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ABSTRACT   

 

          The fundamental concept of a fuzzy set and fuzzy set operations was first introduced 

by L. A. Zadeh [175] in 1965 and it provides a natural foundation for treating 

mathematically the fuzzy phenomena, which exists pervasively in our real world and for 

building new branches of fuzzy mathematics. This also provides a natural frame work for 

generalizing various branches of mathematics such as fuzzy topology, fuzzy groups, fuzzy 

rings, fuzzy vector spaces, fuzzy supra topology, fuzzy infra topology, fuzzy bitopology 

etc. C. L. Chang [19] in 1968 first introduced the concept of fuzzy topological spaces by 

using fuzzy sets. C. K. Wong [160, 161, 162, 162], R. Lowen [107, 108, 109, 110,111],              

B. Hutton [70, 71, 72], T. E. Gantner et al. [54], P. P. Ming and L. Y. Ming [121, 122], 

etc., discussed various aspects of fuzzy topology by using fuzzy sets. A. J. Klein [91] 

defines  -level sets and  -level topology. Fuzzy compactness occupies a very important 

place in fuzzy topological spaces and so does some of its forms. Fuzzy compactness first 

discussed by C. L. Chang [19], T. E. Gantner et al. [54] introduced  -compactness,                 

A. D. Concilio and G. Gerla [27] discussed almost compact spaces and M. N. Mukherjee 

and A. Bhattacharyya [130] discussed almost  -compact spaces. 

           

          The purpose of this thesis is to contribute about different types of fuzzy 

compactness and establish theorems, corollaries and examples in fuzzy topological spaces 

by using the definitions of C. L. Chang [19], T. E. Gantner et al. [54], A. D. Concilio and 

G. Gerla [27] and M. N. Mukherjee and A. Bhattacharyya [130]. We study several 

properties of these definitions along with the different theorems from existing there. 

Moreover to suggest new definitions of fuzzy  -compact spaces,  -compact fuzzy sets, 

 - -compact spaces, partially  -compact and partially  - -compact fuzzy sets,         
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Q -compact and  - Q -compact fuzzy sets, Q -compact and  - Q -compact fuzzy sets, 

almost partially  -compact and almost partially  - -compact fuzzy sets, almost                  

Q -compact and almost  - Q -compact fuzzy sets and also to study their several 

properties in fuzzy topological spaces have been done in the work.  

         

          Chapter one incorporates some fundamental definitions and results of fuzzy sets, 

fuzzy set operations, fuzzy mapping, fuzzy topology, fuzzy separation axioms, good 

extension property and fuzzy productivity. These results are ready bibliographies for the 

study in the next chapters. Results are stated without proof and can be found in the thesis 

referred to.  

 

          Our works start from chapter two. Chapter two deals with fuzzy compact spaces due 

to C. L Chang [19] which is global property. In this chapter, we have discussed some 

theorems, corollaries and examples in fuzzy topological spaces, fuzzy subspaces, 

mappings in fuzzy topological spaces, fuzzy 1T -spaces, fuzzy Hausdorff spaces, fuzzy 

regular spaces and good extension property about fuzzy compact spaces. Also we have 

defined  -open fuzzy sets,  -cover, fuzzy  -compact spaces and investigated difference 

between fuzzy compact and fuzzy  -compact spaces.       

 

          We aim to study  -compact spaces in the sense of T. E. Gantner et al. [54] in 

chapter three which is global property and we have introduced  -level continuous 

mapping. In this chapter, we have established some theorems, corollaries and examples in 

fuzzy topological spaces, fuzzy subspaces, mappings in fuzzy topological spaces, fuzzy 

1T -spaces, fuzzy Hausdorff spaces, fuzzy regular spaces,  -level topological spaces, 

cofinite topological spaces, good extension property and fuzzy product spaces and give 

some examples about  -compact spaces. Also we have constructed  - -shading,          
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 - -compact spaces and identified difference between  -compact and  - -compact 

spaces.   

 

          We have discussed compact fuzzy sets due to C. L. Chang [19] in chapter four 

which is local property. In this chapter, we have investigated some theorems, corollaries 

and examples of compact fuzzy sets in fuzzy topological spaces, fuzzy subspaces, fuzzy 

mappings, fuzzy 1T -spaces, fuzzy Hausdorff spaces, fuzzy regular spaces, good extension 

property and fuzzy productivity about compact fuzzy sets. Also we have introduced                 

 -compact fuzzy sets and found difference between compact and  -compact fuzzy sets. 

     

          In chapter five, we have defined partial  -shading, partial  -subshading, open 

partial  -shading, partially  -compact fuzzy sets. We have discussed some theorems, 

corollaries and examples of partially  -compact fuzzy sets in fuzzy topological spaces, 

fuzzy subspaces, fuzzy mappings,  -level continuous mapping, fuzzy 1T -spaces, fuzzy 

Hausdorff spaces, fuzzy regular spaces,  -level topological spaces, good extension 

property and fuzzy productivity about partially  -compact fuzzy sets. Also we have 

introduced partial  - -shading, partial  - -subshading and partially  - -compact 

fuzzy sets and indicated the difference between partially  -compact and partially              

 - -compact fuzzy sets.  

 

          In chapter six, we have constructed Q -cover, Q -subcover, open Q -cover,            

Q -compact fuzzy sets, Q -cover, Q -subcover,  open Q -cover, Q -compact fuzzy 

sets,  - Q -cover,  - Q -subcover,  - Q -compact fuzzy sets,  - Q -compact fuzzy sets. 

We have also studied some theorems, corollaries and examples in fuzzy topological 

spaces, fuzzy subspaces, fuzzy 1T -spaces, fuzzy Hausdorff spaces, fuzzy regular spaces, 
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 -level topological spaces, good extension property and fuzzy productivity about                

Q -compact, Q -compact,  - Q -compact,  - Q -compact fuzzy sets. Furthermore, we 

have found difference between Q -compact and Q -compact fuzzy sets, Q -compact and                    

 - Q -compact fuzzy sets, Q -compact and  - Q -compact fuzzy sets. Moreover, we 

have compared compact fuzzy stes (Chang’s sense [19]) with Q -compact and               

Q -compact fuzzy sets,  -compact fuzzy stes (Chang’s sense [19]) with  - Q -compact 

and  - Q -compact fuzzy sets. 

 

          In chapter seven, we have studied almost compact fuzzy sets due to A. D. Concilio 

and G. Gerla [27] which is local property. We have established some theorems, corollary 

and give some examples in fuzzy topological spaces, fuzzy subspaces, fuzzy mappings, 

fuzzy 1T -spaces, fuzzy regular spaces, good extension property and fuzzy productivity 

about almost compact fuzzy sets. Also we have introduced proximate  -cover, proximate 

 -subcover, almost  -compact fuzzy sets and found different characterizations between 

almost compact and almost  -compact fuzzy sets.   

 

          We have dealth with almost  -compact spaces due to M. N. Mukherjee and A. 

Bhattacharyya [130] in chapter eight which is global property. In this chapter, we have 

established some theorems, corollary and give some examples in fuzzy topological spaces, 

fuzzy subspaces, fuzzy mappings, fuzzy 1T -spaces, fuzzy regular spaces,  -level 

topological spaces,  -level continuous mapping and good extension property about 

almost  -compact spaces. Also we have introduced proximate  - -shading, proximate 

 - -subshading, almost  - -compact spaces and found difference between almost    

 -compact and almost  - -compact spaces.   
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          In chapter nine, we have introduced proximate partial  -shading, proximate partial 

 -subshading, almost partially  -compact fuzzy sets. We have also established some 

theorems, corollary and give some examples in fuzzy topological spaces, fuzzy subspaces, 

fuzzy mappings, fuzzy 1T -spaces, fuzzy regular spaces,  -level topological spaces,        

 -level continuous mapping, good extension property and fuzzy productivity about 

almost partially  -compact fuzzy sets. In addition to that, we have defined proximate 

partial  - -shading, proximate partial  - -subshading, almost partially  - -compact 

fuzzy sets and investigated different characterizations between almost partially                

 -compact and almost partially  - -compact fuzzy sets.  

 

          In chapter ten, we have defined proximate Q -cover, proximate Q -subcover, 

almost Q -compact fuzzy sets. We have also studied some theorems, corollary and give 

some examples in fuzzy topological spaces, fuzzy subspaces, fuzzy 1T -spaces, fuzzy 

regular spaces,  -level topological spaces, good extension property and fuzzy 

productivity about almost Q -compact fuzzy sets. Moreover, we have introduced 

proximate  - Q -cover, proximate  - Q -subcover, almost  - Q -compact fuzzy sets 

and found different characterizations between almost Q -compact and almost                           

 - Q -compact fuzzy sets.   

           

 



 
1 

Chapter One 

Preliminaries 

 

          Introduction 1.1: In this chapter incorporates concepts and results of fuzzy sets, 

fuzzy mappings, fuzzy topological spaces, subspace of a fuzzy topological space, fuzzy 

product topological space and its characterizations which are to be used as references for 

understanding the next chapters. Most of the results are quoted from the various research 

articles. Through the sequel, we make use of the following notations.   

                       X                                                               : Non-empty set 

                       J                                                                : Index set 

                       nJ                                                               : Finite subset of  J  

                        R                                                               : Set of real numbers                      

                                                                                       : Sum 

                                                                                      : Union 

                                                                                      : Intersection 

                                                                                      : Strictly subset or proper subset                                                    

                                                                                      : Subset  

                                                                                      : Belongs to 

                                                                                       : Not belongs to 

                                                                                     : Implies that 

                       I  ]1,0[                                                   : Closed unit interval 

                       1I  )1,0[                                                   : Right open unit interval 

                        0I  ]1,0(                                                 : Left open unit interval 

                        A ,  B ,  C ,…                                         : Ordinary sets or Classical sets                                            
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                        u ,  v ,   ,   ,…                                    : Fuzzy sets 

                        TX ,                                                       : General topological space  

                        tX ,                                                        : Fuzzy topological space 

                        AtA,                                                       : Subspace of  tX ,  

                       
Ji

iX                                                        : Usual product of iX  

                       ttXX  ,                                              : Product fuzzy topological space 

                       )(u  { x  X : )(xu }                    : Subset of X  

                        t  { )(u : u  t }                                 : General topology on X  

)(T   { u  XI : ]1,(1 au  T ,  a  1I }   : Fuzzy topology on X  

This thesis deals with various fuzzy compactness in fuzzy topological spaces. To present 

our work in a systematic way, we consider in this chapter, various concepts and results on 

fuzzy sets and fuzzy topological spaces found in various research papers. For this we 

begin with.  

 

          Definition 1.2[175]: Let X  be a non-empty set and I  is the closed unit interval 

]1,0[ . A fuzzy set in X  is a function u : X  I  which assigns to every element x  X . 

)(xu  denotes a degree or the grade of membership of x . The set of all fuzzy sets in X  is 

denoted by XI . A member of XI  may also be called a fuzzy subset of X .  

 

          Definition 1.3[121]: A fuzzy set is empty iff its grade of membership is identically 

zero. It is denoted by X0 .  

 

          Definition 1.4[121]: A fuzzy set is whole iff its grade of membership is identically 

one in X . It is denoted by X1 .  
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          Definition 1.5[175]: Let X  be a non-empty set and A  X . Then the characteristic 

function )(1 xA : X  }1,0{  defined by )(1 xA 







Ax
Ax

if0
if1

 

Hence we say that A  is fuzzy set in X  and this fuzzy set is denoted by A1 . Thus we can 

consider any subset of a set X  as a fuzzy set whose range is }1,0{ .  

           

          Definition 1.6[19]: Let u and v  be two fuzzy sets in X . Then we define           

(i) u  v  iff )(xu  )(xv  for all x  X  

(ii) u  v  iff )(xu  )(xv  for all x  X  

(iii)   vu   iff )(x  )()( xvu    max ])(),([ xvxu  for all x  X  

(iv)   vu   iff  )(x  )()( xvu    min ])(),([ xvxu  for all x  X  

(v)   cu  iff )(x  )(1 xu  for all x  X  and we say that cu  is complement of u .              

          Remark: Two fuzzy sets u  and v  are disjoint iff vu   0 .   

 

          Definition 1.7[19]: In general, if { iu : i  J }  is family of fuzzy sets in X , then 

union  iu  and intersection  iu  are defined by 

)(xui   sup{ )(xui : i   J  and x  X }  

)(xui   inf{ )(xui : i   J  and x  X } , where J  is an index set.  

 

          De-Morgan’s laws 1.8[175]: De-Morgan’s Laws valid for fuzzy sets in X   i.e. if u  

and v  are any fuzzy sets in X , then    

(i) 1 ( u  v )  ( 1 u )  ( 1 v )  

(ii) 1 ( u  v )  ( 1 u )  ( 1 v )           
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For any fuzzy set in u  in X ,  u  ( 1 u )  need not be zero and u  ( 1 u )  need not 

be one.  

 

           Distributive laws 1.9[175]: Distributive laws remain valid for fuzzy sets in X  i.e. 

if u ,  v  and w  are fuzzy sets in X , then 

(i) u  )( wv   )( vu   )( wu   

(ii) u  )( wv   )( vu   )( wu  .  

 

          Definition 1.10[121]: Let   be a fuzzy set in X , then the set { x  X : )(x  0 }  

is called the support of   and is denoted by 0  or supp .  

 

          Definition 1.11[121]: A fuzzy set in X  is called a fuzzy point iff it takes the value 

0  for all y  X  except one, say x  X . If its value at x  is r  ( 0  r  1), we denote this 

fuzzy point by rx , where the point x  is called its support.  

 

          Definition 1.12[121]: A fuzzy set   in X  is called quasi-coincident (in short        

q-coincident) with a fuzzy set   in X , denoted by q  iff )(x  )(x  1 for some 

x  X .  

 

          Definition 1.13[19]: Let f : X  Y  be a mapping and u  be a fuzzy set in X . 

Then the image of u , written )(uf , is a fuzzy set in Y  whose membership function is 

given by 

)()( yuf   

















)(if0

)(if})(:)({sup
1

11

yf
yfyfxxu

 .  
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          Definition 1.14[19]: Let f : X  Y  be a mapping and v  be a fuzzy set in Y . Then 

the inverse of v , written )(1 vf  , is a fuzzy set in X  whose membership function is given 

by )()(1 xvf   ))(( xfv .  

 

          Definition 1.15[131]: Let f : X  Y  be a mapping. Then f  is said to be one-one 

(one-to-one) iff )(af  )(bf    a  b .   

 

          Definition 1.16[131]: Let f : X  Y  be a mapping. Then f  is said to be onto 

(surjective) iff )(Xf  Y .  

           

          Definition 1.17[131]: Let f : X  Y  be a mapping. Then f  is said to be bijective 

iff it is both one-one and onto.  

 

          Theorem 1.18[168]: Let f : X  Y  be a mapping and 1u ,  2u  be fuzzy sets in X . 

If  1u  2u , then )( 1uf  )( 2uf .  

 

          Theorem 1.19[168]: Let f : X  Y  be a mapping and 1v ,  2v  be fuzzy sets in Y . 

If  1v  2v , then )( 1
1 vf   )( 2

1 vf  .  

 

          Theorem 1.20[168]: Let f : X  Y  be one-to-one mapping and u  be a fuzzy set 

in X , then ))((1 uff   u .  

 

          Theorem 1.21[168]: Let f : X  Y  be onto mapping and v  be a fuzzy set in Y , 

then ))(( 1 vff   v .  
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Theorems (1.20) and (1.21) will be used again and again in our next works. 

 

          Theorem 1.22[159]: Let f : X  Y  be a mapping, iu , i  J  be fuzzy sets in X  

and iv , i  J  be fuzzy sets in Y . Then 

(i) 













Ji
iuf  )(

Ji
iuf



 

(ii) 












 
Ji

ivf 1  )(1
i

Ji
vf



  

(iii) 













Ji
iuf   

Ji
iuf



)(  

(iv) 












 
Ji

ivf 1  
Ji

ivf


 )(1 .  

 

          Definition 1.23[106]: Let X  be a non-empty set and T  be a family of subsets of 

X . Then T  is said to be topology on X  if 

(i)  ,  X T  

(ii) if iA T  for each i  J , then 
Ji

iA


T  

(iii) if A ,  B T  A  B T  

The pair  TX ,  is called topological space, any member U T  is called open set in the 

topology T  and its complement i.e. cU  is called closed set in the topology T .  

 

          Definition 1.24[106]: Let U  denote the class of all open sets of real numbers R. 

Then U  is a topology on R; it is called the usual topology on R.  
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          Definition 1.25[106]: Let X  be a non-empty set and T  denote the class of all 

subsets of  X  whose complements are finite together with the empty set  . This class T  

is also a topology on X . It is called the cofinite topology on X .  

 

          Definition 1.26[106]: A subset A  of a topological space  TX ,  is compact iff 

every open cover of A  has a finite subcover.  

           

          Definition 1.27[19]: Let X  be a non-empty set and t  XI  i.e. t  is a collection of 

fuzzy sets in X . Then t is called a fuzzy topology on X  if  

(i) 0 , 1 t   

(ii) if iu  t  for each i  J , then 
Ji

iu


 t  

(iii) if u ,  v  t  , then u  v  t  

The pair  tX ,  is called a fuzzy topological space and in short, fts. Every member of t  is 

called a t -open fuzzy set. A fuzzy set is t -closed iff its complements is t -open. In the 

sequel, when no confusion is likely to arise, we shall call a t -open ( t -closed) fuzzy set 

simply an open (closed) fuzzy set.  

 

          Definition 1.28[19]: A fuzzy topology 1t  is said to be coarser than a fuzzy topology 

2t  if and only if 1t   2t .  

 

          Definition 1.29[121]: Let   be a fuzzy set in an fts  tX , . Then the interior of   

is denoted by 0  or int  and defined by 0 {  :     and   t } .  

          Remark [1]: The interior of a fuzzy set   is the largest open fuzzy set contained in 

  and trivially, a fuzzy set   is fuzzy open if and only if   0 .  
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          Definition 1.30[121]: Let   be a fuzzy set in an fts  tX , . Then the closure of   

is denoted by
_

  or cl  and defined by 
_

 {  :     and   ct } .  

          Remark [1]: The closure of a fuzzy set   is the smallest closed fuzzy set 

containing   and trivially, a fuzzy set   is a fuzzy closed if and only if  
_

 .  

 

          Theorem 1.31[1]: Let  tX ,  be a fuzzy topological space and u , v  be two fuzzy 

sets in X . Then 

(i) 0  0 , 1  1 

(ii)  00u   0u ,  u   u          

(iii) 0u  u  u  

(iv) vu   u  v  

(v) If u  v , then 0u  0v  

(vi) If u  v , then u  v .  

 

          Theorem 1.32[27]: Let  tX ,  be an fts and u  be an open fuzzy set in t . Then 

u   0
u .  

 

          Definition 1.33[121]: Let  tX ,  be an fts and A  X . Then the collection 

At  { Au | : u  t }  is fuzzy topology on A , called the subspace fuzzy topology on A  

and the pair  AtA,  is referred to as a fuzzy subspace of  tX , .  
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          Definition 1.34[19]: Let  tX ,  and  sY ,  be two fuzzy topological spaces. A 

mapping f :  tX ,    sY ,  is called a fuzzy continuous iff the inverse of each s -open 

fuzzy set is t -open or equivalently for each s -closed fuzzy set is t -closed.  

 

          Definition 1.35[161]: Let  tX ,  and  sY ,  be two fuzzy topological spaces. Let 

f :  tX ,    sY ,  be a mapping from an fts  tX ,  to another fts  sY , . Then f  is 

called  

(i) a fuzzy open mapping iff )(uf  s  for each u  t . 

(ii) a fuzzy closed mapping iff )(vf  is a closed fuzzy set of Y , for each closed fuzzy set 

v  of X .  

 

          Definition 1.36[116]: Let f  be a mapping from an fts  tX ,  into an fts  sY , . 

Then f  is fuzzy closed iff )(uf   uf  for each fuzzy set u  in X .  

 

          Theorem 1.37[122]: Let f :  tX ,    sY ,  be a fuzzy continuous mapping. Then 

(i)  uf  )(uf , for any fuzzy set u  in X .                 

(ii) )(1 vf    vf 1 , for any fuzzy set v  in Y .  

 

          Definition 1.38[49]: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively and f  is a mapping from  tX ,  to  sY , , then we say that f  is a 

mapping from  AtA,  to  BsB,  if BAf )( .  
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          Definition 1.39[49]: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Then a mapping f :  AtA,   BsB,  is relatively fuzzy continuous 

iff for each v  Bs , then )(1 vf  | A  At .  

 

          Definition 1.40[49]: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Then a mapping f :  AtA,   BsB,  is relatively fuzzy open iff for 

each v  At , the image )(vf  Bs .     

 

          Definition 1.41[3]:  Let  TX ,  be a topological space. A function f : X   R        

(with usual topology) is called lower semi-continuous ( l. s. c. ) if for each a R , the set 

),(1  af T . For a topology T  on a set X ,  let )(T be the set of all l. s. c. functions 

from   TX ,  to I (with usual topology); thus )(T   { u  XI : ]1,(1 au T ,  a  1I } . 

It can be shown that )(T  is a fuzzy topology on X . 

      Let P be a property of topological spaces and FP be its fuzzy topology analogue. Then 

FP is called a ‘good extension’ of P “iff the statement   TX ,  has P iff  )(, TX   has 

FP”   holds good for every topological space  TX , .  Thus characteristic functions are       

l . s. c.  

 

          Definition 1.42[106]: Let { iX : i  J }  be any family of sets and let X  denote the 

Cartesian product of these sets i.e. X 
Ji

iX . Note that X  contains all points             

p   ia : i  J   where ia  iX . Recall that, for each 0j  J , we define the projection 

0j  from the product set X  to the coordinate space 
0jX  i.e. 

0j : X 
0jX  by 

0j (  ia : i  J  ) 
0ja . These projections are used to define the product topology.  
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          Definition 1.43[9]: Let   XI  and   YI . Then )(    is a fuzzy set in YX   

for which  )(    ),( yx   min{ )(x ,  )( y } , for every ),( yx  YX  . 

  

           Definition 1.44[161]: Given a family   JitX ii :,  of fts’s, we define their 

product  
Ji

ii tX ,  to be the fts   tX , , where X 
Ji

iX  is the usual product set and t  is 

the coarsest fuzzy topology on X  for which the projections i : X  iX  are fuzzy 

continuous for each i  J . The fuzzy topology t  is called the product fuzzy topology on 

X  and  tX ,  is a product fts.  

 

          Definition 1.45[150]: An fts  tX ,  is said to be fuzzy 1T -space iff for every            

x ,  y  X , x  y , there exist u ,  v  t  such that 1)( xu ,  0)( yu  and 0)( xv ,  

1)( yv .  

         

          Definition 1.46[85]: An fts  tX ,  is said to be fuzzy 1T -space iff for all                

x ,  y  X , x  y , there exist u ,  v   t  such that 0)( xu ,  0)( yu  and 0)( xv ,  

0)( yv .  

 

          Definition 1.47[54]: An fts  tX ,  is said to be fuzzy Hausdorff space iff for all              

x ,  y  X , x  y , there exist u ,  v  t  such that 1)( xu ,  1)( yv  and u  v   0 .  

 

          Definition 1.48[85]: An fts  tX ,  is said to be fuzzy Hausdorff iff for all               

x ,  y  X , x  y , there exist u ,  v  t  such that 0)( xu ,  0)( yv  and u  v  0 .     
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          Definition 1.49[93]: An fts  tX ,  is said to be fuzzy Hausdorff iff for every pair of 

distinct fuzzy points rx ,  sy  in X , there exist u ,  v  t  such that rx  u ,  sy  v  and 

u  v  0 .  

 

          Definition 1.50[116]: An fts  tX ,  is said to be fuzzy Hausdorff iff for all                       

x ,  y  X , x  y , there exist u ,  v  t  such that 1)( xu ,  1)( yv  and u  v1 .  

 

          Definition 1.51[116]: An fts  tX ,  is said to be fuzzy regular iff for each 

x  X and u  ct  with 0)( xu , there exist v ,  w  t  such that 1)( xv ,  u  w  and 

v  w1 .  

 

          Definition 1.52[27]: An fts  tX ,  is said to be fuzzy regular iff each open fuzzy set 

u  of X  is a union of open fuzzy sets iu  of X  such that iu  u  for each i .        
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Chapter Two 

Fuzzy Compact Spaces 

 
          Fuzzy compact spaces was first introduced by Chang [19] in fuzzy topological 

spaces and mentioned some properties which are global property. In this chapter, we have 

discussed various other properties of this concept and established some theorems, 

corollaries and examples. Also we have defined fuzzy  -compact spaces and found 

different characterizations between fuzzy compact and fuzzy  -compact spaces.     

  

          Definition 2.1[19]: Let  tX ,  be an fts and   be a fuzzy set in X . Let                 

M  { iu : i  J }  be a family of fuzzy sets. Then M  }{ iu  is called a cover of   iff 

 { iu : i  J } . If each iu  is open, then M  }{ iu  is called an open cover of  . 

Furthermore, if a finite subfamily of M  is also cover   i.e.  there exist 
1iu ,  

2iu ,  …… ,  

niu  M  such that  
1iu 

2iu   ……   
niu , then M  is said to be reducible to a finite 

cover or contains a finite subcover or has a finite subcover.      

 

          Definition 2.2[19]: An fts  tX ,  is compact iff each open cover has a finite 

subcover. 

 

          Theorem 2.3:  Let  tX ,  be a compact fts, A  X  with A1  is closed. Then A1  is 

also compact. 
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Proof: Let M  { iu : i  J }  be an open cover of A1  i.e. A1  
Ji

iu


. Then 

X1  













Ji
iu  cA1  that is *M  }{ iu   }1{ cA  is an open cover of X1 . But cA1  is open, 

since A1  is closed. So *M  is an open cover of X1 .  As   tX ,  is compact; hence *M  has  

a finite subcover i.e. there exist 
ki

u  M  ( k  1 ,  2 ,  ...... , n )  such that X1 
1i

u 
2i

u   

...... 
niu  cA1 . But A1  and cA1  are disjoint; hence A1   

1iu 
2iu   ...... 

niu ; 

kiu  M  ( k  1 ,  2 ,  ...... , n ) . We have just shown that any open cover M  }{ iu  of A1  

contains a finite subcover i.e. A1  is compact.  

 

          Definition 2.4[10]: A family M  of fuzzy sets has the finite intersection property iff 

the intersection of the members of each finite subfamily of M  is non-empty.  

 

          Theorem 2.5:  An fts  tX ,  is compact iff each family of closed fuzzy sets which 

has the finite intersection property has a non-empty intersection.  

Proof: cf.[19].    

 

          Theorem 2.6: For an fts  tX , , the following statements are equivalent : 

(i)   tX ,  is compact. 

(ii)  For each {
iA1 : i  J }  of closed subsets of  tX ,  ;  

Ji
Ai



1  X0   implies                        

{
iA1 : i  J }   contains a finite subfamily {

1
1

iA ,  
2

1
iA ,  ....... ,  

niA1 }  with 
1

1
iA 

2
1

iA   ...... 


niA1  X0 .     
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Proof: (i)   (ii) : Suppose 
Ji

Ai


1  X0 . Then by De-Morgan’s law, X1      c
X0   

c

Ji
Ai 











1   

Ji
Ac

i


1 . So }1{ c
iA

 is an open cover of  tX , , since each 
iA1  is closed. As  tX ,  

is compact, then there exist c
iA1

1  ,  c
iA 2

1 ,  …… ,  c
niA1    }1{ c

iA
  such that X1   c

iA1
1  c

iA 2
1   

.......  c
niA

1 .  Thus by De-Morgan’s law, X0    c
X1   ( c

iA1
1  c

iA 2
1   .......  c

niA
1 ) c                  

  
1

1
iA 

2
1

iA   ...... 
niA1 and we have shown that (i)  (ii). 

(ii)   (i) : Let { iu : i  J }   be an open cover of  tX ,  i.e. X1  
Ji

iu


. By De-Morgan’s 

law, we have X0    c
X1 

c

Ji
iu 











    

Ji

c
iu



. Since each iu  is open, then { c
iu : i  J }  

is a family of closed fuzzy sets and so by above has an empty intersection. Hence by 

hypothesis, there exist c
iu
1
 ,  c

iu
2

,  …. ,  c
in

u   }{ c
iu  such that c

iu
1
   c

iu
2
   ……  c

in
u  

 X0 . Thus by De-Morgan’s law, we get X1     c
X0    (  c

iu
1
   c

iu
2
   ……  c

in
u  ) c             

  
1iu   

2iu    …….   
niu . Accordingly,   tX ,  is compact and so (ii)    (i). 

 

          Theorem 2.7: Let  tX ,  be an fts and A  X . Then A1  is compact in  tX ,  iff A1  

is compact in  AtA, . 

Proof: Suppose A1  is compact in  tX , . Let { iu : i  J }   be an open cover of A1  in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence A1  
Ji

iu


 
Ji

iv


 and 

therefore { iv : i  J }  is an open cover of A1 . Since A1  is compact, so { iv : i  J }  

contains a finite subcover, say {
ki

v : k  nJ }  such that A1   
1i

v 
2i

v  ......
ni

v . But, 

then A1  (
1i

v  
2i

v   ......  
ni

v ) | A    (
1i

v | A )    (
2i

v | A )   ...... (
ni

v | A )               
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
1i

u 
2i

u  ......
ni

u . Thus { iu : i  J }  contains a finite subcover                                 

{
1iu ,  

2iu , ...... ,
niu }   and A1  is compact in  AtA, . 

Conversely, suppose A1  is compact in  AtA, . Let { iv : i  J }  be an open cover of A1  in 

 tX , . Set iu  iv | A , then A1  
Ji

iv


 implies that A1  













Ji
iv | A   

Ji
( iv | A )             

  
Ji

iu


. But iu  At , so { iu : i  J }  is an open cover of A1  in  AtA, . As A1  is compact 

in  AtA, , thus { iu : i  J }  contains a finite subcover, say {
1iu ,  

2iu , ...... ,
niu } . 

Accordingly, A1   
1iu 

2iu  ......
niu   (

1iv | A )    (
2iv | A )  ...... (

niv | A )             

  (
1i

v  
2i

v   ......  
ni

v ) | A  
1i

v 
2i

v  ......
ni

v . Thus { iv : i  J }  contains a 

finite subcover {
1i

v ,  
2i

v , ...... ,  
ni

v }  and therefore A1  is compact in  tX , . 

 

          Corollary 2.8: Let  *, tY  be a subspace of  tX ,  and A  be a subset of  *, tY  such 

that A  Y  X . Then A1  is compact in  tX ,  iff  A1  is compact in  *, tY .  

Proof: Let At  and *
At  be the subspaces of fuzzy topologies on A . Then by preceding 

theorem (2.7), A1  is compact in  tX ,  or   *, tY  iff A1  is compact in  AtA,  or  *, AtA ; 

but  At   *
At . 

 

     Theorem 2.9: Let  1, tX  and  2, tX  be two fts’s and  1, tX  be compact. If 2t  is 

coarser than 1t , then  2, tX  is also compact.  

The proof is easy. 

 

          Theorem 2.10: Let  tX ,  be an fts and }1{
sY  X1 , where }1{

sY  be a finite family. 

If each 
sY1  is compact, then  sY1  is a compact subspace of  tX , . 
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Proof: Let { iu : i  J }  be an open cover of  sY1 . Then { iu : i  J } is an open cover 

of 
sY1 for each s  J . Since 

sY1  is compact, then { iu : i  J }  contains a finite subcover, 

say {
kiu : k  nJ }  which is a cover of 

sY1 . The union of these families is a finite subcover 

of  sY1 . Thus  sY1  is compact.    

           

          Theorem 2.11: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be 

bijective, fuzzy open and fuzzy continuous. Then  tX ,  is compact iff  sY ,  is compact. 

The necessary part of this theorem has already been proof by Chang [19].  

Suppose  sY ,  is compact. Let M  { iu : i  J }  be an open cover of  tX ,  with 


Ji

iu


 X1 . Since f  is fuzzy open, so )( iuf  s  and hence { )( iuf : i  J }  is an open 

cover of  sY , . As  sY ,  is compact, then for each y  Y , we have )()( yuf
Ji

i


 Y1 . 

Hence there exist )(
ki

uf { )( iuf : i  J }  ( k  nJ )  such that )()( yuf
n

k
Jk

i


 Y1 . 

Again, let v  be any fuzzy set in X . Since f  is bijective, then  )(1 vff   v . Hence 

X1  )1(1
Yf   













 
n

k
Jk

iuff )(1    
n

k
Jk

iuff


 )((1   
n

k
Jk

iu


. Thus  tX ,  is compact. 

           

          Theorem 2.12: Let  tX ,  be an fts and  AtA,  be a subspace of   tX ,  with  tX ,  

is fuzzy compact. Let f :  tX ,   AtA,   be fuzzy continuous and onto, then  AtA,  is 

fuzzy compact.  

Proof: Let M   { iu : i  J }  be an open cover of  AtA,  with 
Ji

iu


 A1 . Put 

iu  iv | A , where iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  implies that 

)|(1 Avf i
  t . As  tX ,  is fuzzy compact, then we have for each x  X ,  
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
Ji

f


1 )()|( xAvi  X1 . Thus we see that { )|(1 Avf i
 : i  J }  is an open cover of  tX , . 

Hence there exist  )|(
1

1 Avf i
 ,  )|(

2

1 Avf i
 ,  …… ,  )|(1 Avf

ni
   })|({ 1 Avf i

  such that 


n

k

f
1

1



 )()|( xAv
ki

 X1  for every x  X . Again, let u  be any fuzzy set in A . Since f  is 

onto, then we have ))(( 1 uff   u . Hence A1  )1( Xf  













n

k
i Avff
k

1

1 )|(                                 

  
n

k

f
1

 )|(1 Avf
ki

    )|(
1


n

k
i Av
k



   
n

k
ik

u
1

. Therefore  AtA,  is fuzzy compact. 

 

          Theorem 2.13: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively with  AtA,  is compact. Let f :  AtA,   BsB,  be relatively fuzzy 

continuous and surjective mapping. Then  BsB,  is compact.  

Proof: Assume that BAf )( , as f  is surjective. Let { iv : iv  Bs }  for each i  J  be an 

open cover of  BsB,  i.e. 
Ji

iv


 B1 . As f  is relatively fuzzy continuous, then 

)(1
ivf  | A  At  and hence { )(1

ivf  | A : i  J }  is an open cover of  AtA, . Since 

 AtA,  is compact, so { )(1
ivf  | A : i  J }  has a finite subcover i.e. there exist 

)(1
kivf  | A  { )(1

ivf  | A }  ( k  1 ,  2 ,  …… , n )  such that A1  
n

k
i Avf
k

1

1 )|)((


 . 

Again, let v  be any fuzzy set in B . As f  is surjective, so we have  )(1 vff   v . 

Therefore B1  )1( Af  













n

k
i Avff
k

1

1 )|)((  
n

k

f
1

( )(1
kivf  | A )   

n

k 1

(


kiv | )(Af )  

 
n

k 1

(


kiv | B ) 
n

k
ik

v
1

, as iv | B  iv . Thus  BsB,  is compact. 
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          Theorem 2.14: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Let f :  AtA,   BsB,  be relatively fuzzy open and bijective 

mapping with  BsB,  is compact. Then  AtA,  is also compact. 

Proof: We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open cover of 

 AtA,  for every i  J  i.e 
Ji

iu


 A1 . As iu  At , then there exists iv  t  such that 

iu  iv | A  and so 
Ji
( iv | A )  A1 .  As f  is relatively fuzzy open, then )( iuf  Bs  and 

hence { )( iuf : i  J }  is an open cover of  BsB,  implies that { )|( Avf i : i  J }           

  { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  is an open cover of  BsB, . Since 

 BsB,  is compact, then { Bvf i |)( : i  J }   has a finite subcover, say                       

{ Bvf
ki |)( : k  nJ }  such that )|)(( Bvf

n

k
Jk

i


   B1 . Let v  be any fuzzy set in A . As f  

is bijective, then we have  )(1 vff   v . Hence A1    )1(1
Bf    













 
n

k
Jk

i Bvff )|)((1               

 ))(|( 1 Bfv
n

k
Jk

i



   )|( Av

n

k
Jk

i


  
n

k
Jk

iu


. Thus {
kiu : k  nJ }  is a finite subcover of 

{ iu : iu  At } . Hence  AtA,  is compact. 

          

          Theorem 2.15: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be a 

compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that )(xu  1 

and  A  ]1,0(1v . 

Proof: Let y  A . Since x  A ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy               

1T -space, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  

)(yvy  1. Hence A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since 

A1  is compact, then it has a finite subcover, say 
1yv ,  

2yv ,…… ,  
nyv  }{ yv  such that 
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A1 
1yv 

2yv   ……. 
nyv . Now, let v 

1yv 
2yv   ….. 

nyv  and u 
1yu   

2yu   

…… 
nyu . Thus we see that v  and u  are open fuzzy sets, as they are the union and 

finite intersection of open fuzzy sets respectively i.e. v ,  u  t . Furthermore, 

A  ]1,0(1v  and )(xu  1, since each )(xu
ky  1 individually. 

 

          Theorem 2.16: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A1 ,  B1  be disjoint 

compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A  ]1,0(1u   and B  ]1,0(1v .   

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is compact, then by 

theorem (2.15), there exist yu ,  yv  t  such that )(yu y  1 and B  ]1,0(1
yv . Since 

)(yu y  1, then { yu : y  A }  is an open cover of A1 . As A1  is compact, so it has a finite 

subcoer, say 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that A1 

1yu 
2yu   ……. 

nyu . 

Furthermore, B1 
1yv 

2yv   ……. 
nyv , as B  ]1,0(1

kyv  for each k . Again, let               

u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

 

          Theorem 2.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A  X . If A1  is 

compact in  tX , , then A1  is closed. 

Proof: Let x  cA  . We have to show that, there exist u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Indeed, for each y  A , there 

exist yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Hence we see 

that A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is compact 
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in  tX , , so A1  has a finite subcover, say {
kyv : y  A } ( k  nJ )  such that 

A1 
1yv 

2yv   ……. 
nyv . Now, let u   

1yu   
2yu   …… 

nyu . Thus we see that 

)(xu  1, as )(xu
ky  1 for each k . For, each z  A , there exists a k  such that 

)(}{ zv
ky  1 ( k  1 ,  2 ,  …… , n )  and so )(zu  0 . Hence u  pA . Therefore, cA1  is 

open in  tX , . Thus A1  is closed in  tX , . 

 

          Theorem 2.18: Let  tX ,  be a fuzzy 1T -space (as def. 1.46), A  X  and A1  be a 

compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 0)( xu  

and  A  ]1,0(1v . 

Such fuzzy 1T -space have no compact subset. So the above theorem (2.18) is vacuously 

true for there space.  

 

          Theorem 2.19: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  1 ,  A  ]1,0(1v  and u  v  0 . 

Proof: Let y  A . Since x  A ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  yv  0 . 

Hence A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is 

compact, then there exist 
1yv ,  

2yv ,…… ,  
nyv  }{ yv  such that A1 

1yv 
2yv   ……. 


nyv . Now, let v 

1yv 
2yv   …… 

nyv  and u   
1yu   

2yu   …… 
nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u  t . Furthermore, A  ]1,0(1v  and )(xu  1, since each 

)(xu
ky  1 individually. 
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Finally, we claim that u  v  0 . We observe that 
kyu 

kyv  0  implies that 

u 
kyv  0 , by distributive law, we have u  v  u  (

1yv 
2yv …... 

nyv )  

 ( u 
1yv )   ( u 

2yv )   …...  ( u 
nyv )  0 .   

 

          Corollary 2.20: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be a compact subset in  tX , . Let x  A , then there exist u  t  such that )(xu  1 and 

]1,0(1u  cA . 

Proof: By theorem (2.19), there exist u ,  v  t  such that )(xu  1,  A  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x  ]1,0(1u  and x  ]1,0(1v    )(xu  0  and )(xv  0    u  v   0 . Hence 

]1,0(1u  A    and consequently ]1,0(1u  cA .     

 

          Theorem 2.21: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and A1 ,  B1  be 

disjoint compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A  ]1,0(1u ,  B  ]1,0(1v  and u  v  0 . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is compact, then by 

theorem (2.19), there exist yu ,  yv  t  such that )(yuy  1 ,  B  ]1,0(1
yv  and 

yu  yv  0 . Since )(yuy  1, then { yu : y  A }  is an open cover of A1 . As A1  is 

compact, then there exist 
1yu ,  

2yu ,…... ,  
nyu  }{ yu  such that A1 

1yu 
2yu   ……. 


nyu . Furthermore, B1 

1yv 
2yv   ……. 

nyv , as B  ]1,0(1
kyv  for each k . Now, 

let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 
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Finally, we have to show that u  v  0 . First, we observe that 
kyu 

kyv  0  for each k , 

implies that 
kyu  v  0 , by distributive law, we see that u  v  (

1yu   
2yu   …… 


nyu )   v   (

1yu  v )  (
2yu  v )   …...  (

nyu  v )  0 .   

 

          Theorem 2.22: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be a compact subset in  tX , . Then A1  is closed.  

Proof: Let x  cA . We have to show that, there exists u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Now, let y  A , then there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  yv  0 . Thus we see that 

A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is compact, so 

it has a finite subcover, say 
1yv ,  

2yv , …… ,  
nyv  }{ yv  such that A1 

1yv 
2yv   ……. 


nyv .  Again, let u   

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   ……
nyv . Hence 

we observe that )(xu  1, as )(xu
ky  1 for each k  and u  (

1yv 
2yv   …... 


nyv )  0 . For each z  A , it is clear that )(}{ zv

ky  1 ( k  1 ,  2 ,  …… , n ) . Thus 

)(zu  0  and hence u  pA . Therefore, cA1  is open and so A1  is closed.    

 

          Theorem 2.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  0 ,  A  ]1,0(1v  and u  v  0 . 

Such fuzzy Hausdorff space have no compact subset. So the above theorem (2.23) is 

vacuously true for there space.  
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           Theorem 2.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

rx  u ,  A  ]1,0(1v  and u  v  0 . 

Such fuzzy Hausdorff space have no compact subset. So the above theorem (2.24) is 

vacuously true for there space.       

 

          Theorem 2.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  1 ,  A  ]1,0(1v  and u  1 v . 

Proof: Let y  A . Since x  A ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  1 yv . 

Hence A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is 

compact, then there exist 
1yv ,  

2yv ,…… ,
nyv  }{ yv  such that A1 

1yv 
2yv  ……  

nyv . Now, let v 
1yv 

2yv ….. 
nyv  and u 

1yu   
2yu   …… 

nyu . Thus we see 

that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u  t . Furthermore, A  ]1,0(1v  and )(xu  1, since each 

)(xu
ky  1 for each k . 

Finally, we have to show that u  1 v . As  yu  1 yv  implies yvu  1 . Since 

)(xu
ky  1 )(xv

ky  for all x  X  and for each k , then u  1 v . If not, there exists 

x  X  such that )(xu y  1 )(xvy . We have )(xu y  )(xu
ky  for each k .  Then for some 

k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky  1 )(xv

ky  for each k . 

Hence u  1 v .       

 



Fuzzy Compact Spaces 

 

  
25 

          Theorem 2.26: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50) and A1 ,  B1  be 

disjoint compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A  ]1,0(1u ,  B  ]1,0(1v  and u  1 v . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is compact, then by  

theorem (2.25), there exist yu ,  yv  t  such that )(yuy  1 ,  B  ]1,0(1
yv  and  

yu  1 yv . Since )(yu y  1, then { yu : y  A }  is an open cover of A1 . As A1  is 

compact, then there exist 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that A1 

1yu 
2yu   ……. 


nyu . Furthermore, B1 

1yv 
2yv   ……. 

nyv , as B  ]1,0(1
kyv  for each k . Now, 

let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  1 v . First, we observe that 
kyu  1

kyv  for each k , 

implies that 
kyu  1 v  for each k  and it is clear that u  1 v .   

 

          Theorem 2.27: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50), A  X  and 

A1  be a compact subset in  tX , . Then A1  is closed.  

Proof: Let  x  cA . We have to show that, there exists u  t  such that )(xu  1 and 

u  pA  , where pA  is the characteristic function of cA . Now, let y  A , then there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  1 yv . Thus we see that       

A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is compact, so 

it has a finite subcover, say 
1yv ,  

2yv , …… ,  
nyv  }{ yv  such that A1 

1yv 
2yv   

……
nyv . Again, let u 

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   ….. 
nyv . 
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Hence we observe that )(xu  1, as )(xu
ky  1 for each k  and yu  1 yv  implies that 

u  1 yv . As  )(xu
ky  1 )(xv

ky  for all x  X  and for each k , then u  1 v . If not, 

there exists x  X  such that )(xu y  1 )(xvy . We have )(xu y  )(xu
ky  for each k . Then 

for some k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction as )(xu
ky  1 )(xv

ky  for each 

k . Hence u  1 v . For each z  A , it is clear that )(}{ zv
ky  1 ( k  1 ,  2 ,  …… ,  

n ) . Thus )(zu  0  and hence u  pA . Therefore, cA1  is open and so A1  is closed.     

 

          Theorem 2.28: Let  tX ,  be a fuzzy regular space (as def. 1.51), A  X  and A1  

be a compact subset in  tX , . Suppose x  A  and u  ct  with )(xu  0 . Then there exist 

v ,  w  t  such that )(xv  1 ,  u  w ,  A  ]1,0(1v  and v  1 w . 

Proof: Suppose x  A  and u  ct  we have )(xu  0 . Since   tX ,  is fuzzy regular, then 

there exist xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Hence     

A1 { xv : x  A }  i.e. { xv : x  A }  is an open cover of A1 . Since A1  is compact, so it 

has a finite subcover, say 
1xv ,  

2xv ,…… ,
nxv  }{ xv  such that A1 

1xv 
2xv   ……. 


nxv . Now, let v   

nxv 
2xv …… 

nxv  and w   
1xw   

2xw ……
nxw . Thus we 

see that v  and w  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  w  t . Furthermore, A  ]1,0(1v ,  )(xv  1 and u  w ,  

as u  kw   individually. 

Finally, we have to show that v  1 w . As 
kxv  1

kxw  for each k  implies that 

kxv  1 w  for each k  and it is clear that v  1 w .  
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          Theorem 2.29: A topological space   TX ,  is compact iff  )(, TX   is fuzzy 

compact. 

Proof: Suppose  TX ,  is compact. Let { iu : i  J }  be an open cover of   )(, TX   

i.e X1  
Ji

iu


. Then ]1,(1 aui
  T  for a  1I  and { ]1,(1 aui

 : ]1,(1 aui
 T }  is an open 

cover of  TX , . Since   TX ,  is compact, so it has a finite subcover, say                

{ ]1,(1 au
ki
 : k  nJ }  such that X   ]1,(1

1
aui

    ]1,(1
2

aui
    ...... ]1,(1 au

ni
 . Now, we 

can write X1 
1iu 

2iu  ......
niu  and it is seen that {

kiu : k  nJ }  is a finite subcover 

of { iu : i  J } . Thus  )(, TX   is fuzzy compact. 

Conversely, suppose that  )(, TX   is fuzzy compact. Let { jV : j  J }  be an open 

cover of   TX ,  i.e. X  
Jj

jV


. Since 
jV1  are l . s. c. then 

jV1  )(T  and                          

{
jV1 : 

jV1  )(T }  is an open cover of   )(, TX  . Since  )(, TX   is fuzzy 

compact, so it has a finite subcover, say {
kjV1 : k  nJ }  such that 

X1 
1

1
jV 

2
1

jV  ......
njV1 . Now, we can write X   

1j
V    

2j
V    ......  

nj
V  and it is 

seen that {
kjV : k  nJ }  is  a finite subcover of  { jV : j  J } . Thus  TX ,  is compact.  

 

          Theorem 2.30: If   JitX ii :,  is a family of fuzzy compact fuzzy topological 

spaces, then the product space 








 Ji

i
Ji

i tX ,  is also fuzzy compact.  

Proof: cf.[108].  
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        Definition 2.31: Let  tX ,  be an fts and 0    1. A fuzzy set u  t  is said to be 

 -open in X  iff )(xu    for all x  0u . If   0 , then u  is open. A fuzzy set is said to 

be  -closed iff its complement is  -open. 

 

          Example 2.32: Let X  },{ ba ,  I  ]1,0[  and 0    1. Again, let u ,  v  XI  

defined by  )(au  4.0 ,  )(bu  3.0  and )(av  7.0 ,  )(bv  5.0 . Consider t  { 0 ,  u ,  

v ,  1} , then  tX ,  is an fts. Take   4.0 . Then u  is not  -open in X , as )(bu    for 

b  0u . But v  is  -open in X , as )(av , )(bv    for a ,  b  0v .          

 

          Definition 2.33: Let M  { iu : i  J }  be a family of  -open fuzzy sets in an fts 

 tX ,  and   be a fuzzy set in X . Then M  is said to be  -cover of   iff              

  
Ji

{ iu : iu  M } .  A subfamily of a  -cover of   which is also a  -cover of   is 

said to be  -subcover.   

 

          Example 2.34: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  

defined by  )(1 au  1 ,  )(1 bu  4.0 ; )(2 au  5.0 ,  )(2 bu  1 and )(3 au  5.0 ,  )(3 bu  4.0 . 

Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  

defined by )(a  6.0 ,  )(b  7.0 . Take   4.0 . Clearly 1u ,  2u  and 3u  are  -open 

fuzzy sets in  tX , . Now, we observe that   1u  2u . So { 1u ,  2u }  is a  -cover of   

in  tX , .   

 

          Definition 2.35: Let  tX ,  be an fts and 0    1. An fts  tX ,  is  -compact iff 

every  -cover of X  has a finite  -subcover.      



Fuzzy Compact Spaces 

 

  
29 

          Theorem 2.36: Any fuzzy  -compact space is fuzzy compact. The converse is not 

necessarily true in general. 

The proof is straightforward.  

Now, for the converse, we consider the following example. 

Let X  ]1,0[ ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 xu 













14.0for6.0
0.4xfor1

4.00for1

x

x
 ,  )(2 xu 














14.0for1
0.4xfor1

4.00for5.0

x

x
  and 

)(3 xu 













14.0for6.0
0.4xfor1

4.00for5.0

x

x
. Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that 

 tX ,  is an fts. Clearly  tX ,  is fuzzy compact. Take   8.0 . Then there is no finite              

 -open fuzzy sets ku  for k  1 ,  2 ,  3  in  tX , . Thus  tX ,  is not  -compact. 
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Chapter Three 

 -Compact Spaces  

 

           -compact spaces have been introduced first by Gantner et al. [54] in fuzzy 

topological spaces and discussed some characterizations of this concept. We aim to study 

various other properties of this concept and established some theorems, corollaries and 

examples. Also we have defined  - -compact spaces and found different properties 

between  -compact and  - -compact spaces.   

 

          Definition 3.1[54]: Let  tX ,  be an fts and   I . A collection M  of fuzzy sets is 

called an  -shading, 10   (res. * -shading, 10  ) of X  if for each x  X  there 

exists a u  M  such that )(xu  (resp. )(xu ). A subcollection of an  -shading 

(res. * -shading) of X  which is also an  -shading (resp. * -shading) is called an                   

 -subshading (res. * -subshading) of X . 

 

          Definition 3.2[54]: An fts  tX ,  is said to be  -compact, 10   (res.                        

* -compact, 10  ) iff each  -shading (res. * -shading) of X  by open fuzzy sets 

has a finite  -subshading (res. * -subshading), where   I . 

 

          Theorem 3.3: Let  tX ,  be an fts and A  X . Then A1  is  -compact (resp.                   

* -compact) in  tX ,  iff A1  is  -compact (resp. * -compact) in  AtA, .   

Proof: Suppose A1  is  -compact in  tX , . Let M  { iu : i  J }  be an open  -shading 

of A1  in  AtA, . Then there exist iv  t  such that iu  iv | A   iv . Hence { iv : i  J }  is 
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an open  -shading of A1  in  tX , . Since A1  is  -compact in  tX , , then { iv : i  J }  

has a finite  -subshading, say {
kiv : k  nJ }  such that )(xv

ki
   for each x  A . For, 

if x  A , then there exists 
0ki

v such that )(
0

xv
ki

    implies that )()|(
0

xAv
ki

   and 

consequently )(
0

xu
ki

  , as A  X . Hence 
0kiu  M  and so {

kiu : k  nJ }  is a finite 

 -subshading of M . Therefore, A1  is  -compact in  AtA, .                 

Conversely, suppose A1  is  -compact in  AtA, . Let H  { iv : i  J }  be an open                  

 -shading of A1  in  tX , . Put iu  iv | A . To show this, let x  X . If x  A , then there 

exists 
0i

v  H  such that 
0i

u 
0i

v | A . But 
0i

u  At  , so )(
0

xui    for each x  A . 

Therefore, { iu : i  J }  be an open  -shading of A1  in  AtA, . Since A1  is  -compact 

in  AtA, , then { iu : i  J }  has a finite  -subshading, say {
kiu : k  nJ }  such that 

)(xu
ki

   for each x  A . For, if x  A , then there exists 
0ki

u such that )(
0

xu
ki

     

)()|(
0

xAv
ki

     )(
0

xv
ki

  , as A  X . Thus {
kiv : k  nJ }  is a finite                             

 -subshading of H . Hence A1  is  -compact in  tX , .        

Similar proof for * -compactness can be given. 

 

          Corollary 3.4: Let  *, tY  be a fuzzy subspace of   tX ,  and A  Y  X . Then A1  

is  -compact (resp. * -compact) in  tX ,  iff A1  is  -compact (resp. * -compact) in 

 *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(3.3), A1  is  -compact in  tX ,  or  *, tY  iff A1  is  -compact in  AtA,  or  *, AtA . But 

At  *
At  .  

Similar work for * -compactness can be given. 
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          Theorem 3.5: Let  tX ,  be an fts and A  X . If  tX ,  is  -compact (resp.                           

* -compact) and A1  is closed, then  AtA,  is  -compact (resp. * -compact) subspace of 

 tX , . 

Proof: Let M  { iu : i  J }  be an open  -shading of  AtA, . Then there exist iv  t  

such that iu  iv | A . Let H  { iv  t : iv | A  M } . Then H  { AX 1 }  is a family and 

is an open  -shading of  tX , . To prove this, let x  X . If x  A , then there exists 

0iu  M  such that )(
0

xui   . Let /
iv  t  such that /

iv | A 
0iu . Thus /

iv  H  and 

)(/ xvi   . If x  AX  , then )()1( xAX   . Since  tX ,  is  -compact, so 

H  }1{ AX   has a finite  -subshading, say {
kiv , AX 1 }  ( k  nJ ) . Also A1  and AX 1  

are disjoint, so we can exclude AX 1  from this  -shading. Hence {
kiv | A }  ( k  nJ )  is 

a finite  -subshading of M . For if  x  A  and {
kiv , AX 1 }  ( k  nJ )  is an open                   

 -shading of  tX , , then there exists 
0iv  such that )(

0
xvi   . Therefore 

)()|(
0

xAvi    and 
0i

v | A M . Hence  AtA,  is  -compact.  

The proof is similar for * -compactness can be given. 

          Note: This theorem have been proved in Gantner et. al. [54] in a different form.  

 

          Theorem 3.6: Let  tX ,  and  sY ,  be two fuzzy topological spaces with  tX ,  is 

 -compact (resp. * -compact). Let f :  tX ,   sY ,  be fuzzy continuous and 

surjective mapping. Then  sY ,  is  -compact (resp. * -compact). 

Proof: Let { iu : iu  s }  be an open  -shading of  sY ,  for every i  J . Since f  is 

fuzzy continuous, then )(1
iuf   t . We see that, for each x  X ,  )()(1 xuf i

    and so 

)}({ 1
iuf   is an open  -shading of  tX , , i  J . Since  tX ,  is  -compact, then 

)}({ 1
iuf   has a finite  -subshading, say { )(1

kiuf  : k  nJ } . Now, if y  Y , then 
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y  )(xf  for some x  X . Then there exists 
kiu  }{ iu  such that )()(1 xuf

ki
   which 

implies that ))(( xfu
ki

   or )(yu
ki

  . Thus }{ iu  has a finite  -subshading                    

{
kiu : k  nJ } . Hence  sY ,  is  -compact.    

Similar proof for * -compactness can be given. 

          Note: This theorem was proved in Gantner et. al. [54] in a different form.  

 

          Theorem 3.7: Let  tX ,  and  sY ,  be two fuzzy topological spaces with  sY ,  is 

 -compact (resp. * -compact). Let f :  tX ,   sY ,  be fuzzy open and bijective 

mapping. Then  tX ,  is  -compact (resp. * -compact). 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . Since f  is fuzzy open, 

then )( iuf  s  and hence )(Mf  { )( iuf : i  J }  is also an open  -shading of  sY , . 

For, if y  Y , then )(1 yf   )(1 Yf  . So there exists 
0i

u  M  such ))(( 1
0

yfui
   

which implies that )()(
0

yuf i   . As  sY ,  is  -compact, then )(Mf  has a finite                  

 -subshading, say { )(
kiuf : k  nJ }  such that )()( yuf

ki
   for each y  Y . For, if 

x  )(1 Yf  , then x  )(1 yf   for y Y . Therefore, there exists 
ki

u  M  such that 

)()( yuf
ki

   which implies that ))(( 1 yfu
ki

    or )(xu
ki

  . Thus M  has a finite 

 -subshading {
kiu : k  nJ } . Hence Then  tX ,  is  -compact. 

Similar work for * -compactness can be done. 

 

          Theorem 3.8: Let  tX ,  be an fts and  AtA,  be a subspace of an fts  tX , . Let 

f :  tX ,   AtA,  be fuzzy continuous and onto mapping with  tX ,  is  -compact 

(resp. * -compact). Then  AtA,  is  -compact (resp. * -compact). 
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Proof: Let M  { iu : i  J }  be an open  -shading of  AtA, . Put iu  iv | A , where 

iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  and so )|(1 Avf i

  t . Thus we have 

for every x  X , )()|(1 xAvf i
    and hence )(1 Mf   { )(1

iuf  : iu  M }  i.e 

)(1 Mf    { )|(1 Avf i
 : i  J }   is an open  -shading of  tX , . As  tX ,  is                       

 -compact, then )(1 Mf   has a finite  -subshading, say { )|(
1

1 Avf i
 ,  )|(

2

1 Avf i
 ,  

…… ,  )|(1 Avf
ni

 } . Now, if y  A , then y  )(xf  for some x  X . Then there exists 

k  such that )()|(1 xAvf
ki

    which implies that )|( Av
ki

 )(xf    or )(yu
ki   . 

Hence  AtA,  is  -compact. 

Similar work for * -compactness can be given. 

 

          Theorem 3.9: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and  sY ,  

respectively and f :  AtA,   BsB,  be relatively fuzzy continuous and onto mapping 

with  AtA,  is  -compact (resp. * -compact). Then  BsB,  is  -compact (resp.                 

* -compact). 

Proof: We have BAf )( , as f  is onto. Let { iv : iv  Bs }  be an open  -shading of 

 BsB,  for every i  J  i.e )(yvi    for each y  B . Since iv  Bs , then there exists 

iu  s  such that iv  iu | B  and so ( iu | B ) )( y   for each y  B .  As f  is relatively 

fuzzy continuous, then Avf i |)(1  At . Thus we observe that, for each x  A , 

)()|)(( 1 xAvf i
    and hence { Avf i |)(1 : i  J }  is an open  -shading of  AtA,  

implies that { ABuf i |)|(1 : i  J }   { ))((|)( 11 ABfuf i  : i  J }                                      

  { Auf i |)(1 : i  J }  is an open  -shading of  AtA, . Since  AtA,  is  -compact, 

then { Auf i |)(1 : i  J }  has a finite  -subshading, say { Auf
ki |)(1 }  ( k  nJ )  such 
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that )()|)(( 1 xAuf
ki

   for each x  A . Now, if y  B , then y  )(xf  for some 

x  A . Then there exists k  we have )()|)(( 1 xAuf
ki

    implies that 

))(|( Afu
ki

))(( xf    implies that )()|( yBu
ki

  , as f  is onto or )( yv
ki

  . Hence it 

is clear that {
ki

v : k  nJ }  is a finite  -subshading of { iv : iv  Bs } . Thus  BsB,  is    

 -compact.   

The proof is similar for * -compactness can be given. 

  

          Theorem 3.10: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Let f :  AtA,   BsB,  be relatively fuzzy open and bijective 

mapping with  BsB,  is  -compact (resp. * -compact). Then  AtA,  is also  -compact 

(resp. * -compact). 

Proof: We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open  -shading of 

 AtA,  for every i  J  i.e )(xui    for each x  A . Since iu  At , then there exists 

iv  t  such that iu  iv | A  and so ( iv | A ) )(x    for each x  A .  As f  is relatively 

fuzzy open, then )( iuf  Bs . Thus we observe that, for each y  B , )()( yuf i    and 

hence { )( iuf : i  J }  is an open  -shading of  BsB,  implies that                          

{ )|( Avf i : i  J }   { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  is an open                       

 -shading of  BsB, . Since  BsB,  is  -compact, then { Bvf i |)( : i  J }   has a finite 

 -subshading, say { Bvf
ki |)( : k  nJ }  such that   )(|)( yBvf

ki    for each y  B . 

Now, if x  )(1 Bf  , then x  )(1 yf   for y  B . Then there exists k , we have 

  )(|)( yBvf
ki

   implies that ))(|( 1 Bfv
ki

 ))(( 1 yf     implies that )()|( xAv
ki

   or 

)(xu
ki

  . Hence it is clear that {
kiu : k  nJ }  is a finite  -subshading of                           

{ iu : iu  At } . Thus  AtA,  is  -compact. 
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Similar work for * -compactness can be done. 

 

          Theorem 3.11: Let  tX ,  be an fts. If every family of closed fuzzy sets in  tX ,  

which has empty intersection has a finite subfamily with empty intersection, then  tX ,  is 

 -compact (resp. * -compact). The converse is not true in general. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . From the first condition of 

the theorem, we have 
Ji

c
iu



 X0 . Thus 
Ji

iu


 X1 . Again, by the second condition of the 

theorem, we get 
n

k
Jk

c
iu



 X0  implies that 
n

k
Jk

iu


 X1  and hence )(xu
ki

   for each 

x  X . It is clear that {
kiu : k  nJ }  is a finite  -subshading of M . Therefore  tX ,  is 

 -compact. 

 Now, for the converse, consider the following example.  

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let u ,  v  XI  defined by  )(au  3.0 ,  

)(bu  4.0  and )(av  6.0 ,  )(bv  7.0 . Put t  { 0 ,  u ,  v ,  1} , then we see that  tX ,  

is an fts. Take   5.0 . Then  tX ,  is an  -compact. Now, closed fuzzy sets are 

)(auc  7.0 ,  )(buc  6.0  and )(avc  4.0 ,  )(bvc  3.0 . We observe that cu  cv  0 . 

Thus the converse of the theorem is not necessarily true in general.       

The work is similar for * -compactness can be given. 

 

          Definition 3.12[91]: Let  tX ,  be an fts and 10  , then the family        

t  { )(u : u  t }  of all subsets of X  of the form )(u  { x  X : )(xu }  is called 

 -level sets, forms a topology on X  and is called the  -level topology on X  and the 

pair  tX ,  is called  -level topological space.  

 



 -Compact Spaces 

 

  
37 

          Theorem 3.13: Let 0    1. An fts  tX ,  is  -compact iff  tX ,  is compact 

topological space. 

Proof: For proof cf.[12].  

 

          Theorem 3.14[106]: If T  is a cofinite topology on X , then  TX ,  is compact. 

 

          Theorem 3.15: Let  tX ,  be an fts and if t  becomes a cofinite topology on X , 

then  tX ,  is  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . Then                        

t  { )( iu : iu  t } , where )( iu  { x  X : )(xui   }  and by the theorem t  is a 

cofinite topology on X . We see that H   { )( iu : i  J }  is an open cover of  tX ,  . 

For let, x  X , then there exists a 
0iu  M  such that )(

0
xui   . Therefore, x  )(

0iu  

and )(
0i

u  H . As  tX ,  is cofinite, hence compact which implies that H  has a finite 

subcover, say { )(
kiu }  ( k  nJ ) , where 

kiu  t  and )(
kiu  t . Then the family }{

kiu  

( k  nJ )  forms a finite  -subshading of M  and hence  tX ,  is  -compact.     

 

          Definition 3.16: A mapping f :  tX ,   tX ,  is said to be  -level continuous 

iff  ))(( 1 uf   t  for every u  t . 

          Example 3.17: Let X = },,{ cba ,  I  ]1,0[  and 10  . Let 1u ,  2u ,  3u ,  

4u  XI  defined by  )(1 au   4.0 ,  )(1 bu  2.0 ,  )(1 cu  6.0 ; )(2 au  2.0 ,  )(2 bu  4.0 ,  

)(2 cu  6.0 ; )(3 au  4.0 ,  )(3 bu  4.0 , )(3 cu  6.0  and )(4 au  2.0 ,  )(4 bu  2.0 ,  

)(4 cu  6.0 . Now, put  t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that  tX ,  is an fts. 

Now, we have t  { )( :   t }  and )(  { Xx : )(x  } . Put   3.0 . Then 
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we have )0(3.0   ,  )1(3.0  X ,  )(3.0 1u  },{ ca ,  )(3.0 2u  },{ cb ,  )(3.0 3u  X ,  

)(3.0 4u  }{c . Therefore, 3.0t  {  ,  X ,  },{ ca ,  },{ cb , }{c }  is a topology on X .     

Let :f   tX ,   tX ,  defined by )(af  b ,  )(bf  a ,  )(cf  c . Now, 

)()0(1 Xf   ))((0 Xf = 0 ,  )()1(1 Xf  =1 for all Xx ; )()( 1
1 auf    ))((1 afu                 

 )(1 bu  2.0 , )()( 1
1 buf    ))((1 bfu   )(1 au  4.0 ,  )()( 1

1 cuf    ))((1 cfu                                

 )(1 cu  6.0 ; )()( 2
1 auf    ))((2 afu   )(2 bu  4.0 , )()( 2

1 buf    ))((2 bfu                             

 )(2 au  2.0 ,  )()( 2
1 cuf    ))((2 cfu   )(2 cu  6.0 ; )()( 3

1 auf    ))((3 afu                         

 )(3 bu  4.0 , )()( 3
1 buf    ))((3 bfu   )(3 au  4.0 ,  )()( 3

1 cuf    ))((3 cfu                          

 )(3 cu  6.0 ; )()( 4
1 auf    ))((4 afu   )(4 bu  2.0 , )()( 4

1 buf    ))((4 bfu                           

 )(4 au  2.0 ,  )()( 4
1 cuf    ))((4 cfu   )(4 cu  6.0 . Then we observe that 

))0((3.0 1f    ,  ))1((3.0 1f  X ,  ))((3.0 1
1 uf    },{ cb ,  ))((3.0 2

1 uf   },{ ca ,  

))((3.0 3
1 uf   X ,  ))((3.0 4

1 uf   }{c . Therefore  ,  X ,  },{ cb ,  },{ ca ,  }{c  3.0t  i.e. 

))0((3.0 1f ,  ))1((3.0 1f ,  ))((3.0 1
1 uf  ,  ))((3.0 2

1 uf  ,  ))((3.0 3
1 uf  ,  ))((3.0 4

1 uf   3.0t . 

Hence f is  -level continuous.      

 

          Theorem 3.18: Let f :  tX ,   tX ,  be  -level continuous and bijective 

mapping with  tX ,  is compact. Then  tX ,  is  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . As f  is  -level 

continuous, then ))(( 1
iuf   t  and hence { ))(( 1

iuf  : i  J }  is an open cover of 

 tX , . Since  tX ,  is compact, then { ))(( 1
iuf  : i  J }  has a finite subcover, say 

{ ))(( 1
kiuf  } ( k  nJ ) .  Now, we have )(xf  y  for y  X , as f  is bijective. But 

{ ))(( 1
kiuf  }  is finite subcover of { ))(( 1

iuf  : i  J } , there exist some k  such that 
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))(( xfu
ki

 implies that )(yu
ki

  for each y  X . Thus {
ki

u : k  nJ }  is a finite 

 -subshading of M . Therefore  tX ,  is  -compact.     

 

          Theorem 3.19: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be an 

 -compact (resp. * -compact) subset in  tX , . Let x  cA , then there exist u ,  v  t  

such that )(xu  1 and A  ]1,0(1v .   

Proof: Let y  A . Since x  A  ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy                    

1T -space, then there exist yu ,  yv  t  such that )(xuy  1 ,  )(yu y  0  and )(xvy  0 ,  

)(yvy  1. Let us take   1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is 

an open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite                            

 -subshading, say {
kyv : y  A }  ( k  nJ )  such that )(yv

ky    for each y  A . Now, 

let v   
1yv 

2yv   ….. 
nyv  and u   

1yu   
2yu   …… 

nyu . Thus we see that v  

and u  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Moreover, A  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each 

k .  

Similar proof for * -compactness can be given. 

 

          Theorem 3.20: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A1 ,  B1  be disjoint 

 -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there exist                    

u ,  v  t  such that A  ]1,0(1u  and  B  ]1,0(1v .  

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint . Since B1  is  -compact, then 

by theorem (3.19), there exist yu ,  yv  t  such that )(yuy  1 and B  ]1,0(1
yv . Let us 

take   1I  such that )(yuy    0 . As )(yuy  1, then we see that { yu : y  A }  is an 
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open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite  -subshading, 

say {
kyu : y  A }  ( k  nJ )  such that )(yu

ky    for each y  A . Furthermore, since 

B1  is  -compact, so B1  has a finite  -subshading, say {
kyv : x  B }  ( k  nJ )  such 

that )(xv
ky   for each x  B , as B  ]1,0(1

kyv  for each k . Now, let u   
1yu   

2yu   

…… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see that A   ]1,0(1u  and 

B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Similar work for * -compactness can be given.         

 

          Theorem 3.21: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A  X . If A1  is 

 -compact (resp. * -compact) subset in  tX , , then A1  is closed. 

Proof: Let x  cA  . We have to show that, there exist u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Indeed, for each y  A , there 

exist yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Let us take 

  1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is an  -shading of A1 . 

Since A1  is  -compact in  tX , , so it has a finite  -subshading, say                                  

{
kyv : y  A } ( k  nJ )  such that )(yv

ky    for each y  A . Now, let u   
1yu   

2yu   …… 
nyu . Thus we see that )(xu  1, as )(xu

ky  1 for each k . For, each z  A , 

there exists a k  such that )(zv
ky   0  and so )(zu  0 . Hence u  pA . Therefore, cA1  

is open in  tX , . Thus A1  is closed in  tX , . 

The proof is similar for * -compactness can be given. 
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          Theorem 3.22: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A  X . If A1  is 

 -compact (resp. * -compact) subset in  tX ,  and x  cA , then there exist u , v  t  

such that 0)( xu  and A  ]1,0(1v .The converse of the theorem is not necessarily true 

in general.  

The proof is similar as that of theorem (3.19). 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I   ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by                    

)(1 au   2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put  

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Again, let A1  XI  

defined by )(1 aA  0 ,  )(1 bA 1. Hence we observe that A  }{b  and a  cA . Now       

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Hence A  ]1,0(1

2
u . Take   8.0 . 

Then we see that A1  is not  -compact in  tX , , as )(buk    for b  A  and k  1 ,  2 ,  

3 . Thus the converse of the theorem is not true in general.    

Similar work for * -compactness can be given.  

 

          Theorem 3.23: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A , B   X . If 

A1  and B1  are disjoint  -compact (resp. * -compact) subsets in  tX , , then there exist 

u ,  v  t  such that A  ]1,0(1u  and  B  ]1,0(1v . The converse of the theorem is not 

true in general. 

The proof is similar as that of theorem (3.20). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(3.22). Let A1 ,  B1  XI  defined by )(1 aA  1 ,  )(1 bA  0  and )(1 aB  0 ,  )(1 bB  1. Hence 

we observe that A  }{a  and B  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u   }{a  and 

]1,0(1
2
u  }{b . Hence we observe that A  ]1,0(1

1
u  and B  ]1,0(1

2
u , where A1  and B1  
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are disjoint. Take   8.0 . Then we see that A1  and B1  are not  -compact in  tX , , as 

)(auk    for a  A  and )(buk    for b  B , where k  1 ,  2 ,  3 . Thus the converse 

of the theorem is not true in general.    

Similar proof for * -compactness can be given.  

 

          The following example will show that the  -compact subsets in fuzzy 1T -space     

(as def. 1.46) need not be closed. 

          Example 3.24: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(3.22). Again, let A1  XI  defined by )(1 aA  0 ,  )(1 bA  1. Take   2.0 . Then clearly 

A1  is  -compact in  tX , . But A1  is not closed, as its complements cA1  is not open in 

 tX , .        

 

          Theorem 3.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Let x  cA , then there exist        

u ,  v  t  such that )(xu  1 ,  A  ]1,0(1v  and u  v  0 .  

Proof: Let y  A . Since x  A  ( x  cA ) , then clearly x   y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  yv  0 . 

Let us take   1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is an open 

 -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite  -subshading, say 

{
kyv : y  A }  ( k  nJ )  such that )(yv

ky    for each y  A . Now, let                               

v   
1yv 

2yv   ….. 
nyv  and u   

1yu   
2yu   …… 

nyu . Thus we see that v  and 

u  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 
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respectively i.e. v ,  u  t . Moreover, A  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each 

k .  

Finally, we claim that u  v  0 . As 
kyu 

kyv  0  implies that u 
kyv  0 , by 

distributive law, we see that u  v   u  (  
1yv 

2yv   ….. 
nyv )  0 . 

Similar work for * -compactness can be given.  

 

          Corollary 3.26: Let  tX ,  be a fuzzy Hausdroff space (as def. 1.47), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Let x  A , then there exists 

u  t  such that )(xu  1 and  ]1,0(1u  cA . 

Proof: By theorem (3.25), there exist u ,  v   t  such that 1)( xu ,  A  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u   ]1,0(1v   . If not, there exists x  ]1,0(1u   ]1,0(1v  

  x  ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v  0 . Hence 

]1,0(1u  A    and consequently ]1,0(1u  cA .   

Similar proof for * -compactness can be given.  

   

          Theorem 3.27: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and A1 ,  B1  be 

disjoint  -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there exist 

u ,  v  t  such that A  ]1,0(1u ,  B   ]1,0(1v  and u  v  0 .  

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is  -compact , then 

by theorem (3.25), there exist yu ,  yv  t  such that )(yuy  1 ,  B  ]1,0(1
yv  and 

yu  yv  0 . Let us take   1I  such that )(yu y   0 . As )(yu y  1, then we see that 

{ yu : y  A }  is an open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a 

finite  -subshading, say {
kyu : y  A }  ( k  nJ )  such that )(yu

ky    for each y  A . 
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Furthermore, since B1  is  -compact, so B1  has a finite  -subshading, say {
kyv : x  B }  

( k  nJ )  such that )(xv
ky    for each x  B , as B  ]1,0(1

kyv  for each k .              

Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Lastly, we have to show that u  v  0 . First, we observe that 
kyu 

kyv  0  for each k  

implies that 
kyu  v  0 , by distributive law , we see that u  v   (

1yu   
2yu   …… 


nyu )   v  0 . 

Similar proof for * -compactness can be given.  

 

          Theorem 3.28: Let  tX ,  be a fuzzy Hausdorff space  (as def. 1.47), A  X . If A1  

is  -compact (resp. * -compact) subset in  tX , , then A1  is closed. 

Proof: cf. [54]. 

 

          Theorem 3.29: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and A  X . If 

A1  is  -compact (resp. * -compact) subset in  tX ,  and x  cA , then there exist                   

u ,  v  t  such that  )(xu  0 ,  A  ]1,0(1v  and u  v  0 .The converse of the theorem 

is not necessarily true in general.  

The proof is similar as that of theorem (3.25).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let A1  XI  

defined by )(1 aA  0 ,  )(1 bA 1. Hence we observe that A  }{b  and a  cA . Now           

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Hence A  ]1,0(1

2
u  and 1u  2u  0 . 
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Take   8.0 . Then we see that A1  is not  -compact in  tX , , as )(buk    for b  A  

and k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.   

Similar work for * -compactness can be given.  

 

          Corollary 3.30: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and A  X . If 

A1  is  -compact (resp. * -compact) subset in  tX ,  and x  A , then there exists u  t  

such that )(xu  0  and  ]1,0(1u  cA . The converse is not true in general.    

The proof is similar as that of corollary (3.26).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let A1  XI  defined by 

)(1 aA  0 ,  )(1 bA  1. Hence we observe that A  }{b  and a  A . Now 1u  t  where 

)(1 au  0 and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  cA . Take   8.0 . Thus 

we see that A1  is not  -compact in  tX ,  i.e. )(buk    for b  A , where k  1 ,  2 ,  

3 . Thus the converse of the corollary is not true in general.    

Similar proof for * -compactness can be given.  

 

           Theorem 3.31: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and              

A ,  B   X . If A1  and B1  are disjoint  -compact (resp. * -compact) subsets in  tX , , 

then there exist u ,  v  t  such that A  ]1,0(1u ,  B  ]1,0(1v  and u  v  0 . The 

converse of the theorem is not true in general. 

The proof is similar as that of theorem (3.27). 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let A1 ,  B1  XI  defined 

by )(1 aA  1 ,  )(1 bA  0  and )(1 aB  0 ,  )(1 bB  1. Hence we observe that A  }{a  and 
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B  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and ]1,0(1

2
u  }{b . Hence we observe 

that A  ]1,0(1
1
u ,  B  ]1,0(1

2
u  and 1u  2u  0 , where A1  and B1  are disjoint. Take 

  8.0 . Then we see that A1  and B1  are not  -compact in  tX , , as )(auk    for 

a  A  and )(buk    for b  B , where k  1 ,  2 ,  3 . Thus the converse of the theorem 

is not true in general.    

Similar work for * -compactness can be given.  

   

          The following example will show that the  -compact subsets in fuzzy Hausdorff 

space (as def. 1.48) need not be closed.  

           Example 3.32: Consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let A1  XI  

defined by )(1 aA  1 ,  )(1 bA  0 . Take   1.0 . Then clearly A1  is  -compact in  tX , . 

But A1  is not closed, as its complement cA1  is not open in  tX , .   

 

          Theorem 3.33: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Suppose rx  be a fuzzy point in 

cA1 , then there exist u ,  v  t  such that rx  u ,  A  ]1,0(1v  and u  v  0 . 

Proof: Let sy ( s    )  be fuzzy point in A1 , then clearly x  y  i.e. rx  and sy  are 

distinct . As  tX ,  is fuzzy Hausdorff, then there exist 
syu ,  

syv  t  such that rx 
syu ,  

sy 
syv and 

syu   
syv  0  and this is true for any value of s . Hence this is also true for 

s   . Let us take   1I  such that )(yv
sy   0 . Thus we see that  {

syv : sy  A1 }   is 

an open  -shading of A1 . Since A1  is  -compact in  tX ,  , so it has a finite                           

 -subshading, say {
ksyv : sy  A1 }  ( k  nJ )  such that )( yv

ksy  . Let v 
1syv 

2syv  
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…… 
nsyv  and u 

1syu 
2syu …… 

nsyu . Thus we see that v  and u  are open 

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

v  ,  u  t . Moreover, A  ]1,0(1v  and rx  u , since rx   
ksyu for each k . 

Finally, we claim that u  v  0 . As 
ksyu 

ksyv  0  for each k  implies that 

u 
ksyv  0 , by distributive law, we therefore observe that u  v   

u  (
1syv 

2syv …… 
nsyv )  0 . 

The proof is similar for * -compactness can be done. 

 

          Corollary 3.34: Let  tX ,  be a fuzzy Hausdroff space (as def. 1.49), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Let rx  A1 , then there exists 

u  t  such that rx  u  and  ]1,0(1u  cA . 

Proof: By theorem (3.33), there exist u ,  v   t  such that rx  u ,  A  ]1,0(1v   and 

u  v  0 .  Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x  ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v  0 . Hence 

]1,0(1u  A    and consequently ]1,0(1u  cA .   

Similar proof for * -compactness can be given.  

 

          Theorem 3.35: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49) and A1 ,  B1  be 

disjoint  -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there 

exist u ,  v  t  such that A  ]1,0(1u ,  B  ]1,0(1v  and u  v  0 . 

Proof: Let sy  A1 ( s    ) , then clearly sy  B1 , as A1  and B1  are disjoint . Since B1  is 

 -compact, then by theorem (3.33), there exist 
syu ,  

syv  t  such that sy 
syu ,  

B  ]1,0(1
syv  and 

syu 
syv  0  and this is true for any value of s . Hence this is also true 
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for s   . Let us take   1I  such that )(yu
sy   0 . Since sy 

syu , then                

{
syu : sy  A1 }  is an open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a 

finite  -subshading, say {
ksyu : sy  A1 }  ( k  nJ )  such that )(yu

ksy  .  Furthermore, 

since B1  is  -compact, so B1  has a finite  -subshading, say {
ksyv : rx  B1 }  ( k  nJ )  

such that )(xv
ksy  , as B  ]1,0(1

ksyv  for each k . Now, let u = 
1syu 

2syu …… 


nsyu  and v = 

1syv 
2syv …… 

nsyv . Thus we see that A  ]1,0(1u  and 

B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Finally, we have to show that u  v  0 . First , we observe that 
ksyu 

ksyv  0  for each 

k  implies that 
ksyu  v  0 , by distributive law, we see that u  v  (

1syu 
2syu …… 


nsyu )  v  0 . 

Similar work for * -compactness can be given. 

 

          The following example will show that the  -compact (resp. * -compact) subsets in 

fuzzy Hausdorff space (as def. 1.49) need not be closed. 

          Example 3.36: Let X  },{ ba ,  I  ]1,0[  and 0    1. Again, let 1u ,  2u ,  

3u  XI  with )(1 au  6.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  8.0  and )(3 au  6.0 ,  

)(3 bu  8.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Now, let 4.0a  and 7.0b  be 

fuzzy points in X . Therefore  tX ,  is also a fuzzy Hausdorff space (as def. 1.49). Again, 

let A1  XI  defined by )(1 aA  1 ,  )(1 bA  0 . Take   5.0 . Then clearly A1  is                        

 -compact in  tX , . But A1  is not closed, as its complement cA1  is not open in  tX , . 
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          Theorem 3.37: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Suppose x  cA , then there 

exist u ,  v  t  such that )(xu  1 ,  A  ]1,0(1v  and u  1 v . 

Proof: Let y  A . Since x  A  ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  1 yv . Let 

us take    1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is an open                  

 -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite  -subshading, say 

{
kyv : y  A }  ( k  nJ )  such that )(yv

ky    for each y  A . Now, let v   
1yv 

2yv  

  ….. 
nyv  and u   

1yu   
2yu   …… 

nyu . Thus we see that v  and u  are open 

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

v ,  u  t . Moreover, A  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each k . 

Finally, we claim that u  1 v . As yu  1 yv , so u  yv1 . Since )(xu
ky  1 )(xv

ky  

for all x  X  and for each k , then u  1 v . If not, there exists x  X  such that 

)(xuy  1 )(xvy . We have )(xuy  )(xu
ky  for each k . Then for some k , 

)(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky  1 )(xv

ky  for each k . Hence 

u  1 v . 

Similar proof of * -compactness can be given.  

 

          Theorem 3.38: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50) and A1 ,  B1  be 

disjoint  -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there 

exist u ,  v  t  such that A  ]1,0(1u ,  B   ]1,0(1v  and u  1 v . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is  -compact, then 

by theorem (3.37), there exist yu ,  yv  t  such that )(yu y  1 ,  B  ]1,0(1
yv  and 
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yu  yv1 . Let us take   1I  such that )(yuy    0 . As )(yuy  1, then we observe 

that { yu : y  A }  is an open  -shading of A1 . Since A1  is  -compact in  tX , , so it 

has a finite  -subshading, say {
kyu : y  A }  ( k  nJ )  such that )(yu

ky   for each 

y  A . Furthermore, since B1  is  -compact, so B1  has a finite  -subshading, say                 

{
kyv : x  B }  ( k  nJ )  such that )(xv

ky    for each x  B , as B  ]1,0(1
kyv  for each 

k . Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see 

that A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  1 v . First we observe that 
kyu  1

kyv for each k  

implies that 
kyu  1 v  for each k  and it is clearly shows that u  1 v . 

Similar proof for * -compactness can be done.  

 

          Theorem 3.39: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50) and A  X . If 

A1  is  -compact (resp. * -compact) subset in  tX , , then A1  is closed. 

Proof: Let x  cA . We have to show that, there exist u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Suppose, for each y  A , there 

exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  1 yv . Let us take   1I  such 

that )(yvy   0 . Thus we see that { yv : y  A }  is an open  -shading of A1 . Since A1  

is  -compact in  tX , , so it has a finite  -subshading, say {
kyv : y  A } ( k  nJ )  

such that )(yv
ky    for each y  A . Now, let u   

1yu   
2yu   …… 

nyu  and                  

v   
1yv 

2yv   ….. 
nyv . Thus we see that )(xu  1, as )(xu

ky  1 for each k  and 

yu  1 yv  implies that u  1 yv . But )(xu
ky  1 )(xv

ky  for all x  X  and for each k , 
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then u  1 v . If not, there exists x  X  such that )(xuy  1 )(xvy . We have                   

)(xu y  )(xu
ky  for each k . Then for some k , )(xu

ky  1 )(xv
ky . But this is a 

contradiction, as )(xu
ky  1 )(xv

ky  for each k . Hence u  1 v . For, each z  A , there 

exists k  such that )(zv
ky    0  and so )(zu  0 . Hence u  pA . Therefore, cA1  is open 

in  tX , . Thus A1  is closed in  tX , .  

The proof is similar for * -compactness can be done. 

 

          Theorem 3.40: Let  tX ,  be a fuzzy regular space (as def. 1.51), A  X  and A1  

be an  -compact (resp. * -compact) subset in  tX , . If for each x  A , there exists 

u  ct  with )(xu  0 , we have v ,  w t  such that )(xv  1 ,  u  w ,  A  ]1,0(1v  and 

v  1 w . 

Proof: Suppose x  A  and u  ct  we have )(xu  0 . As  tX ,  is fuzzy regular, then 

there exist xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Let us take   1I  

such that )(xvx    0 . Thus we observe that { xv : x  A }  is an open  -shading of A1 . 

Since A1  is  -compact in  tX , , then it has a finite  -subshading, say {
kxv : x  A }  

( k  nJ )  such that )(xv
kx   for each x  A . Let v   

1xv 
2xv   ….. 

nxv  and    

w   
1xw 

2xw   ….. 
nxw . Thus we see that v  and w  are open fuzzy sets, as they are 

the union and finite intersection of open fuzzy sets respectively i.e. v , w  t . 

Furthermore,  A  ]1,0(1v , )(xv  1, and u  w , as u 
kxw  for each k .  

Finally, we have to show that v  1 w . As 
kxv  1

kxw for each k  implies that 

kxv  1 w  for each k  and hence it is clear that v  1 w .  

Similar proof for * -compactness can be given.          
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          Theorem 3.41: A topological space  TX ,  is compact iff  )(, TX   is                 

 -compact (resp. * -compact).  

Proof: Suppose  TX ,  is compact. Let M  { iu : i  J }  be an open  -shading of 

 )(, TX  . Then ]1,(1 aui
  T  and { ]1,(1 aui

  : ]1,(1 aui
  T }  is an open cover of 

 TX , . As  TX ,  is compact, so it has a finite subcover i.e. there exist ]1,(1 au
ki
  T  

( k  nJ )  such that X   ]1,(1
1

aui
   ]1,(1

2
aui

   …..  ]1,(1 au
ni
 . Now, we observe that 

there exist 
kiu  }{ iu  ( k  nJ )   such that  )(xu

ki    for each x  X  and it is shows that 

}{
kiu  ( k  nJ )  is a finite  -subshading of M . Therefore,  )(, TX   is  -compact. 

Conversely, suppose that  )(, TX   is  -compact. Let { jV  : i  J }  be open cover of 

 TX ,  i.e. X  
Jj

{ jV : jV   T } . Since 
jV1 is l. s. c, then 

jV1  )(T  and                            

{
jV1 : 

jV1  )(T }  is an open  -shading of  )(, TX  . As  )(, TX   is                          

 -compact, so it has a finite  -subshading, say {
kjV1 : 

kjV1  )(T  }  ( k  nJ )  such 

that )(1 x
kjV   for each x  X . Therefore, we can write X   

1j
V  

2jV    ….. 


njV and it is clear that }{

kjV  ( k  nJ )  is a finite subcover of  TX , . Hence  TX ,  is 

compact.  

Similar work for * -compactness can be given.  

 

          Theorem 3.42: Let  tX ,  and  sY ,  be two fuzzy topological spaces. Then the 

product space  stYX  ,  is  -compact iff  tX ,  and  sY ,  are  -compact.  

Proof: First suppose that  ,YX  , where   { ig  ih : ig  t  and ih  s }  is                      

 -compact. Now we can define a fuzzy projection mappings  x :  ,YX    tX ,  

such that ),( yxx  x  for all ),( yx  YX   and y :  ,YX    sY ,  such that 



 -Compact Spaces 

 

  
53 

),( yxy  y  for all ),( yx  YX   which we know are continuous. Hence  tX ,  and 

 sY ,  are continuous images of  ,YX   which are therefore  -compact when 

 ,YX   is given to be  -compact. 

Conversely, let  tX ,  and  sY ,  be  -compact. Let   { ig  ih : ig  t  and ih  s } , 

where ig  and ih  are open fuzzy sets in t  and s  respectively. Therefore { ig : i  J }  is an 

 -shading of   tX ,  and { ih : i  J }  is an  -shading of  sY , . That is )(xgi    for 

all x  X ,  )(yhi    for all y  Y . We see that )( ii hg  ),( yx                                 

min{ )(xgi ,  )(yhi }  . As  tX ,  and  sY ,  are  -compact, there exist 
kig  t  such 

that )(xg
ki

   for each x  X  and 
kih  s  such that )(yh

ki
   for each y  Y  

respectively. Hence we have   { ig  ih : ig  t  and ih  s }  has a finite  -subshading, 

say {
kig 

kih : k  nJ }  such that )(
kk ii hg  ),( yx    for each ),( yx  YX  . Thus 

 ,YX   is  -compact. 

 

          Definition 3.43: Let  tX ,  be an fts and 0    1 ,    I . A family M  of                        

 -open fuzzy sets is called a  - -shading, 0    1 (resp.  - * -shading, 0    1) 

of X  if for each x  X  there exists a u  M  with )(xu    (resp. )(xu   ). A 

subfamily of a  - -shading (resp.  - * -shading) of X  which is also a  - -shading 

(resp.  - * -shading) of X  is called a  - -subshading (resp.  - * -subshading) of X .  

 

           Example 3.44: Let X  },{ ba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  

2u ,  3u  XI  defined by )(1 au  1 ,  )(1 bu  6.0 ; )(2 au  7.0 ,  )(2 bu  1 and )(3 au  7.0 ,  

)(3 bu  6.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Take 

  6.0 . Clearly 1u ,  2u  and 3u  are  -open fuzzy sets in  tX , . Again, take   8.0 . 
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Hence we observe that )(1 au   ,  )(2 bu   for a ,  b  X . So { 1u ,  2u }  is a                          

 - -shading of X .  

Similarly, we can give of  - * -shading of X .   

 

          Definition 3.45: Let  tX ,  be an fts and 0    1 ,    I . Then  tX ,  is said to 

be  - -compact, 0    1 (resp.  - * -compact, 0    1) iff every  - -shading 

(resp.  - * -shading) of X  has a finite  - -subshading (resp.  - * -subshading).    

 

           Theorem 3.46: Every  - -compact (resp.  - * -compact) spaces is  -compact   

(resp. * -compact). But the converse is not true. 

The proof is straightforward.  

Now, for the converse, consider the following example. 

Let X  ]1,0[ ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 xu 













17.0for4.0
0.7xfor1

7.00for1

x

x
 ,  )(2 xu 














17.0for1
0.7xfor1

7.00for6.0

x

x
  and 

)(3 xu 













17.0for4.0
0.7xfor1

7.00for6.0

x

x
. Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that 

 tX ,  is an fts. Take   8.0 . Clearly  tX ,  is  -compact. Again take   9.0 . Then 

there is no finite  -open fuzzy sets ku  for k  1 ,  2 ,  3  in  tX , . Thus  tX ,  is not                  

 - -compact. 

Similarly, we can prove for  - * -compact spaces.    

 

 

 



 
55 

Chapter Four 

Compact Fuzzy Sets 

 

          Compact fuzzy sets due to Chang [19] is local property. In this chapter, we have 

discussed various properties of this concept and established some theorems, corollaries 

and examples. Also we have defined  -compact fuzzy sets and found different properties 

between compact and  -compact fuzzy sets. 

 

          Definition 4.1[19]: A fuzzy set   in X  is said to be compact iff every open cover 

of   has a finite subcover i.e. there exist 
1iu ,  

2iu ,  …… ,  
niu  }{ iu  such that 

 
1iu 

2iu   ……   
niu  or equivalently, a fuzzy set   in X  is said to be compact iff 

every open cover of   has a finite subcover. If     and   XI , then   is also 

compact. Thus we can say that, any other subsets of a compact fuzzy set is also compact. 

If 1)( x  for all x  X , then this definition coincides an fts  tX ,  with that of Chang 

[19].  

 

          Theorem 4.2: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is compact in  tX ,  iff   is compact in  AtA, .      

Proof: Suppose   is compact in  tX , . Let { iu : i  J }  be an open cover of   in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence   
Ji

iu


 
Ji

iv


 and 

consequently { iv : i  J }  is an open cover of   in  tX , . As   is compact in  tX , , 

then { iv : i  J }  contains a finite subcover i.e. there exist 
1iv ,  

2iv ,  …… ,  
niv  }{ iv  

such that  
1iv 

2iv   …… 
niv . But, then   (

1iv 
2iv …..

niv ) | A              
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 (
1i

v | A )  (
2i

v | A ) ……  (
ni

v | A )   
1i

u 
2i

u  .…….  
ni

u , as 0  A . Thus 

{ iu : i  J }  contains a finite subcover {
1iu ,  

2iu ,  …… ,  
niu }  and hence   is compact 

in  AtA, .  

Conversely, suppose   is compact in  AtA, . Let { iv : i  J }  be an open cover of   in 

 tX , . Set iu  iv | A , then   
Ji

iv


 implies that   ( 
Ji

iv


) | A  
Ji

( iv | A )  

 
Ji

iu


. But iu  At  , so { iu : i  J }  is an open cover of   in  AtA, . As   is compact 

in  AtA, , then { iu : i  J }  contains a finite subcover, say {
kiu : k  nJ } .  

Accordingly,  
1iu   

2iu  .…….
niu   (

1iv | A )   (
2iv | A ) ……  (  

niv | A )  

  (
1i

v 
2i

v …… 
ni

v ) | A  
1i

v 
2i

v ……
ni

v , as 0  A . Thus { iv : i  J }  

contains a finite subcover {
kiv : k  nJ }  and therefore   is compact in  tX , .    

          Note: This theorem is different form of H. K. Abdulla and N. R. Kareem [1]. 

  

          Corollary 4.3: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let 

  XI  and 0  A . Then   is compact in  tX ,  if and only if   is compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by theorem (4.2),   is 

compact in  tX ,  or  *, tY  if and only if   is compact in  AtA,  or  *, AtA . But At  *
At .    

     

          Theorem 4.4: Let  tX ,  and  sY ,  be two fuzzy topological spaces and                         

f :  tX ,   sY ,  be fuzzy continuous and onto mapping. If   is compact fuzzy set in 

 tX , , then )(f  is also compact fuzzy set in  sY , . 

Proof: cf.[107]. 
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          Theorem 4.5: Let  tX ,  and  sY ,  be two fuzzy topological spaces and                   

f :  tX ,   sY ,  be fuzzy open and bijective mapping. If   is compact fuzzy set in 

 sY , , then )(1 f  is also compact in  tX , .  

Proof: Let { iu : i  J }  be an open cover of )(1 f  in  tX ,  i.e )(1 f  
Ji

iu


. As f  

is fuzzy open, then )( iuf  s  and hence { )( iuf : i  J }  is an open cover of   in  sY , . 

Since   is compact fuzzy set in  sY , , then   has a finite subcover i.e. there exist 

)(
1i

uf ,  )(
2i

uf ,  …… , )(
ni

uf  })({ iuf  such that   )(
1i

uf  )(
2i

uf   ……  

)(
ni

uf . Again, let u  be any fuzzy set in X . Since f  is bijective, then we have 

)((1 uff   u . Hence )(1 f  1f ( )(
1iuf  )(

2iuf ……   )(
niuf )    

1iu    
2iu  

 ......
ni

u . Therefore )(1 f  is compact in  tX , .   

 

          Theorem 4.6: Let  tX ,  be an fts,  AtA,  be subspace of  tX ,  and                    

f :  tX ,   AtA,  be fuzzy continuous and onto mapping. If   is compact fuzzy set in 

 tX , , then )(f  is also compact fuzzy set in  AtA, .        

Proof: Let { iu : i  J }  be an open cover of )(f  in  AtA,  i.e. )(f  
Ji

iu


. Put 

iu  iv | A , where iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  implies that 

)|(1 Avf i
  t  and consequently { )(1

iuf  : i  J }  i.e { )|(1 Avf i
 : i  J }  is an open 

cover of   in  tX , . As   is compact fuzzy set in  tX , , then   has a finite                   

subcover i.e. there exist )|(1 Avf
ki

  })|({ 1 Avf i
  ( k  1 ,  2 , …… , n )   such that              

   
n

k
i Avf
k

1

1 )|(


 . Again, let u  be any fuzzy set in A . Since f  is onto, then we have 
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))(( 1 uff   u . Hence )(f  













n

k
i Avff
k

1

1 )|(   
n

k

f
1

( )|(1 Avf
ki

 )   )|(
1


n

k
i Av
k



    

  
n

k
ik

u
1

. Therefore )(f  is compact in  AtA, . 

 

          Theorem 4.7: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and  sY ,  

respectively. Let   be a compact fuzzy set in  AtA,  and f :  AtA,   BsB,  be 

relatively fuzzy continuous and onto mapping. Then )(f  is also compact in   BsB, . 

Proof: Assume that BAf )( , as f  is onto. Let   be compact in  AtA,  and                      

M   { iv : i  J }  be an open cover of )(f  in  BsB,  i.e. )(f  
Ji

iv


. Since iv  Bs , 

then there exist iu  s   such that iv  iu | B . Hence )(f  
Ji

iu


( | B ). As f  is 

relatively fuzzy  continuous, then )(1
ivf  | A  At  and hence { )(1

ivf  | A : i  J }  is an 

open cover of   in  AtA,  i.e. { 1f ( iu | B  ) | A : i  J }    { )(1
iuf  | ( )(1 Bf   A ) : 

i  J }   { )(1
iuf  | A : i  J }  is an open cover of   in  AtA, . Since   is  compact in 

 AtA, , then there exist )(1
kiuf  | A{ )(1

iuf  | A }  ( k  nJ )  such that 

  
nJk

( )(1
kiuf  | A ) . Again, let v  be any fuzzy set in B . Since f  is onto, then we 

have ))(( 1 vff   v . Therefore )(f    ))|)((( 1 Auff
k

n

i
Jk



  implies that )(f   

)|)(( 1 Auff
k

n

i
Jk



  implies that )(f  
nJk
(

ki
u | )(Af )  implies that )(f  

nJk
(

ki
u | B ) 

implies that )(f   
n

k
Jk

iv


. Thus )(f  is compact in  BsB, . 
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          Theorem 4.8: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and  sY ,  

respectively. Let   be a compact fuzzy set in  BsB,  and f :  AtA,   BsB,  be 

relatively fuzzy open and bijective mapping. Then )(1 f  is compact in  AtA, . 

Proof: We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open cover of 

)(1 f  in  AtA,  for every i  J  i.e )(1 f   
Ji

iu


. Since iu  At , then there exists 

iv  t  such that iu  iv | A  and so )(1 f   
Ji

( iv | A ) .  As f  is relatively fuzzy open, 

then )( iuf  Bs  and hence { )( iuf : i  J }  is an open cover of   in  BsB,  implies that 

{ )|( Avf i : i  J }   { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  is an open cover of 

  in  BsB, . Since   is compact in  BsB, , then { Bvf i |)( : i  J }   has a finite 

subcover, say { Bvf
ki |)( : k  nJ }  such that   

n

k
i Bvf
k

1

)|)((


. Again, let u  be any 

fuzzy set in X . Since f  is bijective, then we have )((1 uff   u . Hence                           

)(1 f    












 
n

k
i Bvff
k

1

1 )|)((    
n

k
i Bvff
k

1

1 )|)((


    
n

k
i Bfv
k

1

1 ))(|(


    
n

k
i Av
k

1

)|(


        

  
n

k
ik

u
1

. Therefore  {
kiu : k  nJ }  is a finite subcover of { iu : iu  At } . Thus )(1 f  

is compact in  AtA, . 

 

          Theorem 4.9: Let  tX ,  be an fts and   be a fuzzy set in X . If every family of 

closed fuzzy sets in  tX ,  which has empty intersection has a finite subfamily with empty 

intersection, then   is compact. The converse is not true in general. 
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Proof: Let { iu : i  J }  be an open cover of   in  tX ,  i.e.   
Ji

iu


. By the first 

condition of the theorem, we have 
Ji

c
iu



 X0 . Hence we can write 
Ji

iu


 X1 . Again, by 

the second condition of the theorem, we can write 
n

k
Jk

c
iu



 X0  implies that 
n

k
Jk

iu


 X1  

and hence   
n

k
Jk

iu


. Thus we see that {
kiu : k  nJ }  is a finite subcover of                       

{ iu : i  J } . Therefore   is compact. 

Now, for the converse, we consider the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by  )(1 au  3.0 ,  )(1 bu  6.0  and 

)(2 au  4.0 ,  )(2 bu  8.0 . Now, take t  { 0 ,  1u ,  2u ,  1} , then we see that  tX ,  is an 

fts. Let   XI  defined by )(a  2.0 ,  )(b  7.0 . Clearly   is compact in  tX , . 

Now, closed fuzzy sets are )(1 auc  7.0 ,  )(1 buc  4.0  and )(2 auc  6.0 ,  )(2 buc  2.0 . We 

observe that cu1  cu2  0 . Thus the converse of the theorem is not necessarily true in 

general.       

 

          Theorem 4.10: Let  and   be compact fuzzy sets in an fts  tX , . Then    is 

also compact. 

Proof: Let M  { iu : i  J }  be any open cover   . Then M  is an open cover of 

both   and   respectively.  Since   is compact in  tX , , then   has a finite subcover 

i.e. there exist 
kiu  M  ( k  nJ )  such that   

n

Jk
i

n

k
u



. Again   is compact in  tX , , 

then   has a finite subcover i.e. there exist 
ri

u  M  ( r  nJ )  such that   
n

Jr
i

n

r
u



. 

Therefore 
kiv{ ,  }

riw  is a finite subcover of M . Hence    is compact in  tX , . 
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          Theorem 4.11: Let   and   be compact fuzzy sets (    0 )  in an fts  tX , . 

Then    is also compact. 

Proof: Since     ,       and  ,    are compact in  tX , , then    is 

also compact. 

 

          The following example will show that the compact fuzzy sets in an fts need not be 

closed.   

          Example 4.12: Let X = },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u ,  4u  XI  defined by 

)(1 au  4.0 ,  )(1 bu  7.0 ; )(2 au  5.0 ,  )(2 bu  3.0 ; )(3 au  5.0 ,  )(3 bu  07 ; 

)(4 au  4.0 ,  )(4 bu  3.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u , 1} , then we see that 

 tX ,  is an fts. Let   XI  defined by )(a  5.0 ,  )(b  4.0 . Clearly   is compact. 

But  is not closed, as its complement c  is not open in  tX , . 

 

           The following example will show that the closure of compact fuzzy sets in an fts 

need not be compact.  

          Example 4.13: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u ,  4u  XI  defined 

by )(1 au  1.0 ,  )(1 bu  3.0 ; )(2 au  4.0 ,  )(2 bu  5.0 ; )(3 au  6.0 ,  )(3 bu  7.0 ; 

)(4 au  8.0 ,  )(4 bu  9.0 .  Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1 } , then we see that 

 tX ,  is an fts. Let   XI  defined by )(a  2.0 ,  )(b  7.0 . Clearly   is compact. 

Now, closed fuzzy sets are )(0 ac  1 ,  )(0 bc  1; )(1 auc  9.0 ,  )(1 buc  7.0 ; )(2 auc  6.0 ,  

)(2 buc  5.0 ; )(3 auc  4.0 ,  )(3 buc  3.0 ; )(4 auc  2.0 ,  )(4 buc  1.0 . So we have 

  },0{ 1
cc u  cu1  i.e.  )(

_

a  9.0 ,  )(
_

b  7.0 . Hence we observe that, there is no 

finite subcover of 
_

  in  tX , . Thus 
_

  is not compact.  
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          Theorem 4.14: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be a compact 

fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 and  0  ]1,0(1v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, then there exist                

yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Hence we see that 

 { yv : y  0 }  i.e. { yv : y  0 }  is an open cover of   in  tX , . Since   is 

compact, then { yv : y  0 }  has a finite subcover i.e.  there exist 
1yv ,  

2yv ,…… ,  

nyv  }{ yv  such that  
1yv 

2yv   ……. 
nyv . Now, let v   

1yv 
2yv   ….. 

nyv  

and u   
1yu   

2yu   …… 
nyu . Then we see that v  and u  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e. v ,  u  t . 

Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each k .  

 

           Theorem 4.15: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   and   be 

disjoint compact fuzzy sets in X  with 0 ,  0   X . Then there exist u ,  v  t  such that 

0  ]1,0(1u  and  0  ]1,0(1v .   

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is compact in  tX , , 

then by theorem (4.14), there exist yu ,  yv  t  such that )(yuy  1 and 0  ]1,0(1
yv . As 

)(yuy  1, then { yu : y  0 }  is an open cover of   in  tX , . Since   is compact, then 

{ yu : y  0 }  has a finite subcover i.e. there exist 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that 

 
1yu 

2yu   ……. 
nyu . Furthermore,  

1yv 
2yv ……. 

nyv , as                      

0   ]1,0(1
kyv  for each k . Now, let u   

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   

….. 
nyv . Thus we see that 0  ]1,0(1u  and 0   ]1,0(1v . Hence u  and v  are open 
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fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

u ,  v  t .  

           Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.14) and (4.15) are not at all true. 

 

          The following example will show that the compact fuzzy sets in fuzzy 1T -space     

(as def. 1.45) need not be closed. 

          Example 4.16: Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by  

)(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Now, put t  { 0 ,  u ,  v ,  1} , then we see 

that  tX ,  is a fuzzy 1T -space. Let    XI  defined by )(a  3.0 ,  )(b  7.0 . Clearly 

  is compact in  tX , . But   is not closed, as its complement c  is not open in  tX , . 

 

          Theorem 4.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If   is compact in  tX ,  and x  0 ( )(x  0 ) , then there exist                  

u ,  v   t  such that )(xu  0  and  0  ]1,0(1v . The converse of the theorem is not 

necessarily true in general.  

The proof is similar as that of theorem (4.14). 

Now, for the converse, we consider the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by  )(1 au  2.0 ,  )(1 bu  0 ; 

)(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, take t   { 0 ,  1u ,  2u ,  3u ,  

1} , then we see that  tX ,  is a fuzzy 1T -space. Again, let   XI  defined by )(a  0 ,  

)(b  6.0 . Hence we observe that 0  }{b  and a  0 . Now 1u ,  2u  t  where 
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)(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u . But   is not compact, as there is 

no finite subcover of   in  tX , . Thus the converse of the theorem is not true in general.    

 

          Theorem 4.18: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,     be fuzzy 

sets in X  with 0 ,  0  X . If   and   are disjoint compact fuzzy sets in  tX , , then 

there exist u ,  v   t  such that 0  ]1,0(1u  and  0   ]1,0(1v . The converse of the 

theorem is not true in general. 

The proof is similar as that of theorem (4.15). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(4.17). Let  ,    XI  defined by )(a  8.0 ,  )(b  0  and )(a  0 ,  )(b  6.0 . 

Hence we observe that 0   }{a  and 0   }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  

and ]1,0(1
2
u  }{b . Thus we see that 0  ]1,0(1

1
u  and 0   ]1,0(1

2
u , where   and 

  are disjoint. But   and   are not compact, as there is no finite suvcover of   and   

in  tX ,  respectively. Thus the converse of the theorem is not true in general.    

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.17) and (4.18) are not at all true. 

 

          The following example will show that the compact fuzzy sets in fuzzy 1T -space     

(as def. 1.46) need not be closed. 

           Example 4.19: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(4.17). Again, let   XI  defined by )(a  1.0 ,  )(b  2.0 .  Clearly   is compact in 

 tX , . But   is not closed, as its complement c  is not open in  tX , . 
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           Theorem 4.20: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and   be a 

compact fuzzy set in X  with 0   X . Suppose x  0 ( )(x  0 ) , then there exist               

u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and u  v  0 .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  yv  0 . Hence  { yv : y  0 }  

i.e. { yv : y  0 }  is an open cover of  . Since   is compact in  tX , , then there exist 

1yv ,  
2yv ,…… ,  

nyv  }{ yv  such that  
1yv 

2yv   …… 
nyv . Now, let                   

v   
1yv 

2yv   …… 
nyv  and u   

1yu   
2yu   …… 

nyu . Then we see that v  and 

u  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for 

each k .  

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies that u 
kyv  0 , by 

distributive law, we see that u  v  u  (
1yv 

2yv   …... 
nyv )  0 . 

 

          Corollary 4.21: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and   be a 

compact fuzzy set in X  with 0   X .  Let x  0 ( )(x  0 ) , then there exists u  t  

such that )(xu  1 and ]1,0(1u  c
0 .  

Proof: By theorem (4.20), there exists u ,  v  t  such that )(xu  1,  0  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x  ]1,0(1u  and x  ]1,0(1v    )(xu  0  and )(xv  0    u  v   0 . Hence 

]1,0(1u   0    and consequently ]1,0(1u  c
0 .     
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          Theorem 4.22: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and  ,     be 

disjoint compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,  0   ]1,0(1v  and u  v  0 . 

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is compact in  tX , , 

then by theorem (4.20), there exist yu ,  yv  t  such that )(yuy  1 ,  0  ]1,0(1
yv  and 

yu   yv  0 . As )(yu y  1, then { yu : y  0 }  is an open cover of  . Since   is 

compact in  tX , , then there exist 
1yu ,  

2yu ,…... ,  
nyu  }{ yu  such that  

1yu 
2yu   

……. 
nyu . Furthermore,   

1yv 
2yv   ……. 

nyv , as 0   ]1,0(1
kyv  for each k . 

Now, let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   ….. 

nyv . Thus we see that 

0  ]1,0(1u  and 0  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Lastly, we have to show that u  v  0 . First , we observe that 
kyu 

kyv  0  implies that 

kyu  v  0 , by distributive law, we see that u  v  (
1yu   

2yu   …… 


nyu )  v  0 .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.20), (4.22) and corollary (4.21) are not at all true. 

 

           Note: The compact fuzzy sets in fuzzy Hausdorff space (as def. 1.47) need not be 

closed. 

Consider the fuzzy topology t  in the example (4.16), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.47) and will serve the purpose that the compact fuzzy sets in fuzzy 

Hausdroff space need not be closed. 
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          Theorem 4.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0 ,  0  ]1,0(1v  and u  v  0 . The converse of 

the theorem is not necessarily true in general.  

The proof is similar as that of theorem (4.20).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(4.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  

defined by )(a  0 ,  )(b  6.0 . Hence we observe that 0  }{b  and a  0 . Now  

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u  and 1u  2u  0 . 

But   is not compact, as there is no finite subcover of   in  tX , . Thus the converse of 

the theorem is not true in general.     

 

          Corollary 4.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exists u  t  such that )(xu  0  and ]1,0(1u  c
0 . 

The proof is similar as that of corollary (4.21).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(4.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let    XI  defined by 

)(a  0 ,  )(b  6.0 . Hence we observe that 0  }{b  and a  0 . Now 1u  t  where 

)(1 au  0  and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  c

0 . But   is not 

compact, as there is no finite subcover of   in  tX , . Thus the converse is not true in 

general.    
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          Theorem 4.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and  ,    be 

fuzzy sets in X  with 0 ,  0  X . If   and   are disjoint compact fuzzy sets in  tX , , 

then there exist u ,  v  t  such that 0  ]1,0(1u ,  0  ]1,0(1v  and u  v  0 . The 

converse of the theorem is not true in general. 

The proof is similar as that of theorem (4.22). 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(4.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let  ,    XI  

defined by )(a  8.0 ,  )(b  0  and )(a  0 ,  )(b  6.0 . Hence we observe that 

0  }{a  and 0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and ]1,0(1

2
u  }{b . 

Thus we see that 0  ]1,0(1
1
u ,  0   ]1,0(1

2
u  and 1u  2u  0 , where   and   are 

disjoint. But   and   are not compact, as there is no finite subcover of   and   in 

 tX ,  respectively. Thus the converse of the theorem is not true in general.    

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.23), (4.25) and corollary (4.24) are not at all true. 

 

          The following example will show that the compact fuzzy sets in fuzzy Hausdorff 

space (as def. 1.48) need not be closed. 

          Example 4.26: Consider the fuzzy topology t  in the example of the theorem (4.17), 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  defined by 

)(a  2.0 ,  )(b  1.0 .  Clearly   is compact in  tX , . But   is not closed, as its 

complement c  is not open in  tX , . 
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          Theorem 4.27: Let   be a compact fuzzy set in a fuzzy Hausdorff space  tX ,     

(as def. 1.50) with 0   X . Suppose x  0 ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 ,  0  ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  1 yv . Hence  { yv : y  0 }  

i.e. { yv : y  0 }  is an open cover of  . Since   is compact in  tX , , then there exist 

1yv ,  
2yv ,…… ,

nyv  }{ yv  such that  
1yv 

2yv   …… 
nyv . Now, let 

v 
1yv 

2yv   ….. 
nyv  and u 

1yu   
2yu   …… 

nyu . Then we see that v  and u  

are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 

individually.  

Lastly, we have to show that u  1 v .  As yu  1 yv  implies that u  1 yv . Since 

)(xu
ky  1 )(xv

ky  for all x  X  and for each k , then u  1 v . If not, then there exist 

x  X  such that )(xuy  1 )(xvy . We have )(xuy  )(xu
ky  for each k . Then for some 

k , )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky  1 )(xv

ky  for each k . 

Hence u  1 v . 

 

          Theorem 4.28: Let   and   be disjoint compact fuzzy sets in a fuzzy Hausdorff 

space  tX ,  (as def. 1.50) with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,  0   ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then y  0 , as   and   are disjoint . Since   is compact in 

 tX , , then by theorem (4.27), there exist yu ,  yv  t  such that )(yuy  1 ,  0  ]1,0(1
yv  
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and  yu  1 yv . As )(yuy  1, then { yu : y  0 }  is an open cover of  . Since   is 

compact in  tX , , then there exist 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that    

1yu    
2yu  

……. 
nyu . Furthermore,   

1yv 
2yv   ……. 

nyv , as 0   ]1,0(1
kyv  for each 

k . Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see 

that 0  ]1,0(1u  and 0  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are 

the union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Finally, we have to show hat u  1 v . First, we observe that 
kyu  1

kyv  for each k  

implies that 
kyu  1 v  for each k  and it is clear that u  1 v .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.27) and (4.28) are not at all true. 

 

          Note: The compact fuzzy sets in fuzzy Hausdorff space (as def. 1.50) need not be 

closed 

Consider the fuzzy topology t  in the example (4.16), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.50) and will serve the purpose that the compact fuzzy sets in fuzzy 

Hausdorff space need not be closed.   

 

          Theorem 4.29: Let   be a compact fuzzy set in a fuzzy regular space  tX ,          

(as def. 1.51) with 0  X . If for each x  0  and u  ct  with )(xu  0 , there exist            

v ,  w  t  we have )(xv  1 ,  u  w ,  0  ]1,0(1v  and v  1 w . 

Proof: Let  tX ,  be a fuzzy regular space and   be a compact fuzzy set in  tX , . Now, 

if each x  0 ,  there exists u  ct  with )(xu  0 , by fuzzy regularity of  tX , , we have 

xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and  xv  1 xw  . Hence  { xv : x  0 }  
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i.e. { xv : x  0 }  is an open cover of  . Since   is compact in  tX , , then                         

{ xv : x  0 }  has a finite subcover i.e. there exist 
1xv ,  

2xv ,…… ,
nxv  }{ xv  such that 

 
1xv 

2xv   ……. 
nxv . Now, let v 

nxv 
2xv …… 

nxv and w 
1xw   

2xw ……
nxw . Then we see that v  and w  are open fuzzy sets, as they are the union 

and finite intersection of open fuzzy sets respectively i.e. v ,  w  t . Furthermore, 

0  ]1,0(1v , )(xv  1 and  u  w , as u  
kxw  individually.  

Lastly, we have to show that v  1 w . As 
kxv  1

kxw  implies that 
kxv  1 w  for each 

k  and hence it is clear that v  1 w .   

 

          Theorem 4.30: Let  TX ,  be a topological space and  )(, TX   be an fts. If   

is any compact fuzzy set in  )(, TX  , then 0  is compact in  TX , . The converse is 

not true in general. 

Proof: Suppose   be any compact fuzzy set in  )(, TX  . Let { iV  : i  J }  be an 

open cover of 0  in  TX ,  i.e. 0    
Ji

iV


. As 
iV1  is l.s.c., then 

iV1  )(T  and                   

{
iV1 : 

iV1  )(T }  is an open cover of   in  )(, TX  . Since   is compact in 

 )(, TX  , then   has a finite subcover i.e. there exist 
1

1
iV ,  

2
1

iV ,  ...... ,  
niV1  }1{

iV  such 

that    
1

1
iV   

2
1

iV   ......   
niV1 . Hence, we can write 0   

1iV   
2iV   ...... 

niV  and 

therefore 0  is compact in  TX , .  

Now, for the converse, we give the following example.                

Let X  },,{ cba  and T  {  ,  }{b ,  }{c ,  },{ cb ,  X } , then  TX ,  is a topological 

space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 ,  )(1 bu  6.0 ,  )(1 cu  0 ; )(2 au  0 ,  

)(2 bu  0 ,  )(2 cu  8.0  and )(3 au  0 ,  )(3 bu  6.0 ,  )(3 cu  8.0 . Then             
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)(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Again, let   XI  with 

)(a  0 ,  )(b  7.0 ,  )(c  9.0 . Hence 0  },{ cb . Then clearly 0  is compact in 

 TX , . But   is not compact in  )(, TX  , as there do not exist ku { )(T }                     

( k   1 ,  2 ,  3 )  such that    1u    2u   3u . Thus the converse of the theorem is not 

true in general.  

    

                    Theorem 4.31: If   and   are compact fuzzy sets in an fts  tX , , then 

)(    is also compact in   ttXX  , . 

Proof: Suppose   and   are compact fuzzy sets in an fts  tX , . Let { iu : i  J }  and 

{ iv : i  J }  be open cover of   and   respectively, where iu ,  iv  t . Hence it can be 

easily shown that, min ( )(x , )(y )  
Ji
min ( )(xui , )( yvi )  for every ),( yx  XX  . 

Then { ii vu  : i  J }  is an open cover of )(    in  ttXX  ,  i.e. )(     


Ji

( iu  iv ) . Since   and   are compact, then { iu : i  J }  and { iv : i  J }  have 

finite subcovers, say {
kiu : k  nJ }  and {

kiv : k  nJ }  such that   
n

k
Jk

iu


and                   

  
n

k
Jk

iv


 respectively. Thus we can write )(    
nJk
(

ki
u 

ki
v ) . Therefore 

{
kiu 

kiv : k   nJ  }  is a finite subcover of { ii vu  : i  J } . Thus )(    is compact in  

 ttXX  , .    

           

          Definition 4.32: Let  tX ,  be an fts, 0    1 and   be a fuzzy set in X . Then   

is said to be  -compact iff every  -cover of   has a finite  -subcover. If     and 
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  XI , then   is also  -compact. Thus we can say that, any other subsets of a                        

 -compact fuzzy set in an fts is also  -compact. 

 

          Theorem 4.33: Any  -compact fuzzy set in an fts is compact. The converse is not 

true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  )(1 au 1 ,  

)(1 bu  4.0 ;     )(2 au  7.0 ,  )(2 bu  1 and )(3 au  7.0 ,  )(3 bu  4.0 . Now, take t  { 0 ,  

1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  defined by 

)(a  9.0 ,  )(b  8.0 . Clearly   is compact in  tX , . Take   6.0 . Then we observe 

that there is no finite  -subcover of   in  tX , . Hence   is not  -compact in  tX , . 

Thus the converse of theorem is not necessarily true.  
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Chapter Five  

Partially  -Compact Fuzzy Sets 

 

          In this chapter, we have introduced partially  -compact fuzzy sets. Furthermore, 

we have established some theorems, corollaries and examples of partially  -compact 

fuzzy sets. Also we have defined partially  - -compact fuzzy sets and found different 

properties between partially  -compact and partially  - -compact fuzzy sets.   

 

          Definition 5.1: Let  tX ,  be an fts and   I . A family M  of fuzzy sets is called 

a partial  -shading, 0    1 (resp. partial * -shading, 0    1), in short,                       

p -shading (resp. *p -shading) of a fuzzy set   in X  if for each x  0 ,  ( 0   X )  

there exists a u  M  with )(xu    (resp. )(xu   ). If each u  is open, then M  is 

called an open p -shading (resp. open *p -shading) of   in  tX , .   

A subfamily of a p -shading (resp. *p -shading) of   which is also a p -shading 

(resp. *p -shading) of   is called a p -subshading (resp. *p -subshading) of  .  

If )(x  0  for all x  X  i.e. 0  X , then p -shading (resp. *p -shading) and                   

 -shading (resp. * -shading) will be same.   

 

          Example 5.2: Let X  },,{ cba , I  ]1,0[  and 0    1. Let 1u ,  2u  XI  

defined by )(1 au  7.0 ,  )(1 bu  4.0 ,  )(1 cu  2.0  and )(2 au  3.0 ,  )(2 bu  9.0 ,  

)(2 cu  1.0 . Again, let   XI  with )(a  8.0 ,  )(b  4.0 ,  )(c  0 . Now, take 

  6.0 . Hence we observe that )(1 au   ,  )(2 bu    where a ,  b  0 . Therefore 

{ 1u ,  2u }  is a p -shading of  .  
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Again, if we take   7.0 , then { 1u ,  2u }  is a *p -shading of  .            

 

          Example 5.3: Let X  },,{ cba , I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  

defined by )(1 au  1 ,  )(1 bu  1 ,  )(1 cu  0 ; )(2 au  0 ,  )(2 bu  2.0 ,  )(2 cu  1 and 

)(3 au  0 ,  )(3 bu  2.0 ,  )(3 cu  0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. 

Again, let   XI  with )(a  0 ,  )(b  4.0 ,  )(c  6.0 . Now, take   7.0 . Hence 

we observe that )(1 bu   ,  )(2 cu    where b ,  c  0 . Therefore { 1u ,  2u }  is an open 

p -shading of   in  tX , .  

Again, if we take   1, then { 1u ,  2u }  is an open *p -shading of   in  tX , .            

  

          Definition 5.4: Let  tX ,  be an fts and   I . A fuzzy set   in X  is said to be 

partially  -compact, 0    1 (resp. partially * -compact, 0    1), in short,                 

p -compact (resp. *p -compact) iff every open p -shading (resp. *p -shading) of   

has a finite p -subshading (resp. *p -subshading). 

 

          Theorem 5.5: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is p -compact (resp. *p -compact) in  tX ,  iff   is p -compact 

(resp. *p -compact) in  AtA, .                    

Proof: Suppose   is p -compact in  tX , . Let M  { iu : i  J }  be an open                       

p -shading of   in  AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence 

{ iv : i  J }   is an open p -shading of   in  tX , . As   is p -compact in  tX , , 

then { iv : i  J }  has a finite p -subshading, say {
kiv : k  nJ }   such that )(xv

ki
   

for all x  0 . For, if x  0 , then there exists 
0ki

v  such that )(
0

xv
ki

   implies that 
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)()|(
0

xAv
ki

   and consequently )(
0

xu
ki

  , as 0  A . Thus 
0kiu  M  and hence 

{
kiu : k  nJ }  is a finite p -subshading of M . Therefore   is p -compact in  AtA, .         

Conversely, suppose   is p -compact in  AtA, . Let { iv : i  J }  be an open                   

p -shading of   in  tX , . Put iu  iv | A . To show this, let x  X . If x  A , then there 

exists 
0iv  { iv : i  J }  such that 

0iu 
0iv | A . But 

0iu  At , so )(
0

xui    for all x  0 . 

Therefore, { iu : i  J }  is an open p -shading of   in  AtA, . Since   is p -compact 

in  AtA, , then { iu : i  J }  has a finite p -subshading, say {
ki

u : k  nJ }  such that 

)(xu
ki   for all x  0 . For, if x  0 , then there exists 

0ki
u  such that )(

0
xu

ki
     

)()|(
0

xAv
ki

     )(
0

xv
ki

  , as 0  A . Thus {
kiv : k  nJ }  is a finite                          

p -subshading of { iv : i  J } . Hence   is p -compact in  tX , .               

The proof is similar for *p -compactness can be given. 

 

          Corollary 5.6: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let 

  XI  with 0  A . Then   is p -compact (resp. *p -compact) in  tX ,  iff   is 

p -compact (resp. *p -compact) in  AtA, . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(5.5),   is p -compact in  tX ,  or  *, tY  if and only if   is p -compact in  AtA,  or 

 *, AtA . But At  *
At .             

Similar work for *p -compactness can be done. 

 

          Theorem 5.7: Let f : X  Y  be any mapping and   XI . Then 

)( 0f   0)(f . 
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Proof: Let y  )( 0f , then there exists an x  0  such that y  )(xf . Now, )(x  0  

and therefore sup{ )(x : x  )(1 yf  }  0  which implies that )()( yf   0 . Hence 

y   0)(f . Therefore )( 0f   0)(f .    

Again, let y   0)(f , then )()( yf   0  which implies that sup{ )(x : )(xf  y ,  

)(1 yf    }  0 . Then there exists an 0x  X , y  )( 0xf  and x  0 . Therefore 

)( 0xf  )( 0f  implies that y  )( 0f . Therefore  0)(f  )( 0f . Hence                      

)( 0f    0)(f .  

 

          Theorem 5.8: Let  tX ,  and  sY ,  be two fuzzy topological spaces and                  

f :  tX ,    sY ,  be fuzzy continuous and onto mapping. If   is p -compact (resp. 

*p -compact) in  tX , , then )(f  is p -compact (resp. *p -compact) in  sY , . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(f  in  sY , . Since f  is 

fuzzy continuous, then )(1
iuf   t  and hence )(1 Mf   { )(1

iuf  : iu  M }  is an open 

p -shading of   in  tX , . For, if x  0 , then )(xf   0)(f . So there exists 
0iu  M  

such that  )(
0

xfui    which implies that )()(
0

1 xuf i
   . As   is p -compact in 

 tX , , then )(1 Mf   has a finite p -subshading, say { )(
1

1
iuf  ,  )(

2

1
iuf  ,  …… ,  

)(1
niuf  }. Now, if y   0)(f , then y  )(xf  for some x  0 . Then there exists k  

such that )()(1 xuf
ki

    which implies that  )(xfu
ki

   or )(yu
ki

  . Hence )(f  

is p -compact in  sY , . 

Similar work for *p -compactness can be given. 
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          Theorem 5.9: Let  tX ,  and  sY ,  be two fuzzy topological spaces and              

f :  tX ,    sY ,  be fuzzy open and bijective mapping. If   is p -compact (resp. 

*p -compact) in  sY , , then )(1 f  is p -compact (resp. *p -compact) in  tX , . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(1 f  in  tX , . As f  is 

fuzzy open, then )( iuf  s  and so )(Mf  { )( iuf : iu  M }  is an open p -shading of 

  in  sY , . For, if y  0 , then )(1 yf    01 )(f . So there exists 
0iu  M  such that 

 )(1
0

yfui
   which implies that )()(

0
yuf i   . Since   is p -compact in  sY , , 

then )(Mf  has a finite p -subshading, say { )(
1iuf ,  )(

2iuf ,  …… , )(
niuf }. For, if 

x   01 )(f , then x  )(1 yf   for some y  0 . Therefore, there exists k  such that 

)()( yuf
ki   which implies that  )(1 yfu

ki
   or )(xu

ki  . Hence )(1 f  is      

p -compact in  tX , .     

The work is similar for *p -compactness can be given. 

 

          Theorem 5.10: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Let  AtA,  be a fuzzy subspace of  tX ,  and f :  tX ,   AtA,  be fuzzy 

continuous and onto mapping. If   is p -compact (resp. *p -compact) in  tX , , then 

)(f  is p -compact (resp. *p -compact) in  AtA, . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(f  in  AtA, . Put                     

iu   iv | A , where iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  implies that 

)|(1 Avf i
  t  and hence )(1 Mf   { )(1

iuf  : iu  M }  i.e )(1 Mf   { )|(1 Avf i
 : 

i  J }  is an open p -shading of   in  tX , . For, if x  0 , then )(xf   0)(f . So 

there exists 
0iu   M  such that  )(

0
xfui    which implies that )()(

0

1 xuf i
    i.e. 
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)()|(
0

1 xAvf i
  . As   is p -compact in  tX , , then )(1 Mf   has a finite                      

p -subshading, say { )|(
1

1 Avf i
 ,  )|(

2

1 Avf i
 ,  …… ,  )|(1 Avf

ni
 } . Now, if 

y   0)(f , then y  )(xf  for some x  0 . Then there exists k  such that 

)()|(1 xAvf
ki

   which implies that )|( Av
ki  )(xf   or )(yu

ki  . Hence )(f  is 

p -compact in  AtA, . 

Similar work for *p -compactness can be given. 

 

          Theorem 5.11: Let  AtA,  and  BsB,  be fuzzy subspaces of fuzzy topological 

spaces  tX ,  and  sY ,  respectively and f :  AtA,   BsB,  be relatively fuzzy 

continuous and onto mapping. If   is p -compact (resp. *p -compact) in  AtA, , then 

)(f  is p -compact (resp. *p -compact) in  BsB, . 

Proof: We have BAf )( , as f  is onto. Let { iv : iv  Bs }  be an open p -shading of 

)(f  in  BsB,  for every i  J  i.e )(yvi    for every y   0)(f . Since iv  Bs , then 

there exists iu  s  such that iv  iu | B  and so ( iu | B ) )( y    for every y   0)(f .  

As f  is relatively fuzzy continuous, then Avf i |)(1  At . Thus we observe that, for each 

x  0 , )()|)(( 1 xAvf i
   and hence { Avf i |)(1 : i  J }  is an open p -shading of   

in  AtA,  implies that { ABuf i |))|(( 1 : i  J }   { ))((|)( 11 ABfuf i  : i  J }    

{ Auf i |)(1 : i  J }  is an open p -shading of   in  AtA, . Since   is p -compact in 

 AtA, , then { Auf i |)(1 : i  J }  has a finite p -subshading, say { Auf
ki |)(1 }  

( k  nJ )  such that )()|)(( 1 xAuf
ki

    for each x  0 . Now, if y   0)(f , then 

y  )(xf  for some x  0 . Then there exists k  we have )()|)(( 1 xAuf
ki

    implies 

that ))(|( Afu
ki

))(( xf    implies that )()|( yBu
ki

 , as f  is onto or )( yv
ki

  . 
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Hence it is clear that {
ki

v : k  nJ }  is a finite p -subshading of { iv : iv  Bs } . Thus 

)(f  is p -compact in  BsB, . 

The work is similar for *p -compactness can be given. 

 

          Theorem 5.12: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Let f :  AtA,   BsB,  be relatively fuzzy open and bijective 

mapping. If   is p -compact (resp. *p -compact) in  BsB, , then )(1 f  is                      

p -compact (resp. *p -compact) in  AtA, . 

Proof:  We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open p -shading 

of )(1 f  in  AtA,  for every i  J  i.e )(xui    for every x   01 )(f . Since iu  At , 

then there exists iv  t  such that iu  iv | A  and so ( iv | A ) )(x   for every 

x   01 )(f .  As f  is relatively fuzzy open, then )( iuf  Bs . Thus we observe that, for 

each y  0 , )()( yuf i   and hence { )( iuf : i  J }  is an open p -shading of   in 

 BsB,  implies that { )|( Avf i : i  J }   { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  

is an open p -shading of   in  BsB, . Since   is p -compact in  BsB,  , then 

{ Bvf i |)( : i  J }   has a finite p -subshading, say { Bvf
ki |)( : k  nJ }  such that 

  )(|)( yBvf
ki

   for each y  0 . Now, if x   01 )(f , then x  )(1 yf   for each 

y  0 . Then there exists k  we have   )(|)( yBvf
ki

   implies that 

))(|( 1 Bfv
ki

 ))(( 1 yf    implies that )()|( xAv
ki    or )(xu

ki   . Hence it is clear 

that {
kiu : k  nJ }  is a finite p -subshading of { iu : iu  At } . Thus )(1 f  is                     

p -compact in  AtA, . 

Similar work for *p -compactness can be done. 
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          Theorem 5.13: Let  tX ,  be an fts and   be a fuzzy set in X  with 0  X . If 

every family of closed fuzzy sets in  tX ,  which has empty intersection has a finite 

subfamily with empty intersection, then   is p -compact (resp. *p -compact). The 

converse is not true. 

Proof: Let M  { iu : i  J }  be an open p -shading of   in  tX ,  i.e. )(xui    for 

all x  0 . First condition from the given theorem, we have 
Ji

c
iu



 X0 . Hence we can 

write 
Ji

iu


 X1 . Again, by the second condition of the theorem, we get 
n

k
Jk

c
iu



 X0  

implies that 
n

k
Jk

iu


 X1  and hence )(xu
ki    for all x  0 . Hence it is clear that               

{
kiu : k  nJ }  is a finite p -subshading of M . Therefore   is p -compact. 

 Now, for the converse, consider the following example.  

Let X  },,{ cba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u ,  4u  XI  defined by  

)(1 au  4.0 ,  )(1 bu  3.0 ,  )(1 cu  2.0 ; )(2 au  8.0 ,  )(2 bu  4.0 ,  )(2 cu  1.0 ; 

)(3 au  8.0 ,  )(3 bu  4.0 ,  )(3 cu  2.0  and )(4 au   4.0 ,  )(4 bu  3.0 ,  )(4 cu  1.0 . Now, 

put t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that  tX ,  is an fts. Let   XI  defined 

by )(a  2.0 ,  )(b  5.0 ,  )(c  0 . Take   2.0 . Then clearly   is p -compact in 

 tX , . Now, closed fuzzy sets are )(1 auc  6.0 ,  )(1 buc  7.0 ,  )(1 cuc  8.0 ; )(2 auc  2.0 ,  

)(2 buc  6.0 ,  )(2 cuc  9.0 ; )(3 auc  2.0 ,  )(3 buc  6.0 ,  )(3 cu c  8.0  and )(4 auc  6.0 ,  

)(4 buc  7.0 ,  )(4 cuc  9.0 . Thus we see that cu1  cu2 
cu3 

cu4  0 . Therefore the 

converse of the theorem is not necessarily true. 

The work is similar for *p -compactness can be given. 
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          Note: The p -compact (resp. *p -compact) fuzzy sets in an fts need not be 

closed. 

Consider the example in the theorem (5.13), then we have   is p -compact in  tX , . 

But   is not closed, as its complement c  is not open in  tX , . 

Again, take   4.0 . Then   is *p -compact in  tX ,  and   is not closed.   

 

          Theorem 5.14: Let   be a p -compact (resp. *p -compact) fuzzy set in fuzzy 

1T -space  tX ,  (as def. 1.45) with 0  X . Let x  0 ( )(x  0 ) , then there exist                 

u ,  v  t  such that )(xu  1 and 0  ]1,0(1v .  

Proof: Suppose y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, there exist    

yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Let us take 

0    1. Then )(yvy    0 , as )(yvy  1. Hence we see that { yv : y  0 }  is an 

open p -shading of   in  tX , . Since   is p -compact, then { yv : y  0 }  has a 

finite p -subshading, say {
kyv : y  0 } ( k  nJ )  such that )(yv

ky   for each 

y  0 . Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u  t . Moreover, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k .  

Similar proof for *p -compact can be done.  

 

          Theorem 5.15: Let   and   be disjoint p -compact (resp. *p -compact) fuzzy 

sets in fuzzy 1T -space  tX ,  (as def. 1.45) with 0 ,  0  X . Then there exist u ,  v  t  

such that 0  ]1,0(1u  and  0  ]1,0(1v . 
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Proof: Suppose y  0 . Then y  0 , as   and   are disjoint. Since   is p -compact 

in  tX , , then by theorem (5.14), there exist yu ,  yv  t  such that )(yuy  1 and  

0  ]1,0(1
yv . Let us take 0    1 with )(yu y    0 , as )(yuy  1. Thus we see that 

{ yu : y  0 }  is an open p -shading of   in  tX , . Since   is p -compact, then 

{ yu : y  0 }  has a finite p -subshading, say {
kyu : y  0 } ( k  nJ )   such that 

)(yu
ky   for each y  0 .  Furthermore,    is p -compact , so { yv : x  0 }  has a 

finite p -subshading, say {
kyv : x  0 } ( k  nJ )   such that )(xv

ky   for each               

x   0 , as 0  ]1,0(1
kyv  for each k . Now, let u 

1yu   
2yu   …… 

nyu  and 

v 
1yv 

2yv   …...   
nyv . Hence we see that 0  ]1,0(1u  and 0  ]1,0(1v . Thus 

u  and v  are open fuzzy sets, as they are the union and finite intersection of open fuzzy 

sets respectively i.e. u ,  v  t . 

Similar proof for *p -compact can be given.  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above theorems (5.14) 

and (5.15) are not at all true.  

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy 1T -space (as def. 1.45) need not be closed. 

          Example 5.16: Let X  },{ ba , I  ]1,0[  and 0    1. Let 1u ,  2u  XI  defined 

by )(1 au  1 ,  )(1 bu  0  and )(2 au  0 ,  )(2 bu  1. Put t  { 0 ,  1u ,  2u ,  1} , then we 

have  tX ,  is a fuzzy 1T -space. Again, let   XI  with )(a  2.0 ,  )(b  0 . Now, 

take   4.0 . Then   is p -compact in  tX , . But   is not closed, as its complement 

c is not open in  tX , . 

Again, if we take   1, then this example is also applicable for *p -compactness. 
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          Theorem 5.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If   is p -compact (resp. *p -compact) in  tX ,  and x  0  

( )(x  0 ) , then there exist u ,  v  t  such that )(xu  0  and 0  ]1,0(1v . The 

converse is not true in general.   

The proof is similar as that of theorem (5.14). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu   0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Again, let   XI  

defined by )(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here    

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Therefore 0  ]1,0(1

2
u . Now, take 

  4.0 . But we see that   is not p -compact in  tX , , as )(buk    where b  0 , 

for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.  

This example is also valid for *p -compactness.   

 

          Theorem 5.18: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint p -compacts (resp.                  

*p -compacts) in  tX , , then there exist u ,  v  t  such that 0  ]1,0(1u  and 

0  ]1,0(1v . The converse is not true in general.    

Similar proof as theorem (5.15). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(5.17). Let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b  1.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and 
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]1,0(1
2
u  }{b . Hence we observe that 0  ]1,0(1

1
u  and 0  ]1,0(1

2
u , where   and 

  are disjoint. Take   4.0 . Hence we observe that   and   are not p -compacts in 

 tX , , as )(auk    where a  0  and )(buk    where b  0 , for k  1 ,  2 ,  3 . Thus 

the converse of the theorem is not true in general. 

This example is also applicable for *p -compactness. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above theorems (5.17) 

and (5.18) are not at all true.  

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy 1T -space (as def. 1.46) need not be closed. 

          Example 5.19: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(5.17). Again, let   XI  defined by )(a  0 ,  )(b  8.0 . Then 0  }{b . Take 

  2.0 . Clearly   is p -compact in  tX , . But   is not closed, as its complement c  

is not open in  tX , .  

Again, if we take   3.0 , then this example is also applicable for *p -compactness. 

 

          Theorem 5.20: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

Hausdorff space  tX ,  (as def. 1.47) with 0  X . Let x  0 ( )(x  0 ) , then there 

exist u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and u  v  0 .  

Proof: Let y  0 . Then clearly x  y . Since  tX ,  is fuzzy Hausdorff space, there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu   yv  0 . Let us take 0    1 such 

that )(yvy   0 , as )(yvy  1. Hence we see that { yv : y  0 }  is an open                      

p -shading of   in  tX , . As   is p -compact in  tX , , then { yv : y  0 }  has a 
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finite p -subshading, say {
kyv : y  0 } ( k  nJ )  such that )(yv

ky   for each 

y  0 . Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u   t . Moreover, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k .  

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies that u 
kyv  0 , by 

distributive law, we see that u  v   u  (  
1yv 

2yv   …... 
nyv )  0 . 

Similar work for *p -compactness can be given.   

 

          Corollary 5.21: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

Hausdorff space  tX ,  (as def. 1.47) with 0  X . Let x  0 ( )(x  0 ) , then there 

exists u  t  such that )(xu  1 and  ]1,0(1u  c
0 . 

Proof: By theorem (5.20), there exist u ,  v  t  such that 1)( xu ,   0  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x   ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v    0. Hence 

]1,0(1u  0    and consequently ]1,0(1u  c
0 .     

Similar work for *p -compactness can be given. 

 

          Theorem 5.22: Let   and   be disjoint p -compact (resp. *p -compact) fuzzy 

sets in a fuzzy Hausdorff space  tX ,  (as def. 1.47) with 0  ,  0  X . Then there exist 

u ,  v  t  such that 0  ]1,0(1u ,   0  ]1,0(1v  and u  v  0 . 
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Proof: Suppose y  0 . Then y   0 , as   and   are disjoint. Since   is p -compact 

fuzzy set in  tX , , then by theorem (5.20), there exist yu ,  yv  t  such that )(yuy  1 ,   

0  ]1,0(1
yv  and yu   yv  0 . Let us take 0    1  such that )(yu y    0 , as 

)(yu y  1. Then we see that { yu : y  0 }  is an open p -shading of   in  tX , . Since 

  is p -compact in  tX , , then { yu : y  0 }  has a finite p -subshading, say              

{
kyu : y  0 } ( k  nJ )   such that )(yu

ky   for each y  0 .  Furthermore,   is 

p -compact, then { yv : x  0 }  has a finite p -subshading, say                                    

{
kyv : x  0 } ( k  nJ )   such that )(xv

ky    for each x   0 , as 0  ]1,0(1
kyv  for 

each k . Now, let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   …...   

nyv . Hence 

we see that 0  ]1,0(1u  and 0  ]1,0(1v . Thus u  and v  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  v  0 . We observe that 
kyu 

kyv  0  for each k  

implies that 
kyu  v  0  for each k , by distributive law, we see that u  v   

(
1yu 

2yu …… 
nyu )  v  0 . 

Similar proof of *p -compactness can be given. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(5.20), (5.22) and corollary (5.21) are not at all true. 

 

         Note: The p -compact (resp. *p -compact) fuzzy sets in fuzzy Hausdorff space 

(as def. 1.47) need not be closed. 

Consider the fuzzy topology t  in the example (5.16), then  tX ,  is fuzzy Hausdorff space 

(as def. 1.47) and also will serve the purpose. 
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          Theorem 5.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is p -compact (resp. *p -compact) in  tX ,  and 

x  0  ( )(x  0 ) , then there exist u ,  v  t  such that )(xu  0 ,  0  ]1,0(1v  and 

u  v  0 . The converse of the theorem is not necessarily true in general.  

The proof is similar as that of theorem (5.20).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  

defined by )(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here,     

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Therefore 0  ]1,0(1

2
u  and 

1u  2u  0 . Now, take   4.0 . But we see that   is not p -compact in  tX , , as 

)(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true 

in general.  

Similar work for *p -compactness can be done. 

  

          Corollary 5.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is p -compact (resp. *p -compact) in  tX ,  and 

x  0 ( )(x  0 ) , then there exists u  t  such that )(xu  0  and ]1,0(1u  c
0 . 

The proof is similar as that of corollary (5.21).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let    XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0  and. Now, 1u  t  

where )(1 au  0  and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  c

0 . Now, take 
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  4.0 . Thus we see that   is not p -compact, as )(buk    where b  0 , for k  1 ,  

2 ,  3 . Thus the converse is not true in general.    

The work is similar for *p -compactness can be given. 

  

          Theorem 5.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and  ,    be 

fuzzy sets in X  with 0 ,  0  X . If   and   are disjoint p -compact (resp.                  

*p -compact) fuzzy sets in  tX , , then there exist u ,  v  t  such that 0  ]1,0(1u ,  

0  ]1,0(1v  and u  v  0 . The converse of the theorem is not true in general. 

The proof is similar as that of theorem (5.22). 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let  ,    XI  

with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b   1.0 . Thus we see that 0  }{a  and 

0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u   }{a  and ]1,0(1

2
u  }{b . Hence we observe 

that 0  ]1,0(1
1
u  and 0  ]1,0(1

2
u  and 1u  2u  0 , where   and   are disjoint. 

Take   4.0 . Hence we observe that   and   are not p -compacts in  tX , , as 

)(auk    where a  0  and )(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the 

converse of the theorem is not true in general. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(5.23), (5.25) and corollary (5.24) are not at all true. 

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy Hausdorff space (as def. 1.48) need not be closed. 
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          Example 5.26: Consider the fuzzy topology t  in the example of the theorem (5.17), 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, Let    XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b . Now, take   2.0 . Clearly   is 

p -compact in  tX , . But   is not closed, as its complement c is not open in  tX , . 

Again, if we take   3.0 , then this example is also applicable for *p -compactness. 

 

          Theorem 5.27: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49) and   be a 

fuzzy set in X  with )(x  0  for at least one x  X . If   is p -compact (resp.                  

*p -compact) in  tX , , then there exist u ,  v  t  such that rx  u ,  0  ]1,0(1v  and 

u  v  0 , where rx  is a fuzzy point in X . The converse is not true in general. 

Proof: Suppose  tX ,  is a fuzzy Hausdorff space and   is a p -compact fuzzy set in 

X . Let rx ,  sy  be two fuzzy points in X  with sy ( s   )  in  . Now, we see that 

x  y , as )(x  0 . As  tX ,  is fuzzy Hausdorff, then there exist 
syu ,  

syv  t  such that 

rx 
syu ,  sy 

syv and 
syu   

syv  0  and this is true for any value of s . Hence this is also 

true for s   . Let us take   1I  such that )(yv
sy   0 . Thus we see that                      

{
syv : sy   }   is an open p -shading of  . Since   is p -compact in  tX , , so 

{
syv : sy   }  has a finite p -subshading, say {

ksyv : sy   }  ( k  nJ )  such that 

)( yv
ksy   . Let v 

1syv 
2syv …… 

nsyv  and u 
1syu 

2syu …… 
nsyu . Thus 

we see that v  and u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e. v  ,  u  t . Moreover, 0  ]1,0(1v  and rx  u , since 

rx   
ksyu for each k .  
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Finally, we claim that u  v  0 . As 
ksyu 

ksyv  0  for each k  implies that 

u 
ksyv  0 , by distributive law, we therefore observe that u  v   

u  (
1syv 

2syv …… 
nsyv )  0 . 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17). Let 1.0a  and 2.0b  be fuzzy points in X . Then  tX ,  is fuzzy Hausdorff space       

(as def. 1.49). Again, let   XI  defined by )(a  0 ,  )(b  6.0 . Hence we observe 

that 0  }{b . Now 1u ,  2u  t  where 1.0a  1u  and ]1,0(1
2
u  }{b . Hence                         

0   ]1,0(1
2
u  and 1u  2u  0 . Take   8.0 . Then we see that   is not p -compact 

in  tX , , as )(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the converse of the 

theorem is not true in general.    

Similar work for *p -compactness can be given. 

 

          Corollary 5.28: Let  tX ,  be a fuzzy Hausdroff space (as def. 1.49) and   be a 

fuzzy set in X  with )(x  0  for at least one x  X . If   is p -compact (resp.                

*p -compact) in  tX , , then there exist u  t  such that rx  u  and  ]1,0(1u  c
0 , 

where rx  is a fuzzy point in X . The converse is not true in general. 

Proof: By theorem (5.27), there exists u ,  v   t  such that rx  u ,  0  ]1,0(1v   and 

u  v  0 . Hence ]1,0(1u   ]1,0(1v   . If not, there exists x  ]1,0(1u   ]1,0(1v  

  x  ]1,0(1u  and x   ]1,0(1v     0)( xu  and 0)( xv    u  v  0 . Hence 

]1,0(1u  0    and consequently ]1,0(1u  c
0 .    

Now, for the converse, consider fuzzy Hausdorff space (as def. 1.49) in the example of the 

theorem (5.27). Again, let   XI  defined by )(a  0 ,  )(b  6.0 . Hence we observe 
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that 0  }{b . Now, 1u  t  where 1.0a  1u  and ]1,0(1
1
u  }{a . Hence ]1,0(1

1
u  c

0 . 

Take   8.0 . Then we see that   is not p -compact in  tX ,  i.e. )(buk    where  

b  0 , for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.    

Similar work for *p -compactness can be given.  

 

          Theorem 5.29: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49) and  ,    be 

disjoint fuzzy sets in X  with 0 ,  0  X . If   and   are p -compacts (resp.              

*p -compacts) in  tX , , then there exist u ,  v  t  such that 0  ]1,0(1u ,  

0  ]1,0(1v  and u  v  0 . The converse is not true in general. 

Proof: Let sy ( s  )  be a fuzzy point in  . Then sy  is not a fuzzy point in  , as   

and   are disjoint. Since   is p -compact, then by theorem (5.27), there exist                   

syu ,  
syv  t  such that sy 

syu ,  0  ]1,0(1
syv  and 

syu 
syv  0  and this is true for any 

value of s . Hence this is also true for s   . Let us take   1I  such that )(yu
sy    0 . 

Since sy 
syu , then {

syu : sy   }  is an open p -shading of  . Since   is                      

p -compact in  tX , , so {
syu : sy   }  has a finite p -subshading, say                     

{
ksyu : sy   }  ( k  nJ )  such that )(yu

ksy   .  Furthermore,   is p -compact, so 

{
ksyv : rx   }  has a finite p -subshading, say {

ksyv : rx    }  ( k  nJ )  such that 

)(xv
ksy   , as 0  ]1,0(1

ksyv  for each k . Now, let u = 
1syu 

2syu …… 
nsyu  and 

v = 
1syv    

2syv  …… 
nsyv . Thus we see that 0  ]1,0(1u  and 0  ]1,0(1v . 

Hence u  and v  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. u ,  v  t .  



Partially  -Compact Fuzzy Sets 

 

 93 

Finally, we have to show that u  v  0 . First we observe that 
ksyu 

ksyv  0  for each k  

implies that 
ksyu  v  0 , by distributive law, we see that u  v  (

1syu 
2syu …… 


nsyu )  v  0 . 

Now, for the converse, consider fuzzy Hausdorff space (as def. 1.49) in the example of the 

theorem (5.27). Again, let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  

)(b  1.0 . Thus we see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where 

]1,0(1
1
u  }{a  and ]1,0(1

2
u  }{b . Hence we observe that 0  ]1,0(1

1
u  and 

0  ]1,0(1
1
u  and 1u  2u  0 , where   and   are disjoint. Take   4.0 . Hence we 

observe that   and   are not p -compacts in  tX , , as )(auk    where a  0  and 

)(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true 

in general. 

Similar work for *p -compactness can be given.  

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy Hausdorff space (as def. 1.49) need not be closed. 

          Example 5.30: Let X  },{ ba ,  I  ]1,0[  and 0    1. Again, let 1u ,  2u ,  

3u  XI  with )(1 au  6.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  8.0  and )(3 au  6.0 ,  

)(3 bu  8.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Now, let 4.0a  and 7.0b  be 

fuzzy points in X . Therefore  tX ,  is also a fuzzy Hausdorff space (as def. 1.49). Again, 

let   XI  defined by )(a  0 ,  )(b  9.0 . Take   5.0 . Then clearly   is                    

p -compact in  tX , . But   is not closed, as its complement c  is not open in  tX , . 

Similar work for *p -compactness can be given.  
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          Theorem 5.31: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

Hausdorff space  tX ,  (as def. 1.50) with 0  X . Let x  0  ( )(x  0 ) , then there 

exist u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and u  1 v .  

Proof: Suppose y  0 . Then clearly x  y . Since  tX ,  is fuzzy Hausdorff space, there 

exist yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  1 yv . Let us take 0    1 

such that )(yvy    0 , as )(yvy  1. Thus we see that { yv : y  0 }  is an open                 

p -shading of   in  tX , . Since   is p -compact in  tX , , then { yv : y  0 }  has a 

finite p -subshading, say {
kyv : y  0 } ( k  nJ )  such that )(yv

ky   for each 

y  0 . Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u   t . Moreover, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k .  

Finally, we have to show that u  1 v . Since yu  1 yv  implies that u  1 yv . As 

)(xu
ky  1 )(xv

ky   for all x  X  and for each k , then u  1 v . If not, then there exist 

x  X  such that )(xu y  1 )(xvy . We have )(xuy    )(xu
ky  for each k . Then for some 

k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky   1 )(xv

ky  for each k . 

Hence u  1 v . 

Similar proof for *p -compactness can be given.  

 

          Theorem 5.32: Let   and   be disjoint p -compact (resp. *p -compact) fuzzy 

sets in fuzzy Hausdorff space  tX ,  (as def. 1.50) with 0  ,  0  X . Then there exist 

u ,  v  t  such that 0  ]1,0(1u ,   0  ]1,0(1v  and u  1 v . 
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Proof: Suppose y  0 . Then y   0 , as   and   are disjoint. Since   is p -compact 

in  tX , , then by theorem (5.31), there exist yu ,  yv  t  such that )(yuy  1 ,   

0  ]1,0(1
yv  and yu  1 yv . Let us assume that 0    1 such that )( yu y    0 , as 

)(yu y  1. Then we see that { yu : y  0 }  is an open p -shading of   in  tX , . Since 

  is p -compact in  tX , , then { yu : y  0 }  has a finite p -subshading, say          

{
kyu : y  0 } ( k  nJ )   such that )(yu

ky   for each y  0 .  Furthermore,   is 

p -compact , then { yv : x  0 }  has a finite p -subshading, say                               

{
kyv : x  0 } ( k  nJ )   such that )(xv

ky    for each x   0 , as 0  ]1,0(1
kyv  for 

each k . Now, let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   …...   

nyv . Hence 

we see that 0  ]1,0(1u  and 0  ]1,0(1v . Thus u  and v  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  1 v . Since 
kyu  1

kyv  for each k  implies that 

kyu  1 v  for each k  and it is clear that u  v1 .  

Similar proof of *p -compactness can be given.  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(5.31) and (5.32) are not at all true. 

 

            Note: The p -compact (resp. *p -compact) fuzzy sets in fuzzy Hausdorff space 

(as def. 1.50) need not be closed . 

Consider the fuzzy topology t  in the example (5.16), then  tX ,  is fuzzy Hausdorff space 

(as def. 1.50) and also will serve the purpose. 
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          Theorem 5.33: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

regular space  tX ,  (as def. 1.51) with 0  X . If for each x  0 , there exist u  ct  

with )(xu  0 , we have v ,  w  t  such that )(xv  1, u  w ,  0  ]1,0(1v  and 

v  1 w .   

Proof: Let  tX ,  be a fuzzy regular space and   be a p -compact fuzzy set in  tX , . 

Then for each x  0 , there exists u  ct  with )(xu  0 . As  tX ,  is fuzzy regular, we 

have  xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Let us take 0    1, 

then )(xvx    0 , as )(xvx  1. Hence we see that { xv : x  0 }  is an open                       

p -shading of  in  tX , . Since   is p -compact in  tX , , then { xv : x  0 }  has a 

finite p -subshading, say {
kxv : x  0 } ( k  nJ )   such that )(xv

kx    for each 

x  0 . Now, let v   
1xv 

2xv   ….. 
nxv  and w   

1xw 
2xw   ….. 

nxw . Thus v  

and w  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  w  t . Moreover, 0  ]1,0(1v ,  )(xv  1 and u  w , as u 
kxw  

for each k .  

Finally, we have to show that v  1 w . First we observe that 
kxv  1

kxw  for each k  

implies that 
kxv  1 w  for each k  and hence it is clear that v  1 w .   

Similar proof for *p -compactness can be given.  

 

          Theorem 5.34: Let  tX ,  be an fts and   be a fuzzy set in X  with 0  X . If 0  

is compact in  tX , , then   is p -compact in  tX , . The converse is not true in 

general.       

Proof: Suppose 0  is compact in  tX , . Let M  { iv : i  J }  is an open p -shading 

of   in  tX , . Then the family W  { )( iv : i  J }  is an open cover of 0  in  tX , . 
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For, let x  0 . Then there exists a 
0i

v  M  such that )(
0

xvi   . Therefore x  )(
0i

v  

and thus )(
0iv W . Since 0  is compact in  tX , , so W  has a finite subcover, say 

{ )(
kiv : k  nJ } . Then the family {

kiv : k  nJ }  forms a finite p -subshading of M  

and hence   is p -compact in  tX , .   

Now, for the converse, we consider the following example. 

Let X  },,{ cba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u ,  4u  XI  defined by  

)(1 au  3.0 ,  )(1 bu  9.0 ,  )(1 cu  1.0 ; )(2 au  5.0 ,  )(2 bu  4.0 ,  )(2 cu  6.0 ; 

)(3 au  5.0 ,  )(3 bu  9.0 ,  )(3 cu  6.0  and )(4 au   3.0 ,  )(4 bu  4.0 ,  )(4 cu  1.0 . Now, 

put t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that  tX ,  is an fts . Let   XI  defined 

by )(a  8.0 ,  )(b  7.0 ,  )(c  0 . Then 0  },{ ba . Take   3.0 .Then clearly   

is p -compact in  tX , . Now, we have 3.0t  {  ,  }{b ,  X } . It is clear that 0  is not 

compact in  3.0, tX .    

 

          Theorem 5.35: Let    be a fuzzy set in X  with 0  X  and f :  tX ,   tX ,  

be  -level continuous and bijective mapping. If 0  is compact in  tX , , then )(f  is 

p -compact in  tX , . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(f  in  tX , . As f  is                    

 -level continuous, then ))(( 1
iuf   t  and hence { ))(( 1

iuf  : i  J }  is an open 

cover of 0  in  tX , . Since 0  is compact in  tX , , then { ))(( 1
iuf  : i  J }  has a 

finite subcover, say { ))(( 1
kiuf  } ( k  nJ ) .  Now, if y  0)(f , then y  )(xf  for 

x  0 , as f  is bijective. But { ))(( 1
kiuf  }  is finite subcover of { ))(( 1

iuf  : i  J } , 

there exist some k  such that ))(( xfu
ki   implies that )(yu

ki    for each y  0)(f . 
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Thus {
ki

u : k  nJ }  is a finite p -subshading of M . Therefore )(f  is p -compact in 

 tX , .     

 

          Theorem 5.36: Let  TX ,  be a topological space,  )(, TX   be an fts and   be 

a fuzzy set in X  with 0  X . If   is p -compact (resp. *p -compact) in 

 )(, TX  , then 0  is compact in  TX , . The converse is not true in general. 

Proof: Suppose   is p -compact fuzzy set in  )(, TX  . Let W  { iV : i  J }  be an 

open cover of 0  in  TX , . Then, since for each iV , there exists a iu  )(T  such that 

iV   ]1,0(1
iu , we have W  { ]1,0(1

iu : i  J } . Then the family G  { iu : i  J }  is an 

open p -shading of   in  )(, TX  .  Since W  is an open cover of 0 , then there 

exists a 
0iV W  such that x 

0iV . But 
0iV   ]1,0(1

0


iu  for some 

0iu  )(T . Therefore 

x  ]1,0(1
0


iu  which implies that )(

0
xui   . By p -compactness of  , G  has a finite 

p -subshading, say {
kiu : k  nJ } . Then { ]1,0(1

kiu : k  nJ }   forms a finite subcover 

of W  and hence 0  is compact in  TX , .   

Now, for the converse, we consider the following example.  

Let X  },,{ cba ,  I  ]1,0[ ,  10   and T  { }{b ,  }{c ,  },{ cb ,   ,  X } . Then 

 TX ,  is a topological space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 ,  )(1 bu  6.0 ,  

)(1 cu  0 ; )(2 au  0 ,  )(2 bu  0 ,  )(2 cu  8.0  and )(3 au  0 ,  )(3 bu  6.0 ,  )(3 cu  8.0 . 

Then )(T  {  1u ,  2u ,  3u ,  0 ,  1 }  and  )(, TX   is an fts. Again, let   XI  defined 

by )(a  0 ,  )(b  4.0 ,  )(c  3.0 . Then 0  },{ cb . Then clearly 0  is compact in 

 TX , . Now, take   9.0 . Then   is not p -compact in  )(, TX  ,  as there do not 
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exist ku  })({ T  ( k  1 ,  2 ,  3 )  such that )(buk   for b  0 . Thus the converse of 

the theorem is not necessarily true in general. 

The work is similar for *p -compactness can be given. 

 

          Theorem 5.37: Let  ,    XI . Then 00    0)(   . 

Proof: Let ),( yx  00   . Then x  0  and y  0 . So )(x  0  and )(y  0 . 

Therefore )(   ),( yx  0  implies that ),( yx  0)(   . Hence 00    0)(   . 

Again, let ),( yx  0)(   . Then )(   ),( yx  0 . Thus )(x  0  and )(y  0  

implies that x  0  and y  0 . Therefore ),( yx  00   . Hence 0)(    00   . 

Therefore 00    0)(   . 

 

          Theorem 5.38: Let   and   be p -compact (resp. *p -compact) fuzzy sets in 

an fts  tX , . Then )(    is also p -compact (resp. *p -compact) in  ttXX  , . 

Proof: Suppose { iu : i  J }  is an open p -shading of   in  tX ,  i.e. )(xui    for 

each x  0  and { iv : i  J }  is an open p -shading of   in  tX ,  i.e. )(yvi   for 

each y  0 . Now, let M  { iu  iv : iu ,  iv  t }  be an open p -shading of )(    in 

 ttXX  , . Thus we see that )( ii vu  ),( yx min ( )(xui , )(yvi )  , for each 

),( yx  0)(   . As   and   are p -compact in  tX , , then { iu : i  J }  and              

{ iv : i  J }  have finite p -subshading, say {
kiu : k  nJ }   and {

kiv : k  nJ }  such 

that )(xu
ki

   and )(yv
ki

   for each x  0  and y  0  respectively. Hence we have 

M  has a finite p -subshading, say {
kiu 

kiv : k  nJ }  such that )(
kk ii vu  ),( yx   

min ( )(xu
ki , )(yv

ki
)    for each ),( yx  0)(   . Therefore )(    is p -compact 

in  ttXX  ,  
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Similar proof for *p -compactness can be given.     

 

           Definition 5.39: Let  tX ,  be an fts and 0    1 ,    I . A family M  of                  

 -open fuzzy sets is called a partial  - -shading, 0    1 (resp. partial                         

 - * -shading, 0    1), in short, p -shading (resp. *p -shading) of a fuzzy set   

in X  if for each x  0 ,  ( 0  X )  there exists a u  M  with )(xu    (resp. 

)(xu   ). A subfamily of a p -shading (resp. *p -shading) of   which is also a 

p -shading (resp. *p -shading) of   is called a p -subshading (resp.                        

*p -subshading) of  .  

If )(x  0  for all x  X  i.e. 0  X , then p -shading (resp. *p -shading) and                 

 - -shading (resp.  - * -shading) will be same.   

 

          Example 5.40: Let X  },,{ cba , I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  

2u ,  3u  XI  defined by )(1 au  1 ,  )(1 bu  1 ,  )(1 cu  3.0 ; )(2 au  4.0 ,  )(2 bu  2.0 ,  

)(2 cu  1 and )(3 au  4.0 ,  )(3 bu  2.0 ,  )(3 cu  3.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then 

 tX ,  is an fts. Again, let   XI  with )(a  0 ,  )(b  4.0 ,  )(c  6.0 . Then 

0  },{ cb . Now, take   2.0  and   7.0 . Hence we observe that 1u ,  2u ,  3u  are                 

 -open fuzzy sets and )(1 bu   ,  )(2 cu    for b ,  c  0 . Therefore { 1u ,  2u }  is an 

p -shading of   in  tX , .  

Again, if we take   1, then { 1u ,  2u }  is an *p -shading of   in  tX , .   

 

           Definition 5.41: Let  tX ,  be an fts and 0    1 ,    I . A fuzzy set   in X  is 

said to be partially  - -compact, 0    1 (resp. partially  - * -compact, 0    1), 
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in short, p -compact (resp. *p -compact) iff every p -shading (resp.                       

*p -shading) of   has a finite p -subshading (resp. *p -subshading).    

 

          Theorem 5.42: Every p -compact (resp. *p -compact) fuzzy set in an fts is 

p -compact (resp. *p -compact). But the converse is not true. 

The proof is straightforward. 

Now, for the converse, we consider the following example. 

Let X  },,{ cba , I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u ,  3u  XI  defined by 

)(1 au  2.0 ,  )(1 bu  1 ,  )(1 cu  1; )(2 au  1 ,  )(2 bu  4.0 ,  )(2 cu  7.0  and )(3 au  2.0 ,  

)(3 bu  4.0 ,  )(3 cu  7.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Again, let 

  XI  with )(a  9.0 ,  )(b  4.0 ,  )(c  0 . Then 0  },{ ba . Now, take   7.0 . 

Clearly   is p -compact in  tX , . Again take   5.0 . Hence we observe that there is 

no finite  -open fuzzy sets in  tX ,  such that )(auk   for  k  1 ,  2 ,  3  and a  0 . 

Thus   is not p -compact in  tX , . 

Similarly we can prove for *p -compact fuzzy sets.     
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Chapter Six 

Q -Compact Fuzzy Sets 

 

          In this chapter, we have introduced Q -compact and Q -compact fuzzy sets. 

Furthermore, we have established some theorems, corollaries and examples of Q -compact 

fuzzy sets and discussed different characterizations of Q -compact and Q -compact fuzzy 

sets. Also we have defined  - Q -compact and  - Q -compact fuzzy sets and found 

different properties between Q -compact and  -Q -compact fuzzy sets, Q -compact and 

 - Q -compact fuzzy sets.   

 

          Definition 6.1: Let  tX ,  be an fts and   be a fuzzy set in X . Let                     

M  { iu : i  J }  be a family of fuzzy sets. Then M  }{ iu  is called a Q -cover of   iff 

)(x  )(xui  1 for each x  X  and for some iu . If each iu  is open, then M  }{ iu  is 

called an open Q -cover of  . A subfamily of Q -cover of a fuzzy set   in X  which is 

also a Q -cover of   is called Q -subcover of  . 

 

          Example 6.2: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by 

)(1 au  4.0 ,  )(1 bu  1.0  and )(2 au  3.0 ,  )(2 bu  2.0 . Again, let   XI  with 

)(a  6.0 ,  )(b  8.0 . Hence we observe that )(a  )(1 au  1 ,  )(b  )(2 bu  1. 

Therefore { 1u ,  2u }  is a Q -cover of  .  

 

          Example 6.3: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by 

)(1 au  1 ,  )(1 bu  3.0 ; )(2 au  4.0 ,  )(2 bu  1 and )(3 au  4.0 ,  )(3 bu  3.0 .                
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Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Again, let   XI  with )(a  2.0 ,  

)(b  6.0 . Hence we observe that )(a  )(1 au  1 ,  )(b  )(2 bu  1. Therefore                  

{ 1u ,  2u }  is an open Q -cover of   in  tX , .  

 

          Definition 6.4: A fuzzy set   in X  is said to be Q -compact iff every open         

Q -cover of   has a finite Q -subcover i.e. there exist 
1i

u ,  
2i

u ,  ….. ,
ni

u  }{ iu  such that 

)(x  )(xu
ki

 1 for each x  X . If     and   XI , then   is also Q -compact i.e. 

every super sets of Q -compact fuzzy set is also Q -compact.  

 

          Theorem 6.5: Let  tX ,  be an fts, A  X  and   be a fuzzy set in A . Then   is 

Q -compact in  tX ,  iff   is Q -compact in  AtA, .      

Proof: Suppose   is Q -compact in  tX , . Let { iu : i  J }  be an open Q -cover of   in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence )(x  )(xui  1 for each 

x  A  and consequently )(x  )(xvi  1 for each x  A . Therefore { iv : i  J }  is an 

open Q -cover of   in  tX , . As   is Q -compact in  tX , , then   has finite                     

Q -subcover i.e. there exist 
ki

v  }{ iv  ( k  nJ )  such that )(x  )(xv
ki

 1 for each 

x  A . But, then )(x  )()|( xAv
ki  1 for each x  A  and therefore )(x  )(xu

ki  1 

for each x  A . Thus }{ iu  contains a finite Q -subcover {
1iu ,  

2iu ,  ….. ,  
niu }  and hence 

  is Q -compact in  AtA, .                     

Conversely, suppose   is Q -compact in  AtA, . Let { iv : i  J }  be an open Q -cover of 

  in  tX , . Set iu  iv | A , then )(x  )(xvi  1 for each x  A  and hence  

)(x  )()|( xAvi  1 for each x  A   implies that )(x  )(xui  1 for each x  A . But 

iu  At , so { iu : i  J }  is an open Q -cover of   in  AtA, . As   is Q -compact in 
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 AtA, , then there exist 
ki

u  }{ iu  ( k  nJ )  such that )(x  )(xu
ki

 1 for each x  A . 

Thus we have )(x  )()|( xAv
ki  1 for each x  A  and consequently )(x  )(xv

ki  1 

for each x  A . Thus }{ iv  contains a finite Q -subcover {
1iv ,  

2iv ,  ….. ,  
niv }  and 

therefore   is Q -compact in  tX , .  

 

          Corollary 6.6: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let   be 

a fuzzy set in A . Then   is Q -compact in  tX ,  if and only if   is Q -compact in 

 *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(6.5),   is Q -compact in  tX ,  or  *, tY  if and only if   is Q -compact in  AtA,  or 

 *, AtA . But At  *
At .    

 

          Theorem 6.7: Let  tX ,  be an fts and   be a Q -compact fuzzy set in X . If 

    and   ct , then   is also Q -compact in  tX , . 

Proof: Let { iu : i  J }  be an open Q -cover of  . Then }{ iu  c  is an open Q -cover 

of  . As )(x  )(xui  1 for each x  X , then )(x  max ( )(xui , )(c x )  1 for each 

x  X . Hence )(x  )(xui  )(x  )(xui  1 for each x  X . Since   is Q -compact 

in  tX , , then each open Q -cover of   has a finite Q -subcover i.e. there exist a finite 

subset nJ  J  such that {
kiu : k  nJ }  c  is an open Q -cover of  . Then           

{
ki

u : k  nJ }  is a finite subfamily of  { iu : i  J }   and is an open Q -cover of   i.e. 

{
ki

u : k  nJ }  is a finite Q -subcover of  . Hence   is Q -compact. 
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          Theorem 6.8: Let  tX ,  be an fts and   and   be Q -compact fuzzy sets in X . 

Then    is also Q -compact in  tX , . 

Proof: Let M  { iu : i  J }  be an open Q -cover of    . Then M  is open Q -cover 

of both   and  . Since   is Q -compact in  tX , , then each open Q -cover of    has a 

finite Q -subcover i.e. there exist, say 
kiu  M  ( k  nJ )  such that )(x  )(xu

ki  1 for 

each x  X . Again,   is Q -compact in  tX , , then each open Q -cover of   has a finite               

Q -subcover i.e. there exist, say 
riu  M  ( r  nJ )  such that )(x  )(xu

ri  1 for each 

x  X . Therefore {
kiu ,  

riu }  is a finite Q -subcover of M . Hence     is Q -compact 

in  tX , .   

 

          Theorem 6.9: Let   and   be Q -compact fuzzy sets in an fts  tX , . Then    

is also Q -compact in  tX , . 

Proof: Since     ,       and  ,    are Q -compacts in  tX , , then    

is also Q -compact in  tX , .     

 

          Theorem 6.10: Let  tX ,  be an fts and   be a fuzzy set in X . If every family of 

closed fuzzy sets in  tX ,  which has empty intersection has a finite subfamily with empty 

intersection, then   is Q -compact. The converse is not true in general. 

Proof: Let { iu : i  J }  be an open Q -cover of   i.e. )(x  )(xui  1 for each x  X . 

By the first condition of the theorem, we have 
Ji

c
iu



 X0 . Hence we can write 
Ji

iu


 X1 . 

Again, by the second condition, we have 
n

k
Jk

c
iu



 X0  implies that 
n

k
Jk

iu


 X1  and 
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consequently )(x  )(xu
ki

 1 for each x  X . Hence it is clear that {
ki

u : k  nJ }  is a 

finite Q -subcover of { iu : i  J } . Therefore   is Q -compact.  

Now, for the converse, we consider the following example. 

Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by )(au  4.0 ,  )(bu  3.0  and 

)(av  6.0 ,  )(bv  8.0 . Take t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. Let   XI  with 

)(a  8.0 ,  )(b  9.0 . Clearly   is Q -compact in  tX , . Now, closed fuzzy sets are 

)(auc  6.0 ,  )(buc  7.0  and )(avc  4.0 ,  )(bvc  2.0 . Hence We observe that 

cu  cv  0 . Therefore the converse of the theorem is not necessarily true.       

 

          The following example will show that the Q -compact fuzzy sets in an fts need not 

be closed. 

          Example 6.11: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  4.0  and )(2 au  5.0 ,  )(2 bu  6.0 . Now, put t  { 0 ,  1u ,  2u , 1} , 

then we see that  tX ,  is an fts. Let   XI  defined by )(a  9.0 ,  )(b  7.0 . Clearly 

  is Q -compact in  tX , . But   is not closed, as its complements c  is not open in 

 tX , . 

 

          The following example will show that the subsets of Q -compact fuzzy set in an fts 

need not be Q -compact. 

            Example 6.12: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by 

)(1 au  3.0 ,  )(1 bu  5.0  and )(2 au  6.0 ,  )(2 bu  7.0 . Now, put t  { 0 ,  1u ,  2u ,  1} , 

then we see that  tX ,  is an fts. Let  ,   XI  defined by )(a  8.0 ,  )(b  6.0  and 
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)(a  3.0 ,  )(b  6.0 . Hence we see that    . Clearly   is Q -compact in  tX , . 

But )(a  )(auk  1 for a  X  and k  1 ,  2 . Hence   is not Q -compact in  tX , .   

    

          Theorem 6.13: Let   be a Q -compact fuzzy set in fuzzy 1T -space  tX ,                

(as def. 1.45) with 0  X . Let x  0 ( )(x  0 ) , then there exist u ,  v  t  such that 

)(xu  1 and 0  ]1,0(1v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, then there exist                

yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Therefore 

)(x  )(xu y  1 ,  x  X  and )(y  )(yvy  1 ,   y  0  i.e. { yu ,  yv : y  0 }  is an 

open Q -cover of  . Since   is Q -compact fuzzy set in  tX , , then   has a finite                   

Q -subcover i.e. there exist 
1yu ,  

2yu ,  ……. ,  
nyu  }{ yu  and 

1yv ,  
2yv ,  ……. ,  

nyv  }{ yv  such that )(x  )(xu
ky  1 for each x  X  when )(x  0  and some 

kyu  }{ yu  and )( y  )(yv
ky  1 for each y  X  when )( y  0  and some 

kyv  }{ yv . 

Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Hence v  and u  

are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for 

each k . 

 

          Theorem 6.14: Let   and   be disjoint Q -compact fuzzy sets in fuzzy 1T -space 

 tX ,  (as def. 1.45) with 0 ,  0   X . Then there exist u ,  v  t  such that 

0  ]1,0(1u  and  0  ]1,0(1v . 

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is Q -compact in 

 tX , , then by theorem (6.13), there exist yu ,  yv  t  such that )(yuy  1 and  
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0  ]1,0(1
yv . As )(yuy  1, then )(x  )(xvy  1 ,  x  X  and )( y  )(yu y  1 ,  

y  0  i.e. { yv ,  yu : y  0 }  is an open Q -cover of  . Since   is Q -compact fuzzy 

set in  tX , , then   has a finite Q -subcover i.e. there exist 
1yv ,  

2yv ,  ……. ,  
nyv  }{ yv  

and   
1yu ,  

2yu  ,  ……. ,  
nyu  }{ yu  such that )(x  )(xv

ky  1 for each x  X  when 

)(x  0  and some 
kyv  }{ yv  and )( y  )( yu

ky  1 for each y  X  when )( y  0  

and some 
kyu  }{ yu . Again, since   is Q -compact in  tX , , then we have 

)(x  )(xv
ky  1 for each x  X  when )(x  0  and some 

kyv  }{ yv  and 

)( y  )( yu
ky  1 for each y  X  when )( y  = 0 and some 

kyu  }{ yu  and also  

0  ]1,0(1
kyv  for each k . Now, let u 

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   

…... 
nyv . Thus we see that 0  ]1,0(1u  and 0  ]1,0(1v .  Hence u  and v  are open 

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

u ,  v  t .    

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.13) and (6.14) are not at all true.   

 

          The following example will show that the Q -compact fuzzy sets in fuzzy 1T -space 

(as def. 1.45) need not be closed.  

          Example 6.15: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by  

)(1 au  1 ,  )(1 bu  0  and )(2 au  0 ,  )(2 bu  1. Now, put t  { 0 ,  1u ,  2u ,  1} , then we 

see that  tX ,  is a fuzzy 1T -space. Let   XI  defined by )(a  6.0 ,  )(b  4.0 . 

Clearly   is Q -compact in  tX , . But   is not closed, as its complement c  is not open 

in  tX , .   
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          Theorem 6.16: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If   is Q -compact in  tX ,  and x  0  ( )(x  0 ) , then there exist 

u ,  v  t  such that )(xu  0  and 0  ]1,0(1v . The converse is not true in general.   

The proof is similar as theorem (6.13). 

Now, for the converse, we give the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by  )(1 au  2.0 ,  )(1 bu   0 ; 

)(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put t  { 0 ,  1u ,  2u ,  3u ,  

1 } , then we see that  tX ,  is a fuzzy 1T -space. Again, let   XI  defined by )(a  0 ,  

)(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where 

)(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u . But we see that   is not                        

Q -compact in  tX , , as )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the 

converse of the theorem is not true in general.    

 

          Theorem 6.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint Q -compacts in  tX , , then there 

exist u ,  v  t  such that 0  ]1,0(1u  and 0  ]1,0(1v . The converse is not true in 

general.   

Similar proof as theorem (6.14). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(6.16). Let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b  1.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and 

]1,0(1
2
u  }{b . Hence we observe that 0  ]1,0(1

1
u  and 0  ]1,0(1

2
u , where   and 

  are disjoint. But   and   are not Q -compacts in  tX , , as )(b  )(buk  1 for 
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b  X  and )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the converse of the 

theorem is not true in general. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.16) and (6.17) are not at all true.   

 

          The following example will show that the Q -compact fuzzy sets in fuzzy 1T -space 

(as def.  1.46) need not be closed. 

           Example 6.18: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(6.16). Again, let   XI  defined by )(a  9.0 ,  )(b  8.0 . Clearly   is Q -compact in 

 tX , . But   is not closed, as its complement c  is not open in  tX , .  

 

          Theorem 6.19: Let   be a Q -compact fuzzy set in fuzzy Hausdorff space  tX ,     

(as def. 1.47) with 0  X . Suppose x  0  ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 ,   0  ]1,0(1v  and u  v  0 .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu   yv  0 . Hence )(x  )(xu y  1 ,  

x  X  and )(y  )( yvy  1 ,   y  0  i.e. { yu ,  yv : y  0 }  is an open Q -cover of  . 

Since   is Q -compact in  tX , , then there exist 
1yu ,  

2yu  ,  ……. ,  
nyu  }{ yu  and 

1yv ,  

2yv ,  ……. ,  
nyv  }{ yv  such that )(x  )(xu

ky  1 for each x  X  when )(x  0  and 

some 
kyu  }{ yu  and )(y  )(yv

ky  1 for each y  X  when )(y  0  and some 

kyv  }{ yv . Now, let v   
1yv 

2yv   ….. 
nyv  and u   

1yu 
2yu   …… 

nyu . Then 

we see that v  and u  are open fuzzy sets, as they are the union and finite intersection of 
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open fuzzy sets respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k . 

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies u 
kyv  0 , by 

distributive law, we see that u  v   u  (  
1yv 

2yv   …... 
nyv )  0 . 

 

            Corollary 6.20: Let   be a Q -compact fuzzy set in fuzzy Hausdorff space  tX ,  

(as def. 1.47) with 0  X . Let x  0  ( )(x  0 ) , then there exists u  t  such that 

)(xu  1 and  ]1,0(1u  c
0 . 

Proof: By theorem (6.19), there exist u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x   ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v    0. Hence 

]1,0(1u  0    and consequently ]1,0(1u  c
0 .        

 

          Theorem 6.21: Let   and   be disjoint Q -compact fuzzy sets in fuzzy Hausdorff 

space  tX ,  (as def. 1.47) with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,   0  ]1,0(1v  and u  v  0 . 

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is Q -compact in 

 tX , , then by theorem (6.19), there exist yu ,  yv  t  such that )(yu y  1 ,   

0  ]1,0(1
yv  and yu   yv  0 . As )(yu y  1, then )(x  )(xvy  1 ,  x  X   and 

)(y  )(yu y  1 ,  y  0  i.e. { yv ,  yu : y  0 }  is an open Q -cover of  . Since    is 

Q -compact in  tX , , then there exist 
1yv ,  

2yv ,  ....… ,  
nyv  }{ yv  and 

1yu ,  
2yu ,  ……. ,  

nyu  }{ yu  such that )(x  )(xv
ky  1 for each x  X  when )(x  0  and some 
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kyv  }{ yv  and )(y  )(yu
ky  1 for each y  X  when )(y  0  and some 

kyu  }{ yu . 

Again, since   is Q -compact in  tX , , then we have )(x  )(xv
ky  1 for each x  X  

when )(x  0  and some 
kyv  }{ yv  and )(y  )(yu

ky  1 for each y  X  when 

)(y  0  and some 
kyu  }{ yu  and also 0  ]1,0(1

kyv  for each k . Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   …..  

nyv . Thus we see that 0  ]1,0(1u  and 

0  ]1,0(1v .  Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t .   

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies 
kyu  v  0 , by 

distributive law, we see that u  v   (
1yu 

2yu   …… 
nyu )  v  0 . 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.19), (6.21) and corollary (6.20) are not at all true. 

 

          Note: The Q -compact fuzzy sets in fuzzy Hausdorff space (as def. 1.47) need not 

be closed. 

Consider the fuzzy topology t  in the example (6.15), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.47) and will serve the purpose. 

 

          Theorem 6.22: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is Q -compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0 ,  0  ]1,0(1v  and u  v  0 . The converse of 

the theorem is not necessarily true in general.  

The proof is similar as that of theorem (6.19).  
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Now, for the converse, consider the fuzzy topology t  in the example of the theorem (6.16) 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  

where )(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u  and 1u  2u  0 . But we see 

that   is not Q -compact in  tX , , as )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . 

Thus the converse of the theorem is not true in general.    

    

          Corollary 6.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is Q -compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exists u  t  such that )(xu  0  and ]1,0(1u  c
0 .  

The proof is similar as that of corollary (6.20).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(6.16), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let    XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Now 1u  t  where 

)(1 au  0  and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  c

0 . But   is not                 

Q -compact, as )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the converse is not 

true in general.  

   

          Theorem 6.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and  ,    be 

fuzzy sets in X  with 0 ,  0  X . If   and   are disjoint Q -compacts in  tX , , then 

there exist u ,  v  t  such that 0  ]1,0(1u ,  0  ]1,0(1v  and u  v  0 . The 

converse of the theorem is not true in general. 

The proof is similar as that of theorem (6.21). 
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Now, for the converse, consider the fuzzy topology t  in the example of the theorem (6.16) 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let  ,    XI  with 

)(a  3.0 ,  )(b  0  and )(a  0 ,  )(b   1.0 . Thus we see that 0  }{a  and 

0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u   }{a  and ]1,0(1

2
u  }{b . Hence we observe 

that 0  ]1,0(1
1
u ,  0  ]1,0(1

2
u  and 1u  2u  0 , where   and   are disjoint. But   

and   are not Q -compacts in  tX , , as )(b  )(buk  1 for b  X  and 

)(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the converse of the theorem is not 

true in general. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.22), (6.24) and corollary (6.23) are not at all true. 

           

          The following example will show that the Q -compact fuzzy sets in fuzzy Hausdorff 

space (as def. 1.48) need not be closed.      

          Example 6.25: Consider the fuzzy topology t  in the example of the theorem (6.16), 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  defined by 

)(a  9.0 ,  )(b  8.0 . Clearly   is Q -compact in  tX , . But   is not closed, as its 

complement c  is not open in  tX , .  

  

          Theorem 6.26: Let   be a Q -compact fuzzy set in fuzzy Hausdorff space  tX ,     

(as def. 1.50) with 0  X . Suppose x  0  ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 ,   0  ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xuy  1 ,  )( yvy  1and yu  1 yv .  Hence )(x  )(xu y  1 ,  
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x  X   and )(y  )(yvy  1 ,   y  0  i.e. { yu ,  yv : y  0 }  is an open Q -cover of  . 

Since   is Q -compact in  tX , , then there exist 
1yu ,  

2yu  ,  ……. ,  
nyu  }{ yu  and 

1yv ,  

2yv ,  ……. ,  
nyv  }{ yv  such that )(x  )(xu

ky  1 for each x  X  when )(x  0  and 

some 
kyu  }{ yu  and )(y  )(yv

ky  1 for each y  X  when )(y  0  and some 

kyv  }{ yv . Now, let v   
1yv 

2yv   ….. 
nyv  and u   

1yu 
2yu   …… 

nyu . Then 

we see that v  and u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k . 

Finally, we have to show that u  1 v . As yu  1 yv  implies that u  1 yv . Since 

)(xu
ky  1 )(xv

ky   for all x  X  and for each k , then u  1 v . If not, then there exist 

x  X  such that )(xuy  1 )(xvy . We have )(xuy    )(xu
ky  for each k . Then for some 

k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky   1 )(xv

ky  for each k . 

Hence u  1 v . 

 

           Theorem 6.27: Let   and   are disjoint Q -compact fuzzy sets in fuzzy Hausdorff 

space  tX ,  (as def. 1.50) with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,  0  ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then y  0 , as   and   are disjoint. As   is Q -compact in 

 tX , , then by theorem (6.26), there exist yu ,  yv  t  such that )(yuy  1 ,   

0  ]1,0(1
yv  and yu  1 yv . As )(yuy  1, then )(x  )(xvy  1, x  X  and 

)(y  )(yu y  1,  y  0  i.e. { yv ,  yu : y  0 }  is an open Q -cover of  . Since   is 

Q -compact in  tX , , then there exist 
1yv ,  

2yv ,  ……. ,
nyv  }{ yv  and 

1yu ,  
2yu ,  ……. ,  
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nyu  }{ yu  such that )(x  )(xv
ky  1 for each x  X  when )(x  0  and some 

kyv  }{ yv  and )(y  )(yu
ky  1 for each y  X  when )(y  0  and some 

kyu  }{ yu . 

Again, since   is Q -compact in  tX , , then we have )(x  )(xv
ky  1 for each x  X  

when )(x  0  and some 
kyv  }{ yv  and )(y  )(yu

ky  1 for each y  X  when 

)(y  0  and some 
kyu { yu } and also 0  ]1,0(1

kyv  for each k . Now, let u   
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   …..  

nyv . Thus we see that 0  ]1,0(1u  and 

0  ]1,0(1v .  Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show hat u  1 v . First we observe that 
kyu  1

kyv  for each k  

implies that 
kyu  1 v  for each k  and it is clear that u  1 v .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.26) and (6.27) are not at all true. 

 

         Note: The Q -compact fuzzy sets in fuzzy Hausdorff space (as def. 1.50) need not be 

closed. 

Consider the fuzzy topology t  in the example (6.15), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.50) and will serve the purpose. 

 

          Theorem 6.28: Let   be a Q -compact fuzzy set in fuzzy regular space  tX ,        

(as def. 1.51) with 0  X . If for each x  0 , there exist u  ct  with )(xu  0 , we have 

v ,  w t  such that )(xv  1, u  w ,  0  ]1,0(1v  and v  1 w .   

Proof: Let  tX ,  be a fuzzy regular space and   be a Q -compact fuzzy set in X . Then 

for each x  0 , there exists u  ct  with 0)( xu . As  tX ,  is fuzzy regular, we have 
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xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Hence )(x  )(xvx  1 for 

each x  X  i.e. { xv : x  0 }  is an open Q -cover of  . As   is Q -compact fuzzy set 

in  tX , , so   has a finite subcover i.e. there exist 
kxv  }{ xv  ( k  1 ,  2 ,…… , n )  such 

that  )(x  )(xv
kx  1 for each x  X . Now, let v   

1xv 
2xv   ….. 

nxv  and            

w   
1xw 

2xw   ….. 
nxw . Thus v  and w  are open fuzzy sets, as they are the union 

and finite intersection of open fuzzy sets respectively i.e. v ,  w  t . Furthermore, 

0  ]1,0(1v ,  )(xv  1 and u  w , as u 
kxw for each k .  

Finally, we have to show that v  1 w . As 
kxv  1

kxw  for each k  implies that 

kxv  1 w  for each k  and hence it is clear that v  1 w .   

 

          The following example will show that the “good extension” property does not hold 

for Q -compact fuzzy sets. 

          Example 6.29: Let X  },,{ cba  and T  {  ,  }{a ,  }{b ,  },{ ba ,  X } . Then 

 TX ,  is a topological space. Again, let 1u ,  2u ,  3u  XI  defined by )(1 au  1 ,  

)(1 bu  0 ,  )(1 cu  0 ; )(2 au  0 ,  )(2 bu  7.0 ,  )(2 cu  0 ; and )(3 au  1 ,  )(3 bu  7.0 ,  

)(3 cu  0 . Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now, let 

  XI  with )(a  7.0 ,  )(b  4.0 ,  )(c  0 . Then 0  },{ ba . Clearly 0  is 

compact in  TX , . But   is not Q -compact in  )(, TX  , as there do not exist 

ku  )(T  ( k  1 ,  2 ,  3 )  such that )(c  )(cuk  1. Again, let   XI  with 

)(a  0 ,  )(b  5.0 ,  )(c  1. Then clearly   is Q -compact in  )(, TX  , but 

0  },{ cb  is not compact in  TX , . It is, therefore, observe that the “good extension 

property” does not hold good for Q-compact fuzzy sets.   
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          Theorem 6.30: Let   and   be Q -compact fuzzy sets in an fts  tX , . Then 

)(    is also Q -compact in   ttXX  , . 

Proof: Let M  { ia : ia  tt   and i  J }  be a Q -cover of )(    in  ttXX  , . 

Then )(   ),( yx  ia ),( yx  1 for each ),( yx  XX  . Now, we can write                

ia   ii vu  , where iu ,  iv  t . Thus we have )(   ),( yx  )( ii vu  ),( yx  1 for each 

),( yx  XX  . Hence it is clear that )(x  )(xui  1 for each x  X  and 

)(y  )(yvi  1 for each y  X . Therefore, { iu : i  J }   and { iv : i  J }  are open               

Q -cover of   and   respectively. Since   and   are Q -compacts, then { iu : i  J }   

and { iv : i  J }  have finite Q -subcovers, say {
ki

u : k  nJ }  and {
ki

v : k  nJ }  such 

that )(x  )(xu
ki  1 for each x  X  and )(y  )(yv

ki  1 for each y  X  

respectively. Thus we can write )(   ),( yx  )(
kk ii vu  ),( yx  1 for each 

),( yx  XX  . Hence )(    is Q -compact in  ttXX  , . 

 

          Compact fuzzy sets in Chang’s sense [19] and Q -compact fuzzy sets are 

independent. The following example will serve the purpose. 

          Example 6.31: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u ,  4u  XI  defined 

by  )(1 au  4.0 ,  )(1 bu  6.0 ; )(2 au  3.0 ,  )(2 bu  7.0 ; )(3 au  4.0 ,  )(3 bu  7.0 ; 

)(4 au  3.0 ,  )(4 bu  6.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that 

 tX ,  is an fts. Let   XI  defined by )(a  4.0 ,  )(b  5.0 . Clearly   is compact in 

 tX ,  in the sense of Chang. Now, we observe that )(a  )(auk  1 for a  X  and 

k  1 ,  2 ,  3 ,  4 . Hence   is not Q -compact in  tX , .    
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Again, let   XI  defined by )(a  9.0 ,  )(b  8.0 . Clearly   is Q -compact in 

 tX , . But   is not compact in  tX ,  in the sense of Chang, as there do not exist  ku  

such that   
4

1k
ku .    

 

          Definition 6.32: Let M  { iu : i  J }  be a family of  -open fuzzy sets in an fts 

 tX ,  and   be a fuzzy set in X . Then M  is said to be  - Q -cover of   iff 

)(x  )(xui  1 for each x  X  and for some iu . A subfamily of  - Q -cover of a fuzzy 

set   in X  which is also a  -Q -cover of   is called  - Q -subcover of  . 

   

          Example 6.33: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  

defined by  )(1 au  1 ,  )(1 bu  4.0 ; )(2 au  5.0 ,  )(2 bu  1 and )(3 au  5.0 ,  )(3 bu  4.0 . 

Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  

defined by )(a  1.0 ,  )(b  2.0 . Take   4.0 . Clearly 1u ,  2u  and 3u  are  -open 

fuzzy sets in  tX , . Now, we observe that )(a  )(1 au  1 ,  )(b  )(2 bu  1 for a ,  

b  X . So { 1u ,  2u }  is a  -Q -cover of   in  tX , .   

 

          Definition 6.34: Let  tX ,  be an fts, 0    1 and   be a fuzzy set in X . Then   

is said to be  - Q -compact iff every  - Q -cover of   has a finite  - Q -subcover. If 

    and   XI , then   is also  - Q -compact. Thus we can say that any other 

supersets of  - Q -compact fuzzy sets in an fts is also  - Q -compact. 

 

          Theorem 6.35: Any  - Q -compact fuzzy set in an fts is Q -compact. The converse 

is not true in general. 
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The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  )(1 au  1 ,  

)(1 bu  4.0 ; )(2 au  7.0 ,  )(2 bu  1 and )(3 au  7.0 ,  )(3 bu  4.0 . Now, take                

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  defined by 

)(a  2.0 ,  )(b  3.0 . Clearly   is Q -compact in  tX , . Take   8.0 . Hence we 

observe that there is no finite  -open fuzzy set in  tX , . Hence   is not  - Q -compact 

in  tX , . Thus the converse of theorem is not necessarily true.  

           

           -compact fuzzy sets (Chang’s sense [19]) and  -Q -compact fuzzy sets are 

independent. For this, we give the following example.            

          Example 6.36: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u ,  

4u  XI  defined by  )(1 au  5.0 ,  )(1 bu  2.0 ; )(2 au  3.0 ,  )(2 bu  4.0 ; )(3 au  5.0 ,  

)(3 bu  4.0  and )(4 au  3.0 ,  )(4 bu  2.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then 

we see that  tX ,  is an fts. Again, let   XI  defined by )(a  3.0 ,  )(b  4.0 . Take 

  2.0 . It is clear that   is  -compact (Chang’s sense) in  tX , . But   is not                  

 - Q -compact in  tX , , as )(a  )(auk  1 for a X  and k 1 ,  2 ,  3 ,  4 . Again, let 

  XI  with )(a  6.0 ,  )(b  8.0 . Clearly   is  - Q -compact in  tX , . But   is 

not  -compact (Chang’s sense) in  tX , , as there do not exist  -open fuzzy sets ku  such 

that   
4

1k
ku . 

 

          Definition 6.37: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1. Let 

M  { iu : i  J }  be a family of fuzzy sets. Then M  is said to be Q -cover of   iff 
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)(x  )(xui    for each x  X  and for some iu . If each iu  is open, then M  is said to 

be an open Q -cover of  . A subfamily of a Q -cover of   which is also a Q -cover 

of   is said to be a Q -subcover of  . 

 

          Example 6.38: Let X  },{ ba , I  ]1,0[  and 0    1.  Let 1u ,  2u  XI  defined 

by )(1 au  3.0 ,  )(1 bu  2.0  and )(2 au   1.0 ,  )(2 bu  4.0 . Again, let   XI  with 

)(a  4.0 ,  )(b  3.0 . Take   7.0 . Hence we observe that )(a  )(1 au   ,  

)(b  )(2 bu   . Therefore { 1u ,  2u }  is a Q -cover of  .  

 

          Example 6.39: Let X  },{ ba , I  ]1,0[  and 0    1.  Let 1u ,  2u ,  3u  XI  

defined by )(1 au  2.0 ,  )(1 bu  1; )(2 au   1 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . 

Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Again, let   XI  with )(a  6.0 ,  

)(b  5.0 . Take   9.0 . Hence we observe that )(a  )(2 au   ,  )(b  )(1 bu   . 

Therefore { 1u ,  2u }  is an open Q -cover of   in  tX , .  

 

          Definition 6.40: A fuzzy set   is said to be Q -compact iff every open Q -cover 

of   has a finite Q -subcover. 

 

          Theorem 6.41: Every Q -compact fuzzy set in an fts is Q -compact. But the 

converse is not true in general. 

The proof of the theorem is straightforward.  

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u  XI  defined by )(1 au  4.0 ,  

)(1 bu  3.0  and )(2 au  6.0 ,  )(2 bu  5.0 . Put t  { 0 ,  1u ,  2u ,  1} , then  tX ,  is an fts. 
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Again, let   XI  with )(a  2.0 ,  )(b  4.0 . Take   8.0 . Clearly   is                          

Q -compact in  tX , . But   is not Q -compact, as )(a  )(auk  1 for a  X  and  

k   1 ,  2 .     

          Note: If we consider   9.0 , then example (6.31) will show that the compact 

fuzzy sets in Chang’s sense [19] and Q -compact fuzzy sets are independent.         

 

           Let  tX ,  be an fts, 0    1,  tX ,  be a  -level topological space and   be a 

fuzzy set in X .Then Q -compactness of   in  tX ,  and compactness of 0  in  tX ,   

are independent. For this, we give the following examples. 

           Example 6.42: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u  XI  

defined by )(1 au  4.0 ,  )(1 bu  3.0  and )(2 au  6.0 ,  )(2 bu  8.0 . Put t  { 0 ,  1u ,  2u ,  

1} , then  tX ,  is an fts. Again, let   XI  with )(a  2.0 ,  )(b  0 . Take   8.0 . 

Clearly   is Q -compact in  tX , . Now, we have 0  }{a  and 8.0t  {  ,  X } . Hence 

 8.0, tX  is a 8.0 -level topological space. Thus we see that 0  is not compact in  8.0, tX , 

as there is no finite suvcover of 0  in  8.0, tX .      

Again, let   XI  with )(a  0 ,  )(b  2.0 . So we have 0  }{b . Take   7.0 . 

Then we get 7.0t  {  ,  }{b ,  X } . Hence  7.0, tX  is a 7.0 -level topological space. 

Clearly 0  is compact in  7.0, tX . But   is not Q -compact in  tX , , as 

)(a  )(auk    for a  X  and k   1 ,  2 .   

 

           Definition 6.43: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1 ,  

0    1. Let M  { iu : i  J }  be a family of  -open fuzzy sets. Then M  is said to be 

 - Q -cover of   iff )(x  )(xui    for each x  X  and for some iu . A subfamily of 
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 - Q -cover of   which is also a  - Q -cover of   is said to be  - Q -subcover of 

 . 

 

          Definition 6.44: A fuzzy set   is said to be  - Q -compact iff every                        

 - Q -cover of   has a finite  - Q -subcover.     

 

          Theorem 6.45: Every  - Q -compact fuzzy set in an fts is Q -compact. But the 

converse is not true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, we consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u  XI  defined by 

)(1 au  5.0 ,  )(1 bu  4.0  and )(2 au  7.0 ,  )(2 bu  6.0 . Put t  { 0 ,  1u ,  2u ,  1} , then 

 tX ,  is an fts. Again, let   XI  with )(a  2.0 ,  )(b  3.0 . Take   9.0 . Clearly 

  is Q -compact in  tX , . Again, take   9.0 . But   is not  - Q -compact, as there 

is no finite  -open fuzzy sets in  tX , .            

          Note: If we consider   9.0 , then example (6.36) will show that the   -compact 

fuzzy sets in Chang’s sense [19] and   - Q -compact fuzzy sets are independent.                 
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Chapter Seven 

Almost Compact Fuzzy Sets 

 

          Almost compact fuzzy sets was first constructed by Concilio and Gerla [27] which 

is local property. In this chapter, we have discussed several characterizations of this 

concept and established some theorems, corollary and examples. Also we have defined 

almost  -compact fuzzy sets and investigated different characterizations between almost 

compact and almost  -compact fuzzy sets.   

 

          Definition 7.1[27]: Let   be a fuzzy set in X . A family { iu : i  J }  is a 

proximate cover of   when { iu : i  J }  is a cover of   i.e.    
Ji

iu


. A subfamily of 

{ iu : i  J }  which is also a proximate cover of   is said to be proximate subcover of  .   

  

          Definition 7.2[27]: A fuzzy set   is said to be almost compact iff every open cover 

of   has a finite subfamily whose closures is cover of   or equivalently, every open 

cover of   has a finite proximate subcover.  

Every fuzzy subsets of an almost compact fuzzy set is also almost compact. 

 

          Theorem 7.3: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is almost compact in  tX ,  iff   is almost compact in  AtA, . 

Proof: Suppose   is almost compact in  tX , . Let { iu : i  J }  be an open cover of   

in  AtA, , then   0

iu : Ji  is also an open cover of   in  AtA, . Then there exist 

iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  is an open cover of   in  tX , , 
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so   0

iv : Ji  is also an open cover of   in  tX , . But from  0

iv  iv  and since   is 

almost compact in  tX , , then   0

iv : Ji  has a finite subfamily, say   0

kiv : nJk   

such that   
n

k
Jk

iv


 i.e.  
1i

v 
2i

v   …… 
ni

v . But iu  Avi |  iv | A  iv . 

Therefore,   (
1i

v 
2i

v ……
ni

v ) | A   (
1i

v | A )  (
2i

v | A ) ……  (
ni

v | A )  


1iu 

2iu ……
niu , as 0  A  i.e.  

1iu 
2iu ……

niu . Hence                        

{
ki

u : k  nJ }  is a finite proximate subcover of { iu : i  J } . So   is almost compact in 

 AtA, .   

Conversely, suppose   is almost compact in  AtA, . Let { iv : i  J }  be an open cover 

of   in  tX , , then   0

iv : Ji  is also an open cover of   in  tX , . Choose 

iu  iv | A , then we have   
Ji

iv


     













Ji
iv | A      

Ji
( iv | A )     

  
Ji

iu


. But iu  At , so { iu : i  J }  is an open cover of   in  AtA, . Therefore 

  0

iu : Ji  is also an open cover of   in  AtA, . We have  0

iu  iu  and since  is 

almost compact in  AtA, , then   0

iu : Ji  has a finite subfamily, say   0

kiu : nJk   

such that   
n

k
Jk

iu


 i.e.  
1iu 

2iu ……
niu . But we have iu  Avi |   iv | A  

 iv . Therefore  
1i

u 
2i

u ……
ni

u      (
1i

v | A )  (
2i

v | A ) ……  

(
ni

v | A )     
1i

v 
2i

v   …… 
ni

v , as 0  A . Therefore {
ki

v : k  nJ }  is a 

finite proximate subcover of { iv : i  J } . Hence   is almost compact in  tX , .      
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          Corollary 7.4: Let  *, tY  be a fuzzy subspace of an fts  tX ,  and A  Y  X . Let 

  be a fuzzy set in X  with 0  A . Then   is almost compact in  tX ,  iff   is almost 

compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then preceding theorem 

(7.3),   is almost compact in  tX ,  or  *, tY  iff   is almost compact in  AtA,  or 

 *, AtA . But At  *
At .   

 

          Theorem 7.5: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

continuous and surjective mapping.  If   is almost compact fuzzy set in  tX , , then 

)(f  is almost compact in  sY , . 

Proof: Let { iu : i  J }  be an open cover of )(f  in  sY , , then   0

iu : Ji  is also 

an open cover of )(f  in  sY , . As f  is fuzzy continuous, then  0
1

iuf   t  and hence 

  0
1

iuf  : Ji  is an open cover of   in  tX , . Since   is almost compact in  tX ,  , 

then   0
1

iuf  : Ji  has a finite subfamily, say   0
1

kiuf  : nJk   such that 

   
n

k
Jk

iuf



0

1  i.e.    0

1

1
iuf    0

2

1
iuf    ……  0

1
ni

uf  . But from  0

iu  iu  

and f  is fuzzy continuous and surjective,  iuf 1  must be a closed fuzzy set in X  such 

that  0
1

iuf    iuf 1  and then  0
1

iuf    iuf 1 . Therefore   






 
0

1
iuff  iu  for each 

i  J . Hence )(f      






 
0

1

1
iuff      







 
0

2

1
iuff  ……    







 
0

1
ni

uff               

   )(f    
1iu    

2iu  …… 
niu . Thus )(f  is almost compact in  sY , . 
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          Theorem 7.6: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

open, fuzzy closed and bijective mapping. If   is almost compact fuzzy set in  sY , , then 

)(1 f  is almost compact in  tX , . 

Proof: Let { iu : i  J }  be an open cover of )(1 f  in  tX , , then   0

iu : Ji  is also 

an open cover of )(1 f  in  tX , . As f  is fuzzy open, then  0

iuf  s  and hence 

  0

iuf : Ji  is an open cover of   in  sY , . Since   is almost compact in  sY , , 

then   0

iuf : Ji  has a finite subfamily, say   0

ki
uf : nJk   such that 

   
n

k
Jk

iuf


0

 i.e.    0

1iuf   0

2iuf   ……  0

niuf . But from  0

iu  iu  and f  

is closed,  iuf  must be a closed fuzzy set in Y  such that  0

iuf   iuf  and then              

 0

iuf   iuf . Therefore   







0

1
iuff  iu  for each i  J . Hence                              

)(1 f   



0

1

1
iuff   0

2i
uf ………   



0

ni
uf    )(1 f    








0

1

1
iuff   

  







0

2

1
iuff  .…...     








0

1
ni

uff    )(1 f 
1i

u  
2i

u    ……
ni

u . Hence 

)(1 f  is almost compact in  tX , .           

 

          Theorem 7.7: Let  tX ,  be an fts and let every family of closed fuzzy sets in X  

with empty intersection has a finite subfamily with empty intersection. Then any fuzzy set 

  in X  is almost compact. The converse is not true in general. 

Proof: Let   be any fuzzy set in X  and let { iu : i  J }  be an open cover of  , then 

  0

iu : Ji  is also an open cover of  . From the first condition of the theorem, we 
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have 
Ji

c
iu



 X0 . Therefore 
Ji

iu


 X1  and hence  0


Ji

iu


 X1 , as iu   0

iu . Again, by 

the second condition of the theorem, we get 
n

k
Jk

c
iu



 X0 . Thus we have 
n

k
Jk

iu


 X1  and 

hence  
n

k
Jk

iu


0

 X1 , as iu   0

iu . But from iu   0

iu  iu , then we get 
n

k
Jk

iu


  X1  

and consequently we have   
n

k
Jk

iu


 i.e.  
1i

u 
2i

u ……
ni

u .  Therefore               

{
ki

u : k  nJ }  is a finite proximate subcover of { iu : i  J } . Hence   is almost 

compact. 

For the converse, consider the following example.  

Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by  )(au  3.0 ,  )(bu  2.0  and 

)(av  4.0 ,  )(bv  3.0 . Choose t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. Now, 

)(0 ac  1 ,  )(0 bc  1; )(au c  7.0 ,  )(bu c  8.0  and )(av c  6.0 ,  )(bv c  7.0 .  So we 

have u  { c0 ,  cu ,  cv }  cv  i.e. )(au  6.0 ,  )(bu  7.0  and v  { c0 ,  cu ,  

cv }  cv  i.e. )(av  6.0 ,  )(bv  7.0 . Again, let   XI  with )(a  6.0 ,  )(b  4.0 . 

Then clearly   is almost compact in  tX , . But cu  cv  0 . Therefore the converse of 

the theorem is not true in general.  

 

          The following example will show that the almost compact fuzzy sets in an fts need 

not be closed. 

          Example 7.8: Consider the fts  tX ,  in the example of the theorem (7.7). Again, let 

  XI  with )(a  5.0 ,  )(b  6.0 . Then clearly   is almost compact in  tX , . But   

is not closed, as its complement c  is not open in  tX , . 
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          Theorem 7.9: Let  and   be almost compact fuzzy sets in an fts  tX , . Then 

   is also almost compact in  tX , . 

Proof: Let { iu : i  J }  be an open cover of   , then   0

iu : Ji  is also an open 

cover of   . Therefore   0

iu : Ji  is any open cover of both   and   

respectively. But we have  0

iu  iu  and since   is almost compact, so   0

iu : Ji  has 

a finite proximate subcover, say {
kiu : k  nJ }  such that  

1iu 
2iu ……

niu . 

Similarly, we can find {
ri

u : r  nJ }  is a finite proximate subcover of   0

iu : Ji . 

Therefore {
ki

u ,  
ri

u }  is a finite proximate subcover of { iu : i  J } . Hence    is 

also almost compact. 

           

          Theorem 7.10: Let  and   be almost compact fuzzy sets in an fts  tX , . Then 

    is also almost compact in  tX , . 

Proof: We have      and     . As   and   are almost compact, it is clear 

that     is almost compact.       

     

          Theorem 7.11: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be an almost 

compact fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist u ,  v  t  

such that )(xu  1 and 0    ]1,0(
1

v .  

Proof: Suppose y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, there exist     

yu ,  yv  t  such that )(xuy  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Hence we observe 

that  { yv : y  0 }  i.e. { yv : y  0 }  is an open cover of  . Thus we have 

  )(
0

xuy  1 ,    )(
0

yvy  1, as yu   0

yu  and yv   0

yv . Then   0

yv : 0y  is also an 
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open cover of  . Since   is almost compact, then   0

yv : 0y  has a finite proximate 

subcover, say {
kyv : k  nJ }  such that   

n

k
Jk

yv


 i.e.  
1yv 

2yv    ……
nyv . 

Now, let  0

v    0

1yv   0

2yv …...  0

nyv  and  0

u   0

1yu   0

2yu  ……  0

nyu . 

Hence  0

v  and  0

u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e.  0

v ,   0

u  t . But  0

yv  yv and   0

yu  yu .  Moreover, 

0    ]1,0(
1

v  and )(xu  1, as )(xu
ky  1 for each k . 

 

          Theorem 7.12: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and  ,    be disjoint 

almost compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such that 

0    ]1,0(
1

u  and  0    ]1,0(
1

v . 

Proof: Suppose y  0 . Then we have y  0 , as   and   are disjoint. As   is almost 

compact, then by theorem (7.11), there exist yu ,  yv  t  such that )(yuy  1 and                   

0     ]1,0(
1

yv . Since )(yuy  1, then we have   0

yu : 0y  is also an open cover of 

 . But   is almost compact, then   0

yu : 0y  has a finite proximate subcover, say 

{
kyu : k  nJ }  such that   

n

k
Jk

yu


 i.e.   
1yu 

2yu   ……
nyu . Furthermore,  

 
1yv 

2yv ……
nyv , as 0     ]1,0(

1

kyv  for each k . Now, let  0

u    0

1yu  

  0

2yu  ……    0

nyu  and  0

v    0

1yv   0

2yv ……   0

nyv . But  0

yu  yu  

and  0

yv  yv , we see that 0    ]1,0(
1

u  and 0    ]1,0(
1

v . Also  0

u  and  0

v  are 
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open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e.  0

u ,   0

v  t .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(7.11) and (7.12) are not at all true.   

 

           The following example will show that the almost compact fuzzy sets in fuzzy                

1T -space (as def. 1.45) need not be closed. 

          Example 7.13: Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by 

)(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Take t  { 0 ,  u ,  v ,  1} , then   tX ,  is a  

fuzzy 1T -space. Now, )(0 ac  1 ,  )(0 bc  1; )(auc  0 ,  )(buc  1 and )(avc  1 ,  

)(bvc  0 . So we have u { c0 ,  cv }  cv  i.e. )(au  1 ,  )(bu  0  and v { c0 ,  

cu }  cu  i.e. )(av  0 ,  )(bv  1. Again, let   XI  with )(a  4.0 ,  )(b  7.0 . 

Clearly   is almost compact in  tX , . But   is not closed, as its complement c  is not 

open in  tX , . 

 

          Theorem 7.14:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set 

in X  with 0  X . If   is almost compact in  tX ,  and x  0  ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0  and 0    ]1,0(
1

v . The converse is not true in 

general.   

The proof is similar as that of theorem (7.11). 

Now, for the converse, we give the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by  )(1 au  2.0 ,  )(1 bu  0 ; 

)(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put t  { 0 ,  1u ,  2u ,  3u ,  
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1 } , then we see that  tX ,  is a fuzzy 1T -space. Now, we have )(0 ac  1 ,  )(0 bc  1; 

)(1 au c  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 au c  8.0 ,  )(3 buc  7.0 . Therefore, 

1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 2u { c0 ,  cu1 ,  cu2 ,  

cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. 

)(3 au  8.0 ,   )(3 bu  7.0 . Again, let   XI  defined by )(a  0 ,  )(b  9.0 . Hence 

we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where )(1 au  8.0  0  and 

  ]1,0(
1

2



u  },{ ba . Hence 0    ]1,0(
1

2



u . Thus we see that   is not almost compact 

in  tX , , as there do not exist ku  such that   
3

1k
ku . Thus the converse of the theorem 

is not true in general.    

 

            Theorem 7.15:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint almost compact fuzzy sets in 

 tX , , then there exist u ,  v  t  such that 0    ]1,0(
1

u  and 0    ]1,0(
1

v .      

The work is similar as that of theorem (7.12). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(7.14). Let  ,    XI  with )(a  9.0 ,  )(b  0  and )(a  0 ,  )(b   8.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that 0    ]1,0(
1

1



u  and 0    ]1,0(
1

2



u , where 

  and   are disjoint. But we see that   and   are not almost compact in  tX , , as there 

do not exist ku  such tht   
3

1k
ku  and   

3

1k
ku . Thus the converse of the theorem is 

not true in general. 
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The following example will show that the almost compact fuzzy sets in fuzzy 1T -space (as 

def. 1.46) need not be closed.      

          Example 7.16: Consider the fuzzy 1T -space in the example of the theorem (7.14). 

Again, let   XI  defined by )(a  5.0 ,  )(b  6.0 . Then clearly   is almost compact 

in  tX , . But   is not closed, as its complement c  is not open in  tX , .             

          

          Theorem 7.17: An almost compact fuzzy sets in fuzzy regular space  tX ,            

(as def. 1.52) is compact. 

Proof: Let { iu : i  J }  be an open cover of a fuzzy set   in X  i.e.   
Ji

iu


. As  tX ,  

is fuzzy regular, then we have iu  
Ji

ijv


, where ijv  is an open fuzzy set such that ijv  iu  

for each i . Since   
Ji

iu


 
Ji

ijv


, then { ijv : i  J }  is an open cover of  . As   is 

almost compact, then { ijv : i  J }  has a finite proximate subcover, say  jik
v : nJk   

such that   
n

k
Jk

jiv


. But jik
v 

kiu , so   
n

k
Jk

jiv


 
n

k
Jk

iu


. Hence {
kiu : k  nJ }  is a 

finite subcover of { iu : i  J } . Therefore   is compact.  

 

          The following example will show that the “good extension” property does not hold 

for almost compact fuzzy sets. 

          Example 7.18: Let X  },,{ cba  and T  {  ,  }{a ,  }{b ,  },{ ba ,  X } . Then 

 TX ,  is a topological space. Again, let 1u ,  2u ,  3u  XI  with )(1 au  2.0 ,  )(1 bu  0 ,  

)(1 cu 0; )(2 au  0 ,  )(2 bu  4.0 ,  )(2 cu  0  and )(3 au  2.0 ,  )(3 bu  4.0 ,  )(3 cu  0 . 

Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now, )(0 ac  1 ,  

)(0 bc  1 ,  )(0 cc  1; )(1 auc  8.0 ,  )(1 buc  1 ,  )(1 cuc  1; )(2 auc  1 ,  )(2 buc  6.0 ,  
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)(2 cuc  1 and )(3 auc  8.0 ,  )(3 buc  6.0 ,  )(3 cuc  1. So we have 1u { c0 ,  cu1 ,  cu2 ,  

cu3 }  cu3  i.e. )(1 au  8.0 ,  )(1 bu  6.0 ,  )(1 cu  1; 2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. 

)(2 au  8.0 ,  )(2 bu  6.0 ,  )(2 cu  1 and 3u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3   i.e. 

)(3 au  8.0 ,  )(3 bu  6.0 ,  )(3 cu  1. Now, let   XI  defined by )(a  9.0 ,  

)(b  8.0 ,  )(c  0 . Then we have 0  },{ ba . Clearly 0  is compact in  TX , .  But 

  is not almost compact in  )(, TX  , as there don’t exist ku  )(T  for k   1 ,  2 ,  

3  such that   
3

1k
ku . Again, let   XI  defined by )(a  0 ,  )(b  3.0 ,  )(c  8.0 . 

Then we have 0  },{ cb . Clearly   is almost compact in  )(, TX  . But 0  is not 

compact in  TX , . 

 

          Theorem 7.19: Let   and   be almost compact fuzzy sets in an fts  tX , . Then 

)(    is also almost compact in  ttXX  , . 

Proof: Let { ii vu  : i  J }  be an open cover of )(    in  ttXX  ,  i.e. 

)(    
Ji

( iu  iv ) . Hence it can be easily shown that, min ( )(x ,  )(y )   


Ji

min ( )(xui ,  )( yvi )  for every ),( yx  XX  . So it is clear that   
Ji

iu


 and 

  
Ji

iv


. Therefore { iu : i  J }   and { iv : i  J }  are open cover of   and   

respectively. Thus   0

iu : Ji   and   0

iv : Ji  are also open cover of   and   

respectively. Now, we have  0

iu  iu  and  0

iv  iv . As   and   are almost compact, 

then   0

iu : Ji  and   0

iv : Ji  have  finite proximate subcover, say                            

{
ki

u : k  nJ }  and {
ki

v : k  nJ }  such that   
n

k
Jk

iu


 and   
n

k
Jk

iv


 i.e. 



Almost Compact Fuzzy Sets 

 

  
135 

 
1iu 

2iu ……
niu   and  

1iv 
2iv   …… 

niv  respectively. Hence we can 

write )(    
nJk
(

ki
u 

ki
v ) . Therefore {

ki
u 

ki
v : k  nJ }  is a finite proximate 

subcover of { ii vu  : i  J } . Thus )(    is almost compact in  ttXX  , .  

 

                    Definition 7.20: Let M  { iu : i  J }  be a family of  -open fuzzy sets and 

  be a fuzzy set in X . Then M  is said to be proximate  -cover of   when                        

{ iu : i  J }  is a  -cover of   i.e.    
Ji

iu


. A subfamily of { iu : i  J }  which is 

also a proximate  -cover of   is said to be proximate  -subcover of  .   

  

          Definition 7.21: A fuzzy set   is said to be almost  -compact iff every  -cover of 

  has a finite subfamily whose closures is  -cover of   or equivalently, every  -cover 

of   has a finite proximate  -subcover.  

Every fuzzy subsets of an almost  -compact fuzzy set is also almost  -compact.      

 

          Theorem 7.22: Any almost  -compact fuzzy set in an fts is almost compact. The 

converse is not true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u  XI  defined by  )(1 au  3.0 ,  

)(1 bu  2.0  and )(2 au  4.0 ,  )(2 bu  5.0 . Now, take t  { 0 ,  1u ,  2u ,  1} , then we see 

that  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1; )(1 auc  7.0 ,  )(1 buc  8.0  and 

)(2 auc  6.0 ,  )(2 buc  5.0 . So we have 1u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(1 au  6.0 ,  

)(1 bu  5.0  and 2u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(2 au  6.0 ,  )(2 bu  5.0 . Again, let 
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  XI  defined by )(a  6.0 ,  )(b  3.0 . Clearly   is almost compact in  tX , .          

Take   9.0 . Then we observe that there is no finite proximate  -subcover of  . Hence 

  is not almost  -compact in  tX , . Thus the converse of theorem is not necessarily 

true.  
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Chapter Eight 

Almost  -Compact Spaces 

 

          Almost  -compact spaces was first introduced by Mukherjee and Bhattacharyya 

[130] which is global property. We aim to discuss several other characterizations of this 

concept and established some theorems, corollary and examples. Also we have defined 

almost  - -compact spaces and found different characterizations between almost                    

 -compact and almost  - -compact spaces.      

  

          Definition 8.1[130]: A family { iu : i  J } ,  iu  XI  is a proximate  -shading of 

X  when { iu : i  J }  is an  -shading of X  i.e. )(xui    for each x  X . 

A subfamily of { iu : i  J }  which is also a proximate  -shading of X  is called a 

proximate  -subshading of X . 

 

          Definition 8.2[130]: An fts  tX ,  is said to be almost  -compact iff every open 

 -shading of X  has a finite subfamily whose closures is an  -shading or equivalently, 

every open  -shading of X  has a finite proximate  -subshading.    

 

          Theorem 8.3: Let  tX ,  be an fts and A  X . Then A1  is almost  -compact in 

 tX ,  iff A1  is almost  -compact in  AtA, . 

Proof: Suppose A1  is almost  -compact in  tX , . Let { iu : i  J }  be an open                  

 -shading of A1  in  AtA, , then   0

iu : Ji  is also an open  -shading of A1  in 

 AtA, . Then there exists iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  be an 
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open  -shading of A1  in  tX ,  and so   0

iv : Ji  is also an open  -shading of A1  in 

 tX , . But A1  is almost  -compact in  tX , , then   0

iv : Ji  has a finite proximate 

 -subshading, say {
kiv : k  nJ }  such that )(xv

ki   for each x  A . We have 

iu  Avi |  iv | A  iv . Now, )(|
1

xAv
n

k
ik 




















      )()|(

1

xAv
ki

n

k



     

)(
1

xu
n

k
ik



  , as A  X   and consequently {
ki

u : k  nJ }  is a finite proximate                    

 -subshading of { iu : i  J } . Hence A1  is almost  -compact in  AtA, .      

Conversely, suppose A1  is almost  -compact in  AtA, . Let { iv : i  J }  be an open            

 -shading of A1  in  tX , , then   0

iv : Ji  is also an open  -shading of A1  in  tX , . 

Put iu  iv | A . Then 













Ji
iv | A   )|( Av

Ji
i



 
Ji

iu


. But iu  At  and so { iu : i  J }  is 

an open  -shading of A1  in  AtA, . Therefore   0

iu : Ji  is also an open  -shading 

of A1  in  AtA, . Since A1  is almost  -compact in  AtA, , then   0

iu : Ji  has a finite 

proximate  -subshading, say {
kiu : k  nJ }  such that )(xu

ki   for each x  A . But 

iu  Avi |  iv | A  iv   and consequently {
ki

v : k  nJ }  is a finite proximate                        

 -subshading of { iv : i  J } . Therefore A1  is almost  -compact in  tX , .     

 

          Corollary 8.4: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Then A1  

is almost  -compact in  tX ,  iff A1  is almost  -compact in  *, tY .  
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Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(8.3), A1  is almost  -compact in  tX ,  or  *, tY  iff A1  is almost  -compact in  AtA,  

or  *, AtA . But At  *
At .               

 

          Theorem 8.5: Let  tX ,  be an fts and A1  be a closed subset of X ( A  X ) . If 

 tX ,  is almost  -compact, then so also is  AtA, . 

Proof: Let M  { iu : i  J }  be an open  -shading of A1  in  AtA, , then   0

iu : Ji  

is also an open  -shading of A1  in  AtA, . Then there exist iv  t  such that 

iu  iv | A  iv . Let H  { iv  t : iv | A  M } . Then }{ iv  }1{ AX   is an open                        

 -shading of X1 . To show this, let x  X . Now if x  A , there exist some iu  M  such 

that )(xui   . Let ig  t  such that ig | A  iu . So ig  H  and we have )(xgi   . Again 

if x  AX  , then )()1( xAX   1  . But iv   0

iv  iv  and since  tX ,  is almost               

 -compact, then }{ iv  }1{ AX   has a finite proximate  -subshading, say {
ki

v : k  nJ }  

such that )(xv
ki

  . Now, we have iu  Avi |  iv | A  iv . Then {
ki

v | A : k  nJ } , as 

A  X  and hence {
kiu : k  nJ }  is a finite proximate  -subshading of M . Therefore 

A1  is almost  -compact in  AtA, .   

 

          Theorem 8.6: Let  tX ,  be an fts and A , B  X . If A1  and B1  are almost                    

 -compact, then BA1  is also almost  -compact. 

Proof: Let { iu : i  J }  be an open  -shading of BA1 , then   0

iu : Ji  is also an 

open  -shading of BA1 . Hence { iu : i  J }  is any open  -shading of both A1  and B1  

respectively. Thus   0

iu : Ji  is also any open  -shading of both A1  and B1  
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respectively. But iu   0

iu  iu  and A1  is almost  -compact, then   0

iu : Ji  has a 

finite proximate  -subshading, say {
ki

u : k  nJ }  such that )(xu
ki

   for all x  A . 

Similarly, we can find {
ri

u : r  nJ }  is a finite proximate  -subshading of                      

  0

iu : Ji . Therefore {
kiu ,  

riu  }  is a finite proximate  -subshading of                   

{ iu : i  J } . Thus BA1  is also almost  -compact. 

          

          Theorem 8.7: Let  tX ,  be an fts and A , B  X ( BA   ) . If A1  and B1  are 

almost  -compact, then BA1  is also almost  -compact.  

Proof: We have BA  A  and BA  B . As A1  and B1  are almost  -compact, then 

it is clear that BA1  is also almost  -compact.                               

                             

          Theorem 8.8: Let  tX ,  be an fts and if t  becomes a cofinite topology on X . 

Then  tX ,  is almost  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , , then   0

iu : Ji  is also 

an open  -shading of  tX , . Now, we have t  { )( iu : iu  t } , where 

)( iu  { x  X : )(xui   }  and by the theorem t  is a cofinite topology on X . Hence 

we see that { )( iu : i  J }  is an open cover of   tX , , then   0

iu : Ji  is also an 

open cover of  tX , . For let, x  X , then there exists 
0i

u  M  such that )(
0

xui      

  )(
0

0
xui   ,  as iu   0

iu . Therefore, x  )(
0iu  and )(

0iu  { )( iu }    

x   0

0i
u and  0

0i
u    0

iu : Ji . Since  tX ,  is cofinite, hence compact, then 

{ )( iu : i  J }  has a finite subcover, say { )(
kiu : k  nJ } , where 

kiu  t  and 
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)(
kiu  t      0

kiu : nJk   is also forms a finite subcover of   0

iu : Ji . But 

iu   0

iu  iu , the family {
kiu : k  nJ }  forms a finite proximate  -subshading of M . 

Hence  tX ,  is almost  -compact. 

 

          Theorem 8.9: Let f :  tX ,    sY ,  be fuzzy continuous and surjective 

mapping. If X1  is almost  -compact, then )1( Xf  is almost  -compact as a subspace of 

Y . 

Proof: We have )(Xf  Y , as f  is surjective. Let M  { iu : i  J }  be an open                  

 -shading of Y1 . Then   0

iu : Ji   is also an open  -shading of Y1 . Since f  is fuzzy 

continuous, then  0
1

iuf   t  and hence   0
1

iuf  : Ji  is open  -shading of X1 . For, 

let x  X , then )(xf  Y . So there exists some  0

0iu    0

iu : Ji  such that 

   )(
0

0
xfui       )(

0

0

1 xuf i
  . As X1  is almost  -compact, then there exists 

 0
1

kiuf     0
1

iuf  : Ji  ( k  nJ )  such that   )(
0

1 xuf
ki

    for each x  X . But 

from  0

iu  iu  and fuzzy continuity of f ,  iuf 1  must be a closed fuzzy set in X  such 

that  0
1

iuf    iuf 1  and then  0
1

iuf    iuf 1 . Therefore   




 

0
1

iuff  iu  for each 

i  J . For if y Y , then y  )(xf  for some x  X , as f  is surjective. Then there exist 

some k  such that  )(xfu
ki    )( yu

ki   for each y Y . Therefore )1( Xf  is 

almost  -compact.          

 

          Theorem 8.10: Let f :  tX ,    sY ,  be fuzzy open, fuzzy closed and bijective 

mapping . If  sY ,  is almost  -compact, then  tX ,  is also almost  -compact. 
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Proof: Let { iu : i  J }  be an open  -shading of X1 , then   0

iu : Ji  is also an open 

 -shading of X1 . As f  is fuzzy open, then  0

iuf  s  and hence it follows that              

  0

iuf : Ji  is an open  -shading of Y1 . For let, y Y , then )(1 yf   X . So there 

exists some  0

0iu    0

iu : Ji  such that    )(1
0

0
yfui

        )(
0

0
yuf i   . Since 

Y1  is almost  -compact, then there exists  0

kiuf    0

iuf : Ji  ( k  nJ )  such that  

  )(
0

yuf
ki

   for all y Y . But from  0

iu  iu  and f  is fuzzy closed,  iuf  must be a 

closed fuzzy set in Y  such that  0

iuf   iuf  and then  0

iuf   iuf  . Therefore 

  






0
1

iuff  iu  for each i  J . Since f  is bijective, we have for each x  X , there 

exists a y Y  such that x  )(1 yf  . So, we can obtain some k  such that    )( yuf
ki   

   )(1 yfu
ki

     )(xu
ki

   for each x  X . Therefore  tX ,  is almost                      

 -compact.   

 

          Theorem 8.11: Let  tX ,  be an fts. If every family of closed fuzzy sets which has 

empty intersection has a finite subfamily with empty intersection, then  tX ,  is almost 

 -compact. The converse is not true in general. 

Proof: Let { iu : i  J }  be an open  -shading of X1 . By the first condition of the 

theorem, we have 
Ji

c
iu



 X0 . Thus 
Ji

iu


 X1  and so  0


Ji

iu


 X1 , as iu   0

iu . 

Therefore   0

iu : Ji  is also an open  -shading of X1 . Again from the second 

condition of the theorem, we get 
n

k
Jk

c
iu



 X0 . So, we have 
n

k
Jk

iu


 X1  and hence 
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 0


n

k
Jk

iu


 X1 , as iu   0

iu . But iu   0

iu  iu , then 
n

k
Jk

iu


 X1  and consequently 

{
kiu : k  nJ }  is a finite proximate  -subshading of { iu : i  J } . Thus  tX ,  is almost 

 -compact. 

Now, for the converse, we consider the following example. 

Let X = },{ ba ,  I  ]1,0[  and 10  . Again, let u ,  v  XI  defined by  )(au  1.0 ,  

)(bu  2.0  and )(av  3.0 ,  )(bv  4.0 . Put t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. 

Now )(0 ac  1 ,  )(0 bc  1; )(auc  9.0 ,  )(buc  8.0  and )(avc  7.0 ,  )(bvc  6.0 . So, 

u { c0 ,  cu ,  cv }  cv  i.e. )(au  7.0 ,  )(bu  6.0  and v { c0 ,  cu ,  cv }  cv  i.e. 

)(av  7.0 ,  )(bv  6.0 . Take   4.0 . Clearly  tX ,  is almost  -compact. But 

cu  cv  0 . Therefore the converse of the theorem is not true in general.  

 

          The following example will show that the almost  -compact subsets in an fts need 

not be closed. 

          Example 8.12: Consider the fts in the example of the theorem (8.11). Again, let 

A1  XI  defined by )(1 aA  1 ,  )(1 bA  0 . Hence we have A  }{a  and A  X . Take 

  5.0 . Then clearly A1  is almost  -compact in  tX , . But A1  is not closed in  tX , , 

as its complement cA1  is not open in  tX , . 

 

          Theorem 8.13: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be an 

almost  -compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  1 and  A    ]1,0(
1

v .  

Proof: Let y  A . Then clearly x  y . As  tX ,  is fuzzy 1T -space, then there exist            

yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Let us take 
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0    1 such that )(yvy   0 , as )(yvy  1. Then { yv : y  A }  is an open  -

shading of A1 . Hence we have   )(
0

xuy  1,   )(
0

yvy  1, as yu   0

yu  and yv   0

yv . 

Thus   0

yv : Ay   is also an open  -shading of A1 . Since A1  is almost  -compact, 

then   0

yv : Ay  has a finite proximate  -subshading , say  {
kyv : k  nJ }   such that 

)(yv
ky    for each y  A . Now, let  0

v    0

1yv   0

2yv …...  0

nyv  and 

 0

u   0

1yu   0

2yu  ……  0

nyu . Hence  0

v  and  0

u are open fuzzy sets , as they 

are the union and finite intersection of open fuzzy sets respectively i.e.  0

v ,   0

u  t . But 

we have  0

yv  yv  and  0

yu  yu . Moreover, A    ]1,0(
1

v  and )(xu  1, as )(xu
ky  1 

for each k .  

 

          Theorem 8.14: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A1 ,  B1  be disjoint 

almost  -compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A    ]1,0(
1

u  and B    ]1,0(
1

v . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint . Since B1  is almost                        

 -compact, then by theorem (8.13), there exist yu ,  yv  t  such that )(yuy  1 ,  

B    ]1,0(
1

yv . Assume that 0    1 such that )(yuy   0 . As )( yuy  1 ,  then we 

we have   0

yu : Ay  is an open  -shading of A1 . But A1  is almost  -compact, then 

  0

yu : Ay  has a finite proximate  -subshading, say {
kyu : k  nJ }  such that 

)(yu
ky   for all y  A . Again, B1  is almost  -compact, then   0

yv : Bx  has a 

finite proximate  -subshading, say {
kyv : k  nJ }  such that )(xv

ky    for all x  B  
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and B    ]1,0(
1

kyv  for each k . Now, let  0

u    0

1yu   0

2yu ……  0

nyu  and 

 0

v    0

1yv   0

2yv ……  0

nyv . But we have  0

yv  yv  and  0

yu  yu .  Thus we 

see that A    ]1,0(
1

u  and B    ]1,0(
1

v . Hence  0

u  and  0

v are open fuzzy sets, as 

they are the union and finite intersection of open fuzzy sets respectively i.e.  0

u ,   0

v  t . 

 

         Theorem 8.15: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be an 

almost  -compact subset in  tX , . Then A1  is closed. 

Proof: Let x  cA . We have to show that, there exists u  t   such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . If y  A , then x  y  and hence 

there exist yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Let us 

take 0    1 such that )(yvy    0 . Thus { yv : y  A }  is an open  -shading of A1 . 

Hence we have   )(
0

xu y  1,   )(
0

yvy 1, as yu   0

yu  and yv   0

yv . Thus              

  0

yv : Ay  is also an open  -shading of A1 . Since A1  is almost  -compact, then 

  0

yv : Ay  has a finite proximate  -subshading, say {
kyv : k  nJ }   such that 

)(yv
ky    for each y  A . Now, let  0

u   0

1yu   0

2yu  ……  0

nyu . But we have 

 0

yu  yu , then )(xu  1, as )(xu
ky  1 for each k . Again, if z  A , there exists r  such 

that )(zv
ry    0  and clearly )(zu  0 . Hence u  pA . Therefore, cA1  is open in  tX ,  

and consequently A1  is closed. 
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           Theorem 8.16: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A  X . If A1  is 

almost  -compact subset in  tX ,  and x  cA , then there exist u ,  v  t  such that 

)(xu  0  and  A    ]1,0(
1

v . The converse is not true in general. 

The proof is similar as that of theorem (8.13). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Now, we have 

)(0 ac  1 ,  )(0 bc  1; )(1 auc  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 auc  8.0 ,  

)(3 buc  7.0 . Therefore 1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 

2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  

cu2 ,  cu3 }  cu3  i.e. )(3 au  8.0 ,   )(3 bu  7.0 . Again, let A1  XI  defined by )(1 aA  0 ,  

)(1 bA  1. Hence we observe that A  }{b  and a  cA . Here 1u ,  2u  t  where 

)(1 au  8.0  0  and   ]1,0(
1

2



u  },{ ba . Hence A    ]1,0(
1

2



u . Take   9.0 . Thus we 

see that A1  is not almost  -compact in  tX , , as )(auk    for k  1 ,  2 ,  3 . Thus the 

converse of the theorem is not true in general.    

 

          Theorem 8.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A ,  B  X .  If A1  

and B1  are disjoint almost  -compact subsets in  tX , , then there exist u ,  v  t  such 

that A    ]1,0(
1

u  and B    ]1,0(
1

v . 

Similar proof as theorem (8.14). 
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Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(8.16). Let A1 ,  B1  XI  with )(1 aA  1 ,  )(1 bA  0  and )(1 aB  0 ,  )(1 bB  1. Thus we see 

that A  }{a  and B  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that A    ]1,0(
1

1



u  and B    ]1,0(
1

2



u , where 

A1  and B1  are disjoint. Take   9.0 . Hence we see that A1  and B1  are not almost                  

 -compact in  tX , , as )(auk    and  )(buk   ,  for k  1 ,  2 ,  3  respectively. Thus 

the converse of the theorem is not true in general. 

 

          The following example will show that the almost  -compact subsets in fuzzy                  

1T -space (as def. 1.46) need not be closed. 

          Example 8.18: Consider the fuzzy 1T -space in the example of the theorem (8.16).  

Again, let A1  XI  defined by )(1 aA  1 ,  )(1 bA  0 . Take   6.0 . Then clearly A1  is 

almost  -compact in  tX , . But A1  is not closed in  tX , , as its complement cA1  is not 

open in  tX , . 

 

          Theorem 8.19: An almost  -compact fuzzy regular topological space  tX ,         

(as def. 1.52) is  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of X1  i.e. )(xui   for every 

x  X . By fuzzy regularity of X, we have iu  
Ji

ijv


, where ijv  is an open fuzzy set such 

that ijv  iu  for each i . As )(xui      
Ji

ij xv


)(   for each x  X . So )(xvij   for 

all x  X  and for i  J . Therefore we have { ijv : i  J }  an open  -shading of X1 . 

Since X1  is almost  -compact, then there exist jik
v { ijv }  ( k  nJ )  such that 
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)(xv jik
   for each x  X . But we have jik

v 
kiu    )(xu

ki
   for each x  X . 

Therefore X1  is  -compact.   

 

          Theorem 8.20: An fts  tX ,  is almost  -compact iff  tX ,  is compact 

topological space. 

Proof: Suppose  tX ,  is almost  -compact. Let W  { iU : i  J }  be an open cover of 

 tX , . Then for each iU , there exists a iv  t  such that iU  )( iv . Thus we have 

W  { )( iv : i  J } . So the family M  { iv : i  J }  is an open  -shading of  tX , . 

Then   0

iv : Ji  is also an open  -shading of  tX , . To see this, let x  X . Since W  

is an open cover of  tX , , there is an 
0iU W  such that x 

0iU . But 
0iU  )(

0iv  for 

some 
0iv  t . Therefore x  )(

0iv  which implies that )(
0

xvi   . Since  tX ,  is almost 

 -compact, then M  has a proximate  -subshading, say 
kiv  M ( k  nJ )  such that 

)(xv
ki

  . Since iv  iv , then {  
ki

v : k  nJ }  forms a finite subcover of W  and thus 

 tX ,  is compact.     

Conversely, suppose that  tX ,  is compact. Let M  { iu : i  J }  be an open                     

 -shading of  tX , , then   0

iu : Ji  is also an open  -shading of  tX , . Therefore 

we have the family W  { )( iu : i  J }  is an open cover of  tX , . Now, for x  X , 

there exists a 
0i

u  M  such that )(
0

xui   . So x  )(
0i

u  and )(
0i

u W . Since  tX ,  

is compact, then W  has a finite subcover, say )(
kiu W  ( k  nJ )  such that 

X  )(
1i

u  )(
2i

u  ...... )(
ni

u . But  0

iu  iu ,  so {
ki

u : k  nJ }  forms finite 

proximate  -subshading of M . Hence  tX ,  is almost  -compact.   
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          Theorem 8.21: Let  tX ,  be an fts and  tX ,  be a  -level topological space. Let 

f :  tX ,   tX ,  be  -level continuous and bijective mapping. If  tX ,  is compact, 

then  tX ,  is almost  -compact.                 

Proof: Let { iu : i  J }  be an open  -shading of  t,X , then   0

iu : Ji  is also an 

open  -shading of  tX , . Since f  is  -level continuous, then ))(( 1
iuf   t    

  




 

0
1

iuf  t  and hence  









 

0
1

iuf : Ji  is an open cover of  tX , . As 

 tX ,  is compact, then  









 

0
1

iuf : Ji  has a finite subcover, say               

 









 

0
1

ki
uf : nJk  . Now, we have )(xf  y  for y  X , as f  is bijective. Since 

 0

iu  iu  and  









 

0
1

ki
uf : nJk   is a finite subcober of  










 

0
1

iuf : Ji , then 

there exist some k  such that  )(xfu
ki

     )(yu
ki

   for every y  X . Therefore 

{
kiu : k  nJ }  forms a finite proximate  -subshading of { iu : i  J } . Hence  tX ,  is 

almost  -compact.                              

 

          Theorem 8.22: A topological space  TX ,  is compact iff   )(, TX   is almost 

 -compact. 

Proof: Suppose  TX ,  is compact. Let { iu : i  J }  be an open  -shading of 

 )(, TX  . Then   0

iu : Ji  is also an open  -shading  )(, TX  . Therefore we 

can write ]1,(1 aui
 T  and hence { ]1,(1 aui

 : ]1,(1 aui
 T }  is an open cover of 

 TX , . As  TX ,  is compact, then { ]1,(1 aui
 : ]1,(1 aui

 T }  has a finite subcover, say 

]1,(1 au
ki
 { ]1,(1 aui

 }  ( k  nJ )  such that X  ]1,(1
1

aui
    ]1,(1

2
aui

  …...   
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]1,(1 au
ni
 . But from  0

iu  iu , we observe that there exists  0

ki
u    0

iu : Ji  

( k  nJ )  such that )(xu
ki

   for all x  X . Hence it is observe that {
ki

u : k  nJ }  is a 

finite proximate  -subshading of { iu : i  J } . Therefore  )(, TX   is almost                   

 -compact . 

Conversely, suppose that  )(, TX   is almost  -compact. Let { jV : j  J }  be open 

cover of  TX ,  i.e. X  
Jj

jV


{ : jV  T } . As 
jV1 is l. s. c., then 

jV1  )(T  and we have 

{
jV1 : 

jV1  )(T }  is an open  -shading of  )(, TX  .  Then   0

1
jV : )(1 T

jV   is 

also an open  -shading of  )(, TX  . Since  )(, TX   is almost   -compact, then 

  0

1
jV : )(1 T

jV   has a finite proximate  -subshading, say                              

 0

1
kjV    0

1
jV : )(1 T

jV   ( k  nJ )  such that )(1 x
kjV   for all x  X . As 

jV1  )(T  and 
jV1 

jV1 , then we can write X 
1jV 

2jV …....
njV and hence it is 

clear that {
kjV } ( k  nJ )  is a finite subcover of { jV : j  J } . Hence  TX ,  is 

compact. 

           

          Definition 8.23: Let  tX ,  be an fts and 0    1 ,  0    1. Let { iu : i  J }  be 

a family of  -open fuzzy sets in  tX , . Then { iu : i  J }  is a proximate  - -shading 

of X  when { iu : i  J }  is a  - -shading of X  i.e. )(xui    for all x  X .        

A subfamily of { iu : i  J }  which is also a proximate  - -shading of X  is said to be 

proximate  - -subshading of X .   
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          Definition 8.24: Let 0    1 ,  I . An fts  tX ,  is said to be almost                   

 - -compact, 0    1 iff every  - -shading of X  has a finite subfamily whose 

closures is  - -shading of X  or equivalently, every  - -shading of X  has a finite 

proximate  - -subshading.  

 

          Theorem 8.25: Every almost  - -compact space is almost  -compact. But the 

converse is not true. 

The proof is straightforward.  

For the converse, we consider the following example. 

Let X  ]1,0[ ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 xu 













16.0for3.0
0.6xfor0

6.00for0

x

x
 ,  )(2 xu 














16.0for0
0.6xfor0

6.00for4.0

x

x
  and 

)(3 xu 













16.0for3.0
0.6xfor0

6.00for4.0

x

x
.    Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is 

an fts. Now,   )(1 xuc 













16.0for7.0
0.6xfor1

6.00for1

x

x
,  )(2 xuc 














16.0for1
0.6xfor1

6.00for6.0

x

x
  and 

)(3 xuc 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
. So we have 1u { c0 ,  cu1 ,  cu2 ,  cu3  }   cu3  i.e. 

)(1 xu 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
; 2u { c0 ,  cu1 ,  cu2 ,  cu3  }   cu3  i.e. 

)(2 xu 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
 and 3u { c0 ,  cu1 ,  cu2 ,  cu3  }   cu3  i.e. 
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)(3 xu 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
. Take   4.0 . Clearly  tX ,  is almost  -compact. 

Again, take   9.0 . Then we observe that there is no finite proximate  - -subshading 

of X . Hence  tX ,  is not almost  - -compact. Thus the converse of theorem is not 

necessarily true. 
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Chapter Nine 

Almost Partially  -Compact Fuzzy Sets 

 

          In this chapter, we have introduced almost partially  -compact fuzzy sets. 

Furthermore, we have established some theorems, corollary and examples about almost 

partially  -compact fuzzy sets. Also we have defined almost partially  - -compact 

fuzzy sets and found different characterizations between almost partially  -compact and 

almost partially  - -compact fuzzy sets.  

 

          Definition 9.1: A family { iu : i  J }  is a proximate partial  -shading, in short 

pp -shading of a fuzzy set   in X  when { iu : i  J }  is a p -shading  of   i.e. 

)(xui    for each x  0 .        

A subfamily of { iu : i  J }  which is also a pp -shading of   is said to be                        

pp -subshading of  .   

  

          Definition 9.2: Let  tX ,  be an fts and   I . A fuzzy set   is said to be almost 

partially  -compact, 0    1, in short, ap -compact iff every open p -shading of   

has a finite subfamily whose closures is p -shading of   or equivalently, every open 

p -shading of   has a finite pp -subshading.  

 

          Theorem 9.3: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is ap -compact in  tX ,  iff   is ap -compact in  AtA, . 
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Proof: Suppose   is ap -compact in  tX , . Let { iu : i  J }  be an open p -shading 

of   in  AtA, , then   0

iu : Ji  is also an open p -shading of   in  AtA, . So there 

exist iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  is an open p -shading of 

  in  tX ,  and so   0

iv : Ji  is also an open p -shading of   in  tX , . Since 

 0

iv  iv  and   is ap -compact in  tX , , then   0

iv : Ji  has a finite                       

pp -subshading, say {
ki

v : k  nJ }  such that )(xv
ki

   for each x  0 . But                  

iu   Avi |   iv | A  iv . Now, )(| xAv
n

k
Jk

i 





















        

n

k
Jk

i xAv


)(|      

)(xu
n

k
Jk

i


  , as 0  A  and hence it shows that {
kiu : k  nJ }  is a finite                       

pp -subshading of { iu : i  J } . Therefore   is ap -compact in  AtA, .  

Conversely, suppose   is ap -compact in  AtA, . Let { iv : i  J }  be an open                

p -shading of   in  tX , , then   0

iv : Ji  is also an open p -shading of   in 

 tX , . Put iu  iv | A , then 













Ji
iv | A   )|( Av

Ji
i



 
Ji

iu


. But iu  At , so { iu : i  J }  

is an open p -shading of   in  AtA, . Therefore   0

iu : Ji  is also an open                    

p -shading of   in  AtA, . As  0

iu  iu  and   is ap -compact in  AtA, , then 

  0

iu : Ji  has a finite pp -subshading, say {
ki

u : k  nJ }  such that )(xu
ki

  for 

each x  0 . But iu  Avi |  iv | A  iv , then {
ki

v : k  nJ }  is a finite                             

pp -subshading of { iv : i  J } . Thus   is ap -compact in  tX , .      
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          Corollary 9.4: Let  *, tY  be a fuzzy subspace of an fts  tX ,  and A  Y  X . Let 

  be a fuzzy set in X  with 0  A . Then   is ap -compact in  tX ,  iff   is               

ap -compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(9.3),   is ap -compact in  tX ,  or  *, tY  iff   is ap -compact in  AtA,  or  *, AtA . 

But At  *
At .  

 

           Theorem 9.5: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

continuous and surjective mapping. If   is ap -compact in  tX , , then )(f  is                   

ap -compact in  sY , . 

Proof: Let { iu : i  J }  be an open p -shading of )(f  in  sY , , then   0

iu : Ji  is 

also an open p -shading of )(f  in  sY , . As f  is fuzzy continuous, then  0
1

iuf   t  

and hence   0
1

iuf  : Ji  is an open p -shading of   in  tX , . For, let x  0 , then 

)(xf   0)(f . So there exists  0

0iu    0

iu : Ji  such that    )(
0

0
xfui     

  )(
0

0

1 xuf i
   . As   is ap -compact, then   0

1
iuf  : Ji  has a finite subfamily, 

say   0
1

kiuf  : nJk   such that   )(
0

1 xuf
ki

    for each x  0 . But  0

iu  iu  and 

fuzzy continuity of f ,   iuf 1  must be a closed fuzzy set in X  such that 

 0
1

iuf    iuf 1  and then  0
1

iuf    iuf 1 . Therefore   






 
0

1
iuff  iu  for each 

i  J . Now, if  y   0)(f , then y  )(xf  for some x  0 , as f  is surjective. So there 

exists k  such that   )(1 xuf
ki

       )(xfu
ki

     )( yu
ki

  . Hence )(f  is 

ap -compact in  sY , .   
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          Theorem 9.6: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

open, fuzzy closed and bijective mapping. If   is ap -compact in  sY , , then )(1 f  is 

ap -compact in  tX , . 

Proof: Let { iu : i  J }  be an open p -shading of )(1 f  in  tX , , then   0

iu : Ji  

is also an open p -shading of )(1 f  in  tX , . Since f  is fuzzy open, then  0

iuf  s  

and hence   0

iuf : Ji  is an open p -shading of   in  sY , . For, let y  0 , then 

)(1 yf    01 )(f . So there exists  0

0iu    0

iu : Ji  such that    )(1
0

0
yfui

      

  )(
0

0
yuf i   . As   is ap -compact in  sY , , then   0

iuf : Ji  has a finite 

subfamily, say   0

ki
uf : nJk   such that   )(

0

yuf
ki    for each y  0 . But 

 0

iu  iu  and f  is fuzzy closed,  iuf  must be a closed fuzzy set in Y  such that 

 0

iuf   iuf  and then  0

iuf   iuf . Therefore   







0

1
iuff  iu  for each i  J . For, 

if x   01 )(f , then x  )(1 yf   for y  0 , as f  is bijective. So we can obtain, there 

exists k  such that   )(yuf
ki

      )(1 yfu
ki

      )(xu
ki

  . Hence )(1 f  is 

ap -compact in  tX , .   

 

          Theorem 9.7: Let  tX ,  be an fts and let every family of closed fuzzy sets in X  

with empty intersection has a finite subfamily with empty intersection. Then any fuzzy set 

  in X  is ap -compact. The converse is not true in general. 

Proof: Let   be any fuzzy set in X  and let { iu : i  J }  be an open p -shading of  , 

then   0

iu : Ji  is also an open p -shading of  . By the first condition of the 
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theorem, we have 
Ji

c
iu



 X0 . Therefore  
Ji

iu


 X1  and hence  0


Ji

iu


 X1 , as iu   0

iu . 

Again, by the second condition of the theorem, we get 
n

k
Jk

c
iu



 X0 . So we have 


n

k
Jk

iu


 X1  and hence  
n

k
Jk

iu


0

 X1 , as iu   0

iu . But iu   0

iu  iu , then we get 


n

k
Jk

iu


 X1  and consequently we have )(xu
ki

  for each x  0 . Therefore                    

{
ki

u : k  nJ }  is a finite pp -subshading of { iu : i  J } . Hence   is ap -compact.  

Now, for the converse, we consider the following example. 

Let X = },,{ cba ,  I  ]1,0[  and 0    1. Let u ,  v  XI  defined by  )(au  3.0 ,  

)(bu  2.0 ,  )(cu  4.0  and )(av  4.0 ,  )(bv  3.0 ,  )(cv  5.0 . Choose t  { 0 ,  u ,  v ,  

1} , then  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1 ,  )(0 cc  1; )(auc  7.0 ,  

)(buc  8.0 ,  )(cuc  6.0  and )(avc  6.0 ,  )(bvc  7.0 ,  )(cvc  5.0 . So we have 

u { c0 ,  cu ,  cv }  cv  i.e. )(au  6.0 ,  )(bu  7.0 ,  )(cu  5.0  and v { c0 ,  cu ,  

cv }  cv  i.e. )(av  6.0 ,  )(bv  7.0 ,  )(cv  5.0 . Again, let   XI  with )(a  0 ,  

)(b  3.0 ,  )(c  8.0 . Take   3.0 . Then clearly   is ap -compact in  tX , . But 

cu  cv  0 . Therefore the converse is not true in general.  

 

           The following example will show that the ap -compact fuzzy sets in an fts need 

not be closed. 

          Example 9.8: Consider the fts  tX ,  in the example of the theorem (9.7). Again, let 

  XI  with )(a  5.0 ,  )(b  6.0 ,  )(c  0 . Take   5.0 . Then clearly   is almost 

ap -compact in  tX , . But   is not closed, as its complement c  is not open in  tX , . 
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          Theorem 9.9: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be an                   

ap -compact fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist   

u ,  v  t  such that )(xu  1 and 0    ]1,0(
1

v .  

Proof: Let y  0 . So clearly we have x  y . As  tX ,  is fuzzy 1T -space, there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Let us assume that 

0    1 such that )(yvy   0  (as )(yvy  1). Thus we see that { yv : y  0 }  is an 

open p -shading of  . Also we have   )(
0

xuy  1 ,    )(
0

yvy  1, as yu   0

yu , 

yv   0

yv  and  then   0

yv : 0y  is also an open p -shading of  . Since   is   

ap -compact, then   0

yv : 0y  has a finite pp -subshading, say {
kyv : k  nJ }  

such that )(yv
ky    for each y  0 . Now, let  0

v    0

1yv   0

2yv …...  0

nyv  and 

 0

u   0

1yu   0

2yu  ……  0

nyu . Hence  0

v  and  0

u  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e.  0

v ,   0

u  t . But 

we have  0

yv  yv  and  0

yu  yu . Moreover, 0    ]1,0(
1

v  and )(xu  1, as 

)(xu
ky  1 for each k . 

 

          Theorem 9.10: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and  ,    be disjoint 

ap -compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such that 

0    ]1,0(
1

u   and  0    ]1,0(
1

v . 

Proof: Let y  0 . Then we have y  0 , as   and   are disjoint. As   is               

ap -compact, then by theorem (9.9), there exist yu ,  yv  t  such that )(yuy  1 and  
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0    ]1,0(
1

yv . Assume that 10   such that )( yuy    0 . Since )( yuy  1, then 

we have   0

yu : 0y  is an open p -shading of  . But   is ap -compact, so 

  0

yu : 0y  has a finite pp -subshading, say {
kyu : k  nJ }  such that )(yu

ky    

for each y  0 . Again,   is ap -compact, then   0

yv : 0x  has a finite                   

pp -subshading, say {
kyv : k  nJ }  such that )(xv

ky     for each x  0  and  0  

   ]1,0(
1

kyv  for each k . Now, let  0

u    0

1yu   0

2yu ……  0

nyu  and                  

 0

v    0

1yv   0

2yv ……  0

nyv . But we have  0

yu  yu  and   0

yv  yv , we see 

that 0    ]1,0(
1

u  and  0    ]1,0(
1

v . Also  0

u  and  0

v  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e.  0

u ,   0

v  t .  

           Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(9.9) and (9.10) are not at all true.    

           

          The following example will show that the ap -compact fuzzy sets in fuzzy 1T -pace 

(as def. 1.45) need not be closed. 

          Example 9.11: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let u ,  v  XI  defined 

by )(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Take t  { 0 ,  u ,  v ,  1} , then   tX ,  is 

a fuzzy 1T -space. Now, )(0 ac  1 ,  )(0 bc  1; )(auc  0 ,  )(buc  1 and )(avc  1 ,  

)(bvc  0 . So we have u { c0 ,  cv }  cv  i.e. )(au  1 ,  )(bu  0  and v { c0 ,  

cu }  cu  i.e. )(av  0 ,  )(bv  1. Again, let   XI  with )(a  4.0 ,  )(b  0 . Take 

  8.0 . Then clearly   is ap -compact in  tX , . But   is not closed, as its 

complement c  is not open in  tX , . 
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          Theorem 9.12: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If  is ap -compact in  tX ,  and x  0  ( )(x  0 ) , then there 

exist u ,  v  t  such that )(xu  0  and 0    ]1,0(
1

v . The converse is not true in general 

The proof is similar as that of theorem (9.9). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Now, we have 

)(0 ac  1 ,  )(0 bc  1; )(1 auc  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 auc  8.0 ,  

)(3 buc  7.0 . Therefore, 1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 

2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  

cu2 ,  cu3 }  cu3  i.e. )(3 au  8.0 ,   )(3 bu  7.0 . Again, let   XI  defined by )(a  0 ,  

)(b  6.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where 

)(1 au  8.0  0  and   ]1,0(
1

2



u  },{ ba . Hence 0    ]1,0(
1

2



u . Take   9.0 . Thus 

we see that   is not almost ap -compact in  tX , , as )(buk    for k  1 ,  2 , 3  and 

b  0 . Thus the converse of the theorem is not true in general.    

 

          Theorem 9.13: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be disjoint 

fuzzy sets in X  with 0 ,  0  X . If   and   are ap -compacts in  tX , , then there 

exist u ,  v  t  such that 0    ]1,0(
1

u   and  0    ]1,0(
1

v . The converse is not true in 

general. 

The proof is similar as that of theorem (9.10). 
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Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(9.12). Let  ,    XI  with )(a  5.0 ,  )(b  0  and )(a  0 ,  )(b  4.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that 0    ]1,0(
1

1



u  and 0    ]1,0(
1

2



u , where 

  and   are disjoint. Take   9.0 . Hence we see that   and   are not almost                    

ap -compact in  tX , , as )(auk    where a  0  and )(buk    where b  0 ,  for 

k  1 ,  2 ,  3  respectively. Thus the converse of the theorem is not true in general. 

 

          The following example will show that the ap -compact fuzzy sets in fuzzy                 

1T -space (as def. 1.46) need not be closed. 

          Example 9.14: Consider the fuzzy 1T -space in the example of the theorem (9.12).  

Again, let   XI  defined by )(a  7.0 ,  )(b  0 . Take   6.0 . Then clearly   is 

ap -compact in  tX , . But   is not closed in  tX , , as its complement c  is not open 

in  tX , . 

 

          Theorem 9.15: An ap -compact fuzzy sets in fuzzy regular space  tX ,                        

(as def. 1.52) is p -compact. 

Proof: Let { iu : i  J }  be an open p -shading of a fuzzy set   in X  i.e. )(xui    for 

each x  0 . Since  tX ,  is fuzzy regular, then we have iu  
Ji

ijv


,  where ijv  is an open 

fuzzy set such that ijv  iu  for each i . But )(xui      
Ji

ij xv


)(    for each x  0 . 

Therefore )(xvij    for each x  0  and for some i  J . So { ijv : i  J }  is an open 

p -shading of  . As   is ap -compact, then { ijv : i  J }  has a finite                     
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pp -subshading, say  jik
v : nJk   such that such that )(xv jik

   for each x  0 . 

But we have jik
v 

ki
u , then )(xu

ki
  for each x  0 . Thus we see that {

ki
u : k  nJ }  

is a finite p -subshading of { iu : i  J }  and hence   is p -compact.   

 

          Theorem 9.16: Let  tX ,  be an fts and   be a fuzzy set in X with 0  X . If 0  

is compact in  tX , , then   is ap -compact in  tX , . The converse is not true in 

general.       

Proof: Suppose 0  is compact in  tX , . Let { iu : i  J }  be an open p -shading   in 

 tX , , then   0

iu : Ji  is also an open p -shading of   in  tX , . So the family 

  0

iu : Ji  is an open cover of 0  in  tX , . For let x  0 , so there exists a 

 0

0iu    0

iu : Ji  such that   )(
0

0
xui   . Hence x   0

0iu  and thus 

 0

0iu    0

iu : Ji . But 0  is compact in  tX , , so   0

iu : Ji   has a finite 

subcover, say   0

kiu : nJk  . So   0

kiu : nJk   forms a finite subfamily of               

  0

iu : Ji  such that )(xu
ki   for each x  0  i.e. {

kiu : k  nJ }  is a finite                 

pp -subshading of { iu : i  J } . Hence   is ap -compact in  tX , .   

Now, for the converse, we consider the following example. 

Let X = },,{ cba ,  I  ]1,0[  and 10  . Let u ,  v  XI  defined by  )(au  2.0 ,  

)(bu  3.0 ,  )(cu  4.0  and )(av  3.0 ,  )(bv  4.0 ,  )(cv  5.0 . Put t  { 0 ,  u ,  v ,  1} , 

then  tX ,  is an fts. Again, let   XI  with )(a  0 ,  )(b  6.0 ,  )(c  8.0 . Then 

0  },{ cb . Now )(0 ac  1 ,  )(0 bc  1 ,  )(0 cc  1; )(auc  8.0 ,  )(buc  7.0 ,  

)(cuc  6.0  and )(avc  7.0 ,  )(bvc  6.0 ,  )(cvc  5.0 . So we have                    
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u { c0 ,  cu ,  cv }  cv  i.e. )(au  7.0 ,  )(bu  6.0 ,  )(cu  5.0  and v { c0 ,  cu ,  

cv }  cv  i.e. )(av  7.0 ,  )(bv  6.0 ,  )(cv  5.0 . Take   4.0 . Then clearly   is      

ap -compact in  tX , . Now, we have 4.0t  {  ,  }{c ,  X } . Hence it is clear that 0  is 

not compact in  4.0, tX .    

 

          Theorem 9.17: Let f :  tX ,   tX ,  be  -level continuous, bijective and   be 

a fuzzy set in X . If 0  is compact in  tX , , then )(f  is ap -compact in  tX , .                 

Proof: Suppose 0  is compact in  tX , . Let { iu : i  J }  be an open p -shading 

)(f  in  tX , , then   0

iu : Ji  is also an open p -shading of )(f  in  tX , . Since 

f  is  -level continuous, then ))(( 1
iuf   t      





 

0
1

iuf  t  and hence 

 









 

0
1

iuf : Ji  is an open cover of 0  in  tX , . As 0  is compact in  tX , , 

then  









 

0
1

iuf : Ji  has a finite subcover, say  









 

0
1

ki
uf : nJk  . Now, we 

have )(xf  y  for y  0)(f , since f  is bijective. As  0

iu  iu  and                      

 









 

0
1

ki
uf : nJk   is a finite subcober of  










 

0
1

iuf : Ji , there exist some k  

such that   )(xfu
ki

     )( yu
ki

   for each y  0)(f . Thus {
ki

u : k  nJ }  is a 

finite pp -subshading of { iu : i  J } . Therefore, )(f  is ap -compact in  tX , .                     

 

          The following example will show that the “good extension” property does not hold 

for ap -compact fuzzy sets. 
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          Example 9.18: Let X  },,{ cba  and T  {  ,  }{b ,  }{c ,  },{ cb ,  X } . Then 

 TX ,  is a topological space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 , )(1 bu  3.0 ,  

)(1 cu 0; )(2 au  0 ,  )(2 bu  0 ,  )(2 cu  4.0  and )(3 au  0 ,  )(3 bu  3.0 ,  )(3 cu  4.0 . 

Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now, )(0 ac  1 ,  

)(0 bc  1 ,  )(0 cc  1; )(1 auc  1 ,  )(1 buc  7.0 ,  )(1 cuc  1; )(2 auc  1 ,  )(2 buc  1 ,  

)(2 cuc  6.0  and )(3 auc  1 ,  )(3 buc  7.0 ,  )(3 cuc  6.0 . So we have 1u { c0 ,  cu1 ,  cu2 ,  

cu3 }  cu3  i.e. )(1 au  1 ,  )(1 bu  7.0 ,  )(1 cu  6.0 ; 2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. 

)(2 au  1 ,  )(2 bu  7.0 ,  )(2 cu  6.0  and 3u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3   i.e. )(3 au  1 ,  

)(3 bu  7.0 ,  )(3 cu  6.0 . Again, let   XI  defined by )(a  0 ,  )(b  6.0 ,  

)(c  5.0 . Then we have 0  },{ cb . Clerly 0  is compact in  TX , . Take   9.0 . 

Then   is not ap -compact in  )(, TX  , as there do not exist ku  for k   1 ,  2 ,  3  

such that )(buk     for b  0 . Again, let   XI  defined by )(a  2.0 ,  )(b  2.0 ,  

)(c  0 . Then we have 0  },{ ba . Take   3.0 . Then clearly   is ap -compact in 

 )(, TX  . But 0  is not compact in  TX , , as there is no finite subcover of 0  in 

 TX , . 

 

          Theorem 9.19: Let   and   be ap -compact fuzzy sets in an fts  tX , . Then 

)(    is also ap -compact in  ttXX  , . 

Proof: Let { ii vu  : i  J }  be an open p -shading of )(    in  ttXX  ,  i.e. 

)( ii vu  ),( yx   for each ),( yx  0)(   . Therefore we have )(xui   for each 

x  0  and )(yvi    for each y  0 . Hence { iu : i  J }   and { iv : i  J }  are open 

p -shadings of   and   respectively. Thus   0

iu : Ji   and   0

iv : Ji  are also 
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open p -shading of   and   respectively. Now we have  0

iu  iu  and  0

iv  iv . As 

  and   are ap -compact, then   0

iu : Ji  and   0

iv : Ji  have  finite                 

pp -subshading, say {
kiu : k  nJ }  and {

kiv : k  nJ }  such that  )(xu
ki    for each 

x  0  and )( yv
ki

  for each y  0  respectively. Hence we can write 

 
kk ii vu  ),( yx    for each ),( yx  0)(   . Therefore )(    is ap -compact in 

 ttXX  , .      

 

          Definition 9.20: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1 ,  

0    1. Let { iu : i  J }  be a family of  -open fuzzy sets in  tX , . Then                     

{ iu : i  J }  is a proximate partial  - -shading of  , in short, pp -shading, when 

{ iu : i  J }  is a p -shading of   i.e. )(xui    for all x  0 .        

A subfamily of { iu : i  J }  which is also a pp -shading of   is said to be                   

pp -subshading of  .   

          

          Definition 9.21: Let  tX ,  be an fts and 0    1 ,   I . A fuzzy set   in X  is 

said to be almost partially  - -compact, 0    1, in short, ap -compact iff every                

p -shading of   has a finite subfamily whose closures is p -shading  of   or 

equivalently, every p -shading of   has a finite pp -subshading.  

 

          Theorem 9.22: Every ap -compact fuzzy set in an fts is ap -compact. But the 

converse is not true. 

The proof is straightforward. 

Now, for the converse, we consider the following example. 
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Let X  },,{ cba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  4.0 ,  )(1 cu  3.0  and )(2 au  3.0 ,  )(2 bu  5.0 ,  )(2 cu  4.0 . Put 

t  { 0 ,  1u ,  2u ,  1} , then  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1 ,  )(0 cc  1; 

)(1 auc  8.0 ,  )(1 buc  6.0 ,  )(1 cuc  7.0  and )(2 auc  7.0 ,  )(2 buc  5.0 ,  )(2 cuc  6.0 . So 

we have 1u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(1 au  7.0 ,  )(1 bu  5.0 ,  )(1 cu  6.0  and 

2u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(2 au  7.0 ,  )(2 bu  5.0 ,  )(2 cu  6.0 . Again, let 

  XI  with )(a  9.0 ,  )(b  7.0 ,  )(c  0 . So we have 0  },{ ba . Take   4.0 . 

Then clearly   is ap -compact in  tX , . Again, take   9.0 . Then we observe that 

there is finite pp -subshading of  . Hence   is not ap -compact in  tX , . Thus the 

converse of theorem is not necessarily true. 
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Chapter Ten 

Almost Q -Compact Fuzzy Sets 

 

          In this chapter, we have introduced almost Q -compact fuzzy sets. Furthermore, 

we have established several theorems, corollary and examples of almost Q -compact 

fuzzy sets. Also we have defined almost  - Q -compact fuzzy sets and identified 

different characterizations between almost Q -compact and almost  - Q -compact 

fuzzy sets.          

 

          Definition 10.1: A family { iu : i  J }  is said to be proximate Q -cover of a 

fuzzy set   in X  when { iu : i  J }  is Q -cover of   i.e. )(x  )(xui    for each 

x  X  and for some iu , where   0I . 

A subfamily of { iu : i  J }  which is also a proximate Q -cover of   is called a 

proximate Q -subcover of  . 

 

          Definition 10.2: A fuzzy set   is said to be almost Q -compact iff every open 

Q -cover of   has a finite subfamily whose closures is Q -cover of   or equivalently, 

every open Q -cover of   has a finite proximate Q -subcover. 

Every super sets of an almost Q -compact fuzzy set is also almost Q -compact.   

 

          Theorem 10.3: Let  tX ,  be an fts, A  X  and   be a fuzzy set in A . Then   is 

almost Q -compact in  tX ,  iff   is almost Q -compact in  AtA, . 
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Proof: Suppose   is almost Q -compact in  tX , . Let { iu : i  J }  be an open               

Q -cover of   in  AtA, , then   0

iu : Ji  is also an open Q -cover of   in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  is an 

open Q -cover of   in  tX ,  and so   0

iv : Ji  is also an open Q -cover of   in 

 tX , . But  0

iv  iv  and   is almost Q -compact in  tX , , then   0

iv : Ji  has a 

finite proximate Q -subcover, say {
ki

v : k  nJ }  such that )(x  )(xv
ki

   for each 

x  A . Hence )(x    )(| xAv
ki    for each x  A  and consequently 

)(x  )(xu
ki

   for each x  A . Therefore {
ki

u : k  nJ }  is a finite proximate                  

Q -subcover of { iu : i  J } . Thus   is almost Q -compact in  AtA, .      

Conversely, suppose   is almost Q -compact in  AtA, . Let { iv : i  J }  be an open 

Q -cover of   in  tX , , then   0

iv : Ji  is also an open Q -cover of   in  tX , . 

Put iu  iv | A . Then )(x  )(xvi    for all x  A    )(x  )()|( xAvi    for each 

x  A    )(x  )(xui    for each x  A . Since iu  At , then { iu : i  J }  is an open 

Q -cover of   in  AtA, . Therefore   0

iu : Ji  is also an open Q -cover of   in 

 AtA, . But from  0

iu  iu  and   is almost Q -compact in  AtA, , then   0

iu : Ji  

has a finite proximate Q -subcover, say {
ki

u : k  nJ }  such that )(x  )(xu
ki

   for 

each x  A . But iu   Avi |  iv | A  iv , then )(x    )(| xAv
ki

   for each x  A  

  )(x    )(| xAv
ki

   for each x  A  and consequently )(x  )(xv
ki

   for each 

x  A . Therefore {
kiv : k  nJ }  is a finite proximate Q -subcover of { iv : i  J } . 

Therefore   is almost Q -compact in  tX , .    
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          Corollary 10.4: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let   

be a fuzzy set in A . Then   is almost Q -compact in  tX ,  iff   is almost                      

Q -compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by theorem (10.3),   

is almost Q -compact in  tX ,  or  *, tY  iff   is almost Q -compact in  AtA,  or 

 *, AtA . But At  *
At .             

 

          Theorem 10.5: Let   be an almost Q -compact fuzzy set in an fts  tX , . If 

    and   ct , then   is also almost Q -compact.              

Proof: Let { iu : i  J }  be an open Q -cover of  , then   0

iu : Ji  is also an open 

Q -cover of  . So  




 0

iu   






 0

c  is an open Q -cover of  . As )(x    )(
0

xui  

   for each x  X , then we have )(x  max     





 )(),(

00

xxu c
i     for each x  X . 

Hence )(x    )(
0

xui  )(x     )(
0

xui    for each x  X . Since  0

iu  iu  and   is 

almost Q -compact, then  




 0

iu   






 0

c  has a finite subcollection, say                       

  0

kiu : nJk    






 0

c  such that )(x  max  )(),( xxu c
ik

    for each x  X . 

Therefore {
kiu : k  nJ }  is a finite proximate Q -subcover of { iu : i  J } . Hence   

is almost Q -compact.       

 

          Theorem 10.6: Let  tX ,  be an fts and   be a fuzzy set in X . If every family of 

closed fuzzy sets having the empty intersection has a finite subfamily with empty 

intersection, then   is almost Q -compact. The converse is not true in general. 
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Proof: Let { iu : i  J }  be an open Q -cover of  , then   0

iu : Ji  is also an open 

Q -cover of  . From the first condition of the theorem, we have 
Ji

c
iu



 X0 . Thus 


Ji

iu


 X1  and so  0


Ji

iu


 X1 , as iu   0

iu . Again by the second condition of the 

theorem, we get 
n

k
Jk

c
iu



 X0 . So we have 
n

k
Jk

iu


 X1  and hence  
n

k
Jk

iu


0

 X1 , as 

iu   0

iu . But iu   0

iu  iu , then 
n

k
Jk

iu


  X1  and consequently )(x  )(xu
ki

   for 

each x  X . Therefore {
ki

u : k  nJ }  is a finite proximate Q -subcover of                   

{ iu : i  J } . Thus   is almost Q -compact. 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and   0I . Again, let u ,  v  XI  defined by )(au  2.0 ,  

)(bu  4.0  and )(av  3.0 ,  )(bv  6.0 . Put t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. 

Now, )(0 ac  1 ,  )(0 bc  1; )(au c  8.0 ,  )(bu c  6.0  and )(av c  7.0 ,  )(bv c  4.0 . So 

we have u  { c0 ,  cu ,  cv }  cv  i.e. )(au  7.0 ,  )(bu  4.0  and v  { c0 ,  

cu }   cu  i.e. )(av  8.0 ,  )(bv  6.0 . Let   XI  with )(a  3.0 ,  )(b  7.0 . Take 

  9.0 . Then clearly  is almost Q -compact in  tX , . But cu  cv  0 . Therefore 

the converse of the theorem is not true in general.  

 

          Theorem 10.7: Let  and   be almost Q -compact fuzzy sets in an fts  tX , . 

Then    is also almost Q -compact in  tX , . 

Proof: Let { iu : i  J }   be an open Q -cover of   , then   0

iu : Ji  is also an 

open Q -cover of   . Therefore   0

iu : Ji  is any open Q -cover of both   
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and   respectively. But from  0

iu  iu  and   is almost Q -compact in  tX , , then 

  0

iu : Ji  has a finite proximate Q -subcover, say {
ki

u : k  nJ }  such that 

)(x  )(xu
ki

   for each x  X . Similarly, we can find {
ri

u : r  nJ }  is a finite 

proximate Q -subcover of   0

iu : Ji . Therefore {
kiu ,  

riu }  is a finite proximate 

Q -subcover of { iu : i  J } . Hence    is almost Q -compact in  tX , .  

 

           Theorem 10.8: Let  and   be almost Q -compact fuzzy sets in an fts  tX , . 

Then    is also almost Q -compact in  tX , . 

Proof: We have     ,      . As   and   are almost Q -compact, then it 

is clear that    is almost Q -compact in  tX , .     

           

          The following example will show that any other subsets of an almost Q -compact 

fuzzy set in an fts need not be almost Q -compact. 

           Example 10.9: Let X  },{ ba ,  I  ]1,0[  and   0I . Again, let u ,  v  XI  

defined by  )(au  3.0 ,  )(bu  4.0  and )(av  4.0 ,  )(bv  5.0 . Consider t  { 0 ,  u ,  

v ,  1} , then  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1; )(au c  7.0 ,  )(bu c  6.0  and 

)(av c  6.0 ,  )(bv c  5.0 . Therefore  u    { c0 ,  cu ,  cv }  cv  i.e. )(au  6.0 ,  

)(bu  5.0  and v  { c0 ,  cu ,  cv }  cv  i.e. )(av  6.0 ,  )(bv  5.0 . Let  ,    XI  

with )(a  3.0 ,  )(b  7.0  and )(a  1.0 ,  )(b  4.0 . We observe that    . Take 

  8.0 . Clearly  is almost Q -compact in  tX , . But   is not almost Q -compact 

in  tX , , as   have no finite proximate Q -subcover in  tX , .   
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          Note: The example (10.9) also shows that almost Q -compact fuzzy sets in an fts 

need not be closed, as   is almost Q -compact in  tX ,  but c  is not open in  tX , .            

 

          Theorem 10.10: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be an almost 

Q -compact fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist            

u ,  v  t  such that )(xu  1 and 0    ]1,0(
1

v .  

Proof: Let y  0 . Then clearly we have x  y . Since  tX ,  is fuzzy 1T -space, then 

there exist yu ,  yv  t  such that )(xu y 1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Let us 

assume that   0I  such that )(x  )(xu y   ,  x  X  and )(y  )(yvy   ,  y  0  

i.e. { yu ,  yv : y  0 }  is an open Q -cover of  . Also we have   )(
0

xuy  1 ,  

  )(
0

yvy  1, as yu   0

yu ,  yv   0

yv  and say M    0

yu ,   0

yv : 0y  is also an 

open Q -cover of  . But we have  0

yu  yu ,   0

yv  yv   and since   is almost               

Q -compact, then M  has a finite proximate Q -subcover, say {
kyu ,  

kyv : k  nJ }  

such that )(x  )(xu
ky    for each x  X  with )(x  0 , for some  0

kyu  M  and 

)( y  )(yv
ky    for each y  X  with )(y  0 , for some  0

kyv  M . Now, let                

 0

v    0

1yv   0

2yv   …..   0

nyv  and  0

u    0

1yu    0

2yu   ……   0

nyu . Thus we 

see that  0

v  and  0

u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e.  0

v ,   0

u  t . Moreover, 0    ]1,0(
1

v  and )(xu  1, as 

)(xu
ky  1 for each k . 
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          Theorem 10.11: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and  ,    be disjoint 

almost Q -compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such 

that 0    ]1,0(
1

u  and 0    ]1,0(
1

v . 

Proof: Let y  0 . Then we have y  0 , as   and   are disjoint. Since   is almost 

Q -compact, then by theorem (10.10), there exist yu ,  yv  t  such that )(yuy  1 and  

0     ]1,0(
1

yv . Let us take   0I  such that )(x    )(
0

xvy   ,  x  X   and 

)( y    )(
0

yuy   ,  y  0  i.e. say M    0

yv ,   0

yu : 0y   is an open Q -cover 

of  . But we have  0

yv  yv  and   0

yu  yu . As )( yuy  1 and   is almost                       

Q -compact in  tX , , then M  has a finite proximate Q -subcover, say                  

{
kyv ,  

kyu : k  nJ }  such that )(x  )(xv
ky    for each x  X  with )(x  0 , for 

some  0

kyv  M  and )( y  )(yu
ky    for each y  X  with )( y  0 , for some 

 0

kyu  M . Again, since   is almost Q -compact in  tX , , then we have 

)(x  )(xv
ky    for each x  X  with )(x  0 , for some  0

kyv  M  and 

)( y  )(yu
ky    for each y  X  with )( y  0 , for some  0

kyu  M  and also                  

0     ]1,0(
1

kyv  for each k . Now, let  0

u    0

1yu    0

2yu   ……   0

nyu and                

 0

v   0

1yv   0

2yv   …..   0

nyv . Thus we observe that 0    ]1,0(
1

u  and 

0    ]1,0(
1

v . Hence  0

u  and  0

v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e.  0

u ,   0

v  t .             

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(10.10) and (10.11) are not at all true.   
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          The following example will show that the almost Q -compact fuzzy sets in fuzzy 

1T -space (as def. 1.45) need not be closed.   

           Example 10.12: Let X  },{ ba ,  I  ]1,0[  and   0I . Let  u ,  v  XI  defined 

by  )(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Put t  { 0 ,  u ,  v ,  1} , then we see that 

 tX ,  is a fuzzy 1T -space. Now, )(0 ac  1 ,  )(0 bc  1; )(au c  0 ,  )(bu c  1 and 

)(av c  1 ,  )(bv c  0 . So we have u    { c0 ,  cv }   cv  u  i.e. )(au  1 ,  )(bu  0  

and v  { c0 ,  cu }   cu  v  i.e. )(av  0 ,  )(bv  1. Again, let   XI  defined by 

)(a  3.0 , )(b  2.0 . Take   6.0 . Then clearly   is almost Q -compact in  tX , . 

But   is not closed, as its complement c  is not open in  tX , .  

 

          Theorem 10.13:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set 

in X  with 0  X . If   is almost Q -compact in  tX ,  and x  0  ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0  and 0    ]1,0(
1

v . The converse is not true in 

general.   

The proof is similar as that of theorem (10.10). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1 } , then we see that  tX ,  is a fuzzy 1T -space. Now we have, 

)(0 ac  1 ,  )(0 bc  1; )(1 auc  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 auc  8.0 ,  

)(3 buc  7.0 . Therefore 1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 

2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  
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cu2 ,  cu3 }  cu3  i.e. )(3 au  8.0 ,   )(3 bu  7.0 . Again, let   XI  defined by )(a  0 ,  

)(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where 

)(1 au  8.0  0  and   ]1,0(
1

2



u  },{ ba . Hence 0    ]1,0(
1

2



u . Take   9.0 . Thus 

we see that   is not almost Q -compact in  tX , , as )(a  )(auk    for a  X  and 

k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.    

 

          Theorem 10.14:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint almost Q -compacts in  tX , , 

then there exist u ,  v  t  such that 0    ]1,0(
1

u  and 0    ]1,0(
1

v .     

The similar work as that of theorem (10.11). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(10.13). Let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b   1.0 . Thus 

we see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that 0    ]1,0(
1

1



u  and 0    ]1,0(
1

2



u , where 

  and   are disjoint. Take   9.0 . Hence we see that   and   are not almost                    

Q -compact in  tX , , as )(b  )(buk    for b  X  and )(a  )(auk    for 

a  X  where k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general. 

 

          The following example will show that the almost Q -compact fuzzy sets in fuzzy 

1T -space (as def. 1.46) need not be closed. 

          Example 10.15: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(10.13). Again, let   XI  defined by )(a  4.0 ,  )(b  8.0 . Take   9.0 . Clearly   
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is almost Q -compact in  tX , . But   is not closed, as its complement c  is not open in 

 tX , . 

 

          Theorem 10.16: An almost Q -compact fuzzy sets in fuzzy regular space           

(as def. 1.52) is Q -compact.    

Proof: Let { iu : i  J }  be an open Q -cover of   i.e. )(x  )(xui    for each 

x  X . As  tX ,  is fuzzy regular, then we have iu  ijv , where ijv  is an open fuzzy set 

such that jiv  iu  for each i . But )(x  )(xui    for each x  X    

)(x  )(xv
Ji

ij


   for each x  X . Then )(x  )(xvij    for each x  X  and for 

some i  J . So { ijv  : i  J }  is an open Q -cover of  . Since   is almost                       

Q -compact, then { ijv  : i  J }  has a finite proximate Q -subcover, say                       

{ jik
v : k  nJ }  such that )(x  )(xv jik

   for each x  X . But we have jik
v 

kiu , 

then )(x  )(xu
ki

   for each x  X . Therefore {
kiu : k  nJ }  is a finite                   

Q -subcover of { iu : i  J }  and hence   is Q -compact.         

 

          Theorem 10.17: Let  tX ,  be an fts and   be a fuzzy set in X . If 0  is compact 

in  tX , , then   is almost Q -compact in  tX , . The converse is not true in general.       

Proof: Suppose 0  is compact in  tX , . Let { iu : i  J }  be an open Q -cover of   

in  tX , , then   0

iu : Ji  is also an open Q -cover of   in  tX , . So the family 

  0

iu : Ji  is an open cover of 0  in  tX , . But 0  is compact in  tX , , so 

  0

iu : Ji   has a finite subcover, say   0

ki
u :  nJk  . Thus   0

ki
u :  nJk   
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forms a finite subfamily of   0

iu : Ji  such that )(x  )(xu
ki

   for each x X  i.e. 

{
ki

u : k  nJ }  is a finite proximate Q -subcover of { iu : i  J } . Hence   is almost 

Q -compact in  tX , .   

Now, for the converse,  consider the example. 

Let X  },{ ba ,  I  ]1,0[  and 10  . Let u ,  v  XI  defined by  )(au  3.0 ,  

)(bu  4.0  and )(av  5.0 ,  )(bv  6.0 . Put t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. 

Now, )(0 ac  1 ,  )(0 bc  1; )(auc  7.0 ,  )(buc  6.0  and )(avc  5.0 ,  )(bvc  4.0 . So 

we have u { c0 ,  cu ,  cv }  cv  i.e. )(au  5.0 ,  )(bu  4.0  and v { c0 ,  

cu }  cu  i.e. )(av  7.0 ,  )(bv  6.0 . Again, let   XI  with )(a  1.0 ,  )(b  0 . 

Then 0  }{a . Take   5.0 . Then clearly   is almost Q -compact in  tX , . Now we 

have 5.0t  {  ,  }{b ,  X }  and  5.0, tX  is a 5.0 -level topological space. Hence we 

observe that 0  is not compact in  5.0, tX , as there is no finite subcover of 0  in 

 5.0, tX .    

            

          The “good extension property” does not remain valid for almost Q -compact fuzzy 

sets. 

          Example 10.18: Let X  },,{ cba  and T  {  ,  }{b ,  }{c ,  },{ cb ,  X } . Then 

 TX ,  is a topological space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 ,  )(1 bu  6.0 ,  

)(1 cu 0; )(2 au  0 ,  )(2 bu  0 ,  )(2 cu  3.0  and )(3 au  0 ,  )(3 bu  6.0 ,  )(3 cu  3.0 . 

Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now )(0 ac  1 ,  

)(0 bc  1 ,  )(0 cc  1; )(1 auc  1 ,  )(1 buc  4.0 ,  )(1 cuc  1; )(2 auc  1 ,  )(2 buc  1 ,  

)(2 cuc  7.0  and )(3 auc  1 ,  )(3 buc  4.0 ,  )(3 cuc  7.0 . So we have 1u { c0 ,  
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cu2 }  cu2  i.e. )(1 au  1 ,  )(1 bu  1 ,  )(1 cu  7.0 ; 2u { c0 ,  cu1 ,  cu2 ,  cu3 }   cu3  i.e. 

)(2 au  1 ,  )(2 bu  4.0 ,  )(2 cu  7.0  and 3u { c0 ,  cu2 }  cu2  i.e. )(3 au  1 ,  

)(3 bu  1 ,  )(3 cu  7.0 . Again, let   XI  defined by )(a  0 ,  )(b  4.0 ,  )(c  1.0 . 

Then we have 0  },{ cb . Clearly 0  is compact in  TX , . Take   9.0 . Then   is 

not almost Q -compact in  )(, TX  , as there do not exists ku  for k   1 ,  2 ,  3  such 

that )(c  )(cuk   . Again, let   XI  defined by )(a  4.0 ,  )(b  0 ,  )(c  4.0 . 

So we have 0  },{ ca . Then clearly   is almost Q -compact in  )(, TX  .  But 

0  },{ ca  is not compact in  TX , , as there do not exist a finite subcover of 0  in  

 TX , . It is, therefore, observed that “good extension property” does not hold good for 

almost Q -compact fuzzy sets.    

 

          Theorem 10.19: Let   and   be almost Q -compact fuzzy sets in an fts  tX , . 

Then )(    is also almost Q -compact in  ttXX  , . 

Proof: Let { ii vu  : i  J }  be an open Q -cover of )(    in  ttXX  ,  i.e.   

)(   ),( yx  )( ii vu  ),( yx    for each ),( yx  XX  . Then clearly we have  

)(x  )(xui    for each x  X  and )( y  )( yvi    for each y  X . Therefore 

{ iu : i  J }   and { iv : i  J }  are open Q -cover of   and   respectively. Then 

  0

iu : Ji   and   0

iv : Ji  are also open Q -cover of   and   respectively. 

Since  0

iu  iu ,   0

iv  iv  and  ,    are almost  Q -compact, then   0

iu : Ji   and 

  0

iv : Ji  have  finite proximate Q -subcover, say {
ki

u : k  nJ }  and                       

{
ki

v : k  nJ }  such that )(x  )(xu
ki

   for each x  X  and )( y  )( yv
ki

   for 
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each y  X  respectively. Hence we can write )(   ),( yx   
kk ii vu  ),( yx    for 

each ),( yx  XX  . Hence )(    is almost Q -compact in   ttXX  , . 

           

          Definition 10.20: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1 ,  

0    1. Let { iu : i  J }  be a family of  -open fuzzy sets in  tX , . Then                       

{ iu : i  J }  is proximate  - Q -cover of   when { iu : i  J }  is  - Q -cover of   

i.e. )(x  )(xui    for each x  X . A subfamily of { iu : i  J }  which is also a 

proximate  - Q -cover of   is said to be proximate  - Q -subcover of  .   

 

          Definition 10.21: A fuzzy set   is said to be almost  - Q -compact iff every                 

 - Q -cover of   has a finite subfamily whose closures is  - Q -cover of   or 

equivalently, every  - Q -cover of   has a finite proximate  - Q -subcover.  

Every fuzzy supersets of an almost  - Q -compact fuzzy set is also almost                   

 - Q -compact. 

 

          Theorem 10.22: Any almost  - Q -compact fuzzy set in an fts is almost                   

Q -compact. The converse is not true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u  XI  defined by  

)(1 au  4.0 ,  )(1 bu  3.0  and )(2 au  5.0 ,  )(2 bu  6.0 . Now, take t  { 0 ,  1u ,  2u ,  1} , 

then we see that  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1; )(1 auc  6.0 ,  )(1 buc  7.0  

and )(2 auc  5.0 ,  )(2 buc  4.0 . So we have 1u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(1 au  5.0 ,  
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)(1 bu  4.0  and 2u { c0 ,  cu1 }  cu1  i.e. )(2 au  6.0 ,  )(2 bu  7.0 . Again, let   XI  

defined by )(a  7.0 ,  )(b  2.0 . Take   9.0 . Clearly   is almost Q -compact in 

 tX , . Take   8.0 . Then we observe that there is no finite proximate  - Q -subcover 

of  . Hence   is not almost  - Q -compact in  tX , . Thus the converse of theorem is 

not necessarily true.         
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