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−10 ≤ ,ݔ ݐ ≤ 10 for ω =  .ଵߴ−

Figure 63: Sketch of the singular kink type solution ݑଵ,ହଶ in (4.1.161) to the strain wave 
equation for dissipative case when ߝ = ଵߙ ,0.1 = ଶߙ ,1 = ଷߙ ,1 = 0.5 and 
ସߙ = 1 within −10 ≤ ,ݔ ݐ ≤ 10 for ω =  .ଶߴ

Figure 64: Sketch of the solution ݑଵ,ହଶ in (4.1.161) to the strain wave equation for 
dissipative case when ߝ = ଵߙ ,0.1 = ଶߙ ,1 = ଷߙ ,1 = 0.5 and ߙସ = 1 within 
−10 ≤ ,ݔ ݐ ≤ 10 for ω =  .ଶߴ−
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Abstract 

 

Although the modified simple equation (MSE) method effectively provides exact solitary 

wave solutions to nonlinear evolution equations (NLEEs) in the field of applied 

mathematics, mathematical physics, plasma physics and engineering, it has some 

limitations. When the balance number is greater than one, usually the method does not 

give any solution. In this dissertation, we have exposed a process as to how to implement 

the MSE method to solve the NLEEs for balance number two. In order to verify the 

process, some NLEEs have been solved by means of this scheme, and we found some 

fresh traveling wave solutions. When the parameters receive special values, solitary wave 

solutions are derived from the exact traveling wave solutions and we have analyzed the 

solitary wave properties by the graphs of the solutions. These solitary wave solutions 

include soliton, kink shape soliton, singular kink shape soliton, bell shape soliton, 

singular bell shape soliton, anti-bell shape soliton, singular anti-bell shape soliton, etc. 

The attraction of the MSE method is that it is consistent, peaceful, authentic, and we 

found some fresh new traveling wave solutions other than the existing methods, such as, 

the basic )/( GG  -expansion method. We emphasize the implementation of the MSE 

method, how to examine the solutions to NLEEs for balance number two and also 

compare the solutions obtained by the MSE method and the well-known existing )/( GG 

-expansion method. This shows the validity, usefulness, and necessity of the MSE method 

and our graphical representations describe the obtained traveling wave solutions. 
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Chapter 1 

Introduction 

The mathematical modeling of physical phenomena that change over time depends 

closely on the system of differential equations, namely, ordinary and partial differential 

equations. Through the diverse fields, like the natural and physical sciences, economics, 

epidemiology, neural networks, bioscience, mechanics etc., the mathematical models are 

developed to study these phenomena. In spite of the fact that these models provided the 

nature of the fields, the adequacy of their contribution to the common characteristics that 

make it possible to examine the different groups of them within a unified theoretical 

structure or mathematical form of the differential equations, which are linear, nonlinear, 

homogeneous or non-homogeneous equations. Solution procedures to linear differential 

equations are relatively easy and well recognized. But for the nonlinear equations it is not 

so easy to solve them and in some cases it is not possible and in general, approximations 

are typically used. Many scientists observed the fascinating element in the nature of 

nonlinear and for the fundamental understanding of nature, the science of nonlinear is the 

most important border. This study is an area of functional analysis, usually called the 

theory of evolution equations. These equations are basically nonlinear evolution 

equations (NLEEs). Therefore, in the natural sciences, it is very significant to study the 

solutions of NLEEs to uncover the obscurity of many events and processes.  

The mathematical form of a NLEE is ݑ௧ =  i. e. a nonlinear partial differential ,(ݑ)݂

equation with respect to time derivative. The linear heat equations or wave equations 

recounting heat conduction or vibration of cord are two simple examples of evolution 

equations. However, there are many nonlinear evolution equations which usually arising 
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from physics, plasma physics, mechanics, engineering, biology, chemistry, electrical 

circuits, solid state physics, high-energy physics, condensed matter physics, meteorology,  

oceanic phenomena, quantum mechanics, optical fibers, elastic media, fluid mechanics, 

acoustics, protein chemistry, mathematical biology, water surface gravity waves, ion 

acoustic waves in plasma, material science etc., should be investigated. Actually almost 

all the evolution equations concerning physical phenomena are nonlinear. The properties 

of each nonlinear equation are distinct and every nonlinear equation has its own 

peculiarity. Therefore, complication of NLEEs has drawn a lot of attention of many 

mathematicians and scientist who are involved with nonlinear science. For better 

understanding of the inner structure of the phenomena, as well as their further 

applications in practical life, exact solutions might play a fundamental role. The exact 

solutions can explain the problems precisely and the physical significance of the system 

duly. In addition to the physical significance, the close-form solutions to NLEEs assist the 

numerical solvers to evaluate the precision of their results and help them in the stability 

analysis. Exact solutions contain some arbitrary constants, when the constants receive 

some particular values solitary wave solutions are originated from the exact traveling 

wave solutions. A solitary wave is a localized gravity wave that occurs from the balance 

between dispersive effects and nonlinearity. When a solitary wave remains in its shape 

and velocity during its collision with another wave of the same kind, though possibly for 

a phase shift, is call a soliton. i. e. it can be treated like a particle that upholds its profile 

when it travels at constant speed. Equations with soliton solutions have a profound 

mathematical structure. Solitary waves arise equally in continuous and discrete systems 

and in both one and multiple spatial dimensions. Key issues in studying solitary waves 

also include linear versus nonlinear, persistent versus transient, integrable versus non-
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integrable, asymptotics, localization in physical space versus Fourier space, and the 

effects of noise. 

Therefore, it is significant to seek as many solitary wave solutions as possible to the 

NLEEs. In the recent years, significant efforts have been made by various groups of 

scientists to find solitary wave solutions to the NLEEs. All nonlinear equations cannot be 

solved by a particular method. Therefore, they established several methods to obtain exact 

solitary wave solutions, such as, the inverse scattering method, the Backlund 

transformation method, the Adomian decomposition method, the variational iteration 

method, the He’s homotopy perturbation method, the Jacobi elliptic function method, the 

homogeneous balance method, the tanh-function method, the sine-cosine method, the F-

expansion method, the Exp-function method, the ansatz method, the (ܩᇱ ⁄ܩ )-expansion 

method, the modified simple equation (MSE) method, the exp൫−߮(ߟ)൯-expansion 

method, etc. 

The MSE method is an effective method in searching exact solitary wave solutions to 

NLEEs, but the method has some shortcomings. When the balance number is greater than 

one, typically there arise difficulties in solving the NLEEs by means of the MSE method. 

One cannot use the MSE method in straight away. In this dissertation, we have by using 

the MSE method established a procedure to examine the exact solitary wave solutions to 

NLEEs whose balance number is two. Inserting the assumed solution to the 

corresponding ordinary differential equation and then equating the coefficients of 

൫߰(ߦ)൯
ି௝

, ݆ = 0, 1, 2, 3,⋯ yield an over-determined set of algebraic and differential 

equations. During determination of the unknown function, there is born a third order 

linear ordinary differential equation in ߰(ߦ) and ߦ. If in the solution of ߰(ߦ), ߦ appears as 

a polynomial, it will not be eligible to be received as solitary wave solution, because for 
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solitary wave solution, |ݑ| → 0 as ߦ → ∞. Therefore, the coefficients of the polynomial 

must be zero. This constraint is essential to solve NLEEs for higher balance number. This 

procedure plays a very important role and can be applied to many NLEEs. The solutions 

obtained by this technique might play very important role in the field of applied 

mathematics, mathematical physics, plasma physics and engineering. We have analyzed 

and illustrated the solitary wave properties of the solutions by graph. 
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Chapter 2 
 

The Literature Review and Proposal 

Preview Material 
 2.1: The Literature Review 

 2.2: Wave and Soliton 

 2.3: Motivation 

 2.4: Objectives 

 2.5: The Proposal 

2.1: The Literature Review 

In general physical systems are explained by nonlinear partial differential equations. The 

mathematical modeling of intricate phenomena in applied mathematics, physics, 

mathematical physics, bioscience, medical science, plasma physics, microstructured solid 

materials in engineering fields that change over time are closely related to the study of 

variety of systems of ordinary and partial differential equations. Similar models have also 

evolved in various fields of study, ranging from the natural and physical sciences, 

population ecology to economics, infectious disease epidemiology, neural networks, 

biology, mechanics etc. Therefore, mathematical theories are very much important to find 

solutions to nonlinear partial differential equations because physical systems are generally 

explained by nonlinear equations. In spite of the eclectic nature of the fields wherein 

these models are formulated, different groups of scientists contribute adequate common 

attributes that make it possible to examine them within a unified theoretical structure. 

Such study is an area of functional analysis usually called the theory of evolution 
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equations. Therefore, the investigation of solutions to NLEEs plays a very important role 

to uncover the obscurity of many phenomena and processes throughout the natural 

sciences. But, one of the essential problems is to obtain their exact solutions. Because, 

nonlinear processes are one of the major confrontations and difficult to manage since the 

nonlinear characteristic of the system abruptly changes owing to slight changes of valid 

parameters along with time. Thus, the issue becomes further complex and hence needs 

ultimate solution. In this case, advance nonlinear techniques are important to solve the 

problems which are inherently nonlinear, especially those involving differential 

equations, dynamical systems and associated areas (Alam, 2014). 

Therefore, in order to find out exact solutions to NLEEs, different groups of 

mathematicians, physicist, and engineers have been working tirelessly. With the 

development of symbolic computation software, like, Mathematica, Maple or Matlab, 

direct method for searching solutions to NLEEs have become an attractive area of 

research. This software assists us by computing the complicated and cumbersome 

algebraic and linear differential equations speedily and successfully. As a result, they 

have been able to contribute significantly. Accordingly, in the recent years, they have 

established several methods to search exact solutions to NLEEs, for instance, the Exp-

function method (He and Wu, 2006; He et al., 2012; Akbar and Ali, 2012; Manafian and 

Zamanpour, 2013; Mohyud-Din et al., 2009a; Misirli and Gurefe, 2011; Naher et al., 

2011a; Naher et al., 2012; Yildirim and Pinar, 2010; Zhang, 2010), the Darboux 

transformation method (Leble and Ustinov, 1993; Matveev and Salle, 1991; Rogers and 

Schief, 2002), the inverse scattering method (Ablowitz and Clarkson, 1991; Baldock et 

al., 1981; Ghosh and Nandy, 1999), the Hirota’s bilinear method (Hirota, 1973; Hirota, 

2004; Hirota and Satsuma, 1981), the Backlund transformation method (Jianming et al., 

2011; Miura, 1978; Rogers and Shadwick, 1982), the symmetry method (Bluman and 
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Kumei, 1989; Olver, 1986), the homogeneous balance method (Wang, 1995; Zayed et al., 

2004a), the tanh method (Abdou, 2007; El-Wakil and Abdou, 2007; Fan, 2000; Malfliet 

and Hereman, 1996; Nassar et al. 2011; Salas and Gomez, 2008; Sekulic et al., 2011; 

Yusufoglu and Bekir, 2008; Zayed et al., 2004b), the Painleve expansion method (Weiss 

et al., 1982), the Jacobi elliptic function method (Chen and Wang, 2005; Porubov, 1996; 

Xu, 2006), the unified algebraic method (Fan, 2002), the hyperbolic function method (Inc 

and Evans, 2004; Zayed et al., 2004b), the Adomian decomposition method (Helal and 

Mehana, 2006; Kaya, 2001; Kaya, 2004; McOwen, 2004), the generalized Riccati 

equation method (Yan and Zhang, 2001), the ansatz method (Hu , 2001; Hu and Zhang, 

2001), the sine-cosine method (Wazwaz, 2004; Yusufoglu and Bekir, 2006; Yan and 

Zhang, 1999), the Miura transformation method (Bock and Kruskal, 1979), the first 

integral method (Taghizadeh and Mirzazadeh, 2011), the He’s homotopy perturbation 

method (Ganji, 2006; Ganji and Rafei, 2006; Ganji et al., 2007), the Cole-Hopf 

transformation method (Salas and Gomez, 2010), the Lie group symmetry method (Guo 

and Lin, 2010), the auxiliary equation method (Sirendaoreji, 2007), the F-expansion 

method (Wang and Li, 2005; Wang and Zhou, 2003),  the modified extended direct 

algebraic method (Soliman and Abdo, 2009), the parameter-expansion method (He and 

Shou, 2007), the variational iteration method (Mohyud-Din, 2008; Mohyud-Din et al., 

2009b-c; Noor and Mohyud-Din, 2008; Noor et al., 2008), the exp൫−߮(ߟ)൯-expansion 

method (Khan and Akbar, 2013a; Hafez et al., 2015; Rahman et al., 2014a-b; Roshid et 

al., 2014; Uddin et al., 2014), the Sumudu transform method (Belgacem, 2006; Belgacem, 

2007; Belgacem, 2009; Belgacem, 2010; Belgacem and Karaballi, 2006; Belgacem et al., 

2003; Chaurasia et al., 2012; Watugala, 1993), the multiple Exp-function algorithm (Ma 

and Zhu, 2012), the homotopy analysis method (Domairry et al., 2009; Joneidi et al., 

2010), the generalized tanh-coth method (Gomez and Salas, 2008; Jawad, 2012), the 
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Chapter 4 

Applications 

Preview Material 
�¾ 4.1: Applications of the MSE Method 

 4.1(a): The KdV Equation 

 4.1(b): The Boussinesq Equation 

 4.1(c): The Fifth-order KdV equation 

 4.1(d): The Modified Schamel  Equation for Acoustic 

Waves in Plasma Physics 

 4.1(e): The Modified Kadomtsev-Petviashvili (KP) 

Equation for Acoustic Waves in Plasma Physics 

 4.1(f): The Strain Wave Equation in Microstructured 

Solids 
o 4.1(f)-I: The Non-dissipative Case 

o 4.1(f)-II: The Dissipative Case 

�¾ 4.2: Applications of the (�s�ñ/ �s)-expansion Method 

 4.2(a): The KdV Equation 

 4.2(b): The Boussinesq Equation 

 4.2(c): The Fifth-order KdV equation 

 4.2(d): The Modified Schamel  Equation for Acoustic 

Waves in Plasma Physics 

 4.2(e): The Modified Kadomtsev-Petviashvili (KP) 

Equation for Acoustic Waves in Plasma Physics 

 4.2(f): The Strain Wave Equation in Microstructured 

Solids 
o 4.2(f)-I: The Non-dissipative Case 

o 4.2(f)-II: The Dissipative Case 
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( 
F1 + �ñ�6 
F �=�4) �=�4 = 0.                                                                                              (4.1.30) 

�=�5{( 
F1 + �ñ�6 
F2�=�4) �ð�•+ �ð�•�•�•} = 0.                                                                         (4.1.31) 

{�=�6( 
F1 + �ñ�6 
F2�=�4) 
F �=�5
�6}( �ð�•) �6 
F3�=�5�ð�•�ð�•�•+ 2�=�6{( �ð�•�•) �6+ �ð�•�ð�•�•�•} = 0.    (4.1.32) 


F2(�ð�•) �6(�=�5( 
F1 + �=�6)�ð�•+ 5�=�6�ð�•�•) = 0.                                                               (4.1.33) 


F(
F6 + �=�6) �=�6( �ð�•) �8 = 0.                                                                                           (4.1.34) 

Solving Eq. (4.1.30), we obtain 

 �=�4 = 0,   
F1 + �ñ�6. 

Again solving Eq. (4.1.34), we obtain 

 �=�6 = 6 since �=�6 
M0. 

Therefore, for the values of �=�4, the following two cases arise: 

Case 1: When �=�4 = 0, we have to take in the same procedure as we have took in section 

4.1(a). Therefore, from Eqs. (4.1.31) to (4.1.33), we compute 

 �=�5 = ± 6�¾1 
F �ñ�6 

and 

 �ð(�æ) =
�?�Ö�- �Ø�Ø

 
¥�-�7
� �.

 �Ø 
k�?�5�>� �. 
o�Ö�.
�?�5�>� �.  

where �?�5 and �?�6 are integration constants. 

By means of the values of �=�4, �=�5,�=�6 and �ð(�æ), from Eq. (4.1.1), we obtain the following 

solution to the Eq. (4.1.29): 

�7(�æ) = 
F
6(
F1 + �ñ�6) �6�?�5�?�6 �A�Ø ���¾�5�?� �.

( �?�5 �A�Ø ���¾�5�?� �. 
F (
F1 + �ñ�6)�?�6) �6
.                                                          (4.1.35) 

After simplification from the solution (4.1.35), we obtain the subsequent solution to the 

Boussinesq equation (4.1.27): 
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�7(�æ) = ±
6
k2
¥�Ú�Û
F�E�¾10�Ù�¾�ä
o

�/
�. �Ú�?

�/
�0�?�5�?�6�A

�Ø 
�Ô 
§�.
¥
� 
� �7�Ô�¾�-�, 
� �¾
�   



�¾�-�,  
�
�-
�0 �¾
�

�É

�È
�Ç


§2
¥�Ú�Û
F�E�¾10�Ù�¾�ä�?�6± �E�¾10�Ú
�-
�0�¾�ä�?�5�A

�Ø 
�Ô 
§�. 
¥
� 
� �7�Ô�¾�-�, 
� �¾
�   



�¾�-�, 
�
�-
�0 �¾
�

�Ì

�Ë
�Ê

�6.     (4.1.63) 

Simplifying the solution (4.1.63), we establish the subsequent close-form solution to the 

fifth-order KdV equation (4.1.47): 

�Q(�T,�P) = �Ø�J6
k2
¥�Ú�Û
F �E �¾10�Ù
¥�ä
o
�/
�.  �Ú�?

�/
�0 �?�5�?�6�K

/ �J�F�Ø�E
§2
¥�Ú�Û
F �E�¾10�Ù
¥�ä�?�6+ �¾10�Ú
�-
�0
¥�ä�?�5�Gcos
k(�T
F�P�é�6) �D�6
o

+ �F
§2
¥�Ú�Û
F�E�¾10�Ù
¥�ä�?�6

�Ø�E�¾10�Ú
�-
�0
¥�ä�?�5
psin
k(�T
F �P�é�6)  �D�6
o�K

�6

,                                        (4.1.64) 

where, �é�6 = 
F
�<�	 �
 �. �>�7�¾�5�4�� 
¥�	 �
 �¾�?�� �>�9�� �. ��

�9�4�	��
 and �D�6 =


§�6
¥�	 �
 �>�¾�5�4�� �¾�?��

�6�¾�5�4�	
�-
�0�¾��

.  

Now, one may arbitrarily put the values of �?�5 and �?�6, because they are arbitrary constants. 

Therefore, if we put �?�5 = 
§2
¥�Ú�Û
F�E�¾10�Ù�¾�ä  and �?�6 = ± �E�¾10�Ú�5/ �8�¾�ä, then from Eq. 

(4.1.64), we get the following solution to the fifth-order KdV equation: 

�Q�5,�6�5( �T, �P) = 
F
3
k5�Ù�¾�ä
F �¾10
¥
F�Ú�Û
o 

10�Ú�¾�ä

× sech�6

�É

�Ç
(�T
F �P�é�6)
§2
¥�Ú�Û+ �¾10�Ù�¾
F�ä

2�¾10�Ú
�-
�0�¾
F�ä

�Ì

�Ê,                             (4.1.65) 

where �é�6 = 
F
�<�	 �
 �. �>�7�¾�5�4�� 
¥�	 �
 �¾�?�� �>�9�� �. ��

�9�4�	��
.  
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�G�=�5
�6(3�G�6�Ü+ �=�6)(�ð�ñ) �8 
F21�G�7�Ü�=�5�=�6( �ð�ñ) �7�ð�ñ�ñ

+
1
2

�=�6( �ð�ñ) �6
k2�G�=�4(6�G�6�Ü+ �=�6)(�ð�ñ) �6

+ �=�6( 
F�ñ(�ð�ñ) �6+ 12�G�7�Ü(�ð�ñ�ñ) �6+ 4�G�7�Ü�ð�ñ�ð�ñ�ñ�ñ) 
o= 0.             (4.1.78) 

�G�=�6( �ð�ñ) �8( �=�5(12�G�6�Ü+ �=�6) �ð�ñ
F18�G�6�Ü�=�6�ð�ñ�ñ) = 0.                                            (4.1.79) 

1
3

�G�=�6
�6(30�G�6�Ü+ �=�6)( �ð�ñ) �: = 0.                                                                                  (4.1.80) 

We have solved the Eqs. (4.1.74)-(4.1.80) to find out ia   ( �E= 1,2,3,…), �ð(�æ) and other 

necessary parameters. From Eq. (4.1.80), we obtain 

 �=�6 = 
F30�G�6�Ü, since �=�6 
M0,  

And from Eq. (4.1.79), we obtain 

�ð(�æ) =
900�G�8�Ü�6�?�5

�=�5
�6 �A



 �Ì �-
�/�, �Ö�. 
� + �?�6,                                                                                (4.1.81) 

where �?�5 and �?�6 denote integrating constants. 

Then by a suitable exploitation, from Eqs. (4.1.74) to (4.1.78), we compute  

�=�4 = 0, �=�5 = ± 15�¾�G�¾�Ü�¾�ñ,    �%= 0 

and 

�=�4 =
5�ñ
4�G

, �=�5 = ± 15�E�¾�G�¾�Ü�¾�ñ,    �%=
25�ñ�7

192�G�6. 

Since we have two set of values of �=�4, �=�5 and �%. Therefore, there arise two cases: 

Case 1:  When �=�4 = 0, �=�5 = ± 15�¾�G�¾�Ü�¾�ñ,    �%= 0, then from Eq. (4.1.81), we get 

�ð(�æ) =
4�G�7�Ü�?�5

�ñ
�A

±


 �¾
�

�.�Ö�/ / �. �¾
� + �?�6 

where �?�5 and �?�6 are integrating constants. 

Putting the obtained values of �=�4, �=�5, �=�6 and �ð(�æ)  into Eq. (4.1.1), we explore the 

following solution to the Eq. (4.1.73): 
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Once again, if we take �?�5 = 
F�E
¥�Ú(
F�G�6�Ü+ �ñ)  and  �?�6 = 2�Ú, from solution (4.1.111), 

we find out the following solitary wave solution to the modified KP equation: 

�Q�5,�7�:( �T, �U,�P) = 
F{225(�G�8�Ü�6 
F2�G�6�Ü�ñ+ �ñ�6)}

/ 
e8�Ù�6
]
F3 + cos
m

¥�Ú(�G�6�Ü
F �ñ)( �T+ �G�U
F �P�ñ)

�Ú

q


F4sin 
m

¥�Ú(�G�6�Ü
F �ñ)( �T+ �G�U
F �P�ñ)

2�Ú

q
a
i.                               (4.1.115) 

Case 2: When �=�4 = 
F
�9
k�Þ�. �� �?� 
o

�8��
 and �=�5 = ± �5�9
¥�Þ�. �	�� �?�	� 

��
,  inserting the value of �=�5 into 

Eq. (4.1.108), we obtain 

�ð(�æ) = ±
2�Ú�?�5


¥�G�6�Ú�Ü
F �Ú�ñ
�A

±  


 
§�Ö�. 
�
� �7
�
�

�.
� + �?�6 

where �?�5 and �?�6 are arbitrary constants. 

Now, inserting the values of �=�4, �=�5, �=�6 and �ð(�æ), from Eq. (4.1.1), we obtain the 

following solution to the Eq. (4.1.100): 

�7(�æ) = 
F�N5�Ú(�G�6�Ü
F�ñ) �P4�Ú�?�5
�6�A

±


 
§
� 
k�Ö�. 
� �7
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� �Ø8
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o
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�
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F �ñ)�?�6
�6�K�O

/ 
f4�Ù�P± 2�Ú�?�5�A
±



 
§
� 
k�Ö�. 
� �7
� 
o

�.
� + 
¥�Ú(�G�6�Ü
F �ñ)�?�6�Q

�6


j.                (4.1.116) 

Now, under application of inverse transformation, we obtain the solution to the modified 

KP equation in the following form: 
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�=�6 =
6(�Ù�7 
F �ñ�6�Ù�8)

�Ù�5
,     scince �=�6 
M0. 

Therefore, for the values of �=�4, the following two cases arise: 

Case 1:  When �=�4 = 0, we have to adopt the same technique as we have adopted in 

section 4.1(a). Therefore, from Eqs. (4.1.129) to (4.1.131), we obtain 

�=�5 = ±
6�E�¾
F1 + �ñ�6
¥�Ù�7 
F �ñ�6�Ù�8

�¾�Ý�Ù�5
 

and 

�ð(�æ) = �?�6+
�Ý�?�5(
F�Ù�7+ �ñ�6�Ù�8)


F1 + �ñ�6  �A
�Ø �Ô

 
¥�7�-�6
� �.

�¾
�
§
� �/ �7
� �. 
� �0 

where �?�5 and �?�6 are integration constants. 

Setting the values of 210 ,, aaa  and �ð(�æ) in Eq. (4.1.1) and then we found the 

exponential solution of the ODE (4.1.127) as: 

�7(�æ) =
6�A

±  �Ô

 
¥�7�-�6
� �.

�¾
�
§
� �/ �7
� �. 
� �0( 
F1 + �ñ�6) �6�?�5�?�6( 
F�Ù�7+ �ñ�6�Ù�8)

�Ù�5

�É

�È
�Ç

(
F1 + �ñ�6) �?�6 �A
±  

�Ô

 
¥�7�-�6
� �.

�¾
�
§
� �/ �7
� �. 
� �0 + �Ý�?�5(
F�Ù�7+ �ñ�6�Ù�8)

�Ì

�Ë
�Ê

�6.                (4.1.133) 

Upon simplifi cation, the exponential solution (4.1.133) transformed the subsequent 

hyperbolic solution to the strain wave equation in microstructured solids for non-

dissipative case (4.1.124): 
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When �=�5 
M0, it is very much unsmooth to extract the values �X, �ð(�æ) and finally the 

solution form of (4.1.1) is extremely frightful and putrefy. So, we have overridden this 

case and discussed only the case �=�5 = 0. 

For the case �=�5 = 0, then from Eq. (4.1.153), we have 

�ð(�æ) = �?�6 
F
5�A

�? 



� 
� �.

�1
k
� �/ �7
� �. 
� �0
o�?�5( �Ù�7 
F �ñ�6�Ù�8)

�ñ�Ù�6
 

where �X= ± �à�5 or �X= ± �à�6; �?�5 and �?�6 are integration constants. 

We substituting the values of 210 ,, aaa  and �ð(�æ) in Eq. (4.1.1) and then we get the 

subsequent exponential solution of the ODE (4.1.147): 

�7(�æ) 
F
6�ñ�6�?�5

�6�Ù�6
�6(
F�Ù�7+ �ñ�6�Ù�8)

�Ù�5�J�ñ�?�6�Ù�6�A



� 
� �.

�1
� �/ �7�1
� �. 
� �0 
F5�?�5( �Ù�7 
F �ñ�6�Ù�8) �K
�6,                                        (4.1.154) 

where �X= ± �à�5 or �X= ± �à�6. 

Simplifying the solution (4.1.154), we obtain the subsequent hyperbolic solution to the 

strain wave equation in microstructured solids for dissipative case (4.1.145): 

�Q(�T,�P) = �H6�ñ�6�?�5
�6�Ù�6

�6( 
F�Ù�7+ �ñ�6�Ù�8)

× �Jsinh �F
�ñ(�T
F �P�ñ)�Ù�6

5�Ù�7 
F5�ñ�6�Ù�8
�G
Fcosh�F

�ñ(�T
F �P�ñ)�Ù�6

5�Ù�7 
F5�ñ�6�Ù�8
�G�K�I

/ 
m�Ù�5�H�ñ �Jcosh�F
�ñ(�T
F�P�ñ)�Ù�6

10(�Ù�7 
F �ñ�6�Ù�8)
�G+ sinh �F

�ñ(�T
F�P�ñ)�Ù�6

10(�Ù�7 
F�ñ�6�Ù�8)
�G�K�?�6�Ù�6

+ 5 �J
Fcosh�F
�ñ(�T
F�P�ñ)�Ù�6

10(�Ù�7 
F �ñ�6�Ù�8)
�G+ sinh �F

�ñ(�T
F�P�ñ)�Ù�6

10(�Ù�7 
F�ñ�6�Ù�8)
�G�K

× �?�5(�Ù�7 
F �ñ�6�Ù�8) �I
�6

�G,                                                                    (4.1.155) 
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�Q�6,�5( �T,�P) = 12�Ü�ä+ �=�4+ 3�Ü(�ã�6 
F4�ä) �O�A�?�D�6�F
1
2


¥�ã�6 
F4�ä(�T
F�P�ñ)�G,        (4.2.12) 

�Q�6,�6( �T,�P) = 12�Ü�ä+ �=�4 
F3�Ü(4�ä
F �ã�6) �O�A�?�6�F
1
2


¥4�ä
F �ã�6(�T
F �P�ñ)�G,           (4.2.13) 

where �ñ = �Ü�ã�6+ 8�Ü�ä+ �=�4. 

Also if �$ = 0 when �# 
M0, then the following solutions from the solutions (4.2.9) and 

(4.2.10) become respectively: 

�Q�6,�7( �T,�P) = 12�Ü�ä+ �=�4 
F3�Ü(�ã�6 
F4�ä) �?�O�?�D�6
l
1
2

(�T
F�P�ñ)
¥�ã�6 
F 4�ä
p,         (4.2.14) 

�Q�6,�8( �T,�P) = 12�Ü�ä+ �=�4+ 3�Ü(�ã�6 
F4�ä) �?�O�?�6
l
1
2

(�T
F�P�ñ)
¥4�ä
F �ã�6
p,            (4.2.15) 

where �ñ = �Ü�ã�6+ 8�Ü�ä+ �=�4. 

4.2(b): The Boussinesq Equation 

Bekir (Bekir, 2008) considered the Boussinesq equation: 

�Q�ç �ç
F�Q�ë �ë 
F(�Q�6) �ë �ë +  �Q�ë �ë �ë �ë = 0,                                                                        (4.2.16) 

while he used the travelling wave variable similar to (4.2.8) and then by using the 

(�) �• �)�¤ )-expansion method he found a set of travelling wave solutions as shown below: 

Set 1: When �ã�6 
F4�ä> 0, 

�Q(�T,�P) = 
^
�$ �?�K�O�D
l�5

�6

¥�ã�6 
F4�ä(�T
F�P�ñ)
p+ �# �O�E�J�D
l�5

�6

¥�ã�6 
F4�ä(�T
F �P�ñ)
p

�# �?�K�O�D
l
�5

�6

¥�ã�6 
F4�ä(�T
F�P�ñ)
p+ �$ �O�E�J�D
l

�5

�6

¥�ã�6 
F4�ä(�T
F �P�ñ)
p


b

�6

×
3
2

(�ã�6 
F4�ä) 
F
3
2

�ã�6+ 6�ä,                                                             (4.2.17) 

where �ñ = 
¥1 
F �ã�6+ 4�ä . 

And 
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where �æ= �T
F4�G�7�Ü(�ã�6 
F4�ä)�P and �# and �$ are arbitrary constants. 

Since �Q(�T, �P) = �R�6(�T, �P), so Taha et al.’s solutions (4.2.39)-(4.2.41) to the ODE (4.2.37), 

can be simplified the subsequent solutions to the modified Schamel equation (4.2.35), 

respectively: 

When �ã�6 
F4�ä> 0, 

�Q(�T,�P) =

�Ï
�Î
�Î
�Í15

2
�G�6�Ü�ã�6 
F30�G�6�Ü�ä
F

15
2

�G�6�Ü(�ã�6 
F4�ä)

× 
^
�$cosh
l

( �Þ�ë�?�ç� ) 
¥�� �. �?�8��

�6

p+ �#sinh 
l

( �Þ�ë�?�ç� ) 
¥�� �. �?�8��

�6

p

�#cosh
l
( �Þ�ë�?�ç� ) 
¥�� �. �?�8��

�6

p+ �$sinh 
l

( �Þ�ë�?�ç� ) 
¥�� �. �?�8��

�6

p

b

�6


j

�6

,    (4.2.42) 

where �ñ = 4�G�7�Ü(�ã�6 
F4�ä) and �# and �$ are arbitrary constants.  

When �ã�6 
F4�ä< 0, 

�Q(�T,�P) =

�Ï
�Î
�Î
�Í15

2
�G�6�Ü�ã�6 
F30�G�6�Ü�ä
F

15
2

�G�6�Ü(
F�ã�6+ 4�ä)

× 
^
�$cos
l

( �Þ�ë�?�ç� ) 
¥�8�� �?�� �.

�6

p
F�#sin 
l

( �Þ�ë�?�ç� ) 
¥�8�� �?�� �.

�6

p

�#cos
l
( �Þ�ë�?�ç� ) 
¥�8�� �?�� �.

�6

p+ �$sin 
l

( �Þ�ë�?�ç� ) 
¥�8�� �?�� �.

�6

p

b

�6


j

�6

,         (4.2.43) 

where �ñ = 4�G�7�Ü(�ã�6 
F4�ä), �# and �$ are arbitrary constants. 

When �ã�6 
F4�ä= 0, 

�Q(�T,�P) = �J
15
2

�G�6�Ü�ã�6 
F30�G�6�Ü�ä
F30�G�6�Ü
l
�$

�#+ �$(�G�T
F �P�ñ)

p

�6

�K

�6

,                  (4.2.44) 

where �ñ = 0, �# and �$ are arbitrary constants. 
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�Q�6,�6�:( �T, �P) = 
F
(�ã�6 
F4�ä)(�Ù�7 
F �Ù�8) 
\1 + 3 �P�=�J�6
l

( �ë�?�  �ç) 
¥�8�� �?�� �.

�6

p
`

2�Ù�5{1 + �Ý(�ã�6 
F4�ä)�Ù�8}
,                (4.2.83) 

where �ñ = ±

¥�5�>���� �. �� �/ �?�8���� �� �/


¥�5�>���� �. �� �0�?�8���� �� �0
, �Ù�5, �Ù�7, �Ù�8, �Ý,�ã and �ä are real parameters. 

�Q�6,�6�;( �T, �P) =
3(�ã�6 
F4�ä)(�Ù�7 
F �Ù�8)�O�A�?�D�6 
l

( �ë�?�  �ç) 
¥���. �?�8��

�6

p

2�Ù�5{
F1 + �Ý(�ã�6 
F4�ä)�Ù�8}
,                               (4.2.84) 

�Q�6,�6�<( �T, �P) =
3(�ã�6 
F4�ä)(�Ù�7 
F �Ù�8)�O�A�?�6
l

( �ë�?�  �ç) 
¥�8�� �?�� �.

�6

p

2�Ù�5( 
F1 + �Ý(�ã�6 
F4�ä)�Ù�8)
,                                 (4.2.85) 

where �ñ = ± 
¥�?�5�>�����. �� �/ �?�8���� �� �/


¥�?�5�>�����. �� �0�?�8���� �� �0
, �Ù�5, �Ù�7, �Ù�8, �Ý,�ã and �ä are real parameters. 

Again, if �#= 0 when �$ 
M0, then the following solitary solutions from (4.2.75), (4.2.76), 

(4.2.79) and (4.2.80), respectively yield: 

�Q�6,�6�=( �T, �P) =

(�ã�6 
F4�ä) �F
F1 + 3 �?�K�P�D�6
l
( �ë�?�  �ç) 
¥�� �. �?�8��
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p�G(�Ù�7 
F �Ù�8)

2�Ù�5(1 + �Ý(�ã�6 
F4�ä)�Ù�8)
,            (4.2.86) 

�Q�6,�7�4( �T, �P) = 
F

(�ã�6 
F4�ä) �F1 + 3 �?�K�P�6
l
( �ë�?�  �ç) 
¥�8�� �?���.

�6

p�G(�Ù�7 
F �Ù�8)

2�Ù�5(1 + �Ý(�ã�6 
F4�ä)�Ù�8)
,              (4.2.87) 

where �ñ = ±

¥�5�>���� �. �� �/ �?�8���� �� �/


¥�5�>���� �. �� �0�?�8���� �� �0
, �Ù�5, �Ù�7, �Ù�8, �Ý,�ã and �ä are real parameters. 

�Q�6,�7�5( �T, �P) = 
F
3(�ã�6 
F4�ä)( �Ù�7 
F�Ù�8) �?�O�?�D�6
l

( �ë�?�  �ç) 
¥�� �. �?�8��

�6

p

2�Ù�5(
F1 + �Ý(�ã�6 
F4�ä)�Ù�8)
,                           (4.2.88) 

�Q�6,�7�6( �T, �P) =
3(�ã�6 
F4�ä)(�Ù�7 
F �Ù�8)�?�O�?�6
l

( �ë�?�  �ç) 
¥�8�� �?�� �.

�6

p

2�Ù�5( 
F1 + �Ý(�ã�6 
F4�ä)�Ù�8)
,                                  (4.2.89) 

where 