u,} and also

-1 _ _
Ho <V, (0,1] for each k. Now, let u=u, U u, U ... vu, and v=v, nv, N

...... NV, . Thus we see that 1, < u™(0,1] and x, < v™(0,1]. Hence u and v are open

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e.

u, vet.

Remark: If A(x) #0 for all xe X ie. 1,= X, then the above two theorems

(6.13) and (6.14) are not at all true.

The following example will show that the Q-compact fuzzy sets in fuzzy T,-space
(as def. 1.45) need not be closed.

Example 6.15: Let X ={a,b} and 1| =[0,1]. Let u,, u,e1” defined by
u(@) =1, u()=0 and u,(@)=0, u,(b)=1. Now, put t={0, u,, u,, 1}, then we
see that (X,t) is a fuzzy T,-space. Let A e 1* defined by A(a)=0.6, A(b)=0.4.
Clearly A is Q-compact in (X, t). But A is not closed, as its complement A° is not open

in (X,1).
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Theorem 6.16: Let (X, t) be a fuzzy T, -space (as def. 1.46) and A be a fuzzy set in
X with A, X . If A is Q-compactin (X,t) and x ¢ A, ( A(x) =0 ), then there exist
u, vetsuchthat u(x) >0 and A, < v*(0,1]. The converse is not true in general.

The proof is similar as theorem (6.13).

Now, for the converse, we give the following example.

Let X ={a, b} and | =[0,1]. Let u,, u,, u,e I* defined by u(a)=0.2, u(b) =0;
u,(@a)=0, u,(b)=0.3 and uy(a) =0.2, uy(b) =0.3. Now, put t={0, u,, u,, u,,
1}, then we see that (X, t) is a fuzzy T,-space. Again, let A € I * defined by A(a) =0,
A(b) =0.3. Hence we observe that A,={b} and ae¢A,. Here u,, u,et where
u(a) >0 and u,'(0,1] ={b}. Hence 1,cu,'(0,1]. But we see that A is not
Q-compact in (X,t), as A(a) +u, (@) <1 for ae X and k=1, 2, 3. Thus the

converse of the theorem is not true in general.

Theorem 6.17: Let (X, t) be a fuzzy T,-space (as def. 1.46) and A1, u be fuzzy
sets in X with A,, u,c X.If A and u are disjoint Q-compacts in (X, t), then there
exist u, vet such that A, cu™(0,1] and u,< v "(0,1]. The converse is not true in

general.
Similar proof as theorem (6.14).

Now, for the converse, consider the fuzzy T, -space (X, t) in the example of the theorem
(6.16). Let A, u e 1™ with A(a) =0.3, A(b) =0 and u(a) =0, u(b) =0.1. Thus we
see that A,={a} and pu,={b}. Now u,, u,et where u;'(0,1]={a} and
u,*(0, 1] = {b}. Hence we observe that 1, < u;*(0,1] and u, < u,*(0,1], where A and

u are disjoint. But 4 and u are not Q-compacts in (X,t), as A(b) + u,(b) <1 for
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beX and u(a)+uc(a)<1l for ae X and k=1, 2, 3. Thus the converse of the
theorem is not true in general.

Remark: If A(x) =0 for all xe X ie. A,= X, then the above two theorems

(6.16) and (6.17) are not at all true.

The following example will show that the Q-compact fuzzy sets in fuzzy T,-space
(as def. 1.46) need not be closed.

Example 6.18: Consider the fuzzy T, -space (X, t) in the example of the theorem
(6.16). Again, let A € 1* defined by A(a) =0.9, A(b) =0.8. Clearly A is Q-compact in

(X, t). But A is not closed, as its complement A° is not openin (X, t).

Theorem 6.19: Let 4 be a Q-compact fuzzy set in fuzzy Hausdorff space (X, t)

(as def. 1.47) with 2, < X . Suppose x ¢ 4, ( A(x) =0), then there exist u, v et such
that u(x) =1, A,cv™(0,1]and unv=0.

Proof: Let y € A,. Then clearly x # y. As (X, t) is fuzzy Hausdorff, then there exist
u,, v, et suchthat u(x)=1, v, (y)=1and u, N v,=0. Hence A(x) +u,(x)=1,
xe X and A(y) +v,(y)=1, yel,ie {u,, v, yel;}isanopen Q-coverof 4.
Since A is Q-compact in (X, t), then there exist u, , u

yy o reeeee , Uy e{u,} and Vy s

Vy oo , v, e{v,} suchthat 1(x) + u, (x) =1 for each x € X when A(x) =0 and
some u, e€{u,} and A(y)+v, (y)=1 for each ye X when A(y)>0 and some

v, €{v,}.Now, letv=v, Uv, U ... vv,andu=u, Nnu, N .. N u, . Then

we see that v and u are open fuzzy sets, as they are the union and finite intersection of
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open fuzzy sets respectively i.e. v, u et. Furthermore, 1, = v(0,1] and u(x) =1, as
u, (x) =1 foreach k.
Finally, we have to show that unv=0. As u, nv, =0 implies unv, =0, by

distributive law, we see that u N v = u N ( vV, UV, U uv, )=0.

Corollary 6.20: Let 4 be a Q-compact fuzzy set in fuzzy Hausdorff space (X, t)

(as def. 1.47) with 4, X . Let x ¢ 4, (A(x) =0), then there exists u €t such that
u(x) =1and u™(0,1] c 4;.

Proof: By theorem (6.19), there exist u, v et suchthat u(x) =1, 1,<v™*(0,1] and
unv=0.Hence u'(0,1] N v™*(0,1] = ¢. If not, there exists x € u™(0,1] N v *(0,1]
= X eu™(0,1] and x ev™*(0,1] = u(x) >0 and v(x) >0 = unv = 0. Hence

u(0,1] n A, = ¢ and consequently u™(0,1] < 5.

Theorem 6.21: Let A and u be disjoint Q-compact fuzzy sets in fuzzy Hausdorff

space (X,t) (as def. 1.47) with A,, u,c X. Then there exist u, vet such that
A,cu™(0,1], p,cv™0,1]and unv=0.

Proof: Let ye A,. Then y ¢ u,, as 4 and u are disjoint. Since u is Q-compact in
(X,t), then by theorem (6.19), there exist u,, v, et such that u,(y)=1,
Hoc Vv, (0,1] and u,» v, =0. As u,(y) =1, then A(x)+v,(x) 21, xe X and
A(y) +u,(y)=1, yei,ie {v,, u,: yel,}isanopen Q-cover of 1.Since A4 is
Q-compact in (X, t), then there exist v, , v

gy o s Vyo€{V,} and u, , u

u, €{u,} such that A(x) +v, (x) 21 for each xe X when A(x) =0 and some
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v, €{v,} and A(y) +u, (y) =21 for each y € X when A(y) >0 and some u, {u,}.
Again, since u is Q-compact in (X, t), then we have u(x) + v, (x) =1 for each x € X
when u(x)>0 and some v, e{v,} and u(y)+u, (y)=1 for each y e X when
u(y) =0 and some u, e{u } and also u,c v;kl(o, 1] for each k. Now, let u = u, v
u, U ...... vu,and v=v, Nnv, N oL M Vv, . Thus we see that 1, < u(0,1] and
o< Vv '(0,1]. Hence u and v are open fuzzy sets, as they are the union and finite
intersection of open fuzzy sets respectively i.e. u, v et.

Finally, we have to show that unv=0. As u, nv, =0 implies u, Nv=0, by
distributive law, we see that u nv = (u, Vu, U ...... vu, )Nnv=0.

Remark: If A(x) =0 for all xe X ie. A,= X, then the above two theorems

(6.19), (6.21) and corollary (6.20) are not at all true.

Note: The Q-compact fuzzy sets in fuzzy Hausdorff space (as def. 1.47) need not

be closed.

Consider the fuzzy topology t in the example (6.15), then (X, t) is also a fuzzy Hausdorff

space (as def. 1.47) and will serve the purpose.

Theorem 6.22: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A be a
fuzzy setin X with A, < X . If 1 is Q-compactin (X, t)and x ¢ 2, ( A(x) =0, then
there exist u, v et suchthat u(x) >0, A,<v"(0,1] and u n v =0. The converse of

the theorem is not necessarily true in general.

The proof is similar as that of theorem (6.19).

112



Q-compact Fuzzy Sets

Now, for the converse, consider the fuzzy topology t in the example of the theorem (6.16)
then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1 € 1 defined by
A(@) =0, A(b)=0.3. Hence we observe that 1,={b} and a ¢ A,. Here u,, u, et
where u,(a) >0 and u,*(0,1] ={b}. Hence 1, < u,*(0,1] and u, "~ u, = 0. But we see
that A is not Q-compact in (X,t), as A(a) + u,(a) <1 for ae X and k=1, 2, 3.

Thus the converse of the theorem is not true in general.

Corollary 6.23: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and 1 be a
fuzzy setin X with 4, X . If 1 is Q-compactin (X,t)and x ¢ 2, ( A(x) =0, then
there exists u €t such that u(x) >0 and u™(0,1] c 45.

The proof is similar as that of corollary (6.20).

Now, for the converse, consider the fuzzy topology t in the example of the theorem
(6.16), then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Let A e 1* defined by
A(@) =0, A(b) =0.3. Hence we observe that A, ={b} and a ¢ 1,. Now u, € t where
u,(a) >0 and then u;'(0,1]={a}. Hence we have u;'(0,1]< A,. But A is not
Q-compact, as A(a) + u,(a) <1 for ae X and k=1, 2, 3. Thus the converse is not

true in general.

Theorem 6.24: Let (X, t) be a fuzzy Hausdorff space (as def. 1.48) and A, u be
fuzzy sets in X with 1,, u,c X.If A and u are disjoint Q-compacts in (X, t), then
there exist u, vet such that A,cu™(0,1], u,<v™(0,1] and unv=0. The

converse of the theorem is not true in general.

The proof is similar as that of theorem (6.21).
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Now, for the converse, consider the fuzzy topology t in the example of the theorem (6.16)
then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1, u e 1” with
A(@)=0.3, A()=0 and w(a)=0, wu()= 0.1. Thus we see that 1,={a} and
i, ={b}. Now u,, u, et where u;*(0,1] ={a} and u,*(0,1] = {b}. Hence we observe
that 1, < u;*(0,1], u,<u,*(0,1] and u, ~u, =0, where A and p are disjoint. But 1
and u are not Q-compacts in (X,t), as A(b) +u,(b) <1l for be X and
u@)+u (@ <lforae X and k=1, 2, 3. Thus the converse of the theorem is not

true in general.

Remark: If A(x) =0 for all xe X ie. A,= X, then the above two theorems

(6.22), (6.24) and corollary (6.23) are not at all true.

The following example will show that the Q-compact fuzzy sets in fuzzy Hausdorff

space (as def. 1.48) need not be closed.

Example 6.25: Consider the fuzzy topology t in the example of the theorem (6.16),
then (X, t) is also a fuzzy Hausdorff space (as def. 1.48). Again, let 1 € 1* defined by
(@) =0.9, A(b)=0.8. Clearly A is Q-compact in (X,t). But A is not closed, as its

complement A° is not open in (X, t).

Theorem 6.26: Let 4 be a Q-compact fuzzy set in fuzzy Hausdorff space (X, t)

(as def. 1.50) with 2, < X . Suppose x ¢ 4, ( A(x) =0 ), then there exist u, v et such
that u(x) =1, A,cv™'(0,1]and u c1-v.
Proof: Let y € ,. Then clearly x = y. As (X, t) is fuzzy Hausdorff, then there exist

u,, v, et such that u(x)=1, v (y)=land u cl-v, . Hence A(x)+u, (x)=>1,
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xe X and A(y) +v,(y)21, yei,ie {u,, v,:yel,}isanopen Q-coverof 1.

Since A is Q-compact in (X, t), then there exist u, , u, , ....... . u, e{u}andv,
Vi) eeeenes , vV, €{v,} such that A(x) + u, (x) >1 for each x e X when A(x) =0 and
some u, €{u,} and A(y)+v, (y)=1 for each ye X when A(y)>0 and some
v, e{v,}.Now, letv=v, LUv, U ... vy andu=u, Nnu, N o ~u, . Then

Yn

we see that v and u are open fuzzy sets, as they are the union and finite intersection of

open fuzzy sets respectively i.e. v, u et. Furthermore, 1, < v™(0,1] and u(x) =1, as
u, (x) =1 foreach k.

Finally, we have to show that u c1-v. As u, gl—vy implies that u c1- v,. Since
u, (x) <1-v, (x) forall xe X and for each k, then u c1-v. If not, then there exist
x € X suchthat u,(x) >1-v,(x). We have u,(x) < u, (x) for each k. Then for some
k, u, (x)>1-v, (x). But this is a contradiction, as u, (x) <1-v, (x) for each k.

Hence u c1-v.

Theorem 6.27: Let A and u are disjoint Q -compact fuzzy sets in fuzzy Hausdorff

space (X,t) (as def. 1.50) with A,, u,c X. Then there exist u, vet such that
A,cU™(0,1], pocv'(0,1] and u c1-v.

Proof: Let ye A,. Then y ¢ u,, as A and p are disjoint. As u is Q-compact in
(X,t), then by theorem (6.26), there exist u,, v, et such that u,(y)=1,
yogv;l(o, 1] and u,cl-v,. As u/(y)=1, then A(x)+v,(x) 21, xe X and
A(y)+u,(y)z1, yed,ie {v,, u:yeiy} isanopen Q-coverof 1.Since 1 is

Q-compact in (X, t), then there exist v, , v,
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u, e{u,} such that A(x) +v, (x) 21 for each xe X when A(x) =0 and some
v, €{v,} and A(y)+u, (y) 21 foreach y € X when A(y) >0 and some u, e{u,}.
Again, since u is Q-compact in (X, t), then we have u(x) +v, (x) =1 for each x € X
when u(x)>0 and some v, e{v,} and u(y)+u, (y)=1 for each y e X when
u(y) =0 and some u, e{u,}andalso u,c v;j(o, 1] for each k. Now, let u = u, U
U, U ...... vu, and v=v, "V, N o N v, . Thus we see that 1, u(0,1] and

o, < Vv '(0,1]. Hence u and v are open fuzzy sets, as they are the union and finite
intersection of open fuzzy sets respectivelyi.e. u, vet.
Finally, we have to show hat u < 1-v. First we observe that u, < 1- vy, for each k
implies that u, < 1-v foreach k and itisclear that u c1-v.

Remark: If A(x) #0 for all xe X ie. 1,= X, then the above two theorems

(6.26) and (6.27) are not at all true.

Note: The Q-compact fuzzy sets in fuzzy Hausdorff space (as def. 1.50) need not be

closed.

Consider the fuzzy topology t in the example (6.15), then (X, t) is also a fuzzy Hausdorff

space (as def. 1.50) and will serve the purpose.

Theorem 6.28: Let 1 be a Q-compact fuzzy set in fuzzy regular space (X, t)
(as def. 1.51) with A, X . If for each x € A4,, there exist u € t® with u(x) =0, we have
v, wetsuchthat v(x) =1, ucw, 4,cv'(0,1] and vcl-w.
Proof: Let (X, t) be a fuzzy regular space and A be a Q-compact fuzzy setin X . Then

for each x € 4,, there exists u € t° with u(x)=0. As (X, t) is fuzzy regular, we have
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V,, W, et such that v,(x)=1, u,cw, and v, c1-w,. Hence A(X) +v,(x)>1 for

X !

each x e X i.e. {v,: xe A,} isan open Q-cover of 1. As A is Q-compact fuzzy set

in (X,t),s0 A has a finite subcover i.e. there exist v, e{v,} (k =1, 2,...... ,n) such
that A(x) +v, (x) =1 for each xe X. Now, let v= v, UV, U ... Vv, and
w=w, "W, N ... "W, . Thus v and w are open fuzzy sets, as they are the union

and finite intersection of open fuzzy sets respectively i.e. v, wet. Furthermore,
A, cV(0,1], v(x)=1land ucw,as uc w, for each k.
Finally, we have to show that vcl-w. As v, c1-w, for each k implies that

v,, =1-w foreach k and hence it is clear that v o 1-w.

The following example will show that the “good extension” property does not hold

for Q -compact fuzzy sets.

Example 6.29: Let X ={a,b,c} and T ={¢, {a}, {b}, {a, b}, X }. Then
(X,T) is a topological space. Again, let u,, u,, u,el” defined by u,(a)=1,
u()=0, u(c)=0; u,(a)=0, u,(b)=0.7, u,(c)=0; and u,(a) =1, uy(b)=0.7,
u,(c) =0. Then o(T)={0, u,, U,, u;, 1} and (X, (T)) is an fts. Now, let
Ael” with A(@)=0.7, A(b)=04, A(c)=0. Then A,={a,b}. Clearly A, is
compact in (X,T). But 4 is not Q-compact in (X, (T)), as there do not exist
uew() (k=1, 2, 3) such that A(c)+u.(c)>1. Again, let ue1* with
(@ =0, u()=05, u(c)=1. Then clearly u is Q-compact in (X, (T )), but
u,=1{b, c} is not compact in (X,T). It is, therefore, observe that the “good extension

property” does not hold good for Q-compact fuzzy sets.
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Theorem 6.30: Let A and u be Q-compact fuzzy sets in an fts (X,t). Then
(Ax ) isalso Q-compact in (X x X, txt).
Proof: Let M ={a: a etxt and ieJ} be a Q-cover of (Axu) in (X x X, txt).
Then (Axu)(Xy)+a (x,y)=1 for each (X, y)e XxX. Now, we can write
a, = U xVv,, where u,, v,et. Thus we have (Axu) (X, y)+ (u, xVv;) (X, y) >1 for each
(x,y)e XxX. Hence it is clear that A(x)+u(x)>1 for each xe X and
u(y) +v,(y) 21 for each y € X . Therefore, {u,: ieJ} and {v,: ieJ} are open
Q-cover of A and u respectively. Since 4 and u are Q-compacts, then {u,: ieJ}
and {v,: ieJ} have finite Q-subcovers, say {u; : ke J,} and {v; : ke J } such
that A(x) +u, (x)>1 for each xe X and u(y)+v, (y)=1 for each yeX
respectively. Thus we can write (Axu)(X,y)+ (U xv; ) (x,y)=1 for each

(X,y) € X x X . Hence (Ax u) is Q-compact in (X x X, txt).

Compact fuzzy sets in Chang’s sense [19] and Q-compact fuzzy sets are
independent. The following example will serve the purpose.

Example 6.31: Let X ={a, b} and | =[0,1]. Let u,, u,, u,, u, e 1* defined
by wu(a)=04, u()=06; u(a)=03, u,(b)=0.7; u,(a)=0.4, u,(b)=0.7;
u,(@)=03, u,(b)=0.6. Now, take t={0, u,, u,, u;, u,, 1}, then we see that
(X, t) isan fts. Let 1 e I * defined by A(a) =0.4, A(b) =0.5. Clearly A is compact in
(X, t) in the sense of Chang. Now, we observe that A(a) + u,(a) <1 for ae X and

k=1, 2, 3, 4. Hence A isnot Q-compactin (X, ).
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Again, let u e 1* defined by p(a) =09, u(b)=0.8. Clearly u is Q-compact in

(X,t). But u is not compact in (X, t) in the sense of Chang, as there do not exist u,

4
such that 4 < Ju, .

k=1

Definition 6.32: Let M ={u,: i € J } be a family of & -open fuzzy sets in an fts
(X,t) and 2 be a fuzzy set in X. Then M is said to be &-Q-cover of 1 iff
A(X) + u,(x) 21 for each x € X and for some u;,. A subfamily of & - Q-cover of a fuzzy

set A in X whichisalsoa §-Q-cover of 4 iscalled 6 -Q-subcover of 4.

Example 6.33: Let X ={a,b}, 1 =[0,1] and 0 <& <1. Let u,, u,, use l*
defined by u,(a) =1, u,(b)=04; u,(a) =0.5, u,(b) =1 and u,(a) =05, us(b) =04.
Now, take t={0, u,, u,, u,, 1}, then we see that (X, t) is an fts. Again, let A € I
defined by A(a) =0.1, A(b) =0.2. Take 6§ =0.4. Clearly u,, u, and u, are & -open
fuzzy sets in (X, t). Now, we observe that A(a) + u,(a) >1, A(b) + u,(b) >1 for a,

beX.So{u,, u,}isas-Q-coverof 1 in (X, t).

Definition 6.34: Let (X, t) beanfts, 0 <5 <land A be afuzzysetin X .Then A
is said to be &-Q-compact iff every 6 -Q-cover of 1 has a finite §-Q-subcover. If

Acpu and pel”, then u is also §-Q-compact. Thus we can say that any other

supersets of & - Q-compact fuzzy sets in an fts is also 6 - Q -compact.

Theorem 6.35: Any & - Q-compact fuzzy set in an fts is Q-compact. The converse

iS not true in general.

119



Q-compact Fuzzy Sets

The proof of the theorem is straightforward.

Now, for the converse, consider the following example.

Let X ={a,b}, 1 =[0,1] and 0< & <1. Let u,, u,, u,e I* defined by u,(a) =1,
u(b)=04; u,(a)=07, u,(b)=1 and wu,(a)=0.7, u,(b)=04. Now, take
t={0, u,, u,, u,, 1}, then we see that (X, t) is an fts. Again, let 1 € 1* defined by
(@) =0.2, A(b)=0.3. Clearly 1 is Q-compact in (X,t). Take & =0.8. Hence we
observe that there is no finite & -open fuzzy set in (X, t). Hence A is not & - Q-compact

in (X, t). Thus the converse of theorem is not necessarily true.

o -compact fuzzy sets (Chang’s sense [19]) and ¢ -Q-compact fuzzy sets are
independent. For this, we give the following example.

Example 6.36: Let X ={a,b}, 1 =[0,1] and 0<¢6 <1. Let u,, Uu,, U,
u,e I'* defined by u(a)=05, u(b)=02; u,(a)=0.3, u,(b)=0.4; u,(a)=0.5,
u,(b) =0.4 and u,(a) =0.3, u,(b) =0.2. Now, take t={0, u,, u,, u,, u,, 1}, then
we see that (X, t) is an fts. Again, let 1 e I* defined by A(a) =0.3, A(b) =0.4. Take
0 =0.2. It is clear that A is & -compact (Chang’s sense) in (X,t). But A is not
5 -Q-compact in (X,t), as 1(a) + u (@) <1lforae X and k =1, 2, 3, 4. Again, let
pel* with u(a) =06, u(b)=0.8. Clearly u is &-Q-compact in (X,t). But u is

not 6 -compact (Chang’s sense) in (X, t), as there do not exist & -open fuzzy sets u, such

4
that u < (Ju, .
k=1

Definition 6.37: Let (X,t) be an fts, A be a fuzzy setin X and 0 <a <1. Let

M ={u: ieJ} bea family of fuzzy sets. Then M is said to be Q« -cover of A iff
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A(X) + u;(X) 2 ¢ foreach x € X and for some u;. If each u; is open, then M is said to
be an open Q« -cover of A. A subfamily of a Q« -cover of A which is also a Q « -cover

of 4 issaid to be a Qa -subcover of 4.

Example 6.38: Let X ={a,b}, | =[0,1] and 0 < <1. Letu,, u, e I'* defined
by u,(a) =0.3, u,(b)=0.2 and u,(a) =0.1, u,(b)=04. Again, let 1 el with
(@) =04, A(b)=0.3. Take a =0.7. Hence we observe that A(a) + u,(a) >« ,

A(0) + u,(b) 2 . Therefore {u,, u,} isa Qa -cover of 1.

Example 6.39: Let X ={a, b}, 1 =[0,1] and O <a <1. Let u, U,, Uy e I*
defined by u,(a) =0.2, u,(b) =1; u,(a) =1, u,(b)=0.3 and u,(a) =0.2, u,(b) =0.3.
Putt={0, u, u,, u,, 1}, then (X,t) is an fts. Again, let 1 < 1* with A(a) =0.6,
A(0) =0.5. Take a =0.9. Hence we observe that A(a) + u,(a) >a , A(b) + u(b) > .

Therefore { u,, u,} is an open Qa -cover of A in (X, t).

Definition 6.40: A fuzzy set A is said to be Q « -compact iff every open Q « -cover

of 4 has afinite Q« -subcover.

Theorem 6.41: Every Q-compact fuzzy set in an fts is Qa -compact. But the

converse is not true in general.
The proof of the theorem is straightforward.

Now, for the converse, consider the following example.
Let X ={a,b}, 1 =[0,1] and O <& <1. Let u,, u, e I” defined by u,(a) =0.4,

u,(b) =0.3 and u,(a) =0.6 , u,(b)=05.Putt={0, u,, u,, 1}, then (X, t) is an fts.
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Again, let Ael” with A(@)=02, A(b)=04. Take o =0.8. Clearly A is
Qa -compact in (X, t). But A is not Q-compact, as A(a) + u,(a) <1 for a e X and
k=1, 2.

Note: If we consider a =0.9, then example (6.31) will show that the compact

fuzzy sets in Chang’s sense [19] and Q « -compact fuzzy sets are independent.

Let (X,t) beanfts, 0<a <1, (X,t,) be a « -level topological space and A be a
fuzzy setin X .Then Qe -compactness of A in (X, t) and compactness of 1, in (X,t,)
are independent. For this, we give the following examples.

Example 6.42: Let X ={a,b}, 1=[0,1] and O<a <1. Let u,, u,el*
defined by u,(a) =04, u,(b) =0.3 and u,(a) =0.6 , u,(b)=08.Putt={0, u,, u,,
1}, then (X, t) is an fts. Again, let 1 e I* with A(a) =0.2, A(b) =0. Take o =0.8.
Clearly A is Qa -compact in (X, t). Now, we have 1,={a} and t,; ={ ¢, X }. Hence
(X, t,,) is a 0.8-level topological space. Thus we see that 1, is not compact in (X, t,,),
as there is no finite suvcover of 1, in (X, t;).

Again, let g e 1™ with u(a) =0, wu(b)=02.So we have u,={b}. Take o =0.7.
Then we get t,, ={¢#, {b}, X }. Hence (X,t,,) is a 0.7-level topological space.
Clearly u, is compact in (X,t,). But u is not Qa-compact in (X,t), as

u@)+u@<a foraeX and k=1, 2.

Definition 6.43: Let (X,t) be an fts, A be a fuzzy set in X and 0<& <1,
O<a <l Let M ={u: ieJ} beafamilyof o -open fuzzy sets. Then M is said to be

0 -Qa -cover of A iff A(x) + u,(X) >« foreach x € X and for some u;. A subfamily of
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0 -Qa -cover of A which isalso a & -Qa -cover of A is said to be 6 - Qe -subcover of

A.

Definition 6.44: A fuzzy set A is said to be & -Qa-compact iff every

0 -Qa -cover of A has a finite 6 - Q « -subcover.

Theorem 6.45: Every 6 -Qa -compact fuzzy set in an fts is Q « -compact. But the

converse is not true in general.
The proof of the theorem is straightforward.

Now, for the converse, we consider the following example.
Let X ={a,b}, 1=[0,1] and 0<6 <1, O<a <1. Let u,, u,eI* defined by
u(@) =05, u(b)=0.4 and u,(a)=0.7, u,(b)=0.6. Put t={0, u,, u,, 1}, then
(X, t) is an fts. Again, let A e I* with A(a) =0.2, A(b) =0.3. Take o =0.9. Clearly
A is Qo -compact in (X, t). Again, take 6 =0.9. But 1 is not 6 - Q « -compact, as there
is no finite & -open fuzzy sets in (X, t).

Note: If we consider a = 0.9, then example (6.36) will show that the & -compact

fuzzy sets in Chang’s sense [19] and 6 - Q a -compact fuzzy sets are independent.
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Chapter Seven

Almost Compact Fuzzy Sets

Almost compact fuzzy sets was first constructed by Concilio and Gerla [27] which
is local property. In this chapter, we have discussed several characterizations of this
concept and established some theorems, corollary and examples. Also we have defined
almost 6 -compact fuzzy sets and investigated different characterizations between almost

compact and almost 6 -compact fuzzy sets.

Definition 7.1[27]: Let A be a fuzzy set in X. A family {u,: ieJ} is a

proximate cover of 4 when {u_i: ieJ}isacoverof 4 ie Ac Uu_I A subfamily of

ied

{u;: i eJ} whichis also a proximate cover of A is said to be proximate subcover of 4.

Definition 7.2[27]: A fuzzy set A is said to be almost compact iff every open cover
of A has a finite subfamily whose closures is cover of A or equivalently, every open
cover of A has a finite proximate subcover.

Every fuzzy subsets of an almost compact fuzzy set is also almost compact.

Theorem 7.3: Let (X,t) be an fts, Ac X and A be a fuzzy set in X with
A, < A. Then A is almost compact in (X, t) iff A is almost compact in (A t,).

Proof: Suppose A is almost compact in (X, t). Let {u,: i€ J} beanopen cover of 4

in (A t,), then {(u_l)0 : ieJ} is also an open cover of A in (A't,). Then there exist

v, et such that u =v,| Acv,. Therefore {v,: i e J } is an open cover of 4 in (X, t),
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S0 {(\7)O . ieJ} isalso an open cover of 4 in (X, t). But from (\TI)O cv; and since A is

almost compact in (X, t), then {(\TI)0 : i eJ } has a finite subfamily, say {(\Tk)o ke, }

such that A< (Jv, ie Acv, uv, U ... Uy, . But u=v|Ac
kel,

Therefore, A (v, UV, U...... UV, )TA =(v [A)U (Y, [A)...... U (v |A)

=U VU U vy, as A, cA e Acuy vy U.... vy, . Hence

{u, : ke, } isafinite proximate subcover of {u;: ie J}.So A isalmost compact in

(A t,).

Conversely, suppose A is almost compact in (A, tA). Let {v,: ieJ} beanopen cover

of 4 in (X,t), then {(\TI)0 ieJ} is also an open cover of A in (X,t). Choose

ied ied ied

u=Vv|A, ten we have A<y, = lg[UviJ|A = AcJ(wIA) =

A< Ju. But uet,, so {u: ieJ} isan open cover of A in (A t,). Therefore

ied

{(J)O : ieJ} is also an open cover of A in (A t,). We have (u_l)0 cu, and since A is

almost compact in (A, t,), then {(u_l)0 : ieJ} has a finite subfamily, say {(q)o keld,}

such that 2 < Ju, ie. Acu Uy, U..... Uy, . But we have u =v,[A <
kel,

cv,. Therefore Acu U, U..... U

In

= Ac(v |A)U(y, [A)u... U

(v, |A) = AcV, UV, U ... UV, , as A, A. Therefore {v, : keJ }isa

i1
In

finite proximate subcover of {v,: i € J }. Hence A is almost compact in (X, t).
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Corollary 7.4: Let (Y, t*) be a fuzzy subspace of an fts (X, t) and AcY c X. Let
A be afuzzysetin X with 1, < A. Then A is almost compact in (X, t) iff A is almost
compact in (Y, t*).
Proof: Let t, and t, be the subspace fuzzy topologies on A. Then preceding theorem
(7.3), A is almost compact in (X,t) or (Y,t*) iff A is almost compact in (A, t,) or

(At;).Butt,=t;.

Theorem 7.5: Let (X,t) and (Y, s) be two fts’s and f : (X,t)— (Y, s) be fuzzy
continuous and surjective mapping. If A is almost compact fuzzy set in (X, t), then

f (1) is almost compact in (Y, s).
Proof: Let {u;: i< J} be an open cover of f(1) in (Y,s), then {(u_,)0 ield}isalso
an open cover of f(A1) in (Y, s). As f is fuzzy continuous, then f‘l(u_i)O et and hence

{f‘l(u_i)0 : ieJ} isanopen cover of A in (X,t).Since 4 is almost compact in (X, t),

then {f‘l(J)o: ieJ} has a finite subfamily, say {f‘l(u.

i i

)0: ked,} such that

e Uta) ie ac ) v te) U U £ ) . Butfom (o) < i

I
keld,

and f is fuzzy continuous and surjective, f‘l(u_,) must be a closed fuzzy set in X such

that f‘l(u_i)O c f‘l(u_,) and then f‘l(u_i)O c f‘l(u_,). Therefore f (f‘l(u_i)oj c u, for each

U Ul Uy, . Thus f(4) is almost compactin (Y, s).
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Theorem 7.6: Let (X, t) and (Y, s) be two fts’sand f : (X,t) —(Y,s) be fuzzy
open, fuzzy closed and bijective mapping. If A is almost compact fuzzy set in (Y, s), then
f (1) is almost compact in (X, t).

Proof: Let {u,: i € J } be anopen cover of f*(1) in (X, t), then {(u_l)0 ied}isalso
an open cover of f™(1) in (X,t). As f is fuzzy open, then f(u_i)O e s and hence
{ f (u_l)0 : ieJ} is an open cover of A in (Y,s). Since A is almost compact in (Y, s),
then {f(u_l)0 : ied} has a finite subfamily, say {f(q)0 : keld,} such that

reUfl) ie actl) utly) v .o t(a) . Butfrom @) i and f

I
kel,

is closed, f(u_l) must be a closed fuzzy set in Y such that f(u_i)O c f(u_l) and then

f (u_,)0 cf (u_,) Therefore f‘l(f(u_i)oj cu  for each ieJ. Hence

(1) f-l(f(qf U tu) U U f(u_)j = ) c f-l(f(qu U

f-l(f(q)°ju ....... U f-l(f(qu = f(A)clU VU U ..Ul . Hence

f (1) is almost compact in (X, t).

Theorem 7.7: Let (X, t) be an fts and let every family of closed fuzzy sets in X

with empty intersection has a finite subfamily with empty intersection. Then any fuzzy set
A in X is almost compact. The converse is not true in general.

Proof: Let A be any fuzzy setin X and let {u,: i€ J} be an open cover of 4, then

{(u_l) Tield } is also an open cover of A. From the first condition of the theorem, we
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have [ uf =0,. Therefore | Ju, =1, and hence [ J (u_l)O =1,,as U C (u_l)O . Again, by

ied ied ied

the second condition of the theorem, we get ﬂ Uy =0,. Thus we have U u, =1, and
kel, keld,

[ C (u_l)0 . But from u, ¢ (u_l)O cu,, then we get | Ju, =1,
ked, ked,

hence [ J (q)o =1, as u,

and consequently we have Ac (Ju, ie Acu vu U.... U, . Therefore

kel,
{u, : keld,} is a finite proximate subcover of {u;: ieJ}. Hence A is almost

compact.

For the converse, consider the following example.

Let X ={a,b} and 1 =[0,1]. Let u, ve I* defined by u(a)=0.3, u(b)=0.2 and
v(@)=0.4, v(b)=03. Choose t={0, u, v, 1}, then (X,t) is an fts. Now,
0°(@)=1, 0°(b)=1; u°(a)=0.7, u°(b)=0.8 and v°(a)=0.6 , v°(b) =0.7. So we
have u=({0°, u®, v°}=v°ie u(@=06, ub)=07 and v=[{0°, u°,
ve}=v®ie v(a)=0.6, v(b)=0.7. Again, let 1< 1* with A(a) =06, A(b)=04.
Then clearly 4 is almost compact in (X, t). But u®nv°# 0. Therefore the converse of

the theorem is not true in general.

The following example will show that the almost compact fuzzy sets in an fts need
not be closed.

Example 7.8: Consider the fts (X, t) in the example of the theorem (7.7). Again, let
A e 1* with A(a) =0.5, A(b) =0.6. Thenclearly 4 is almost compact in (X, t). But A

is not closed, as its complement A° is not open in (X, t).
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Theorem 7.9: LetA and u be almost compact fuzzy sets in an fts (X, t). Then

AU u is also almost compact in (X, t).
Proof: Let {u;: i€ J} beanopen cover of AU u, then {(u_l) : ieJ} isalso an open

cover of Auu. Therefore {(u_l)0 ieJ} is any open cover of both A and u

respectively. But we have (u.

) c u, and since A is almost compact, so {(u_l)0 :ieJd} has

a finite proximate subcover, say {u;, : ke J,} suchthat Acu Ly, U...... uu .

Similarly, we can find {U_i,1 reld,} is a finite proximate subcover of {(u_l) cield }
Therefore {q , U_i,} is a finite proximate subcover of {u,: ie J}. Hence Auu is

also almost compact.

Theorem 7.10: Let4 and u be almost compact fuzzy sets in an fts (X, t). Then
AN u s also almost compact in (X, t).
Proof: We have Anuc A and Anucpu.As A and u are almost compact, it is clear

that A m u is almost compact.

Theorem 7.11: Let (X, t) be a fuzzy T, -space (as def. 1.45) and A be an almost

compact fuzzy setin X with A, X.Let x¢ 1, (A(x) =0 ), thenthereexistu, vet

such that u(x) =1 and 1, < (\_/) (0,1].
Proof: Suppose y € 4,. Then clearly x = y. As (X, t) is fuzzy T,-space, there exist
u,, v, et suchthat u(x)=1, u(y)=0 and v (x) =0, v, (y)=1. Hence we observe

that A < U{ v,: yels}yie {v,: yei,} is an open cover of 1. Thus we have

(@)O (x)=1, (v_y)o(y) =1,as u,c (uy)0 and v, c (\/_y)0 . Then {(\/_y)0 © yel, | isalsoan
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open cover of A. Since A4 is almost compact, then {(v_y) T YeA, } has a finite proximate

subcover, say {v, : keJ } suchthat Ac | Jv, ie. Acv, UV, U ...... UV
y Yk n o Yk Y1 Y2

Now, let (v) = (v, ) v (v, ) Uy ) and (@) =(0,) A0, ) Aen (G, )

Y1 Y2

Hence (\_/) and (ﬁ) are open fuzzy sets, as they are the union and finite intersection of

open fuzzy sets respectively i.e. (\_/)0 , (ﬂ)o et. But (\/_y)0 c v, and (uy)0 cu,. Moreover,

Ao C (\_/)_1(0, 1] and u(x) =1, as u,_(x) =1 for each k.

Theorem 7.12: Let (X, t) be a fuzzy T,-space (as def. 1.45) and A, u be disjoint
almost compact fuzzy sets in X with A,, u, < X . Then there exist u, v et such that
A< (0) (0,11 and wo< (v) (0,11,

Proof: Suppose y € A,. Then we have y ¢ u,, as A and u are disjoint. As u is almost

compact, then by theorem (7.11), there exist u,, v, et such that u_y(y)zl and
Uy (v_y) (0,1]. Since u,(y) =1, then we have {(@)O : ye A, | is also an open cover of

A. But A is almost compact, then {(@) tYye /lo} has a finite proximate subcover, say

{u, : ke }suchthat Ac (Ju, ie A cu, vu, U ... U u, . Furthermore,
keld,

LSV, NV, M. AV, , as u, g(v_yk)_l(o,l] for each k. Now, let (ﬁ)oz (ul)0

-1 \0

and (\/_y)0 c v, , we see that 4, c (6)71(0, 1] and u, < (\_/) (0,1]. Also (u)

S~——
=)

and (\_/ are
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open fuzzy sets, as they are the union and finite intersection of open fuzzy sets
respectively i.e. (ﬁ) , (\7) et.
Remark: If A(x) =0 for all xe X i.e. 1,= X, then the above two theorems

(7.11) and (7.12) are not at all true.

The following example will show that the almost compact fuzzy sets in fuzzy

T,-space (as def. 1.45) need not be closed.

Example 7.13: Let X ={a,b} and | =[0,1]. Let u, vel” defined by
u@ =1, u(b)=0 and v(a) =0, v(b)=1. Take t={0, u, v, 1}, then (X,t) isa
fuzzy T,-space. Now, 0°(a)=1, 0°(b)=1; u°(@)=0, u‘(b)=1 and v°(a)=1,
vi(b) =0. So we have u=[{0°, v*}=v° ie u(@) =1, u(b)=0 and v=[){0°,
ul=u® ie. v(@) =0, v(b)=1. Again, let 1e1* with A(a)=0.4, A(b)=07.
Clearly A is almost compact in (X, t). But A is not closed, as its complement A° is not

openin (X, t).

Theorem 7.14: Let (X, t) be a fuzzy T,-space (as def. 1.46) and A be a fuzzy set

in X with 1, X . If 4 is almost compact in (X, t) and xe A, (A(x)=0), then

there exist U, v et such that u(x) >0 and A, < (\_/) (0,1]. The converse is not true in

general.
The proof is similar as that of theorem (7.11).

Now, for the converse, we give the following example.
Let X ={a,b} and | =[0,1]. Let u,, u,, u;e I* defined by u,(a)=0.2, u,(b)=0;

u,(@) =0, u,(b)=0.3 and u,(a) =0.2, u,(b) =0.3. Now, put t={0, u,, u,, u,,
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1}, then we see that (X, t) is a fuzzy T,-space. Now, we have 0°(a) =1, 0°(b) =1;
u’(a)=0.8, u;(b) =1; uy;(a) =1, us(b) =0.7 and uz(a) =0.8, u;(b) =0.7. Therefore,
=Ko, u, uy, us}=u; ie u(a)=08, u(b)=07; u,=(KO0, u, uj,
us}=uj ie U@ =08, Uyb)=07 and u,=( {0, u, us, ui}=us ie.
u,(a) =0.8, u,(b) =0.7. Again, let 1 e I* defined by A(a) =0, A(b)=0.9. Hence
we observe that A,={b} and ag¢A,. Here u,, u,et where u(a)=0.8>0 and

(E)'l(o, 1] ={a, b}. Hence 1, c (E)'l(o, 1]. Thus we see that A is not almost compact

R— 3 —_—
in (X, t), as there do not exist u, suchthat 1 < Uuk . Thus the converse of the theorem
k=1

iS not true in general.

Theorem 7.15: Let (X, t) be a fuzzy T, -space (as def. 1.46) and A, u be fuzzy

sets in X with 4,, u,c X.If A and u are disjoint almost compact fuzzy sets in
(X, 1), then there exist u, v et such that 1, c (ﬂ) (0,1] and p, < (\_/) (0,1].

The work is similar as that of theorem (7.12).

Now, for the converse, consider the fuzzy T,-space (X, t) in the example of the theorem

(7.14). Let 2, e 1* with A(a) =09, A(b)=0 and u(a) =0, u(b) = 0.8. Thus we
see that A,={a} and u,={b}. Now u,, u,et where (u_l)il(O, 1]1={a, b} and
(E)'l(o, 1] ={a, b}. Hence we observe that 1, c (u_l)il(O, 1] and u, c (E)'l(o, 1], where
A and u are disjoint. But we see that 2 and u are not almost compact in (X, t), as there

_ 3 _ 3 _
do not exist u, suchtht A < Uuk and u < Uuk . Thus the converse of the theorem is
k=1 k=1

not true in general.
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The following example will show that the almost compact fuzzy sets in fuzzy T, -space (as
def. 1.46) need not be closed.

Example 7.16: Consider the fuzzy T, -space in the example of the theorem (7.14).
Again, let 1 € 1 defined by A(a) =0.5, A(b) =0.6. Thenclearly A is almost compact

in (X, t). But 4 is not closed, as its complement A° is not open in (X, t).

Theorem 7.17: An almost compact fuzzy sets in fuzzy regular space (X,t)
(as def. 1.52) is compact.

Proof: Let {u; : i € J } be an open cover of afuzzyset A in X ie. A < Ju;. As (X, t)

ied

is fuzzy regular, then we have u, = Uvij , Where v;; is an open fuzzy set such that \/_IJ c
ied

for each i. Since 1 < Ju, = v

ied ied

i then {v;: ieJ} isan opencover of 1. As 4 is

almost compact, then {v;: i€ J } has a finite proximate subcover, say {\TkJ s keld, }

such that 1 < U\TU-BUt\TUQUik,SO A Jv,; = Yu, - Hence {u, : kel }isa

kel, kel, kel,

finite subcover of {u;: i € J }. Therefore A4 is compact.

The following example will show that the “good extension” property does not hold
for almost compact fuzzy sets.

Example 7.18: Let X ={a,b,c} and T ={¢, {a}, {b}, {a,b}, X }. Then
(X, T) is a topological space. Again, let u,, u,, u,e 1™ with u(a) =0.2, u(b)=0,
u,(c) =0; u,(a)=0, u,(b)=0.4, u,(c)=0 and u,(a) =0.2, u,(b)=0.4, u,(c) =0.

Then o(T)={0, u,, U,, u,, 1} and (X,®(T)) is an fts. Now, 0°(a)=1,

1

0°(b)=1, 0°(c)=1; u(a)=08, u(b)=1, u’(c)=1; us;(a)=1, u;(b)=0.6,
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uj(c) =1 and us(a)=0.8, u5(b) =06, us(c) =1. So we have u, =({0°, uf, us,
us}=u; ie u(a) =08, u)=06, u(c)=1 u, = {0, uf, us, u;}=u; ie.
u,(8) =08, u(0)=06, u(c)=1 and u,=({0°, uf, ui, wl=ui e
u,(a) =0.8, uy,(b)=0.6, uy(c)=1. Now, let Ael* defined by A(a)=0.9,
A(b) =0.8, A(c) =0. Then we have A, ={a, b}. Clearly A, is compact in (X, T). But

A is not almost compact in (X, o (T )), as there don’t exist u, e o(T) for k =1, 2,
3 R—

3 suchthat 2 < Ju, . Again, let 1 e I defined by u(a) =0, u(b) =0.3, u(c) =0.8.
k=1

Then we have u,={b, c}. Clearly u is almost compact in (X, o (T )). But u, is not

compact in (X, T).

Theorem 7.19: Let 4 and u be almost compact fuzzy sets in an fts (X, t). Then
(A x ) is also almost compact in (X x X, txt).
Proof: Let {u;xv,: ieJ} be an open cover of (Axu) in (XxX,txt) ie

(ixy)gU(u,xv,). Hence it can be easily shown that, min( A(x), wu(y))c

ied

Umin (u;(x), vi(y)) for every (x,y)e XxX. So it is clear that 1 < | Ju, and

ied ied

ygUVi. Therefore {u;: ieJ} and {v,: ieJ} are open cover of A and u

ied

respectively. Thus {(u_l)0 tield } and {(\TI)0 tield } are also open cover of A and u

respectively. Now, we have (u.

I)O cu, and (\TI)O cV,.As A and u are almost compact,
then {(u_l)0 ieJ} and {(\TI)0 ieJ} have finite proximate subcover, say

{u : kel,} and {v, : keJ,} such that Ac (Ju and pc v, ie

kel, kel,
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AcU UU U...... Uu and gV UV U ... U V. respectively. Hence we can
|1 n /l |1 IZ |n

write (Axu) < |J(u, xv, ). Therefore {u, xv, : keJ } is a finite proximate
kel,

subcover of {u;xv,: i e J}. Thus (Ax ) is almost compact in (X x X, txt).

Definition 7.20: Let M ={u,: i € J } be a family of 6 -open fuzzy sets and

A be a fuzzy set in X. Then M is said to be proximate & -cover of A when

{u:iel}isa &-coverof 1 ie Ac Uu_i.Asubfaminof{ui: i € J } which is

ied

also a proximate 6 -cover of A is said to be proximate 6 -subcover of 1.

Definition 7.21: A fuzzy set A is said to be almost 6 -compact iff every & -cover of
A has a finite subfamily whose closures is & -cover of A or equivalently, every & -cover
of A has a finite proximate ¢ -subcover.

Every fuzzy subsets of an almost 6 -compact fuzzy set is also almost 6 -compact.

Theorem 7.22: Any almost 6 -compact fuzzy set in an fts is almost compact. The
converse is not true in general.
The proof of the theorem is straightforward.

Now, for the converse, consider the following example.

Let X ={a,b}, I =[0,1] and 0 <& <1. Let u,, u,e I defined by u,(a)=0.3,
u,(b) =0.2 and u,(a) =04, u,(b)=0.5. Now, take t={0, u,, u,, 1}, then we see
that (X,t) is an fts. Now, 0°(a)=1, 0°(b)=1; uf(a)=0.7, uf(b)=0.8 and
u;(@)=06, u5(b)=05. So we have u, =({0°, u, uj}=uj ie. u(a)=06,

u(b) =05 and u, =({0°, ui, us}=u; ie uy(a)=06, u,(b)=05. Again, let
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A e ™ defined by A(a) =0.6, A(b)=0.3. Clearly A is almost compact in (X,t).
Take 6 =0.9. Then we observe that there is no finite proximate 6 -subcover of 4. Hence

A is not almost & -compact in (X, t). Thus the converse of theorem is not necessarily

true.
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Chapter Eight

Almost o« -Compact Spaces

Almost « -compact spaces was first introduced by Mukherjee and Bhattacharyya
[130] which is global property. We aim to discuss several other characterizations of this
concept and established some theorems, corollary and examples. Also we have defined
almost & -« -compact spaces and found different characterizations between almost

o -compact and almost 6 - a -compact spaces.

Definition 8.1[130]: A family {u,: i€ J}, u e 1” isa proximate « -shading of
X when {u,: ieJ}isan a-shading of X i.e. u,(x) >a foreach x e X .
A subfamily of {u,: i€ J} which is also a proximate « -shading of X is called a

proximate o -subshading of X .

Definition 8.2[130]: An fts (X, t) is said to be almost « -compact iff every open

o -shading of X has a finite subfamily whose closures is an « -shading or equivalently,

every open « -shading of X has a finite proximate « -subshading.

Theorem 8.3: Let (X, t) be an fts and A X . Then 1, is almost o -compact in
(X, t) iff 1, is almost o -compact in (A, t,).
Proof: Suppose 1, is almost «-compact in (X,t). Let {u,: ieJ} be an open
o -shading of 1, in (At,), then {(u_l)0 : ieJ} is also an open « -shading of 1, in

(A,t,). Then there exists v, e t such that u, =V, | Acv,. Therefore {v,: i e J} be an
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open « -shading of 1, in (X, t) and so {(\TI)O > ieJ} isalso an open « -shading of 1, in
(X, t). But 1, is almost o -compact in (X, t), then {(\TI)0 © ieJ } has a finite proximate

a -subshading, say {v, : keJ,} such that v, (x)>a for each x e A. We have

u=v|Acv

|Acv,. Now, [[U\ZJ|A}(X)>(1 = LnJ(\TklA)(x)>a =

Uq(x)>a, as Ac X and consequently {q: keJd,} is a finite proximate
k=1

a -subshading of {u, : i € J }. Hence 1, is almost ¢ -compact in (A, t,).

Conversely, suppose 1, is almost « -compact in (A, tA). Let {v,: ieJ} be an open

a -shading of 1, in (X, t), then {(\TI)O : ieJ} isalso anopen « -shading of 1, in (X, t).
Put u =v,| A. Then [Uvij| A= Jw1A) =Ju.But uet, andso {u;: iel}is
iel iel iel

an open « -shading of 1, in (A, t,). Therefore {(u_l)0 > ieJ} is also an open « -shading

of 1, in (A t,). Since 1, is almost a -compact in (A, t,), then {(u_l)0 : ieJ } has a finite

proximate o -subshading, say {q : k € J,} such that q(x) >q for each x € A. But

u=v|[Acv,|Acv, and consequently {v, : keJ,} is a finite proximate

o -subshading of { v, : i € J }. Therefore 1, is almost o -compact in (X, t).

Corollary 8.4: Let (¥, t") be a fuzzy subspace of (X,t) and AcY < X . Then 1,

is almost o -compact in (X, t) iff 1, is almost « -compact in (Y, t*).
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Proof: Let t, and t, be the subspace fuzzy topologies on A. Then by preceding theorem
(8.3), 1, is almost & -compact in (X, t) or (v, t") iff 1, is almost « -compact in (A t,)

or (A, t;). But t,=t,.

Theorem 8.5: Let (X, t) be an fts and 1, be a closed subset of X (Ac X ). If
(X, ) is almost a -compact, then so also is (A, t,).
Proof: Let M ={u,: i € J } be an open « -shading of 1, in (A, t,), then {(u_l)0 Cied}
is also an open o-shading of 1, in (A't,). Then there exist v,et such that
u=v|Acyv,. Let H={v,et: v,|]AeM}. Then {v}u{l, .} is an open
o -shading of 1, . To show this, let x € X . Now if x € A, there exist some u, € M such

that u;(x) > . Let g, et suchthat g,| A=u,.So g, € H and we have g,(x) > o . Again
if xeX—-A, then (1, ,)(x)=1>a. But v, g(\Ti)o cv, and since (X,t) is almost
o -compact, then {v,} u {1, ,} has a finite proximate « -subshading, say {\Tk kel }
such that v, (X) > . Now, we have u; =v, [Ac v, |Acv,. Then {v, |A: kel }, as

A c X and hence {q : k e J,} is a finite proximate o -subshading of M . Therefore

1, is almost « -compact in (A t,).

Theorem 8.6: Let (X,t) be an fts and A,Bc X. If 1, and 1, are almost

o -compact, then 1,  is also almost « -compact.

Proof: Let {u;: i€ J} beanopen «-shading of 1, 5, then {(u_l)0 ©ied} is also an

open «a -shading of 1, .. Hence {u,: i € J} isany open «-shading of both 1, and 1,
respectively. Thus {(u_l)0 ieJ} is also any open o -shading of both 1, and 1,
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respectively. But u, < (u_l) cu, and 1, is almost & -compact, then {(u_l) cied} hasa
finite proximate o -subshading, say {u, : k € J,} such that u, (x)>a forall x e A.

Similarly, we can find {q: red,} is a finite proximate « -subshading of

{(J)O: icJ}. Therefore {u,, u, } is a finite proximate o -subshading of

{u,:iel}. Thusl, g, isalsoalmost « -compact.

Theorem 8.7: Let (X,t) beanftsand A,Bc X (AnB=¢).If 1, and 1, are
almost a -compact, then 1, ., is also almost « -compact.
Proof: We have AnBc A and AnBc B.As 1, and 1; are almost o -compact, then

it is clear that 1, is also almost « -compact.

Theorem 8.8: Let (X, t) be an fts and if t, becomes a cofinite topology on X.

Then (X, t) is almost o -compact.
Proof: Let M ={u,: i e J } be an open « -shading of (X, t), then {(u_l)0 ied}isalso
an open a-shading of (X,t). Now, we have t,={a(y): uet}, where

a(u)={xe X : u(x)>a} and by the theorem t_ is a cofinite topology on X . Hence

we see that { a(u;): i e J} isan open cover of (X,t,), then {oc(u_i)0 :ieJ}isalso an

open cover of (X, ta). For let, x € X, then there exists u, e M such that U, xX)>a =

(Q)O (X)>a, a5 Uuc (u_l)0 . Therefore, xea(y) and a(u)e{a)} =

X € ‘X(Uio)o and oc(uio)O = {oc(u_i)0 :ied}. Since (X,t,) is cofinite, hence compact, then

{a(): ied} has a finite subcover, say {a(u;): keJ, }, where u;, et and
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a(,)et, = {a(q)o : ke J, } is also forms a finite subcover of {oc(u_i)0 ied}. But

u < (u_l)0 c u_I the family {q : k € J,} forms a finite proximate « -subshading of M .

Hence (X, t) is almost a -compact.

Theorem 8.9: Let f: (X,t)— (Y,s) be fuzzy continuous and surjective
mapping. If 1, is almost « -compact, then f(1,) is almost « -compact as a subspace of

Y.

Proof: We have f(X)=Y, as f is surjective. Let M ={u,: ieJ} be an open
o -shading of 1,. Then {(u_l)0 tield } is also an open « -shading of 1, . Since f is fuzzy
continuous, then f‘l(J)O et and hence {f‘l(u_i)0 el } is open « -shading of 1, . For,

let xe X, then f(x)eY. So there exists some (E)o e{(J)O: icJ} such that

(q)o(f(x))>a = f‘l(q)o(x)>a. As 1, is almost a -compact, then there exists

f‘l(u_-)0 e {f‘l(u_i)0 ried} (keld,) such that f‘l(u_)o(x) > o for each x e X . But

I i

from (J)O c u_I and fuzzy continuity of f, f‘l(u ) must be a closed fuzzy set in X such

that f‘l(u_i) c f‘l(u_i) and then f‘l(u_i)O c f‘l(u_i). Therefore f (f‘l(u_i)oj c u, for each
ieJ.Forif yeY, then y = f(x) forsome x € X, as f issurjective. Then there exist

some k such that u, (f(x))>a = u, (y)>a for each yeY. Therefore f(L) is

almost « -compact.

Theorem 8.10: Let f : (X,t)— (Y, s) be fuzzy open, fuzzy closed and bijective

mapping . If (Y, s) is almost o -compact, then (X, t) is also almost ¢ -compact.
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Proof: Let {u;: i€ J } beanopen «-shading of 1, , then {(u_l) tield } is also an open
o -shading of 1,. As f is fuzzy open, then f(u_i)O e s and hence it follows that

{ f (J)o : ieJ} isanopen a-shading of 1,. For let, y €Y, then f*(y) e X . So there

exists some (q)o e {(J)O : ieJ} such that (q)o(f‘l(y))> a = f(%)o(y) > . Since

1, is almost « -compact, then there exists f (q)o e{f (u_l)O ied} (ked,) such that

f (q)o(y) >q forall y eY . But from (u_l)0 cu, and f is fuzzy closed, f (u_,) must be a

closed fuzzy set in Y such that f(u_i)O c f(u_,) and then f(u_i)0 c f(u_,) . Therefore
f-l(f (U_I)Oj cu, foreach ieJ. Since f is bijective, we have for each x € X , there

existsa y e Y such that x = f *(y). So, we can obtain some k such that f(q)(y) >a

= Q(f‘l(y))>a = U, (x)>a for each xe X. Therefore (X,t) is almost

o -compact.

Theorem 8.11: Let (X, t) be an fts. If every family of closed fuzzy sets which has
empty intersection has a finite subfamily with empty intersection, then (X, t) is almost
o -compact. The converse is not true in general.

Proof: Let {u,: ieJ} be an open «-shading of 1,. By the first condition of the

theorem, we have (Ju’ =0,. Thus |Ju; =1, and so U(u_i)ozlx, as uig(u_i)o.

iel iel iel
Therefore{(u_i)o: ieJ} is also an open «-shading of 1,. Again from the second

condition of the theorem, we get ﬂufk =0,. So, we have Uuik =1, and hence
keld, ke,
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U(uik )O =1, as u, g(u_,)o. But u, g(u_,) cu, then |Ju =1, and consequently

ked, ked,
{q : k € J,} is afinite proximate o -subshading of {u,: i€ J }. Thus (X, t) is almost
o -compact.

Now, for the converse, we consider the following example.

Let X ={a,b}, 1 =[0,1] and 0<«a <1. Again, let u, ve I* defined by u(a) =0.1,
u(b) =0.2 and v(a) =0.3, v(b)=0.4. Put t={0, u, v, 1}, then (X,t) is an fts.
Now 0°(a)=1, 0°(b)=1; u°(@)=0.9, u°(b)=0.8 and v°(a) =0.7, v°(b) =0.6. So,
u={H0, u, v}=vtie u@) =07, u(b)=0.6and v={0°, u°, v"}=Vie
v(@) =07, v(b)=0.6. Take a =0.4. Clearly (X,t) is almost o -compact. But

u® mv® = 0. Therefore the converse of the theorem is not true in general.

The following example will show that the almost o -compact subsets in an fts need
not be closed.

Example 8.12: Consider the fts in the example of the theorem (8.11). Again, let
1, € 1* defined by 1,(a)=1, 1,(b) =0. Hence we have A={a} and Ac X . Take
o =0.5. Then clearly 1, is almost & -compact in (X, t). But 1, is not closed in (X, t),

as its complement 1 . is not open in (X, ).

Theorem 8.13: Let (X, t) be a fuzzy T,-space (as def. 1.45), Ac X and 1, bean
almost o -compact subset in (X, t). Suppose x € A°, then there exist u, v et such that
u(x) =1and Ac(v) (0,1.

Proof: Let y e A. Then clearly x = y. As (X, t) is fuzzy T,-space, then there exist

u,, v, et such that u,(x)=1, u(y)=0 and v, (x)=0, v,(y)=1. Let us take

y !
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0 <a <1 such that v, (y)>a >0, as v, (y)=1. Then {v,: ye A} is an open «-

shading of 1,. Hence we have (u,) (x)=1, (1,) () =1, as u, < (u,) and v, = (v, ) .
Thus {(v,) : ye A} is also an open « -shading of 1,. Since 1, is almost ¢ -compact,
then {(v,) : y e A} has a finite proximate o -subshading , say {Vv, : k € J,} such that
v, (y)>a for exch yeA. Now, let (v) = () uly,)u...ufy,) and

(ﬂ)o = (@)0 N (@)O Ao (I)O Hence (v)

are the union and finite intersection of open fuzzy sets respectively i.e. (\_/) : (ﬁ) et. But

0

and (ﬂ) are open fuzzy sets , as they

we have (\/_y)0 c v, and (@)O c u, . Moreover, A c (\_/)_1(0, 1] and u(x) =1, as u, (x) =1

for each k.

Theorem 8.14: Let (X, t) be a fuzzy T, -space (as def. 1.45) and 1, , 1, be disjoint

almost o -compact subsets in (X, t) (A, Bc X ). Then there exist u, v et such that

-1

Ac(u) (0,1]and B < (v) (0,1].
Proof: Let ye A. Then ye B, as 1, and 1, are disjoint . Since 1; is almost

a -compact, then by theorem (8.13), there exist u,, v, et such that u_y(y)zl,

B c (v_y)il(o, 1]. Assume that 0 < o <1 such that u (y) >a >0. As E(y) =1, then we

we have {(uy) tye A} is an open « -shading of 1,. But 1, is almost « -compact, then

{(@) : yeA} has a finite proximate o -subshading, say {q: k eJ,} such that

Q(y) >q for all y e A. Again, 1; is almost « -compact, then {(\/_y)0 D Xe B} has a

finite proximate « -subshading, say {v, : k € J,} such that v, (x) >« forall x e B
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and Bc(v, ) (0,1] for each k. Now, let (ﬂ)o = (I)O U) U (u_)0 and

0

(\_/)0 = (\/_yl)0 A (\/_YZ)0 A A (\7)0 But we have (\/_y)0 cv, and (@) cu,. Thuswe
see that A (ﬁ)'l(o, 1] and B < (\_/)_1(0, 1]. Hence (ﬂ)o and (\_/)0 are open fuzzy sets, as

they are the union and finite intersection of open fuzzy sets respectively i.e. (ﬁ) : (\_/) et.

Theorem 8.15: Let (X, t) be a fuzzy T,-space (as def. 1.45), Ac X and 1, be an
almost o -compact subset in (X, t). Then 1, is closed.
Proof: Let x € A°. We have to show that, there exists uet such that u(x) =1 and
u < AP, where AP is the characteristic function of A°. If y € A, then x # y and hence

there exist u,, v, et such that u (x)=1, u,(y)=0 and v, (x) =0, v, (y)=1. Letus

yl
take 0 <a <1suchthat v (y)>a >0.Thus {v, : y e A} isanopen « -shading of 1,.

Hence we have (u )O(x)zl, (v )O(y)zl, as uyg(u )O and vyg(v_y)o. Thus

y y y

{(\/_y)0 . ye A} is also an open « -shading of 1,. Since 1, is almost « -compact, then

{(v_y)o: ye A} has a finite proximate ¢ -subshading, say {v_yk: keJ,} such that

v, (y)>a foreach y e A. Now, let (ﬂ)o = (@)O N (@)O N, N (I)O . But we have

(@) cu,, then u(x) =1, as q(x) =1 for each k. Again, if z € A, there exists r such
that v, (z) > a >0 and clearly u(z) = 0. Hence u < A”. Therefore, 1 . is openin (X, t)

and consequently 1, is closed.
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Theorem 8.16: Let (X, t) be a fuzzy T,-space (as def. 1.46) and Ac X . If 1, is

almost « -compact subset in (X, t) and x e A°, then there exist u, vet such that

u(x) >0 and Ac (\_/) (0, 1]. The converse is not true in general.

The proof is similar as that of theorem (8.13).

Now, for the converse, we give the following example.

Let X ={ab}, 1=[01] and O0<ea<l. Let u, u,, u,el* defined by
u(@) =02, u)=0; u,(@)=0, u,(b)=0.3 and us(a) =0.2, uy(b) =0.3. Now, put
t={0, u, u,, Uy, 1}, then we see that (X, t) is a fuzzy T,-space. Now, we have
0°(a)=1, 0°b)=1; u/(@)=038, u(b)=1; u;(a)=1, uy(b)=0.7 and us(a)=0.8,
us(b) =0.7. Therefore u, =({0°, u;, u;, us}=us ie u(a)=08, u(h)=07;
u, =[€0°, uf, uj, us}=us ie u,(a)=08, u,(b)=07 and u, =0, v,
us, us}=us ie. uy(a)=0.8, u,(b)=0.7. Again, let 1, € I * defined by 1,(a) =0,
1,(b) =1. Hence we observe that A={b} and ae A°. Here u,, u,et where
u,(a) =0.8>0 and @)4(0’ 1]={a, b}. Hence A c @)4(0’ 1]. Take o = 0.9. Thus we
see that 1, is not almost « -compact in (X, t), as u, (a) <a for k =1, 2, 3. Thus the

converse of the theorem is not true in general.

Theorem 8.17: Let (X, t) be a fuzzy T,-space (as def. 1.46) and A, B < X . If 1,

and 1, are disjoint almost « -compact subsets in (X, t), then there exist u, v et such

that A (1) (0,1] and B < (v) (0,1].

Similar proof as theorem (8.14).
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Now, for the converse, consider the fuzzy T, -space (X, t) in the example of the theorem

(8.16). Let 1, , 1, € 1 * with 1,(a) =1, 1,(b) =0 and 1,(a) =0, 1;(b) =1. Thus we see
that A={a} and B={b}. Now u,, u,et where (u_l)_l(o, 11={a,b} and

@) (0,1] ={a, b}. Hence we observe that A c (u_l) (0,1] and B @) (0,1], where
1, and 1; are disjoint. Take o =0.9. Hence we see that 1, and 1, are not almost
a -compact in (X,t),as u,(a) <o and u,(b) <a , for k =1, 2, 3 respectively. Thus

the converse of the theorem is not true in general.

The following example will show that the almost o -compact subsets in fuzzy

T,-space (as def. 1.46) need not be closed.

Example 8.18: Consider the fuzzy T, -space in the example of the theorem (8.16).
Again, let 1, € 1* defined by 1,(a) =1, 1,(b) =0. Take o =0.6. Then clearly 1, is
almost « -compact in (X, t). But 1, is not closed in (X, t), as its complement 1 . is not

openin (X, t).

Theorem 8.19: An almost « -compact fuzzy regular topological space (X,t)
(as def. 1.52) is « -compact.

Proof: Let M ={u;: ieJ} be an open «-shading of 1, i.e. u,(X) >« for every

i » Where v, is an open fuzzy set such

X € X . By fuzzy regularity of X, we have u, = Uv

ied

that \/_IJ cu, foreachi. Asu,(x) >a = Uvij(x) >a foreach x € X. So v;;(x) >a for

iel
all xe X and for i e J. Therefore we have {v;: i€ J} an open «-shading of 1,.

Since 1, is almost o-compact, then there exist v, ;e{v;} (keJ,) such that
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V,;(X) >a for each x e X. But we have v, ; cu, = u, (X)>a for each xe X.

Therefore 1, is o -compact.

Theorem 8.20: An fts (X,t) is almost o -compact iff (X,t,) is compact

topological space.

Proof: Suppose (X, t) is almost o -compact. Let W ={U,: i € J } be an open cover of
(X,t,). Then for each U,, there exists a v, et such that U, =a(v,). Thus we have
W ={a(v,): ieJ}. Sothefamily M ={v,: ieJ} is an open « -shading of (X, t).
Then {(\TI)O > ieJ} isalso an open « -shading of (X, t). To see this, let x € X . Since W
is an open cover of (X,t,), there is an U, €W such that xeU; . But U, =a(v,) for
some v, et. Therefore x € ar(v; ) which implies that v; (x) >« . Since (X, t) is almost
a -compact, then M has a proximate « -subshading, say v, € M (k € J;) such that
v, (X)>a. Since v, v, , then {a(\?k): k e J,} forms a finite subcover of W and thus
(X, t,) is compact.

Conversely, suppose that (X,t,) is compact. Let M ={u: ieJ} be an open

a -shading of (X, t), then {(u_l)0 : ieJ | is also an open « -shading of (X, t). Therefore
we have the family W ={ a(u,) : i€ J } is an open cover of (X, ta). Now, for x e X,
there exists a U, € M such that u, (x) >a.S0 x e ar(u;, ) and a(u, ) e W . Since (X, t,)

is compact, then W has a finite subcover, say a(u;)eW (keJ,) such that

X =a()uva)u..ua). But (u_l)0 cu, so {u : kel } forms finite

proximate « -subshading of M . Hence (X, t) is almost a -compact.
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Theorem 8.21: Let (X, t) be an ftsand (X, t,) be a « -level topological space. Let
f:(X,t,)— (X,t) be a-level continuous and bijective mapping. If (X, t,) is compact,
then (X, t) is almost o -compact.
Proof: Let {u,: i € J } be an open « -shading of (X, t), then ((u_l)0 ied}isalsoan

open « -shading of (X,t). Since f is o -level continuous, then o (f7(u))et, =

a(f‘l(u_i)oj et, and hence {a(f‘l(u_i)oj: ieJ} is an open cover of (X,t,). As
(X,t,) is compact, then {a(f‘l(u_i)oj: ieJ} has a finite subcover, say

{a(f‘l(Q)O): kel, } Now, we have f(x) =y for y e X, as f is bijective. Since

(u_l)0 cu, and {a(f‘l(Q)O): k € J, } is a finite subcober of {a(f"l(ui )O) > ied}, then

there exist some k such that u; (f(x))>a = u, (y) >« for every y e X . Therefore
{q : k e J,} forms a finite proximate « -subshading of {u,: i € J }. Hence (X, t) is

almost « -compact.

Theorem 8.22: A topological space (X, T) is compact iff (X, o (T )) is almost
o -compact.
Proof: Suppose (X, T) is compact. Let {u,: ieJ} be an open «-shading of
(X, (T)). Then {(u_l)0 : ieJ} isalso an open «-shading (X, @ (T )). Therefore we
can write u*(a,11€T and hence {u'(a,1]: u"(a,1]eT} is an open cover of
(X, T). As (X , T) is compact, then {u*(a,1]: u*(a,1] € T } has a finite subcover, say

uMadle{ut@} (ked,) such that X =u’(dl] U ul@l] U... U
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u*(a,1]. But from (u_l)0 cu,, we observe that there exists (q)o € {(u_l)0 ied}
(keJ,) suchthat u, (x) >a forall x e X . Hence it is observe that {u, : k € J,} isa

finite proximate o -subshading of {u,: ie J}. Therefore (X, (T)) is almost

a -compact .

Conversely, suppose that (X, o (T )) is almost o -compact. Let {V;: jeJ} beopen

cover of (X, T) ie. X = U{Vj :V;eT} Asl isls.c,thenl, ew(T) and we have

et
{1, :1, €o(T)} isan open a-shading of (X, (T)). Then {(171)0 Ly, co(T)|is
also an open « -shading of (X, @ (T )). Since (X, (T )) is almost ¢ -compact, then
{(171 )O : 1, € a)(T)} has a finite proximate o -subshading, say
G ) ell): 1 com} (ked,) such that L, ()>a for all xeX. As
1, €o(T) and 1, gl?j, then we can write X =V; UV, U...... UV, and hence it is

clear that {V,; }(keJ,) is a finite subcover of {V,;: jeJ}. Hence (X,T) is

compact.

Definition 8.23: Let (X,t) beanftsand 0 <5 <1, O<a <1.Let{u;: ieJ} be
a family of & -open fuzzy sets in (X, t). Then {u;: i€ J} isaproximate ¢ - -shading
of X when {u,: ieJ}isad-a-shadingof X i.e u(x)>ea forall xe X.
A subfamily of {u,: i € J } which is also a proximate ¢ -« -shading of X is said to be

proximate ¢ - « -subshading of X .
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Definition 8.24: Let 0 <8 <1,ael. An fts (X,t) is said to be almost
0 -a-compact, 0 <a <1 iff every 6 -a-shading of X has a finite subfamily whose
closures is 6 -a -shading of X or equivalently, every 6 -« -shading of X has a finite

proximate ¢ - « -subshading.

Theorem 8.25: Every almost ¢ -« -compact space is almost « -compact. But the
converse is not true.
The proof is straightforward.

For the converse, we consider the following example.

Let X =[0,1], 1 =[0,1] and 0 <5 <1, 0 <a <1. Let u,, u,, u,e 1* defined by
0 for 0<x<0.6 0.4 for 0<x<0.6

u(x) =40 for x =0.6 : u,(x) =<0 forx =0.6 and
0.3 for 0.6<x<1 0 for 0.6<x<1

0.4 for 0<x<0.6
U, (x) =40 forx=06 . Putt={0, u,, u,, u,, 1}, then we see that (X, 1) is
0.3 for 0.6<x<1

1 for 0<x<0.6 0.6 for 0<x<0.6
an fts. Now, u;(x) =<1 forx=0.6 , U;(x)=<1 forx=0.6 and
0.7 for 0.6<x<1 1 for 0.6<x<1

06 for 0<x<0.6
u;(x) =41  forx=0.6 . So we have u_lzﬂ{ 0°, u’, u;, u; }= u; ie.
0.7 for 06<x<1

06 for 0<x<06
u(x) =41 forx=06  ; u,=(]0°, u, u, u }= u e
0.7 for 06<x<1

06 for 0<x<0.6

u,(x) =41 forx=06 and  u=({O0°, u, uj, u Y= u e
0.7 for 0.6<x<1
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0.6 for 0<x<0.6
U(x) =41 forx=0.6 . Take o =0.4. Clearly (X,t) is almost o -compact.

0.7 for 0.6<x<1
Again, take & =0.9. Then we observe that there is no finite proximate o -« -subshading

of X . Hence (X,t) is not almost & -« -compact. Thus the converse of theorem is not

necessarily true.
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Chapter Nine

Almost Partially « -Compact Fuzzy Sets

In this chapter, we have introduced almost partially o -compact fuzzy sets.
Furthermore, we have established some theorems, corollary and examples about almost
partially « -compact fuzzy sets. Also we have defined almost partially ¢ - « -compact
fuzzy sets and found different characterizations between almost partially « -compact and

almost partially o - o -compact fuzzy sets.

Definition 9.1: A family {u,: i€ J } is a proximate partial « -shading, in short
ppa -shading of a fuzzy set A in X when {u_i: ieJ} isa pa-shading of A4 ie.
u,(x) > a foreach x € 2,.

A subfamily of {u,: ieJ} which is also a ppa-shading of A is said to be

ppo -subshading of 4.

Definition 9.2: Let (X,t) be an ftsand o e | . A fuzzy set 1 is said to be almost
partially « -compact, 0 <« <1, in short, apa -compact iff every open pea -shading of 4
has a finite subfamily whose closures is pa -shading of A or equivalently, every open

pa -shading of A has a finite ppa -subshading.

Theorem 9.3: Let (X,t) be an fts, Ac X and A be a fuzzy set in X with

Ao < A.Then A is apa -compact in (X, t) iff A is apa -compact in (A, t,).
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Proof: Suppose A is apa -compact in (X, t). Let {u;: ieJ} beanopen pa-shading

of 1 in (A t,), then {(u_l)0 : ieJ} isalso an open pa-shading of 4 in (A, t,). So there

exist v, et such that u, =v,| Acv,. Therefore {v,: i€ J } is an open pea -shading of
A in (X,t) and so {(\TI)0 icJ} isalso an open pe -shading of A in (X,t). Since

(\T)Og\Ti and A is apa-compact in (X,t), then {(\TI)0 ieJ} has a finite

ppa -subshading, say {v;, : keJ,} such that v, (x)>a for each xeA4,. But

u= Vvi|]A cv,|Acv,. Now, [[U\ZJ|AJ(X)>O{ =X U(vik|A)(x)>a =

keld, el,

UQ(X)>0¢, as A, A and hence it shows that {q: kel ,} is a finite
kel,

ppa -subshading of { u; : i € J }. Therefore 4 is apa -compactin (A, t,).

Conversely, suppose A is apa -compact in (A, t,). Let {v,: ieJ} be an open

pa -shading of 4 in (X,t), then {(\TI)0 ieJ} isalso an open pa-shading of 1 in
(X,t). Put u =V, | A, then [Uvij| A= JwIA) =Ju . Butyet,,so{u:iel}
ield iel iel

is an open pa-shading of 1 in (A t,). Therefore {(u_l)0 ieJ} is also an open
pa -shading of A in (A t,). As (u_l)0 cu, and A is ape -compact in (A,t,), then
{(u_l)0 : ieJ | hasa finite ppa -subshading, say {u, : k € J,} such that u; (x) >a for

each xel,. But u=v[Acv|Acy, then {v, : keJ} is a finite

ppa -subshading of {v,: i € J }. Thus A is apa -compact in (X, t).
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Corollary 9.4: Let (Y, t*) be a fuzzy subspace of an fts (X, t) and AcY c X. Let
A be a fuzzy set in X with A, A. Then A is apa -compact in (X,t) iff A4 is
apa -compact in (Y, t*).
Proof: Let t, and t, be the subspace fuzzy topologies on A. Then by preceding theorem
(9.3), A is apa -compact in (X, t) or (Y, t*) iff 1 is apa -compact in (A, t,) or (A, tA)

Butt, =t,.

Theorem 9.5: Let (X, t) and (Y, s) be two fts’sand f: (X,t)— (Y, s) be fuzzy
continuous and surjective mapping. If 4 is apoa -compact in (X,t), then f(1) is
apa -compact in (Y, s).

Proof: Let {u;: i € J } beanopen pa -shading of (1) in (Y,s), then {(u_l)0 cied}is

also an open pa -shading of f(4) in (Y, s). As f is fuzzy continuous, then f‘l(u_i)O et

and hence {f‘l(u_i)0 :ieJ}isanopen pa-shading of 4 in (X,1t). For, let x € 4, then

f(x) e (f(A)),. So there exists (q)o € {(ui)0 : ieJ} such that (q)o(f(x))>a =

f‘l(q)o(x) >q.As A is apa -compact, then {f‘l(u_i)0 : ieJ} has a finite subfamily,

say {f‘l(Q)0 : keJ,} such that f‘l(u_)O (x) > a for each x e 4,. But (ui)0 cu, and

i

fuzzy continuity of f f‘l(u.) must be a closed fuzzy set in X such that

f‘l(u_i)O c f‘l(u_i) and then f‘l(u_i)O c f‘l(u_i). Therefore f (f‘l(u_i)oj cu, for each
ieJ.Now,if ye (f (A))o, then y = f(x) forsome x € 4,, as f is surjective. So there
exists k such that f‘l(Q)(x) >a = u (f(X)>a = u (y)>a. Hence f(1) is

apa -compact in (Y, s).
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Theorem 9.6: Let (X, t) and (Y, s) be two fts’sand f : (X,t) —(Y,s) be fuzzy
open, fuzzy closed and bijective mapping. If 1 is apa -compactin (Y, s), then f (1) is
apa -compact in (X, t).

Proof: Let {u,: i € J } be anopen pa -shading of f*(1) in (X, t), then {(u_l)0 cied}
is also an open pa -shading of f~*(1) in (X, t). Since f is fuzzy open, then f (u_l)0 €S
and hence {f(u_l)0 : ieJ} isanopen pa-shading of A in (Y,s). For, let y € 4,, then

f3(y) e (f1(4)),. So there exists (Q)O e {(ui)0 : ieJ } such that (q)o(f‘l(y))> a =

f(@)o(y)xx. As A is apa-compact in (Y,s), then {f(u_i)o: ieJ} has a finite

subfamily, say {f(q)o: ked,} such that f(q)o(y)xx for each ye,. But

(J)O cu, and f is fuzzy closed, f(u_,) must be a closed fuzzy set in Y such that

f (u_l)0 c f (u_,) and then f (u_l)0 c f (u_,) Therefore f‘l(f(u_i)oj cu, foreach ie J. For,
if xe (f‘l(l))o, then x = f*(y) for y € 1,, as f is bijective. So we can obtain, there

exists k such that f(q)(y) >a = q(f‘l(y))xx = u, (X) >a. Hence f(1) is

apa -compact in (X, t).

Theorem 9.7: Let (X, t) be an fts and let every family of closed fuzzy sets in X

with empty intersection has a finite subfamily with empty intersection. Then any fuzzy set

A in X is apa -compact. The converse is not true in general.

Proof: Let A be any fuzzy setin X and let {u,: i € J } be an open pa -shading of 1,

then {(u_l)0 ieJ} is also an open pa« -shading of A. By the first condition of the
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theorem, we have ("|ui =0, . Therefore | Ju, =1, and hence U(u_l)O =1,,85 U C (u_l)O

ied ied ied

Again, by the second condition of the theorem, we get ﬂufk =0,. So we have
kel,

0

Ju, =1 and hence U(q)o =1, as u, g(u_i)o. But u, g(u_l) cu,, then we get

keld, kel,

qulx and consequently we have q(x)>a for each xe A,. Therefore
kel,

{u, kel }isafinite ppa-subshading of {u;: i€ J}. Hence 1 is apa -compact.
Now, for the converse, we consider the following example.

Let X={a,b,c}, 1 =[0,1] and 0 < <1. Let u, ve |I* defined by u(a)=0.3,
u(b)=0.2, u(c)=0.4 and v(a) =0.4, v(b)=0.3, v(c) =0.5.Choose t={0, u, v,
1}, then (X,t) is an fts. Now, 0°(a)=1, 0°hb)=1, 0°Cc)=1; u‘(a)=0.7,
u‘(b) =08, u°(c)=06 and v°(a)=0.6, v°(b)=0.7, v°(c)=0.5. So we have
u=()0°, u", v"}=v"ie u(@=06, ub)=07, uc)=05and v={0, u,
V' }=Vv® ie v(@) =06, v(b)=0.7, v(c)=0.5. Again, let 2 e 1* with 1(a)=0,
() =03, A(c) =0.8. Take o =0.3. Then clearly A is apa-compact in (X,t). But

u® m v° = 0. Therefore the converse is not true in general.

The following example will show that the apo -compact fuzzy sets in an fts need
not be closed.

Example 9.8: Consider the fts (X, t) in the example of the theorem (9.7). Again, let
A eI with 1(a) =0.5, A(b) =0.6, A(c) =0. Take @ =0.5. Then clearly A is almost

apa -compact in (X, t). But A is not closed, as its complement A° is not open in (X, t).
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Theorem 9.9: Let (X,t) be a fuzzy T, -space (as def. 1.45) and A be an

apa -compact fuzzy set in X with 1, X. Let x¢ A, (A(x) =0), then there exist
u, vetsuchthat u(x) =1and 1, < (\_/)_1(0, 1].

Proof: Let y e A,. So clearly we have x # y. As (X,t) is fuzzy T,-space, there exist
u,, v, etsuchthat u,(x)=1, u,(y)=0 and v,(x) =0, v, (y)=1. Let us assume that

0 <a <1suchthat v (y) >a >0 (as v,(y) =1). Thus we see that {v, : y e 4,} isan

open pea-shading of A. Also we have (u_y)o(x):l, (v_y)o(y):l, as uyg@)o,

Vv g(\/_y)0 and then {(\/_y)0 ye/lo} is also an open pa-shading of A. Since A4 is

y

apa -compact, then {(\/_y)0 D ye /lo} has a finite ppa -subshading, say {v_yk: kel }
such that v, (y) > a for each y e 4,. Now, let (\_/)0 = (\/_yl)0 v (\/_)0 U e U (\/_)0 and

(ﬂ)o = (@)0 N (@)O Ao O (I)O Hence (v)

are the union and finite intersection of open fuzzy sets respectively i.e. (\_/) : (ﬁ) et. But

0

and (ﬂ)o are open fuzzy sets, as they

we have (\/_y)ogv—y and (uy)ogu_y. Moreover, /log(\_/)il(o,l] and u(x) =1, as

u,, (x) =1 foreach k.

Theorem 9.10: Let (X, t) be a fuzzy T,-space (as def. 1.45) and A, u be disjoint

apa -compact fuzzy sets in X with 1,, u,c X. Then there exist u, v et such that

A, (0) (0,11 and w1, < (v) (0.11.
Proof: Let ye A,. Then we have y ¢ u,, as A and u are disjoint. As u is

apa -compact, then by theorem (9.9), there exist u,, v, et such that u_y(y) =1 and
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Mo & (V_y)il(O, 1]. Assume that 0 <« <1 such that E(y) >a >0. Since E(y) =1, then
we have {(@)O yeio} is an open pa-shading of A. But 4 is apa -compact, so
{(@)0 . yeA, | hasafinite ppe -subshading, say {u, : k € J,} such that u, (y) >«

for each y e A,. Again, u is apoa-compact, then {(v_y) : Xeyo} has a finite

ppa -subshading, say {v, : k € J,} such that v, (x) >« for each x e u, and u,
c(v,) (01] for each k. Now, let (u) = (0,) u(n, ) v.ufs,) and
W)= 0)n6) ol ). Butwehave (o) cu, and (v,) cv,, we see
that 2, < (u) (0,1] and s, < (v) (0,1]. Also (u) and (v) are open fuzzy sets, as they

are the union and finite intersection of open fuzzy sets respectively i.e. (ﬁ) : (\_/) et.
Remark: If A(x) #0 for all xe X ie. 4,= X, then the above two theorems

(9.9) and (9.10) are not at all true.

The following example will show that the apa -compact fuzzy sets in fuzzy T,-pace
(as def. 1.45) need not be closed.

Example 9.11: Let X ={a,b}, | =[0,1] and 0 <& <1.Let u, ve I defined
by u(@) =1, u(b)=0 and v(a) =0, v(b)=1. Take t={0, u, v, 1}, then (X,t) is
a fuzzy T, -space. Now, 0°(a)=1, 0°b)=1; u‘(@)=0, u‘(b)=1 and v°(a) =1,
ve(b) =0. So we have u=({0°, v°}=v*ie u(@)=1, u(b)=0 and v=[{0°,
ul=u® ie. v(@)=0, v(b)=1. Again, let 1 e 1* with A(a)=0.4, A(b)=0. Take
o =0.8. Then clearly A is apa-compact in (X,t). But A is not closed, as its

complement A° is not open in (X, t).
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Theorem 9.12: Let (X, t) be a fuzzy T, -space (as def. 1.46) and A be a fuzzy set in

X with 2, X . If 1is apa -compact in (X,t) and x ¢ A, (A(x)=0), then there

exist u, v et such that u(x) >0 and Ay S (\_/) (0,1]. The converse is not true in general

The proof is similar as that of theorem (9.9).

Now, for the converse, we give the following example.

Let X ={ab}, 1=[01] and O0<ea <l. Let u, u,, u,el* defined by
u (@) =02, u()=0; u,(@)=0, u,(b)=0.3 and u,(a) =0.2, u,(b) =0.3. Now, put
t={0, u,, u,, uy, 1}, then we see that (X, t) is a fuzzy T -space. Now, we have
0°(a)=1, 0°b)=1; u/(a)=0.8, u/(b) =1; u;(a)=1, uy(b)=0.7 and us(a) =0.8,
u;(b) = 0.7. Therefore, u, = ({0, u, uj, uj}=uj ie. u(a)=08, uyl(b)=0.7;
u, =0, uj, uj, us}=uj ie. u,(@)=08, u,(b)=07 and u, =[\{0°, u;,
us, uS}=ut ie u,(a)=0.8, u,(b)=0.7. Again, let 1 I* defined by A(a) =0,
A(b) =0.6. Hence we observe that 1,={b} and a¢ 1,. Here u,, u,et where
u(a)=0.8>0 and @)il(o, 1]={a, b}. Hence A,c @)il(o, 1]. Take o =0.9. Thus
we see that A is not almost apa -compact in (X, t), as u, (b) <a for k=1, 2,3 and

b € 1,. Thus the converse of the theorem is not true in general.

Theorem 9.13: Let (X, t) be a fuzzy T,-space (as def. 1.46) and A, u be disjoint

fuzzy sets in X with A,, u,c X.If A and u are apa -compacts in(X, t), then there

exist u, v et suchthat A, c (ﬁ) (0,1] and u,c (\_/) (0,1]. The converse is not true in

general.

The proof is similar as that of theorem (9.10).
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Now, for the converse, consider the fuzzy T, -space (X, t) in the example of the theorem

(9.12). Let A, u e I with (@) =0.5, A(b) =0 and u(a) =0, wu(b)=0.4. Thus we

see that A,={a} and wu,={b}. Now u,, u,et where (ul)_l(o, 1]={a, b} and

@) (0, 1] ={a, b}. Hence we observe that 1, c (u_l) (0,1] and p, @) (0,1], where
A and p are disjoint. Take « =0.9. Hence we see that A and u are not almost
apa -compact in (X, 1), as u,(a) <a where a € A, and u,(b) <a where b € u,, for

k=1, 2, 3 respectively. Thus the converse of the theorem is not true in general.

The following example will show that the apa -compact fuzzy sets in fuzzy
T,-space (as def. 1.46) need not be closed.

Example 9.14: Consider the fuzzy T, -space in the example of the theorem (9.12).
Again, let A e 1* defined by A(a) =0.7, A(b) =0. Take a =0.6. Then clearly A is
apa -compact in (X, t). But A is not closed in (X, t), as its complement A° is not open

in (X, ).

Theorem 9.15: An apa -compact fuzzy sets in fuzzy regular space (X, t)
(as def. 1.52) is pa -compact.
Proof: Let {u,: i€ J} beanopen pa-shading of a fuzzy set 1 in X i.e. u,(x) >« for

each x € A,. Since (X, t) is fuzzy regular, then we have u; = Uvij , where v, is an open
ield

fuzzy set such that \/_IJ cu, foreach i.But u,(x)>a = Uvij(x) >q foreach x € 4,.

iel
Therefore v;(x) > o for each x e 4, and for some ie J. So {v;: ieJ} is an open

pa-shading of 1. As A is apa-compact, then {v;: ieJ} has a finite
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ppa -subshading, say {\T

- ke, } such that such that \Tkj(x) >q for each x e 4,.
But we have ‘Tu cu; , then u; (x) >« foreach x € 4,. Thus we see that {u;, : ke J, }

is a finite pa -subshading of {u,: i € J } and hence 1 is pa -compact.

Theorem 9.16: Let (X, t) be an ftsand 2 be a fuzzy setin X with 1, < X . If 4,

is compact in (X,t,), then A is apa-compact in (X,t). The converse is not true in

general.

Proof: Suppose A, is compact in (X, ta). Let {u :ieJ} beanopen pa-shading A in
(X, t), then {(u_l)0 : ieJ} is also an open pa -shading of A in (X,t). So the family
{oc(u_i)0 : ieJ} is an open cover of A, in (X,t,). For let x € 4,, so there exists a
(u_.)0 < {(u_l)0 : ieJ} such that (Q)O (X) >a. Hence xe a(q)o and thus

oc(u_-)0 e {oc(u_i)0 :ied}. But A, is compactin (X,t,), so {oc(u_i)0 :ied} has a finite

0

subcover, say {a(q)o: ked,}. So {(q) : keJ,} forms a finite subfamily of

{(u_l)0 icJ} such that u, (x) >« for each x e, ie. {u_: ke, } is a finite
ppa -subshading of { u, : i € J }. Hence 4 is apa -compactin (X, t).

Now, for the converse, we consider the following example.

Let X ={a,b,c}, 1=[0,1] and 0<a <1. Let u, ve I” defined by u(a)=0.2,
u(b) =0.3, u(c) =04 and v(a) =0.3, v(b) =04, v(c)=05.Putt={0, u, v, 1},
then (X, t) is an fts. Again, let 2 € 1* with 1(a) =0, A(b) =0.6, A(c) =0.8. Then

Ao={b,c}. Now 0°(a)=1, 0°%b)=1, 0°@c)=1; u‘(a)=0.8, u‘(b)=0.7,

u‘(c)=06 and Vv°(@)=0.7, Vv'(b)=06, v°(c)=05. So we have
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u=[Ho, u, v}=v"ie u@) =07, ub)=06, uc)=05and v=){0, u,
v'}=Vv® ie. v(a)=0.7, v(b)=06, v(c)=05. Take o =0.4. Then clearly 1 is
apa -compact in (X, t). Now, we have t,, ={ ¢4, {c}, X }.Hence it is clear that 1, is

not compact in (X, t,,).

Theorem 9.17: Let f: (X,t,)— (X, t) be o -level continuous, bijective and 4 be
afuzzy setin X . If 2, is compactin (X,t,), then f(1) is apa -compactin (X, t).

Proof: Suppose 4, is compact in (X, ta). Let {u,: ieJ} be an open pa -shading
f(2) in (X, 1), then {(u_l)0 : ieJ } isalsoan open pa -shading of f(1) in (X,t). Since
f is o-level continuous, then o (f'(u))et, = a(f‘l(u_i)oj et, and hence

{a(f‘l(u_i)oj : ieJ} is an open cover of A, in (X,t,). As 4, is compact in (X,t,),

then {a(f‘l(u_i)oj . ieJ} has a finite subcover, say {a(f‘l(Q)oj: ked, }. Now, we
have f(x)=y for ye f(l),, since f is Dbijective. As (u_l)0 cu, and

{a( f ‘%ﬁ)oj: k eJ, } is a finite subcober of {a( f ‘1(u_i)oj : ieJ }, there exist some k

such that u, (f(x))>a = u, (y)>a foreach ye f(4),. Thus {u, : keJ }isa

finite ppa -subshading of { u, : i € J }. Therefore, f(A) is apa -compact in (X, t).

The following example will show that the “good extension” property does not hold

for apa -compact fuzzy sets.
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Example 9.18: Let X ={a,b,c} and T ={¢, {b}, {c}, {b,c}, X }. Then
(X,T) is a topological space. Let u,, u,, u,el* with u(a)=0,u(b)=0.3,
u,(c) =0; u,(a)=0, u,(b) =0, u,(c)=0.4 and u,(a) =0, u,(b)=0.3, u,(c) =04.
Then o(T)={0, u, u,, u,, 1} and (X, (T)) is an fts. Now, 0°(a) =1,
0°(b)=1, 0°c)=1; u(d)=1, u/(b)=07, u(c)=1; u;(@=1, u;b)=1,
us(c) = 0.6 and us(a) =1, uj(b) =0.7, us(c) =0.6. So we have u, = 0°, uf, u;,
us}=u; ie. u(a) =1, u(b) =07, u(c)=06; u, =({0°, uy, us, u;}=u; ie.
Uy(@) =1, Uy(b) =0.7, u,(c) =0.6 and u, =({0°, u, us, us}=uj i.e u,(a)=1,
u,(b) =0.7, uy(c) =0.6. Again, let Ael* defined by A@) =0, A(b)=06,
A(c) =0.5. Then we have A,={b, c}. Clerly A, is compact in (X,T). Take o =0.9.
Then A is not apoa -compact in (X, o (T )), as there do not exist u_k fork=1, 2,3
such that u_k(b) > o for b e 1,.Again, let u e 1* defined by u(a) =0.2, u(b)=0.2,
u(c) =0. Then we have u,={a, b}. Take o =0.3. Then clearly u is apa -compact in
(X, (T)). But u, is not compact in (X, T), as there is no finite subcover of u, in

(X,T).

Theorem 9.19: Let A and u be apoa -compact fuzzy sets in an fts (X, t). Then
(Ax u) is also aper -compact in (X x X, txt).
Proof: Let {u,xv,: ieJ} be an open pa-shading of (Axu) in (X xX,txt) ie.
(U, xv;) (x,y)>a for each (x,y)e (Axu),. Therefore we have u,(x)>a for each

X €A, and v,(y) >« foreach y € u,. Hence {u,: ieJ} and {v,: ieJ} are open

0

pa -shadings of A and pu respectively. Thus {(u_l)0 cield } and {(\TI) cield } are also
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open pa-shading of A and u respectively. Now we have (u_l)O cu and (v )0 cV,. As
A and u are apa -compact, then {(u_l)0 icld} and {(\TI)0 icJ} have finite
ppa -subshading, say {u, : k € J,} and {v, : k € J,} such that u, (x) > for each
Xxei, and \Z(y) >q for each yeu, respectively. Hence we can write
(qxq)(x, y) > a for each (X,y) e (Axu),. Therefore (1xu) is apa -compact in

(XxX,txt).

Definition 9.20: Let (X,t) be an fts, A be a fuzzy set in X and 0 <& <1,
O<a<1 Let {u: ieJ} be a family of &5-open fuzzy sets in (X,t). Then
{u;: ieJ} isaproximate partial 6 -« -shading of A, in short, ppde -shading, when
{u :iel}isa psa-shadingof 1 ie. u(x)>a forall x e 2,.

A subfamily of {u,: ieJ} which is also a ppde -shading of A is said to be

ppoa -subshading of A .

Definition 9.21: Let (X,t) beanftsand 0 <6 <1, e | . Afuzzy set 1 in X is
said to be almost partially 6 -« -compact, 0 <« <1, in short, apde -compact iff every
pda -shading of A has a finite subfamily whose closures is pda-shading of A or

equivalently, every pda -shading of A has a finite ppde -subshading.

Theorem 9.22: Every apda -compact fuzzy set in an fts is apa -compact. But the

converse is not true.
The proof is straightforward.

Now, for the converse, we consider the following example.
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Let X ={a,b,c}, 1 =[0,1] and 0 <5 <1, 0<a <1. Let u,, u,e I” defined by
u(@) =02, u()=04, u()=03 and u,(a) =03, u,(b)=05, u,(c)=0.4. Put
t={0, u, u,, 1}, then (X, t) is an fts. Now, 0°(a) =1, 0°(b)=1, 0°(c) =1;
u;(@)=0.8, u’(b)=0.6, u’(c)=0.7 and uy(a)=0.7, us(b) =05, u;(c)=0.6. So
we have u, =(\{0°, u, u;}=u; ie u(a)=07, u(b)=05, u(c)=06 and
u, =0, uf, us}=u; ie u,(a)=07, u,(b)=05, u,(c)=0.6. Again, let
Ae X with 2(a) =0.9, A(b) =0.7, A(c) =0.Sowe have 1,={a, b}. Take o =0.4.
Then clearly 1 is apa -compact in (X, t). Again, take 6 =0.9. Then we observe that

there is finite ppda -subshading of 4. Hence 4 is not apda -compact in (X, t). Thus the

converse of theorem is not necessarily true.
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Chapter Ten

Almost Qa -Compact Fuzzy Sets

In this chapter, we have introduced almost Q« -compact fuzzy sets. Furthermore,
we have established several theorems, corollary and examples of almost Q« -compact
fuzzy sets. Also we have defined almost 6 -Qa -compact fuzzy sets and identified
different characterizations between almost Qa -compact and almost & - Qe -compact

fuzzy sets.

Definition 10.1: A family {u,: i€ J } is said to be proximate Qc -cover of a
fuzzy set 4 in X when {u_i: ieJ}is Qa-coverof 1 ie. A(X)+ u_i(x) > o for each
x € X and for some u,, where o € I,.

A subfamily of {u,: i€ J} which is also a proximate Qe -cover of A is called a

proximate Q « -subcover of 4.

Definition 10.2: A fuzzy set A is said to be almost Qa« -compact iff every open
Qa -cover of A has a finite subfamily whose closures is Q« -cover of A or equivalently,
every open Qo -cover of A has a finite proximate Q « -subcover.

Every super sets of an almost Q « -compact fuzzy set is also almost Q « -compact.

Theorem 10.3: Let (X, t) beanfts, Ac X and A be afuzzysetin A.Then A is

almost Qa -compact in (X, t) iff A is almost Qa -compactin (A, t,).

167



Almost Q o -Compact Fuzzy Sets

Proof: Suppose A is almost Qa-compact in (X,t). Let {u,: ieJ} be an open

Qa -cover of A in (At,), then {(u_l)0 : ieJ} is also an open Qa-cover of A in
(A, tA). Then there exist v, et such that u, =v,| Acv,. Therefore {v,: i€ J} is an
open Qo -cover of 4 in (X,t) and so {(\TI)0 : ieJ} isalso an open Qo -cover of 4 in
(X,t). But (\TI)O cv, and A is almost Qa -compact in (X, t), then {(\TI)O ciel} hasa
finite proximate Q « -subcover, say {\Tk : keJ,} such that A(x) + \Tk(x) > o for each
xe A. Hence A(x)+ (\Tk| A)(x) >qa for each xeA and consequently
A(X) + U, (x)=a for each xe A. Therefore {u,_ : keJ } is a finite proximate
Qa -subcover of {u,: i € J }. Thus 4 isalmost Qo -compact in (A, t,).

Conversely, suppose A is almost Qa -compact in (A, tA). Let {v,: ieJ} bean open
Qa -cover of A in (X, 1), then {(\TI)0 : ieJ} isalso an open Qa -cover of A in (X, t).
Put u,=v,| A. Then A(X) +v,(x) 2« forall xe A = A(X) + (v, | A)(x) > « for each
xe A = A(X) + u;(x) 2« foreach x € A. Since u; €t,, then {u,: ieJ} isanopen

Qa -cover of 1 in (A t,). Therefore {(u_l)0 > ieJ} is also an open Qa -cover of A in

(A t,). But from (J)O cu, and A is almost Q& -compact in (A, t,), then {(u_l)0 Lied}

has a finite proximate Q o -subcover, say {q : ke J,} suchthat A(x) + q(x) >q for
each xe A.But u = v,|[AcV, | Acv,, then A(x)+ (vik |A)(x)2a for each x € A
= A(X) + (\Tk| A)(x) >a for each x € A and consequently A(x) + \Tk(x) > o for each

X € A. Therefore {\Tk: keJ, } is a finite proximate Qo -subcover of {v,: ieJ}.

Therefore 4 is almost Qa -compact in (X, t).

168



Almost Q o -Compact Fuzzy Sets

Corollary 10.4: Let (Y, t*) be a fuzzy subspace of (X,t) and AcY c X. Let 1
be a fuzzy set in A. Then A is almost Qa-compact in (X,t) iff 1 is almost
Qa -compact in (Y, t"),

Proof: Let t, and t, be the subspace fuzzy topologies on A. Then by theorem (10.3), 1
is almost Qe -compact in (X, t) or (Y,t") iff A is almost Qe -compact in (A,t,) or

(A t;). Butt, =t

Theorem 10.5: Let 1 be an almost Qa -compact fuzzy set in an fts (X, t). If

u < Aand g et®, then u isalso almost Qa -compact.

Proof: Let {u,: i € J} be an open Qa« -cover of u, then {(u_l)0 tield } is also an open
Qa -cover of u. So {(u_l)o} U {(E) } is an open Qo -cover of 4. As u(x) + (u_l) (x)
> foreach x € X, then we have A(x) + max ((u_i)o(x), (E) (x)j > foreach x e X.

Hence n(x) + (u_l)0 (X) < A(X) + (u_l)0 (x) > o for each x € X . Since (u_l)0 cu, and A is

almost Qo -compact, then {(u_l)o}u{(uc)} has a finite subcollection, say

I

{(u_-)0 cked, tu {(E)O} such that A(x) + max (Q(x), E(x))z a for each x e X .

Therefore {q : k eJ,} isa finite proximate Qo -subcover of {u,: i€ J}. Hence u

is almost Q a -compact.

Theorem 10.6: Let (X, t) be an fts and A be a fuzzy set in X . If every family of

closed fuzzy sets having the empty intersection has a finite subfamily with empty

intersection, then A4 is almost Q « -compact. The converse is not true in general.
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Proof: Let {u;: i €J} beanopen Qa -cover of A, then {(u_l) tield } is also an open

Qa -cover of 4. From the first condition of the theorem, we have ﬂ u =0, . Thus

ied

Ju =1, and so U(u_l)O =1, 8 U C (u_l)O Again by the second condition of the

ied ied

theorem, we get (|u’ =0,. So we have |Ju, =1, and hence [ (q)o =1, as

kel, kel, ked,

U, < (u_l) . But u, ¢ (u_l) c u;, then kU u, =1, and consequently A(x) + u, (x) > a for
elJ,

each x e X. Therefore {q: keld,} is a finite proximate Qe -subcover of
{u:ieJ} Thus 4 isalmost Qa -compact.

Now, for the converse, we give the following example.

Let X ={a,b}, I =[0,1] and « € I,. Again, let u, ve I* defined by u(a) =0.2,
u(b) =0.4 and v(a) =0.3, v(b)=06. Put t={0, u, v, 1}, then (X,t) is an fts.
Now, 0°(a) =1, 0°(b) =1; u°(a) =0.8, u°(b)=0.6 and v°(a) =0.7, v°(b) =0.4. So
we have u=(){0°, u°, v°}=v® ie u(@=07, u(b)=04 and v=[{0°,
u®l= u®ie v(@) =08, v(b)=0.6. Let 1< I* with A(a) =0.3, A(b)=0.7. Take
o =0.9. Then clearly A is almost Qa -compact in (X, t). But u®v®= 0. Therefore

the converse of the theorem is not true in general.

Theorem 10.7: LetA and u be almost Qo -compact fuzzy sets in an fts (X, t).

Then A~y is also almost Qa -compact in (X, t).
Proof: Let {u,: ieJ} beanopen Qo -cover of A nu, then {(u_l) cield } is also an

open Qa -cover of A nu. Therefore {(u_l) cield } is any open Qa -cover of both A
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and u respectively. But from (u_l) gu_i and A is almost Qa -compact in (X,t), then

{(u_l)0 ieJ} has a finite proximate Qe -subcover, say {q: keJ,} such that

A(X) +u, (X) > a for each x e X . Similarly, we can find {u, : reJ } is a finite

proximate Qa -subcover of {(u_l)0 tield } Therefore {q : U_i,} is a finite proximate

Qa -subcover of {u;: i€ J}.Hence A u isalmost Qo -compact in (X, t).

Theorem 10.8: LetA and u be almost Qa -compact fuzzy sets in an fts (X, t).
Then AU u is also almost Qo -compact in (X, t).
Proof: We have AcAuu, ucAuu.As A and u are almost Q« -compact, then it

is clear that A L u is almost Qa -compact in (X, t).

The following example will show that any other subsets of an almost Q « -compact

fuzzy set in an fts need not be almost Q « -compact.

Example 10.9: Let X ={a, b}, 1 =[0,1] and a € 1,. Again, let u, vel*
defined by u(a) =0.3, u(b)=0.4 and v(a) =0.4, v(b) =0.5. Consider t={0, u,
v, 1}, then (X, t) is an fts. Now, 0°(a) =1, 0°(b) =1; u®(a) =0.7, u®(b) =0.6 and
vi(a)=0.6, v°(b) =0.5. Therefore u= (){0°, u°, v°}=v° ie. u(a)=06,
u(b) =05 and v={){0°, u®, v:}=vie v(@)=06, v(b)=05.Let 1, pel*
with 2(a) =0.3, A(b) =0.7 and u(a) =0.1, u(b) =0.4.We observe that u — 1. Take
a =0.8. Clearly 2 is almost Qe -compact in (X, t). But x is not almost Qe -compact

in (X,t), as u have no finite proximate Qe -subcover in (X, t).
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Note: The example (10.9) also shows that almost Q « -compact fuzzy sets in an fts

need not be closed, as A is almost Q¢ -compact in (X, t) but A° is not open in (X, t).

Theorem 10.10: Let (X, t) be a fuzzy T,-space (as def. 1.45) and A be an almost

Qa -compact fuzzy set in X with 1, X . Let xe 1, (A(x) =0), then there exist

u, vetsuchthat u(x)=1and 1, < (\_/)_1(0, 1].
Proof: Let y € 4,. Then clearly we have x # y. Since (X, t) is fuzzy T,-space, then
there exist u,, v, et such that u (x)=1, u,(y)=0 and v, (x) =0, v, (y)=1. Letus

assume that o € I, such that A(x) + u,(x) 2, xe X and A(y) + v, (Y)2a, ye i,

yeld,} is an open Qa-cover of A. Also we have (u )0 x)=1,

|.e.{uy, v, . y

,
(v_y)o(y) =1,as U, c (@)0 LV, C (\/_y)0 and say M :{(E)O , (\/_y)0 © yel, | is also an
open Qa -cover of A. But we have (@)0 g@, (\/_y)0 gv_y and since A is almost
Qa -compact, then M has a finite proximate Qe -subcover, say {u, , v, : k e J. }

Y ! Yk

such that A(x) + U, (X) > for each x € X with A(x) =0, for some (1, ) €M and
Ay)+V, ()= a for each ye X with A(y)>0, for some (v, ) M. Now, let
R B U BOOY o DA RN o Jt O
see that (v) and (u) are open fuzzy sets, as they are the union and finite intersection of

open fuzzy sets respectively i.e. (\_/)0 , (G)O e't. Moreover, A, c (\_/)_1(0, 1] and u(x) =1, as

u,, (x) =1 foreach k.
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Theorem 10.11: Let (X, t) be a fuzzy T,-space (as def. 1.45) and A, u bedisjoint

almost Q « -compact fuzzy sets in X with A,, u, < X . Then there exist u, v et such

that 2, < (1) (0,1] and 4, < (v) (0,11.
Proof: Let y € 1,. Then we have y ¢ u,, as A and u are disjoint. Since g is almost

Qa -compact, then by theorem (10.10), there exist u,, v, et such that u_y(y) =1 and

y !

Ho g(\/_y)il(o, 1]. Let us take « €1, such that A(x) + (v_y)o(x) >q, xeX and

A(y) + (@)O(y) >a, yeld,iesay M = {(vy)0 , (@)0 : yel, | isanopen Qe -cover

of A. But we have (vy) cv, and (uy) cu,. As u(y)=1 and 4 is almost

Qa-compact in (X,t), then M has a finite proximate Qo -subcover, say

{v_yk, q: k € J,} such that A(x) +v_yk(x)2a for each x € X with A(x) =0, for
some (v_yk) eM and l(y)+Q(y)2a for each y e X with A(y) >0, for some
(Q)OGM. Again, since u is almost Qa-compact in (X,t), then we have
u(x)+v, (x)=a for each xeX with u(x)>0, for some (\/_yk)0 eM and

u(y) +q(y)2a for each ye X with u(y)=0, for some (q)o e M and also

Iy g(v_yk)_l(o, 1] for each k. Now, let (ﬁ)o =(@)O U (u )Ou ...... u(u_)0 and

Y2 Yn

(\_/)0 = (\/_yl )0 N (\/_yz )0 A N (\? )0 . Thus we observe that A,c (G)'l(o, 1] and

0

- (\_/)71 (0,1]. Hence (ﬂ) and (\_/)O are open fuzzy sets, as they are the union and finite

intersection of open fuzzy sets respectively i.e. (ﬂ) : (\_/) et.
Remark: If A(x) =0 for all xe X ie. 1,= X, then the above two theorems

(10.10) and (10.11) are not at all true.
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The following example will show that the almost Q  -compact fuzzy sets in fuzzy

T,-space (as def. 1.45) need not be closed.

Example 10.12: Let X ={a,b}, | =[0,1] and o € I,. Let u, ve I defined
by u(a) =1, u(b)=0 and v(a) =0, v(b)=1. Putt={0, u, v, 1}, then we see that
(X,t) is a fuzzy T,-space. Now, 0°(a)=1, 0°(b)=1; u‘(@) =0, u‘b)=1 and
vi(a)=1, v°(b) =0.Sowe have u= ({0°, v:}= v°=u ie u(@) =1, u(b)=0
and v=[){0°, u°}= u‘=v ie v(@)=0, v(b)=1. Again, let 1 <1 defined by
A(a) =0.3, A(b) =0.2. Take o = 0.6. Then clearly A is almost Qo -compact in (X, t).

But A is not closed, as its complement A° is not open in (X, t).

Theorem 10.13: Let (X, t) be a fuzzy T,-space (as def. 1.46) and A be a fuzzy set

in X with 1, X . If 4 isalmost Qa -compactin (X,t) and x ¢ A, ( A(x) =0, then

there exist u, v et such that u(x) >0 and A, < (\_/) (0,1]. The converse is not true in

general.
The proof is similar as that of theorem (10.10).

Now, for the converse, we give the following example.

Let X ={a,b}, 1=[0,1] and O<a<1. Let u, u,, u;el” defined by
u(@) =02, u)=0; u,(@)=0, u,(b)=0.3 and uy(a) =0.2, uy(b) =0.3. Now, put
t={0, u, u,, ug, 1}, then we see that (X, t) is a fuzzy T,-space. Now we have,
0°(@)=1, 0%b) =1; u/(a)=0.8, u(b) =1; u;(a)=1, u;(b) =0.7 and u;(a) =0.8,
us(b) =0.7. Therefore u, =({0°, u;, u;, us}=us ie u(a)=08, u,(h)=07;

u, =0, uj, uj, us}=uj ie. u,(@)=08, u,(b)=07 and u, =[\{0°, u;,
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U, ul}=us ie u,(a) =08, uy(b)=0.7. Again, let 1 1 defined by A(a) =0,

A(b) =0.3. Hence we observe that A,={b} and ae¢A,. Here u,, u,et where

U(a) =08>0 and (1,) (0,1]={a,b}. Hence A, (u,) (0,1]. Take o =09. Thus

we see that A is not almost Qe -compact in (X, t), as A(a) + u_k(a) <a for ae X and

k =1, 2, 3. Thus the converse of the theorem is not true in general.

Theorem 10.14: Let (X, t) be a fuzzy T, -space (as def. 1.46) and A, u be fuzzy

sets in X with A,, p,c X.If A and g are disjoint almost Qe -compacts in (X, t),

then there exist u , v e t such that 1, < (G)'l(o, 1] and p, (\_/)_1(0, 1].
The similar work as that of theorem (10.11).

Now, for the converse, consider the fuzzy T,-space (X, t) in the example of the theorem

(10.13). Let A, pe I with (@) =03, A(b)=0 and wu(a) =0, u(b)= 0.1. Thus

we see that A,={a} and pu,={b}. Now u,, u, et where (ul)_l(o, 1] ={a, b} and

@) (0, 1] ={a, b}. Hence we observe that 1, c (u_l)_l(o, 1] and p, @)_1(0, 1], where
A and u are disjoint. Take « =0.9. Hence we see that A and u are not almost
Qa -compact in (X,t), as A(b)+ u,(b) <a for be X and wu(a)+u (@) <a for

ae X where k =1, 2, 3. Thus the converse of the theorem is not true in general.

The following example will show that the almost Q & -compact fuzzy sets in fuzzy
T,-space (as def. 1.46) need not be closed.
Example 10.15: Consider the fuzzy T,-space (X, t) in the example of the theorem

(10.13). Again, let 1 € 1* defined by A(a) =0.4, A(b) =0.8. Take o =0.9. Clearly 1
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is almost Q & -compact in (X, t). But A is not closed, as its complement A° is not open in

(X, 1).

Theorem 10.16: An almost Qa -compact fuzzy sets in fuzzy regular space

(as def. 1.52) is Q & -compact.
Proof: Let {u;: ieJ} be an open Qa-cover of 4 ie. A(x)+ u,(x)>a for each
x € X . As (X, t) is fuzzy regular, then we have u; = | J v, , where v, is an open fuzzy set

such that \Tjgui for each i. But A(X)+u(x)>a for each xeX =

A(X) + Uvij (x) > for each x e X . Then A(X) + v;(x) >« for each x e X and for

iel
some ieJ. So {v; : ieJ} is an open Qa-cover of 4. Since A is almost
Qa -compact, then {v; : ieJ} has a finite proximate Qa -subcover, say
{v,,: ked,} suchthat A(x) + v, (x) 2 for each x e X. But we have v, ; c u; ,
then A(x) +u, () 2a for each xe X. Therefore {u, : keJ,} is a finite

Qa -subcover of {u,: i e J} and hence 1 is Qa -compact.

Theorem 10.17: Let (X,t) be an fts and A be a fuzzy set in X . If A, is compact
in (X,t,), then A isalmost Qe -compact in (X, t). The converse is not true in general.

Proof: Suppose A, is compact in (X,t ). Let {u,: i e J } be an open Qo -cover of A
in (X, t), then {(u_l)0 : ieJ} is also an open Qa -cover of 4 in (X,t). So the family
{oc(u_i)0 : ieJ} is an open cover of A, in (X,t, ). But 4, is compact in (X,t,), so

{oc(u_i)0 : ieJ} has a finite subcover, say {a(q)o : ked, }. Thus {(q)o ckeld, )
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forms a finite subfamily of {(u_l)0 tield } such that A(x) + q(x) > o foreach x € X i.e.

{u;, : ke, } is afinite proximate Qo -subcover of {u;: ieJ}. Hence A is almost
Qo -compactin (X, t).

Now, for the converse, consider the example.

Let X ={a,b}, 1 =[0,1] and O<a <1. Let u, ve l* defined by u(a)=0.3,
u(b) =04 and v(a) =0.5, v(b)=0.6. Put t={0, u, v, 1}, then (X, t) is an fts.
Now, 0°(a) =1, 0°(b) =1; u°(a)=0.7, u°(b) =0.6 and v°(a) =0.5, v°(b)=0.4. So
we have u=[{0°, u", v'}=v° ie. u(@=05, u(b)=04 and v=[){0°,
ul=u® ie. v(@)=0.7, v(b)=0.6. Again, let 2 e 1* with A(a)=0.1, A(b)=0.
Then 1,={a}. Take & =0.5. Then clearly A isalmost Qa -compact in (X, t). Now we
have t,. ={¢, {b}, X} and (X,t,,) is a 0.5-level topological space. Hence we

observe that A, is not compact in (X,t,,), as there is no finite subcover of 1, in

(X’ t0_5).

The “good extension property” does not remain valid for almost Q « -compact fuzzy
sets.

Example 10.18: Let X ={a,b,c} and T ={¢, {b}, {c}, {b,c}, X }. Then
(X,T) is a topological space. Let u,, u,, u;el* with u(a)=0, ul(b)=0.6,
u,(c) =0; u,(a)=0, u,(b) =0, u,(c)=0.3 and u,(a) =0, u,(b)=0.6, u,(c) =0.3.
Then o(T)={0, u, U,, U, 1} and (X, (T)) is an fts. Now 0°(a)=1,
0°(b) =1, 0°c)=1; u(@=1, u)=04, u(c)=1; u(a)=1, us(b)=1,

uj(c) =0.7 and uj(a)=1, uj(b)=04, u5(c)=07. So we have u =[ {0,
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usb=u; ie u@=1, u® =1, u()=07; u, =(KO0%, u’, uf, u/}=uy ie
u(@) =1, u,(0)=04, u,(c)=07 and u;=({0°, us}=u; ie u,(a)=1,
u,;(b) =1, uy(c) =0.7. Again, let 1 e I* defined by A(a) =0, A(b) =0.4, A(c) =0.1.
Then we have A, ={b, c}. Clearly A, is compact in (X, T). Take o =0.9. Then A is
not almost Q & -compact in (X, o (T )), as there do not exists u, for k =1, 2, 3 such
that A(c) + u,(c) > o . Again, let u e 1* defined by u(a) =0.4, u(b) =0, u(c) =04.
So we have u,={a,c}. Then clearly u is almost Qe -compact in (X, (T)). But
U, ={a, c} is not compact in (X,T), as there do not exist a finite subcover of x, in

(X, T). It is, therefore, observed that “good extension property” does not hold good for

almost Q « -compact fuzzy sets.

Theorem 10.19: Let A and u be almost Q« -compact fuzzy sets in an fts (X, t).
Then (A x u) is also almost Q& -compact in (X x X, txt).
Proof: Let {u,xv,: ieJ} be an open Qa-cover of (Axu) in (X xX,txt) ie.
(Axp) (X y)+ (U xv,) (x,y)>a for each (Xx,y)e XxX. Then clearly we have
A(X) +u,(x) >2a for each xe X and wu(y)+ v,(y) >« for each y e X . Therefore

{u:iel} and {v,: ieJ} are open Qa-cover of A and pu respectively. Then
{(u_l)0 tield } and {(\7,)0 tield } are also open Qa -cover of A and u respectively.
Since (u_l)O cu, (\7,)O cv, and A, u arealmost Qa -compact, then {(u_l)0 :ied} and

{(\7)0: ieJ} have  finite proximate Qa -subcover, say {q: kel,} and

{\Z: k € J,} such that A(x) + q(x) >q foreach xe X and u(y) + \Z(y) > q for

178



Almost Q o -Compact Fuzzy Sets

each y € X respectively. Hence we can write (Axu) (X,y) + (qx\z)(x, y) 2 a for

each (x,y) € X x X . Hence (A x ) is almost Qe -compactin (X x X, txt).

Definition 10.20: Let (X,t) be an fts, A be a fuzzy set in X and 0 <& <1,
O<a<1 Let {u: ieJ} be a family of &-open fuzzy sets in (X,t). Then
{u :ieJ} isproximate 5-Qa -cover of 2 when {u, : ieJ}is 5-Qa-cover of A
ie. A(x)+u(x)>a for each xe X . A subfamily of {u,: ieJ} which is also a

proximate 6 - Qo -cover of A is said to be proximate & -Q « -subcover of A.

Definition 10.21: A fuzzy set A is said to be almost 6 - Q« -compact iff every
0 -Qa -cover of A has a finite subfamily whose closures is 6-Qa -cover of A or
equivalently, every & -Qa -cover of A has a finite proximate & - Q « -subcover.
Every fuzzy supersets of an almost & -Qa-compact fuzzy set is also almost

6 - Qa -compact.

Theorem 10.22: Any almost 6 -Qa -compact fuzzy set in an fts is almost
Q a -compact. The converse is not true in general.

The proof of the theorem is straightforward.

Now, for the converse, consider the following example.

Let X ={a,b}, I =[0,1] and 0<& <1, O<a <1 Let u,, u,el” defined by
u(a) =04, u(b)=0.3and u,(a) =0.5, u,(b)=0.6. Now, take t={0, u,, u,, 1},
then we see that (X, t) is an fts. Now, 0°(a) =1, 0°(b) =1; u‘(a)=0.6, uf(b) =0.7

and ug(a) =05, us(b) =0.4. So we have u, =({0°, u/, us}=u; ie u(a)=05,
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U (b) =0.4 and u, =[{0°, uf }=uf ie. u,(a) =06, u,(b)=0.7.Adain, let 2 < 1”
defined by A(a) =0.7, A(b) =0.2. Take @ =0.9. Clearly 4 is almost Q« -compact in
(X,t). Take & = 0.8. Then we observe that there is no finite proximate & - Q o -subcover
of A.Hence A is not almost & -Qa -compact in (X, t). Thus the converse of theorem is

not necessarily true.
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