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ABSTRACT

Most of the perturbation methods are developed to find periodic solutions of nonlinear
systems; transients are not considered. At first, Krylov and Bogoliubov introduced a
perturbation method which is well known as “asymptotic averaging method” to discuss the
transients in the second order autonomous systems with small nonlinearities. Later, this
method has been amplified and justified by Bogoliubov and Mitropolskii. Mitropolskii has
extended the method for slowly varying coefficients to determine the steady state periodic
motions and transient processes. In this dissertation, we have modified and extended the KBM

method to investigate some second order nonlinear systems.

Firstly, a second order time dependent nonlinear differential system is considered. Then a new
perturbation technique is developed to find an asymptotic solution of nonlinear systems in
presence of an external force. Finally, this technique is used to obtain an asymptotic solution
of a time dependent nonlinear differential system with slowly varying coefficients using the

extended KBM method. These methods are illustrated with several examples.
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Introduction

In science and engineering, there exist many nonlinear oscillatory systems in which
parameters are not small. The theory of nonlinear vibrations is an important part of modern
science. Those oscillatory systems are often governed by nonlinear differential equations. To
solve these problems, it is possible to replace a nonlinear differential equation with a related
linear equation that approximates the original nonlinear equation closely enough to provide
useful results. Often such linearization is not feasible and therefore the original nonlinear

differential equation itself must be considered.

Van der Pol first paid attention to the new (self-excitation) oscillation and found that their
existence is inherent in the nonlinearity of the differential systems characterizing the process.
This nonlinearity appears, thus, as the very essence of these phenomena and by linearizing the
differential systems in the sense of the method of small oscillations, one simply eliminates the
possibility of investigating such problems. Thus, it is necessary to deal with the nonlinear
problems directly instead of evading them by dropping the nonlinear terms. To solve
nonlinear differential systems there exist some methods. Among the methods, the method of
perturbations, i. e., asymptotic expansions in terms of a small parameter, are foremost.
According to these techniques, the solutions are presented by the first two terms to avoid
rapidly growing algebraic complexity. Although these perturbation expansions may be
divergent, they can be more useful for qualitative and quantitative representations than the

expansions that are uniformly convergent.

Perturbation methods are one of the fundamental tools used by all applied

mathematicians and theoretical physicists and widely used in science to obtain approximate



solutions based on known exact solutions to nearby problems. Such asymptotic techniques
can also be used to provide initial guesses for numerical approximations, and they can now be
generated through smart use of symbolic computation. An example of this occurs in boundary
layer problem where the regions of rapid change in quantities are fluid velocity, temperature
or concentration. This method is most effectively used to analyze problems in solid and fluid
mechanics, control theory, celestial mechanics, optics, shock waves, nonlinear vibrations,
nonlinear wave propagations, and reaction-diffusion systems arising in several physical and

biological contexts.

In this dissertation, we shall discuss nonlinear vibrating problems that can be described
by the dynamical vibrations of second and nth order time dependent nonlinear differential
systems with small nonlinearities by the use of the extended Krylov-Bogoliubov-Mitropolskii
(KBM) method. An important approach to study such nonlinear oscillatory problems is the
small parameter expansion. Two widely spread methods are mainly used: one is averaging,
particularly the KBM method and the other is the method of variation of parameters.
According to the KBM technique the solution starts with the solution of linear equation,
termed as generating solution, assuming that, in the nonlinear case, the amplitude and the
phase of the solution of the linear differential equation are time-dependent functions rather
than constants. This method introduces an additional condition on the first derivative of the
generating solution for determining the solution of a second order equation. Originally, the
method was developed by Krylov-Bogoliubov to obtain the periodic solutions of second order
nonlinear differential systems. Now, the method is used to obtain oscillatory, damped
oscillatory and non-oscillatory solutions of second, third etc. order nonlinear differential

systems by imposing some restrictions to make the solutions uniformly valid.



Most of the authors found the solutions of autonomous nonlinear differential systems.
Only a diminutive number of authors investigated damped forced nonlinear vibrating
problems. In this dissertation, some second order time dependent nonlinear vibrating

problems have been studied and their solutions are investigated.

The results may be useful to researchers working in the field of nonlinear mechanics,

mathematical physics, control theory, population dynamics, etc.



Chapter 1
The Survey and the Proposal

1.1 The Survey

In the modern era, the study of nonlinear vibrating problems is of crucial importance not
only in all areas of physics but also in engineering and other disciplines, since most physical
phenomena in our real world are essentially nonlinear and are described by nonlinear
equations. In the mathematical formulations many physical problems often result in
differential equations that are nonlinear. However, in many cases it is possible to replace a
nonlinear differential equation with a related linear differential equation that approximates the
actual equation closely enough to give useful results. Often such linearization is not possible

or feasible; when it is not, the original nonlinear equation itself must be tackled.

In the treatment of nonlinear oscillations by perturbation methods, e.g. Lindstedt’s [28]
method, Poincare’s [49] method etc. only periodic oscillations have been treated; transients
are not considered. For the first time, Krylov and Bogoliubov (KB) [25] have introduced a
new perturbation method in order to discuss the transient state solution of the equation

presented by

ito’x=¢f (x,%) (1.1)
where & is a small parameter. In this equation, the damping terms are small. But in the
particular cases, it gives those periodic solutions obtained by Poincare [ 49] . Here it should

be mentioned that Poincare’s [49] method is well known perturbation method for determining

periodic solutions of nonlinear ordinary differential equations with small nonlinearities.



When ¢ =0, then the equation (1.1) reduces to linear equation and its solution is

x=acos(wt+ @) (1.2)
where a and ¢ are arbitrary constants to be determined from the initial conditions.

Now in order to determine an approximate solution of the equation (1.1) for & small but
different from zero, Krylov and Bogoliubov assumed that the solution is still given by (1.2)
with the derivative of the form

X =-—awsin(wt + @) (1.3)
where a and ¢ are functions of 7, rather than being constants.

Differentiating (1.2) with respect to # gives

X =—a@siny +dacosy —a@siny, w=ot+¢@ (1.4)
Hence
acosy —ag@siny =0 (1.5)
On account of (1.3).
Again differentiating (1.3) with respect to # gives
¥ =aw? CoOSY —amsiny —aw@ cosy (1.6)
Substituting (1.6) into (1.1) and utilizing (1.2) and (1.3), we obtain
amsiny +aw@pcosy =—f(acosy,—awsiny) (1.7)

Solving (1.5) and (1.7) for a and ¢ yields

a= —ﬁsiny/f(acosw,—aa)sinl//) ,
@

gb:—icoswf(acosy/,—aa)sim//) (1.8)
aw



Thus according to Krylov and Bogoliubov’s method, the single differential equation
(1.1) of the second order for x has been replaced by the two differential equations of the first

order in the unknown amplitude a and the phase ¢. It is obvious that the solution is periodic

. . . 27 .
with constant amplitude and period — as the limit &€ — 0. But one cannot tell about the
@

amplitude and the periodicity of oscillations when ¢ is small, rather than sufficiently small.

Expanding siny f(acosy,—awsiny) and cosy f(acosy,—awsiny) in Fourier series
in the total phase y and assuming that the parameter ¢ is small, so that the amplitude a and

the phase ¢ change very slowly during one period of the oscillation,

ie, £<< w, £<<a), (1.9)
a ®

The first approximate solution of (1.1) by averaging (1.8) over one period is

2
<c’1> - jsint//f(a cosy,—awsiny)dy
2w 0

(1.10)

2z
(9) = £ jcoswf(a cosy,—amsiny)dy
2mao

where a and ¢ are independent of time under the integrals.

KB called their method asymptotic in the sense such that ¢ — 0. An asymptotic series
itself is not convergent, but for a fixed number of terms the approximate solution tends to the
exact solution as ¢ tends to zero. It is noted that the term asymptotic is frequently used in the
theory of oscillation, also in the sense, & — . But in this case the mathematical method is

quite different.



The higher order effects were obtained by Volosov [80], Musen [37] and Zabrieko [82].
The equation (1.10) is the differential equations of the first approximation in the form in
which they are originally obtained by Krylov and Bogoliubov [25] and in this case they are

generally used in applications.

This method, though it is restricted to differential equations of the type (1.1) has been
used extensively in plasma physics, theory of oscillations and control theory. Kruskal [24] has
extended this method to solve the equations of type

X=F (x,%,&) (1.11)

The solutions of these fully nonlinear equations are based on the recurrent relations and
are given in the forms of power series of the small parameter . Cap [18] has investigated
some nonlinear systems of the type

i+o’ f(x)=¢F (x, %), (1.12)

by using elliptic functions in the sense of the Krylov and Bogoliubov method.

Later, this technique has been amplified and justified mathematically by Bogoliubov and
Mitropolskii [3], and extended to a non-stationary vibrations by Mitropolskii [32]. They

assumed the solution of the nonlinear differential equation (1.1) in the form
x=acosy +&u (a,y)+ & uy(a,p)+---- +&"u,(a, )+ 0™ (1.13)
where u, , k=1,2,...... n are periodic functions of y with a period 27, and the quantities

a and y are functions of time ¢, defined by



d:8A1(a)+82A2(a)+ ...... +g”An(a)+O(gl’l+l)

(1.14)
v =w+¢eB(a)+&> By(a)+-+&"B,(a)+ O (")

The function u,, 4, and B, k=12,...... n are to be chosen such a way that the
equation (1.13), after replacing a and w by the functions defined in equation (1.14), is a
solution of the equation (1.1). Since there are no restrictions in choosing the functions 4, and
B, , that generate the arbitrariness in the definitions of the functions u, . To remove this

arbitrariness, the following additional conditions are imposed.

2
fuk(a, y)cosy dy =0,
0
2z
Iuk(a, y)siny dy =0,
0

(1.15)

These conditions guarantee the absence of secular terms in all successive approximations.

Differentiating (1.13) two times with respect to ¢, utilizing relations (1.14), substituting

x and the derivatives )'c, x in the original equation (1.1), and equating the coefficients of &,

k=12,...... n results a recursive system

o’ ) .
> (—u;‘+uk} :f(k l)(a, v)+2 w(aBjcosy + A, siny), (1.16)
oy

where

£%a, w) = f(acosy, —awsiny),



f W, w)=u fi(acosy, —awsiny)

. 0
+(A1 cosy —a B smz//+a)ﬂ]
oy
. dA 1.17
x f (acosy, —aa)s1nl//)+(aBl2 -4 —1]0051// (1.17)
X da
JB 2 2
+ 2A1B1_aA1—1 Sin!//—2a) A] 8”] +Blau1 .
da Oa Oy 81//2

It is obvious that f*™' is a periodic function of the variable  with period 27 , which

depends also on the amplitude a. Therefore, f*' as well as u, can be expanded in a
Fourier series as

7@y =go" @+ 2 g, Vi@ cosny +h, D (@)sinny
n=1 (1.18)

ug(a,y)= Vo(k_l) (a)+ Zvn (k1) (a)cosny + wn(k_l) (a)sinny,

n=l1

where
1 2
gV =— [ /¥ D(acosy, —awsiny)dy,
2r 0
1 2r
gn(k—l) = J.f(k_l)(acosl//, —awsiny)cosny dy, (1.19)
z
0
1 2z
p oL J'f(k—l)(a cosy, —awsiny)sinnydy, n>1
z
0
Here v,“ " = w,""" = 0 for all values of &, since both integrals of (1.15) vanish.



Substituting these values into the equation (1.16), it becomes

2 vo(k_l) (a)+ z w? (1- n? ) [vn(k_l) (a)cosny + wn(k_l) (a)sinn 1//]
=g (k1) (a)+ (gl(kfl) (a)+2awBy )cosy/ + (hl(kfl) (a)+2 a)B)sint// (1.20)

o0
+ Z [gn(k_l) (a) cosny + hn(k_l) (a)sinn 1//1
n=2

Now equating the coefficients of harmonic of the same order, we get

gl(k_l)(a)+2aa)Bk =0, " V@)+204, =0,

vo D (4) = go )(a) v (D (g )_w (1.21)

i j (kD)
w D (gy = (a)

, n>1
w?(1-n?)

These are the sufficient conditions to obtain the desired order of approximation. For the

first order approximation, we have

m" ()
4y =— =— If(acosw, —awsiny)siny dy,
2w 2rnw
(1.22)
g ) (@) |
B =- 1 =— If(acosw, —awsiny)cosy dy,
2wa 2raw 0
Therefore the variational equations in (1.14) become
& T
a=——- J-f(acosy/, —awsiny)siny dy,
2w 0
(1.23)

T
_[f(acosw, —awsiny) cosy dy,

) =
v 2raw 0

10



It is noted that the equation (1.23) is similar to the equation (1.10). Thus the first order
solution obtained by Bogoliubov and Mitropolskii [3] is identical with the original solution
obtained by Krylov and Bogoliubov [25]. In the second case, higher order solution can be

found easily. The correction term u, is obtained from (1.21) as

g (@) & g, (a)cosny +h, " (@)cosny

U ===+ 5 5 (1.24)
0] o o (1-n")

The solution (1.13) together with u, is known as the first order improved solution in
which a and y are the solutions of the equation (1.23). If the value of the function 4, and B,
are substituted from (1.22) in the second relation of (1.17), one obtains the function /", in
the similar way, one can find the unknown functions 4,, B, and u,. Thus the determination

of the higher order approximation is sufficiently clear.

The Krylov and Bogoliubov method has been extended by Kruskal [24] to solve the fully

nonlinear differential equation

$=F(x, %, &) (1.25)

The solutions of this fully nonlinear equation are based on recurrence relations and are

given in the form of power series of the small parameter ¢ .

Cap [18] has investigated some nonlinear systems of the form

i+w? f(x)=¢F (x, X) (1.26)

11



He has solved this equation by using elliptical functions in the sense of the Krylov and

Bogoliubov method.

Struble [78] has developed a technique for treating weakly nonlinear oscillatory systems

such as those governed by
i+tw’x=¢ef(x,x 1) (1.27)

He has expressed the asymptotic solution of this equation for small ¢ in the form

N
x=acos(wt—-0)+Y " x,()+0("™) (1.28)

n=l1
where a and @ are slowing varying functions of time.
Later the method of Krylov- Bogoliubov-Mitropolskii (KBM) has been extended by Popov

[50] to damped nonlinear systems

i+2kx+o’ix=¢f(x, %), (1.29)

where — 2k x is the linear damping force and 0 < k < @. It is noteworthy that, because of the
importance of the method [50] in the physical systems, involving damping force, Mendelson
[29] and Bojadziev [14] rediscovered Popov’s results. In the case of damped nonlinear

systems the first equation of (1.14) has been replaced by
d=-ka+esd(a)+e> Ay(a)+--+&" A, (a)+0(e"), (1.14a)
On the contrary, Murty, Deekshatulu and Krishna [35] have found a hyperbolic
asymptotic solution of an over-damped system represented by the nonlinear differential

equation (1.29) in the sense of KBM method; i. e., in the case k> ®. They have used

hyperbolic function, cosh¢ or sinh¢ instead of the harmonic functioncos¢, which have

12



been used in [3,25,29,50]. In the case of oscillatory or damped oscillatory process cos¢ may

be used arbitrarily for all kinds of initial conditions. But in the case of non-oscillatory systems

coshg or sinh¢ should be used depending on the given set of initial conditions [15,35,36].

Murty, Deekshatulu [34] have developed another asymptotic method obtaining simple
analytic solution of the over-damped system represented by the same equation (1.29).
Shamsul [69] extended the KBM method to find the solutions of over-damped nonlinear
systems, when one root becomes much smaller than the other root. Murty [36] has also
presented a unified KBM method for solving the nonlinear systems represented by the
equation (1.29). Bojadziev and Edwards [15] have investigated the solutions of oscillatory
and non-oscillatory systems represented by (1.29) when k£ and @ are slowly varying
functions of time #. Arya and Bojadziev [1,2] examined damped oscillatory systems and
time-dependent oscillating systems with varying parameters and delay. Shamsul, Alam and
Shanta [61] extended the Krylov- Bogoliubov-Mitropolskii method to certain non-oscillatory
nonlinear systems with varying coefficients. Later Shamsul [70] have unified the KBM
method for solving 7 -th order nonlinear differential equation with varying coefficients. Sattar
[54] has developed an asymptotic method to solve a critically damped nonlinear system

represented by (1.29). He has found the asymptotic solution of the system (1.29) in the form
x=a(l+y)+su(a,p)++&"u, (a,v)+0(c") (1.30)

where a is defined the equation (1.14a) and y is defined by

y=1+eC(a)++&"C,(a)+O0("") (1.14b)

Shamsul [58] has developed an asymptotic method for second—order over-damped and

critically damped nonlinear systems. Shamsul [67,71] has also extended the KBM method for

13



certain non-oscillatory nonlinear systems when the eigen-values of the unperturbed equation
are real and non-positive. Shamsul [60] has presented a new perturbation method based on the
work of Krylov-Bogliubov-Mitropolskii to find approximate solutions of nonlinear systems

with large damping. Later, he has extended the method to 7 -th order nonlinear differential

systems[ 64].

Making use of the KBM method Bojadziev [5] has investigated nonlinear damped
oscillatory systems with small time lag. Bojadziev [11,12], Bojadziev and Chan [13] applied
the KBM method to the problems of population dynamics. Bojadziev [14] has used the KBM
method to investigate nonlinear biological and biochemical systems. Lin and Khan [27] have
also used the KBM method to some biological problems. Proskurjakov [51], Bojadziev,
Lardner and Arya [6] have investigated periodic solutions of nonlinear systems by KBM and
Poincare method, and compared the two solutions. Bojadziev and Lardner [7,8] have
investigated mono-frequent oscillations in mechanical systems including the case of internal
resonance, governed by hyperbolic differential equations with small nonlinearities. Bojadziev
and Lardner [9] have also investigated hyperbolic differential equations with large time delay.
Freedman and Ruan [19] used the KBM method in the three-species chain models with group

defense.

Most probably, Osiniskii [40], first extended the KBM method to a third nonlinear
differential equation

Ytk itk i+hksx=¢f (x, %,%) (1.31)

14



where ¢ is a small parameter and f is a nonlinear function. He has found the asymptotic

solution in the form
x=a+bcosy +cu(a,b,y)+----- +&"u, (a,b,y)+0(e"™), (1.32)
where u,, k=12,...... n are periodic functions of w with period 27 and a,b and y are

functions of time 7, given by

d=-Aa+eA(a)+e’Ay(a)+----- +&"A4, (a)+ 0"
b=—ub+eB/(b)+&>By(b)+------ +&"B, (b)+0(e") (1.33)
W =w+eC (b)+>Cy(b)+---- +&"C (b)+0(s™)

where — A, —u+ w are the characteristic roots of the equation (1.31) wheng =0, and the
functions u,, 4,, B, and C, are chosen such that the equations (1.32) and (1.33) satisfy the

differential equation (1.31). Osiniskii [41] has also extended the KBM method to a third order
nonlinear partial differential equation with internal friction and relaxation. Mulholland [33]
has studied nonlinear oscillations governed by a third order differential equation. Lardner and
Bojadziev [26] investigated nonlinear damped oscillations governed by a third order partial
differential equation. They introduced the concept of “couple amplitude” where the unknown

functions 4,, B, and C, depend on both the amplitudes a and b. Rauch [52] has studied

oscillations of a third order nonlinear autonomous system. Sattar [55] has extended the KBM
asymptotic method for three-dimensional over-damped nonlinear systems. Shamsul and Sattar
[56] developed a method to solve third order critically damped nonlinear systems. Shamsul
[65] redeveloped the method presented in [56] to find approximate solutions of critically
damped nonlinear systems in the presence of different damping forces. Shamsul and Sattar

[59] have studied time dependent third order oscillating systems with damping based on an

15



extension of the asymptotic method of Krylov-Bogoliubov-Mitropolskii. Shamsul [68] also
has developed a method for obtaining non-oscillatory solution of third order nonlinear
systems. Later, Shamsul and Sattar [57] have presented a unified KBM method for solving
third order nonlinear systems. Shamsul [63] has also presented a unified Krylov-Bogoliubov-
Mitropolskii method, which is not the formal form of the original KBM method, for solving
n -th order nonlinear systems. The solution contains some unusual variables. Yet this solution
is very important. Shamsul [74] has also presented a modified and compact form of Krylov-
Bogoliubov-Mitropolskii unified method for solving n-th order nonlinear differential
equation. The formula presented in [74] is compact, systematic and practical, and easier than

that of [63].

Shamsul and Sattar [57] have extended Murty’s [36] unified technique for obtaining the
transient response of third order nonlinear systems. Recently, Shamsul [63] has presented a
unified formula to obtain a general solution of an n-th order differential equation with

constant coefficients. He considered a weakly nonlinear system as

d(")x .\ d(n—l)x .
™ L (D

...... +knx=gf(x’)'c’_”) (134)

where over-dot denotes differentiation with respect to 7, k,, j=12,...... n are constants.

Shamsul [63] seeks a solution of (1.34) in the form

n
x (¢, t):Zaj(t)e/l/tJrgw](al,az, ...... A, 1) +... (1.35)
j=1
where 4, j=1,2,...... n are the given eigen-values of the corresponding linear equation of

(1.34) and each a; satisfied a first order differential equation

16



;=& 4y, Aysensdy, D+ ... (1.36)

Generally, in the treatment of the perturbation techniques an approximate solution is
determined in terms of amplitude and phase variables. But the solution (1.35) starts with some

new variables a,,a,,...,a, . Such a choice of variables is important to tackle various nonlinear

problems with an easier approach. This technique greatly speeds up the KBM method to

determine the asymptotic solution.

Hung and Wu [22] have presented an exact solution of a differential system in terms of

Bessel’s functions where the coefficients vary with time in an exponential order.

Shamsul, Hossain and Shanta [62] found an approximate solution of a time dependent
nonlinear system in which a strong linear damping force acts. Shamsul [75] developed a
general formula based on the extended Krylov-Bogoliubov-Mitropolskii method for obtaining
asymptotic solution of an 7 -th order time dependent quasi-linear differential equation with
damping. Nguyen Van Dinh [39] investigated stationary oscillation from a variant of the

asymptotic procedure in a special case of the type

¥+ @’

x=ef(xx,0), w=¢t (1.37)
where x is an oscillatory variable, over dots denote derivatives with respect to time 7. He has

used asymptotic expansions in the following way

B N T R
x=acosy +cu(a,0,y)+e"uy(a,0,y)+ (1.38)

v=¢p—0=wt-0,
where a and @ represent amplitude and phase respectively and they satisfy the following

differential systems
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a=¢cA4 (a0l +&%4 a,0)+------
edla0rs 40 (1.39)
0=¢B(a,0)+&’B,(a,0)+--
Bojadziev [16], Bojadziev and Hung [17] used at least two trial solutions to investigate
time dependent differential systems; one is for resonant case and the other is for the non-

resonant case. But Shamsul [75] used only one set of variational equations, arbitrarily for both

resonant and non-resonant cases.

Shamsul [75] has investigated the solution of an #n -th order time dependent quasi-linear

differential equation

d(n)x . d('l—l)x
dx™ : dx" D

[ +knx:gf(vt,x,)'c,...) (140)

where x”, i=mnn—-1,... represent the i-th derivative, ¢ is a small parameter, k;,

j=L2,...... n are constant, f is a nonlinear function and v is the frequency of the external

acting force. Shamsul [61] seeks an asymptotic of (1.40) in the form

n
x(s,t):Z aj(t)el’t +eu(ay,ay,...,a,)+...+ " u, (a;,a,,...,a,) (1.41)
j=1

where 4., j=12,...... n are the eigen-values of the unperturbed equation and each a,
satisfy first order differential equation

a;=2;a; +gAj(al,az,...,an,t)+---+8mpj(a1,a2,...,an,t) (1.42)

For £=0, expression Eq.(1.41) with Eq.(1.42) give the solution of the unperturbed

equation

n
x(t, 0= a; e (1.43)
=
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where a;,, j=12,...... n are arbitrary constants. The proposed solution (1.41) is not chosen
in a usual form of KBM method but it can be easily brought to the usual form (1.40) - (1.43)
by suitable variable transformations ay;_((¢)=1/2b,(1)e'?" and a4 (1) =1/2b,(t)e 7",

where b,(t) and ¢, (¢), [=1,2,...... n/2 are amplitude and phase variables. It can be readily

shown that solution (1.41) takes the form

n/2

x(e,0)= D 1125 (1) + 72Dt euy (b, by sy Py P s P2 (14
/=1 .

o+ u, ()

and b,(t) & ¢,(t) satisfy the equations

Bl =_,Lllb1 +8A](b],b2,...,bn/2,¢l, t)+"'+gnPn(b],bz,...,bn/z,(Dl,t) (1 45)

¢1 =a)1b1 +€Bl(bl,bz,...,bn/z,(ﬂl,t)+""‘r‘gn Qn(bl,bz,...,bn/z,(ﬂl,t)

where A, | =—u, Tiw, are the eigen-values of the equation (1.44) when £=0.

Pinakee Dey et al [45] found an asymptotic solution of a second order over-damped
nonlinear non-autonomous differential system in presence of an external force. Finally, the
authors [46] have developed an asymptotic method for time dependent nonlinear differential
systems with varying coefficients, in which the coefficients change slowly and periodically

with time.
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1.2 The Proposal

Herein, we propose the perturbation systems governed by second and n-th order non-

linear differential equations

i+2kx+oix=¢f (x, %),

x o xD e, x 7D L tc,x=¢f(x,x%...) (1.46)
and differential equations with varying coefficients

i+2k()x+0 (D)x=¢f (x, %, 1),

x4 (x TV rey ()x"D v, (D x = f (%, %, %...,7) (1.47)
where £=0 is a small parameter, 7 =¢&¢ is the slowly varying time and f is a given

nonlinear function.

In Chapter 2 a perturbation technique is developed to solve approximate solution of over-
damped nonlinear non-autonomous differential systems with varying coefficients.
Finally, in Chapter 3 an asymptotic method for second order time dependent nonlinear

differential systems with varying coefficients is developed.
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Chapter 2

High precision numerical solution and approximate solution of
over-damped nonlinear non-autonomous differential systems with

varying coefficients

2.1 Introduction

There have been many analytical techniques developed for solving oscillations of
nonlinear differential equations. These equations can be linearized by imposing certain
restrictions and then they are solved in simple approaches. In vibrating processes many
problems are solved by linearizing such differential equations when the amplitude of
oscillation is small. But when the amplitude is not small enough, the linear solution is not
sufficient to describe the vibration. In these cases, the Krylov-Bogoliubov-Mitropolskii
(KBM) [25,3] asymptotic method is particularly convenient and extensively used methods to
study nonlinear differential systems with small nonlinearities. Originally, the method was
developed by Krylov and Bogoliubov [25] for obtaining periodic solution of a second order
nonlinear differential equation. Latter, the method was amplified and justified mathematically
by Bogoliubov and Mitropolskii [3,32]. Popov [50] extended the method to a damped
oscillatory process in which a strong linear damping force acts. Arya and Bojadziev [2] have
studied a time-dependent nonlinear oscillatory system with damping, slowly varying
coefficients and delay. Arya and Bojadziev [1] have also studied a system of second order
nonlinear hyperbolic differential equation with slowly varying coefficients. Murty,
Deekshatulu and Krishna [35] and Shamsul [58,63,70] extended the method to over-damped

nonlinear system. Recently Shamsul [63] has presented a unified method for solving an n-th
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order differential equation (autonomous) characterized by oscillatory, damped oscillatory and
non-oscillatory processes. In another recent paper, Shamsul [70] has extended the unified
method [63] to similar differential system (autonomous) with slowly varying coefficient. But
Murty, Deekshatulu and Krishna [35] and Shamsul [58,63,70] limited their investigations to
autonomous system. The aim of this paper is to extend the result in [70] to similar nonlinear
vibrating problems in which external forces act and also investigated double and high

precision numerical solutions.

2.2 The method
Let us consider the nonlinear differential system
$4+2k(0)x+ 0 (t)x =—¢ [ (x, %,7), T = et, (2.1)

where the over-dots denote differentiation with respect to ¢, € is a small parameter, 7 =&t is
the slowly varying time, k(z) >0, f is a given nonlinear function and @(7) is the frequency.

The coefficients in Eq. (2.1) are slowly varying in that their time derivatives are proportional

to¢.

Setting & = 0and r = 7, =constant, in Eq.(2.1), we obtain the unperturbed solution of the
equation. Let Eq. (2.1) have two eigen-values 4,(z(), j=1,2, where 1,(z,) are constant,

but when ¢ # 0, 4,(7) slowly vary with time. The unperturbed solution of Eq. (2.1) becomes

2
x(6,0)= > a; g™ 2.2)
j=1
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When ¢ # 0 we seek a solution, in accordance with the KBM method, of the form

2
x(t,g)z z a;o(t,7)+eu(ay,a,,7)+ 82u2 (aj,a,,7)+..., (2.3)
j=1

where a,,, j=1,2 satisfy the differential equations

djzﬂ](T)aJ +8Aj(a1,a2,T)+‘92-, (2'4)

The solution (2.3) together with (2.4) is not considered in a usual form of the classical
KBM method. But this solution was early introduced by Murty [35] to investigate un-damped,
damped and over-damped cases. Now it is being used to investigate various oscillatory and

non-oscillatory problems ( see [58,63,70] for details ).

Confining our attention to the first few terms, 1,2,...,m in the series expansions of (2.3)

and (2.4), we evaluate the functions u,,..., 4,, 4,...,such that a, and a, appearing in (2.3) and

m+l1

(2.4) satisfy (2.1) with an accuracy ofe [63]. In order to determine these unknown
functions, it was assumed that the functions u,,...do not contain the fundamental terms

[58,63,70], which are included in the series expansion (2.3) of order &’ .

Differentiating x(¢,¢) two times with respect to ¢, substituting for the derivatives X and x

in the original equation (2.1) and equating the coefficient of ¢, we obtain

(Q_ﬂZ)Al + 4 q +(Q—/11)A2 +4; ay +(Q—/11)(Q—/12)”1

2.5
= O (a;,ay,7), (2.5)

where QE/II a1i+ﬂz azi, ﬂ“l! :%, iﬁ :&, f(o) :f(xO, )‘Co,T)
oa; oa, dt dt
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and x,=a, +a,.

We have assumed that u, does not contain fundamental terms and for this reason the
solution will be free from secular terms, namely 7cost?, ¢sinz and te™* (see [70]).

In general the function £ can be expanded in a Taylor series as:

FO = ZFr] Lalay (2.6)

11=0,r,=0

To obtain this solution (2.4), it has been proposed in [63] that u,,u,exclude the terms
a'a? of f”, where 1, —r, =+*1. This restriction guarantees that the solution always

excludes secular-type terms or the first harmonic terms ( see [63] for details ). According to

our assumption, u, does not contain the fundamental terms, therefore equation (2.5) can be

separated into three equations for unknown functions u, and 4,,4, (see [63] for details).

Substituting the functional values of /' and equating the coefficients of e, j=12,we

obtain
(Q-2,)4, + 2 a;=1 = rzgjwzaf‘af if r=r+l (2.7)
Q-4)Ay + Ay ay =f© = ;Fr natay if r=r+1 (2.8)
and
(Q-4)Q=2y)u=1 = %Frl,rzaf]a? (2.9)

where = ZF ala? exclude those terms for 7, =7, +1.

11=0,r,=0
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Thus the particular solutions of (2.7) - (2.9) give the values of the unknown functions

A4, A, and u,. We have already mentioned that equation (2.1) is not a standard form of KBM

method. We shall be able to transform (2.3) to the exact form of the KBM [25,3,32] solution

by substituting a; = ae'? /2 and a, = ae”'? /2. Herein, a and ¢ are respectively amplitude

and phase variables (see [58,63,70]). Under this assumption, we shall be able to find the

unknown functions u, and A4,,4, which completes the determination of the solution of a

second order non-linear problem (2.1).

2.3 Example

Consider a nonlinear differential system with a non-periodic external force

)'c'+2k(z')x+a)2(r)x:—gx3 +2¢Ee " cosvt,

The function £ becomes,

1O = —g(al3 +3a12a2 +3a a% +ag) +2gEe ™ cosvt
We substitute 7" in (2.5) and separate it into two parts as

(Q_Z’Z)Al +Zl'a1 +(Q—11)A2 +/1£ a, :—6113 —36112612

+2Ee ™ cosvi

and

(Q-4)(Q-2,)u; =-(Bay a5 +a3).

The particular solution of (2.13) is
U =cray a% +Cz ag,

-3

where cg=—"—"""—",
24, (4 +4,)

%)

-1

T24,G4 )
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Now we have to determine two functions 4, and 4, from a single equation (2.12).
(Q—2,) 4, + A ay =—a; +26Ee™ cosvi, (2.15)
and
(Q—-2))4, + Ay ay ==3ai a,. (2.16)

The particular solution of (2.15) - (2.16) is

Al = ﬁq’alnl +n2af +En3 , and A2 = ﬂé a ll +12 alzaz, (217)
where
1 1 |
7’l1 . l’l2 . n3 ,
A= 34—y 20 - 2,
1 -3
=T PTaaa
(I} 1+ 4

Substituting the functional values of 4, and 4, into (2.5) and rearranging, we obtain
iy = Ay ay + €A ayng +ny a; +Eny) (2.18)
Gy =Ayay +e(Abar by +1, ai ay) (2.19)
Therefore, the first order solution of (2.10) is
x(t,e)=ay+a, +¢cuy, (2.20)

where a,, a, are given by (2.18), (2.19) and u, is given by (2.14).
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2.4 Results and discussions

An asymptotic solution of damped nonlinear non-autonomous vibrating system is
obtained based on the extended KBM method ( by Popov [50] ). In order to test the accuracy
of an approximate solutions obtain by a perturbation method, we compare the approximate
solution to the numerical solution (consider to be exact). With regard to such a comparison
concerning the presented KBM method of this paper, we refer to the works of Murty,
Dekshatulu and Krishna [35] and Shamsul [58,63,70]. In this paper we have compared the
perturbation solution (2.20) to those obtained by Runge-Kutta (fourth order) method for
M =-05 4, =-5a =1 a,=0,=02, E=1 with 1nitial condition
x(0)=1.0, x=-.050421 and all the results are shown in Fig.2.1.

From the Fig 2.1, we observe that the approximate solutions show a good coincidence
with the numerical solutions. The corresponding numerical solutions have also been
computed by Runge-Kutta (fourth-order) method. From the Fig 2.2 and the Fig 2.3, the
approximate solutions agree with numerical results nicely. Actually, first we compute the
numerical solution in double precision. In general equation (2.20) has no exact solution.
Usually a numerical procedure is used to solve it. In this paper we have used the Runge-Kutta
(fourth order) method. Numerically, it is advantageous to solve the transformed equation
(2.20) instead of the original equation (2.10) because a large step size can be used in the

integration (see [38] for details).

27



Fig. 2.1
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t

Fig 2.1: Perturbation solution with corresponding numerical solution is plotted with initial

conditions x(0) =1.0, x=-.050421 for 4, =-.05,14,=-5,a4,=1,a,=0,6=02,E=1.
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Fig. 2.2
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Fig 2.2: Perturbation solution with corresponding numerical solution is plotted with initial

conditions x(0) =1.0, x=-.050631 for A4, =-.05,4, =-5,a;=1,a,=0,6=03,E=1.
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Fig. 2.3
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t

Fig 2.3: Perturbation solution with corresponding numerical solution is plotted with initial

conditions x(0) =1.0, x=-.051052 for 4, =-.05,4, =-5,a;=1,a, =0,6=05,FE =1.
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2.5 Multiple Precision (with exflib library)

Exflib (extended precision floating-point arithmetic library) is simple software for
multiple-precision arithmetic in scientific numerical computation. Multiple-precision
arithmetic is a method for representation and calculation of real numbers with arbitrary

accuracy ( see [21]).

2.6. High precision numerical results

The high precision numerical results of our problems are shown in fig.2.4. High precision
numerical solutions are computed by Multiple-precision arithmetic with Exflib. Here h=.001 in

Runge-Kutta method, but the above numerical solutions are obtained with h=.05.
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Fig 2.4
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2.7 Conclusion

An asymptotic solution has been obtained for the second order nonlinear non-autonomous
differential system characterized by non-oscillatory process. The method is a generalization of
extended KBM method [25,3] (by Popov [50]) and can be used to obtain desired solution for
certain external forces. The solution shows a good coincident with the numerical solution. The
high precision numerical results also represented. The asymptotic solutions and the high

precision numerical results are of same types.
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Chapter 3

Approximate solution of time dependent damped nonlinear
vibrating systems with slowly varying coefficients

3.1 Introduction

Krylov-Bogoliubov-Mitropolskii (KBM) [25,3] method is one of the most widely used
methods to obtain the approximation solutions of nonlinear systems with a small non-
linearity. The method, originally developed by Krylov-Bogoliubov [25] for obtaining periodic
solutions, was amplified and justified by Bogoliubov and Mitropolskii [3] and latter extended
by Mitropolskii [32] to similar systems with slowly varying coefficients. Popov [50] extended
this method to a damped oscillation. Bojadziev and Edward [15] studied some under-damped
and over-damped systems with slowly varying coefficients. Murty [36] has presented a
unified KBM method for both under-damped and over-damped system with constant
coefficients. Shamsul [70] has presented a unified KBM method for solving an n-th order
differential equation (autonomous) characterized by oscillatory, damped oscillatory and non-
oscillatory processes with slowly varying coefficients. Hung and Wu [22] obtained an exact
solution of a differential system in terms of Bessel’s functions where the coefficients varying
with time in an exponential order. Roy and Shamsul [53] found an asymptotic solution of a
differential systems in which the coefficient changes in an exponential order of slowly
varying time. Pinakee et.al [47] has presented extended KBM method for under-damped,
damped and over-damped vibrating systems in which the coefficients change slowly and
periodically with time. Recently Pinakee et.al [48] extended the result in [53] to similar

nonlinear non-autonomous vibrating problems in which external forces act. In this article we
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have extended the KBM method to investigate the solution of damped forced nonlinear
systems with slowly varying coefficients which measures better result for strong
nonlinearities but Unified KBM method is unable to give desired results (wherein external

forces act).
3.2 The Method

Let us consider the nonlinear differential system

X+2k(t)x+(c) +c5cosT +c38in7)x =—¢ f(x,X,7,vt), T=¢t 3.1

where the over-dots denote differentiation with respect to ¢, € is a small parameter, c,, ¢, and
¢, are constants, ¢, =c3 =0(¢), v =&t is the slowly varying time, k() >0, f is a given
nonlinear function. Setting @’ (7) = (¢, +c¢, cost + ¢, sin7t), w(r) is known as frequency and
v is the frequency of the external force. The coefficients in Eq. (3.1) are slowly varying in
that their time derivatives are proportional to ¢ .

Setting £ =0 and 7 =7,= constant, in Eq. (3.1), we obtain the unperturbed solution of
(3.1) in the form

A (7o)t e/lz(fo)t

x(¢,0) = a, e +a,, s (3.2)

Let Eq. (3.1) have two eigen-values, 4,(z,), j=1,2, where 4,(r,) are constants, but
when & # 0, 4,(7) vary slowly with time., When ¢ # 0 an approximate solution of Eq. (3.1)

is chosen in the form given below

2
x(t,e)=>a,,(t,0)+au,(a,,a,,t,7) + £uy (a,,a,,t,7) + .., (3.3)
Jj=1
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where a;,, j=1,2 satisfy the differential equations

a, :/If(r)aj+&4j(a1,a2,t,r)+82..., (3.4)

The solution (3.3) together with (3.4) is not considered in a usual form of the classical
KBM method. But this solution was early introduced by Murty [36] to investigate undamped,
damped and overdamped cases. Now it is being used to investigate various oscillatory and

non-oscillatory problems ( see [42,48,47] for details ).
Confining our attention to the first few terms, 1,2,...,m in the series expansions of (3.3)
and (3.4), we evaluate the functions u,,..., 4,, 4,...,such that a, and a, appearing in (3.3) and

(3.4) satisfy (3.1) with an accuracy of &”*'. In order to determine these unknown functions, it

was assumed that the functions u,,...do not contain the fundamental terms, the solution will
be free from secular terms, namely #cos?, ¢sint and te”’ (see [70]), which are included in the

series expansion (3.3) of order &°.

Differentiating x(¢,€) two times with respect to ¢, substituting for the derivatives X and x

in the original equation (3.1) and equating the coefficient of ¢, we obtain

ﬂ/]’(ll +ﬂéa2 _ﬂ’QAl _A’IAZ +[ﬂ’l a ai‘Fﬂ,zaz i](14] +A2)

al 8612

0 0 0 0
+ ays—+Aa——— A4 || Loy —+Aya ——— A, |u 3.5
(11&11 2zaa2 1}[116(11 226a2 2}1 (3.5)

= _f(O) (al 9 az ’ Vta T)a

where /11’=%, zg:ﬁ, £O = f(xg,%0,v1,7)
dr dr
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and X, =a,(t,7)+a,(r1).

Herein it is assumed that both /* can be expanded in Taylor’s series

=Y F, , (Dalay, (3.6)

1,1, =0

It was early imposed by Krylov and Bogoliubov [25] that u, does not contain secular

terms (e.g., tcost and tsint) for obtaining the periodic solution of (3.1) in which &, =0.
Popov [50] extended this method to an under-damped case in which \/E >k, >0.
Murty [36] extended the same method to the over-damped case. i.e., for £, >\/E .

We have already mentioned that equation (3.1) is not a standard form of KBM method.
By substituting a, =ae'” /2 and a, =ae? /2, to transform (3.3) to the exact form of the
KBM solution. Herein, a and ¢ are respectively amplitude and phase variables. Under this

assumption, we shall be able to find the unknown functions 4,, 4, and u,.

3.3 Example:

As example of the above procedure, let us consider a nonlinear non-autonomous system

with slowly varying coefficients

X+2k(r)x+(c; +cycosT+cysint)x = —ex’ +eEsinvi, 3.7)

Here over dots denote differentiation with respect to ¢. ¢,, ¢, and ¢, are constants,

¢, =c;=0(¢), x, = a, +a, and the function £ becomes,
FO =&} +3afa, +3a,4a3 +a3)+ E@™ —e7 ")/ 2i. (3.8)
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Following the assumption (discussed in section 2.2) u, excludes the terms3a’a,, 34, a%

and ¢ E(e’" —e™™)/2i. We substitute in (3.8) and separate it into two parts as

/Ilali'F/’izazi_/lz A1+/11,(11+ llaliﬁ'/lzazi_/ll A2
aal 5a2 aal 5a2

+ A a, =—(3atay +3a;a3)+E(™ —e )/ 2i
and

0 0 0 0 3, 3
Aa—+A1a,——A Aag—+ A a,——A, |uy =—(ai +a
( 1 15\611 2 2&12 1]( 1 1&11 2 2&12 2] 1 (ai 2

The particular solution of (3.10) is

aj a

“ T 24BN -2y) 24,G4 - A)

(3.9)

(3.10)

(3.11)

Now we have to solve (3.9) for two functions A4, and 4,. According to the unified KBM

method 4, contains the term3a’a,, ¢ /2 and 4, contains the term3a,a; , e /2 (see

[48]) and thus we obtain the following equations

4 a1i+ﬁz azi—ﬂz A+ A ay==3ata, +Ee'™ /2i,
aal 802

and

/Ilaliﬂ“ﬂzazi—/ll Ay +Ayay ==3a a3 —Ee™" /2i
8a1 aaz

The particular solutions of (3.12) and (3.13) are

Ay == a; (A4 = 2n)=3ai ar 1224 + Ee™ 1 2(iv —2,)
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and
A2 = ﬁyéaz /(ﬁ’l —ﬂz) _3611(1% /2&2 +E€_iw /2l(lV + ﬂ’l) (315)
Substituting the functional values of 4,,4, from (3.14) and (3.15) into (3.4) and
rearranging, we obtain
iy = My +el- Aay [y = 2y)=3akay 122 + Ee™ 12iGiv—2y))  (3.16)
and
iy = hoay +e\tsay 1 (4 = A) ~3a1a3 124, + Ee 7 12iGv+ 4))  (3.17)
The variational equations of a and ¢, in the real form, transform (3.16) and (3.17) to

i=—-ka—¢caw'/2w+3ea’k/8(k* + 0*) - E{ksiny

(3.18)
+(v+ o) cosy /i + (v + )
and
Q= w+ek'120+3ea’w/8(k> +a)2)—8E{—(v+a))sinl// (3.19)
+kcosyl/a thk + (v + @) '
where = \/c] +¢,COST +cysInT
Therefore, the first order solution of the equation (3.7) is
x(t,g)=acosp+¢cu, (3.20)

where a and ¢ are the solution of the equation (3.18) and (3.19) respectively, u, is given

by (3.11). Substituting the values of 4,, A4, from (3.14) and (3.15) into (3.4) and solving

them, we obtain the Unified KBM solution of (3.4) similar to (3.18) and (3.19).

In this paper, we have used the Runge-Kutta (fourth order) method. Numerically, it is

advantageous; a large step size can be used in the integration (see [38] for details).
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3.4 Results and Discussions

A simple technique is presented based on the extended KBM method to determine
approximate solutions of non-autonomous nonlinear vibrating systems with varying
coefficients. The solution has been determined under the extended KBM method which gives
better result for long time even ¢ is 10 times greater than existing procedures. Theoretically,
the solution can be obtained up to the accuracy of any order of approximation. However,
owing to the rapidly growing algebraic complexity for the derivation of the function, the
solution is in general confined to a low order, usually the first. In order to test the accuracy of
an approximate solution obtained by a certain perturbation method, one compares the
approximate solution to the numerical solution (considered to be exact). With regard to such a
comparison concerning the presented KBM method of this article, we refer to the works of
Murty [36], Shamsul [70] and Pinakee et al [48,47]. In our present paper, for different initial
conditions, we have compared the perturbation solutions (3.20) of Duffing’s equations (3.7) to

those obtained by Runge-Kutta (fourth-order) procedure.

First of all, x is calculated by (3.20) with initial conditions

[x(0) = 0.50000, %(0) = 0.00000] or a =0.50000, ¢ = —.046433 for

e=05v=Lw=w0, \/(cl +cyc087 +c38in7), k=.14Jcosz . Then corresponding numerical

solutions are also computed by Runge-Kutta (fourth-order) method. The result is shown in
Fig.3.1. Also we plot unified KBM solution in Fig.3.2 with initial conditions

[x(0) = 0.50000, %(0) = 0.00000] or a =0.50000, ¢ = —4.382760 for

e=.5 0=0w \/(cl +c,yc087 +cy8int), k =.14/cos7 . We see that in Fig.3.1 the perturbation
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solution nicely agrees with the numerical solution, but in this situation unified KBM solution
(in Fig.3.2) does not agree. The corresponding numerical solutions have also been computed
by Runge-Kutta (fourth-order) method. From Fig.3.3, Fig.3.5, Fig.3.7, Fig.3.9 and Fig.3.11,
we observe that the approximate solutions agree with numerical results nicely even if ¢ >1.0
but in Fig. 3.4, Fig. 3.6, Fig.3.8, Fig.3.10 and Fig.3.12 do not agree and the solution fails to

give desired results.
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Fig. 3.1
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Fig 3.1: Present approximate solution (dotted line) with corresponding numerical solution

(solid line) is plotted with initial conditions [x(0)=0.50000, x(0)=0.00000] or

a =0.50000, ¢ =—-.046433 for £ =0.5,v=1.0, k =.1/cos7 ,w = a)o\/(c1 +¢,c08T+c,y8In7)
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Fig 3.2
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Fig 3.2: Unified KBM perturbation solution (dotted line) with corresponding numerical
solution (solid line) is plotted with initial conditions [x(0)=0.50000, x(0) = 0.00000] or

a =0.50000, ¢ = —-4.382760 fore = 0.5, v =1.0, k =.1/cos7 ,w = a)o\/(cl +c,c087T+c,y8In7T)
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Fig. 3.3
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Fig 3.3: Present approximate solution (dotted line) with corresponding numerical solution

(solid line) is plotted with initial conditions [x(0)=0.50000, x(0)=0.00000] or

a =0.50000, ¢ =—-.045719 for € =0.6, v =1.0,k =.14/cost, o = a)o\/(c1 +c,c08T+cy8INT) .
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Fig 3.4
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Fig 3.4: Unified KBM perturbation solution (dotted line) with corresponding numerical
solution (solid line) is plotted with initial conditions [x(0)=0.50000, x(0) = 0.00000] or

a =0.50000, ¢ = -3.6066 for £ =0.6, v =1.0, k =.1+/cos7, a)=a)0\/(c1 +c,c08T+cy8InT) .
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Fig. 3.5
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Fig 3.5: Present approximate solution (dotted line) with corresponding numerical solution

(solid line) is plotted with initial conditions [x(0)= 0.50000, %(0)=0.00000] or

a =0.50000, ¢ =—-.045006 for ¢ =0.7, v =1.0,k =.1\/cosT , v = a)o\/(c1 +¢,c08T+c,y8InT) .
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Fig 3.6

0.6 -

04 -

-0.6 -

Fig 3.6: Unified KBM perturbation solution (dotted line) with corresponding numerical
solution (solid line) is plotted with initial conditions [x(0) = 0.50000, x(0) = 0.00000] or

a =0.50000, ¢ =-3.0522 for £ =0.7,v=1.0, k =.1Jcos7t, v = coo\/(c1 +c,c0sT+cysInT) .
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Fig. 3.7
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Fig 3.7: Present approximate solution (dotted line) with corresponding numerical solution

(solid line) is plotted with initial conditions [x(0)= 0.50000, x(0)=0.00000] or

a =0.50000, ¢ =—-.044292 fore = 0.8, v =1.0, k =.1vcos7, o= a)o\/(c1 +c,co8T+c,8InT) .
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Fig. 3.8
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Fig 3.8: Unified KBM perturbation solution (dotted line) with corresponding numerical
solution (solid line) is plotted with initial conditions [x(0)= 0.50000, x(0) = 0.00000] or

a =0.50000, ¢ =-2.6364 fore =0.8, v =1.0,k =.1dJ/cos7, o = a)o\/(cl +c,c08T+cy8IN7T) .
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Fig. 3.9
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Fig 3.9: Present approximate solution (dotted line) with corresponding numerical solution

(solid line) is plotted with initial conditions [x(0)= 0.50000, x(0)=0.00000] or

a =0.50000, ¢ =—-.043579 fore =09, v =1.0, k =.1v/cosT , v = a)o\/(c1 +c,co8T+c,8InT) .
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Fig. 3.10
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Fig 3.10: Unified KBM perturbation solution (dotted line) with corresponding numerical
solution (solid line) is plotted with initial conditions [x(0) = 0.50000, x(0) = 0.00000] or

a =0.50000, ¢ =-2.313 for £¢=0.9,v=1.0, k =.14J/cos7, co=a)0\/(cl +c,co8T+c,y8InT) .
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Fig. 3.11
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Fig 3.11: Present approximate solution (dotted line) with corresponding numerical solution

(solid line) is plotted with initial conditions [x(0)=0.50000, x(0)=0.00000] or

a =0.50000, ¢ = —.042865 fore =1.0, v =1.0, k =.1v/cosT, o= a)o\/(c1 +c,c0sT+c,y8InT) .
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Fig. 3.12
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Fig 3.12: Unified KBM perturbation solution (dotted line) with corresponding numerical
solution (solid line) is plotted with initial conditions [x(0) = 0.50000, x(0) = 0.00000] or

a =0.50000, ¢ =-2.05428 for £ =1.0, v =1.0,k =.1v/cos7, w = a)o\/(c1 +¢,C08T+c,y8InT) .
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3.5 Conclusion

In this article we have extended the KBM method to find the approximate solution of
damped forced nonlinear vibrating systems with slowly varying coefficients under the action
of external force. The solutions agree with numerical results nicely even if ¢ >1.0 but unified

KBM solutions fail to give desire results.
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