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Abstract

Gamma ring was first introduced by N. Nobusawa as a generalization of a classical
ring. W. E. Barnes generalized the definition of a gamma ring due to Nobusawa.
Presently the gamma ring due to Barnes is known as a gamma ring and gamma ring
due to Nobusawa is known as gamma ring in the sense of Nobusawa and is denoted
by I'y-ring. It is clear that every ring is a gamma ring and every I'y-ring is also a
[-ring. Actually, W.E.Barnes, J.Luh and S.Kyuno studied the structures of I'-rings
and obtained various generalizations analogous to the corresponding parts in ring
theory. Afterwards, a number of algebraists have determined a lot of fundamental
properties of I'-rings to classify and extend numerous significant results in classical
ring theory to I'-ring theory. This thesis, entitled “Characterizations of Prime and
Semiprime Gamma Rings with Derivations and Lie Ideals”, aims to characterize prime
and semiprime ['-rings with various types of left derivations, derivations, generalized
derivations, higher derivations, derivations on Lie ideals and (U, M)-derivations. All
the necessary introductory definitions and examples of I'-rings are discussed in con-

siderable details in the introduction chapter.

The notions of derivation and Jordan derivation in I'-rings have been introduced
by M. Sapanci and A. Nakajima. Afterwards, in the light of some significant results
due to Jordan left derivation of a classical ring obtained by K.W.Jun and B.D.Kim,
some extensive results of left derivation and Jordan left derivation of a I'-ring were
determined by Y.Ceven. In classical ring theory, Joso Vukman proved that if d is

a Jordan left derivation of a 2-torsion free semiprime ring R and if there exists a



positive integer n such that D(x)™ = 0 for all z € R, then D = 0. He also proved
that for a 2-torsion free and 3-torsion free semiprime ring R admits Jordan derivation
D and G : R — R such that D*(x) = G(z) for all z € R, then D = 0. In chapter
1, we extend this result to the I'-ring theory in the case of Jordan left derivations.
Then we construct some relevant results to prove that under a suitable condition
every nonzero Jordan left derivation d of a 2-torsion free prime I'-ring M induces the

commutativity of M, and consequently, d is a left derivation of M.

Developing a number of important results on Jordan derivations of semiprime I'-
rings, we then prove under a suitable condition, every Jordan derivation of a ['-ring
M is a derivation of M, if we consider M as a 2-torsion free (i) semiprime, and
(ii) completely semiprime I'-ring, respectively. We examine all these statements in

chapter 2 for the clear understanding of the concepts.

M. Asci and S. Ceran obtained some commutativity results of prime I'-rings with
left derivation. Some commutativity results in prime rings with Jordan higher left
derivations were obtained by Kyuoo-Hong Park on Lie ideals and obtained some fruit-
ful results relating this. We work on Jordan higher left derivation on a 2-torsion free
prime ['-ring and we show that under a suitable condition, the existence of a nonzero
Jordan higher left derivation on a 2-torsion free prime I'-ring M forces M commuta-
tive. For the classical ring theories, Herstein, proved a well known result that every
Jordan derivation in a 2-torsion free prime ring is a derivation. Bresar proved this re-
sult in semiprime rings. Sapanci and Nakajima proved the same result in completely
prime I'-rings. C. Haetinger worked on higher derivations in prime rings and extended
this result to Lie ideals in a prime ring. We introduce a higher derivation and a Jor-
dan higher derivation in I'-rings. Then we determine some immediate consequences
due to Jordan higher derivation of I'-rings to prove under a suitable condition every
Jordan higher derivation of a 2-torsion free prime I'-ring M is a higher derivation of
M. Y. Ceven and M. A. Ozturk worked on Jordan generalized derivations in I'-rings
and they proved that every Jordan generalized derivation on some I'-rings is a gen-

eralized derivation. A. Nakajima defined the notion of generalized higher derivations
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and investigated some elementary relations between generalized higher derivations
and higher derivations in the usual sense. They also discussed Jordan generalized
higher derivations and Lie derivations on rings. W. Cortes and C. Haetinger proved
that every Jordan generalized higher derivations on a ring R is a generalized higher
derivation. M. Ferrero and C. Haetinger proved that every Jordan higher derivation
of a 2-torsion free semiprime ring is a higher derivation. C. Haetinger extended the
above results of prime rings in Lie ideals. By the motivations of above works, we
introduce a Jordan generalized higher derivations in I'-rings. We prove that every
Jordan generalized higher derivation in a 2-torsion free prime I'-ring with the condi-
tion aabfc = afbac for all a,b,c € M and «, 3 € T', is a generalized higher derivation
of M. Chapter 3 deals with all these important results elaborately.

The relationship between usual derivations and Lie ideals of prime rings has been
extensively studied in the last 40 years. In particular, when this relationship involves
the action of the derivations on Lie ideals. In 1984, R. Awtar extended a well known
result proved by I. N. Herstein to Lie ideals which states that, “every Jordan derivation
on a 2-torsion free prime ring is a derivation”. In fact, R. Awtar proved that if U € Z
is a square closed Lie ideal of a 2-torsion free prime ring R and d : R — R is an additive
mapping such that d(u?) = d(u)u + ud(u) for all u € U, then d(uv) = d(u)v + ud(v)
for all u,v € U. M. Ashraf and N. Rehman studied on Lie ideals and Jordan left
derivations of prime rings. They proved that if d : R — R is an additive mapping
on a 2-torsion free prime ring R satisfying d(u?) = 2ud(u) for all u € U, where U
is a Lie ideal of R such that u?> € U for all uw € U then d(uv) = d(u)v + ud(v) for
all u,v € U. A. K. Halder and A. C. Paul extended the results of Y. Ceven in Lie
ideals. We generalize the Awtar’s result in I'-rings by establishing some necessary
results relating to them at the beginning of the chapter 4, we then prove if U is
an admissible Lie ideal of a 2-torsion free prime I'-ring M satisfying the condition
aabfc = afbac for all a,b,c € M; o, € I' and d : M — M is a Jordan derivation
on U of M, then d(uav) = d(u)av + uad(v) for all u,v € U;a € T and if U is a

commutative square closed Lie ideal of M, then d(uav) = d(u)av + uad(v) for all



11

u,v € U and a € I'. Accordingly, we then define Jordan higher derivation and higher
derivation on Lie ideals of I'-rings and construct some relevant results to prove the
previous results analogously in case of Jordan higher derivation on Lie ideal of a I'-
ring. Chapter 4 is devoted to a study of these materials in order to bring out the

concepts defined clearly.

M. Ashraf and N. Rehman considered the question of I. N. Herstein for a Jor-
dan generalized derivation. They showed that in a 2-torsion free ring R which has
a commutator right nonzero divisor, every Jordan generalized derivation on R is a
generalized derivation on R. In 2000, Nakajima defined a generalized higher deriva-
tion and gave some categorical properties. He also treated generalized higher Jordan
and Lie derivations. Later, Cortes and Haetinger extended Ashraf’s theorem to gen-
eralized higher derivations. They proved that if R is 2-torsion free ring which has a
commutator right nonzero divisor, then every Jordan generalized higher derivation on
R is a generalized higher derivation on R. Following the notions of Jordan derivation
and derivation on Lie ideals of a I'-ring in the previous chapter we then introduce the
concepts of a Jordan generalized derivation and generalized derivation on Lie ideals
of a I'-ring and we extend and generalized the above mentioned result by these newly
introduced concepts. Accordingly, we then define Jordan generalized higher deriva-
tion and generalized higher derivation on Lie ideals of a I'-ring and generalized the
same result by these concepts. We examine all these statements in chapter 5 for the

clear understanding of the concepts.

(U, R)-derivations in rings have been introduced by A. K. Faraj, C. Haetinger and
A. H. Majeed as a generalization of Jordan derivations on a Lie ideal of a ring. We
introduce (U, M)-derivations in I'-rings as a generalization of Jordan derivations on a
Lie ideal of a I'-ring. We construct some useful consequences of (U, M )-derivation of
a prime I'-ring to prove first that, d(uav) = d(u)av 4+ uad(v) for all u,v € U,a € T,
where U is an admissible Lie ideal of M and d is a (U, M)-derivation of M. We
also prove that, if uau € U for all w € U and a € I' then d(uam) = d(u)am +
uad(m) for all w € Uym € M and o € T'. After introducing (U, M )-derivation in
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[-rings, we then introduce the concept of higher (U, M)-derivation in I'-rings. We
conclude the chapter 6 by proving the analogous results corresponding to the previous
results considering higher (U, M )-derivations of prime I'-rings almost similar way after

developing a number of results regarding this newly introduced concept.

Following the notion of (U, M)-derivation and higher (U, M)-derivation of a I'-
ring in the previous chapter here we introduce the concept of generalized (U, M )-
derivation and generalized higher (U, M)-derivation in I'-rings. By establishing some
necessary results with generalized (U, M)-derivation, we then prove the analogous
results considering generalized (U, M )-derivation of prime I'-rings corresponding to
the results of (U, M)-derivation of the previous chapter. A. K. Faraj, C. Haetinger
and A. H. Majeed extended Awtar’s theorem to generalized higher (U, R)-derivations
by proving that if R is a prime ring, char.(R) # 2, U is an admissible Lie ideal of
R and F = (f;)ien is a generalized higher (U, R)-derivations of R, then f,(ur) =
> ivjen fitu)d;(r) for all w € U,r € R and n € N. Chapter 7 also extends this result
in the case of generalized higher (U, M)-derivation of prime I'-rings. Actually, it aims
to prove that if U is an admissible Lie ideal of a prime I'-ring M and F' = (f;)ien is
a generalized higher (U, M)-derivation of M, then (i) f.(uav) =3, ., fi(u)ad;(v)
for all u,v € U, € I" and n € N; and also, that (i) f,(ufm) = Ziﬂ.:n fi(w)Bd;(m)
forallu e Uyme M,3 €l and n € N.
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Introduction

As an immense generalization of the theory of rings, the concept of a I'-ring was
introduced. From its first advent the enlargement and generalization of many signif-
icant results in the theory of rings to the theory of I'-rings have interested a wider
observation as an emerging field of research to the modern algebraists to enhance the
world of algebra. A number of renowned mathematicians have worked out on this
attractive area of research to determine various basic properties of I'-rings and have
extended a lot of important results in this topic in the last four decades. There is a
huge number of researchers all over the world who are recently occupied in trying to
achieve more and more fruitful and inventive results of I'-ring theory.

The notion of a I'-ring has been introduced by N. Nobusawa [33] (which is presently
known as a I'y-ring), as a generalization of a ring. Following W. E. Barnes [4] gener-
alized the concept of Nobusawa’s I'-ring as a more general nature. As an immediate
consequence, this generalization states that every I'y-ring is a I'-ring, but the con-
verse is not always true in general. They obtained many important basic properties
of T-rings in various ways, while in a consecutive succession S. Kyuno [25, 26, 27, 28]
, J. Luh [29], G. L. Booth [5] determined some more remarkable characterizations of

['-rings. Nowadays, ['-ring theory is a showpiece of mathematical unification, bringing

15
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together several branches of the subject. It is the best research area for the Mathe-
maticians and during 40 years, many classical ring theories have been generalized in
[-rings by many authors (mentioned hereafter within the scope of this study). Some
of those are discussed in considerable detail in this chapter including all the necessary

introductory definitions and examples.

0.1 Gamma Ring

We begin with the general definition of a I'-ring. The notion of a I'-ring was introduced
by N. Nobusawa [33] and generalized by W. E. Barnes [4] as defined below.

Definition 0.1.1. Let M and I' be additive abelian groups. If there is a mapping
M xT'x M — M such that the conditions

o (z+y)az = zaz +yaz, ala+ By = zay + afy, valy + 2) = vay + vaz;

o (zay)fz = za(yfz)

are satisfied for all x,y,z € M and o, 3 € I', then M is called a I'-ring . This concept
is more general than a ring.

From the definition it is clear that every ring is a ['-ring but the converse is not

necessarily true. For example, we observe that.

Example 0.1.1. Let R be a ring having unity element 1 and M = M, 3(R) be the
set of all 2 x 3 matrices over R. If we take I' = M3 5(R), then M is a I'-ring under
the operations of addition and multiplication of matrices.

In general, we get the following.

Example 0.1.2. If R is a ring with unity element 1 and M = M,, ,(R) is the set of
all m x n matrices over R. Then M s a I'-ring under the operations of addition and
multiplication of matrices if we take I' = M, ,,(R).

The following is an example of a I'-ring.
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Example 0.1.3. Let R be a commutative ring with characteristic 2 having unity ele-

ment 1. Let M = Ms5(R) and ' = nilng 1 in; € (Z —=2Z);n1 =ng,ng =ng p.
’ n9. 1 ny.l

Then M is a I'-ring.

The following is another example of a I'-ring given by S. Kyuno [25].

Example 0.1.4. Let R be an ordinary associative ring, U be any ideal of R, and I
be the ring of integers. Then R is a I'-ring if we choose ' =R or, ' =U or, I' = I.
Also, U is a I'-ring with I' = R.

Now we recall the initiatory definition of a I'-ring given by N. Nobusawa [33]
appeared for the first time that has been creating a new extent to enhance the theory

of rings significantly.

Definition 0.1.2. Let M and I" be additive abelian groups. If there are two mappings
MxT'xM— MandI' x M xI' — I" such that

o (v +y)az =zaz+yaz, z(a+ By =zay + 20y, za(y + 2) = vay + vaz;

o (a+ By = axy+ fry, a(z +y)B = axf+ ayB, ax(B+7) = azxf + axy;
o (zay)Bz = vlayB)z = zalybz);

e ray = 0 implies a« =0

hold for all z,y,z € M;a,3 € I', then M is called a I'-ring in the sense of N.
Nobusawa [33] and we express it by saying that M is a I"y-ring.

Example 0.1.5. Let D be a division ring and M = Dy3(D) be the set of all 2 x 3
matrices over D. If we chooseI' = D3 5(D), then M is a I'y-ring under the operations
of addition and multiplication of matrices.

In general, we get the following:

Example 0.1.6. If D is a division ring and M = D,, (D) is the set of all m xn ma-
trices over D. Then M 1is a I'-ring under the operations of addition and multiplication
of matrices if we choose I' = D,, (D).

The following is another example of a I'y-ring given by S. Kyuno [25].
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Example 0.1.7. Let R be an ordinary associative ring with unity element 1. Then
R is a U'y-ring if we choose I' = R.

The following three examples of a I'y-ring are given by N. Nobusawa [33].

Example 0.1.8. Let v,(F') be a vector space of dimension n over a field F. For
a, b, c are vectors in it, define abc = (a-b)c, where (a-b) is the inner product of a and
b. Forb,c,d € V,(F), define (bcd) = b(c-d). Then ab(cde) = (a-b)(c-d)e = a(bed)'e
i.e, vo(F) is a T y-ring with T' = v, (F).

Example 0.1.9. Let D be a division ring and M = D,, (D). If a,b,c € M, define
abc = ab'c, where V' is the transpose of the matriz b, and the above product is well
defined. For b,c,d € M, define also (bed) = dc*'b. Then ab(cde) = abted' = a(bed)'e
i.e, M is a U'n-ring with I' = D, (D).

Example 0.1.10. Let I be the set of all purely imaginary complex numbers. Then I
15 a ['y-ring with usual multiplication if we choose I' = 1.

0.2 Preliminaries

We recall some important definitions which are useful for us within the scope of this
study as follows.

Definition 0.2.1. An additive subgroup H of a ['-ring M is said to be a ['-subring
of M if H is itself a I'-ring. That means, it follows that an additive subgroup H of a
[-ring M is a I'-subring of M if H'H C H.

The following is an example of a I'-subring.

Example 0.2.1. Let R be a ring of characteristic 2 having a unity element 1. Let
M = Ms(R) and I = {( Zi ) 'n € Z}, then M is a T'-ring. Let N = {(z,x) :
x € R} C M, then N is also T'-ring of M, in which we can say that N is a T'-subring
of M.

Definition 0.2.2. A subset S of the I'-ring M is a right ideal (or, left ideal) of M
if S is an additive subgroup of M and STM = {sam : s € S, € T,m € M} (or,
MTS ={mas:s e S,a € ';m e M}) is contained in S. If S is both a left and a
right ideal of M, then S is a two sided ideal of M, or simply an ideal of a I"-ring M.
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Definition 0.2.3. Given a subset A of a I'-ring M, the ideal generated by A is the
smallest ideal of M which contains A. In fact, it is the intersection of all ideals
which contain A. The elements of A are called its generator. In particular, if A =
{a1, as, ..., a,} then the ideal generated by A is denoted by (a1, as, ..., a,). An ideal is
said to be finitely generated if and only if it has a finite set of generators.

Remark 0.2.1. The ideal generated by a given set A can often be generated by a much
smaller subset of A.

Definition 0.2.4. Let M be a [-ring and m € M. The ideal generated by m
(the intersection of all ideals of M containing m, that is, the smallest ideal of M)
is called the principal ideal of M and it is denoted by (m). More precisely, it is
the set of all finite sums of the form ) _.(n;m + x;a;m + mBy; + wiy;mo;v;), where
n; € Zyx;, vy, u,v; € M and «, 5;,7;,0; € T'. That means, it follows that (m) =
Zm + MT'm +mI'M + MI'mI’'M.

Definition 0.2.5. If [ is any nonzero ideal of a I'-ring M. Then an ideal F of a
[-ring M is said to be an essential ideal of M if EN T # 0.

Definition 0.2.6. Let [ be an ideal of a I'-ring M, then the set Ann; = {x € M :
'l = 0} is called the left annihilator of I of M and the set Ann, = {z € M :
ITz = 0} is said to be the right annihilator of I of M. If left annihilator and right
annihilator are identical, then the set Ann(I) = {x € M : 2I'l = IT'z = 0} is called
the annihilator I of M.

Obviously, if I is an ideal of a I'-ring M, then Ann(I) is also an ideal of M.

Definition 0.2.7. Let M be a I'-ring and =,y € M, € T, then (zoy) = zay + yax
is called the Jordan product of x and y with respect to a.

Definition 0.2.8. Let M be a I'-ring ; for z,y € M and a € I', a new product,
known as Lie product defined by [z, y|, = zay — yax and it is called the commutator
of x and y with respect to a.

From the definition of commutators of two elements in a I'-ring, we make the basic
commutators identities :
Lemma 0.2.1. If M is a I'-ring, then for all x,y,z € M and o, € T':

e [vay, 2] = [z, 2lpay + afa, By + valy, 215,

o [r,yazls = [v,y]gaz + ylo, Bz + yalz, 2]
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According to the condition xayBz = xByaz for all x,y,z € M and o, € T', the
above two identities reduces to:

o [ray, 2] = [, 2]poy + zaly, 2]s.
o [v,yaz|s = [z,y|saz + ya[z, 2]s.
Lemma 0.2.2. If M is a I'-ring, then for all x,y,z € M and o, 3 € I':
o [z,yla+ [y, 7]a = 0.
o [1,y+zla=[7,y]a+[r,2]a
o 24y, zla =[x, 2]la + [, 2]
o [2,Ylats = [, Yl + [2, yls-

Remark 0.2.2. A necessary and sufficient condition for a I'-ring M to be commutative
is that [x,yl, =0 for all 2,y € M and a € T".

Definition 0.2.9. An additive subgroup U C M is said to be a Lie ideal of M if
whenever u € U;m € M and « € T', then [u,m], € U. A Lie ideal is called a square
closed Lie ideal if uau € U, for all u € U;a € I'. Furthermore, if the Lie ideal U is
square closed and U ¢ Z (M), where Z(M) denotes the centre of M, then U is called
an admissible Lie ideal of M.

Example 0.2.2. Let R be a commutative ring of characteristic 2 having a unity

element 1. Let M = M;5(R) and I' = Zi n€Z,2tn,, then M is a I'-

ring. Let N = {(x,z) : « € R} C M, then for all (z,z) € N,(a,b) € M and

n
e I', we have

(z,7) ( Z ) (a,b) — (a,b) ( Z ) (z,2) = (zna — bnz, znb — anx)

= (zna — 2bnx + bnx, bnx — 2anz + xna)
= (zna + bnx,bnx + xna) € N.

Therefore, N is a Lie ideal of M.

The following is a very well-known result in group theory essential for us which is

known as Brauer’s trick .
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Brauer’s trick: If S and T are any two subgroups of a group G such that
G = SUT, then either G = S or G = T. In other words, a group cannot be a set-
theoretic union of its two proper subgroups.

Definition 0.2.10. A I'-ring M is said to be a commutative I'-ring if xay = yax for
all z,y € M and o € T'.

The following is an example of a commutative I'-ring.

Example 0.2.3. Let R be a commutative ring having a unity element 1. Let M =

M 5(R) and I = {( n(.)l ) ‘n € Z } Then M is a commutative I'-ring under the

operations of matrix addition and matrix multiplication with char.M = 2.

Definition 0.2.11. Let M be a I'-ring, then the set Z, = {z € M : zam = maz for
all m € M} is called the a — centre of a I'-ring M, where « is an arbitrary but fixed
element of T.

Definition 0.2.12. Let M be a I'-ring, then the set Zr = {z € M : zam = maz for
all m € M and a € I'} is called the centre of a I'-ring M and it is denoted by Z(M).

It is a clear consequence that if Z(M) = M, then M is commutative.

Remark 0.2.3. The centre Z(M) of a I'-ring M is always a I'-subring of M.

Definition 0.2.13. An element m of a I'-ring M is called a right (or, left) nonzero
divisor of M if for x € M, xam = 0 (or, maz = 0) implies 2 = 0 for all « € T'. If an
element is both a left and a right nonzero divisor of M, then it is called a two-sided
nonzero divisor of M, or simply a nonzero divisor of M.

In other words, a I'-ring M is said to have no zero divisors if V 2,y € M, zay =0
implies x =0, or y =0 for all a € T".

Definition 0.2.14. A I'-ring M is said to be 2-torsion free or of characteristic not
equal to 2, denoted as char.M # 2, if 2z = 0 implies x = 0 for all z € M.
In general, we have the following.

Definition 0.2.15. A I'-ring M is said to be n-torsion free or of characteristic not
equal to n (where n is a positive integer greater than 1), denoted as char.M # n, if
nx = 0 implies = 0 for all x € M.



22

Definition 0.2.16. An element m of a I'-ring M is called a nilpotent element if, for
any « € I', there exists a positive integer n (depending on «) such that (ma)"m =
(ma)(ma)...(ma)m =0

Definition 0.2.17. An ideal I of a I'-ring M is said to be a nilpotent ideal if there
exists a positive integer n such that (IT)"] = ((IT")(IT")...(IT")I =0

Definition 0.2.18. An ideal I of a I'-ring M is said to be a nil ideal if each element
of I is nilpotent.

Remark 0.2.4. Every nilpotent ideal of a ['-ring is nil.

The concepts of a prime I'-ring and a completely prime I'-ring were introduced
by J. Luh [29] and some analogous results corresponding to the prime rings were
obtained by J. Luh [29] and S. Kyuno [27].

Definition 0.2.19. A T'-ring M is said to be a prime I'-ring if zI'MTy = 0 (with
x,y € M) implies x = 0 or y = 0.

Definition 0.2.20. A T'-ring M is said to be a semiprime I'-ring if xT MTx = 0
(with © € M) implies x = 0.

Definition 0.2.21. A I'-ring M is said to be a completely prime I'-ring if xI'y = 0
(with x,y € M) implies z = 0 or y = 0.

Definition 0.2.22. A T'-ring M is said to be a completely semiprime I'-ring if xT'x = 0
(with x € M) implies x = 0.

It is obvious that every completely prime I'-ring is prime but the converse is not
necessarily true. Similarly, every completely semiprime I'-ring is semiprime but the
converse is not always true in general.

From the above definitions, it follows that every prime I'-ring is semiprime and every
completely prime I'-ring is completely semiprime.

Example 0.2.4. Let R be an integral domain with 1. Let M = M;5(R) and I' =

{( n(.)l ) ‘ne Z}, then M is a I'-ring. Let N = {(a,a) : a € R}, then N is a
[-subring of M. It is easy to verify that N is a completely prime I'-ring and therefore

it 1s also a prime I'-ring.



Chapter 1

Left Derivations

We begin by explaining the introductional background behind the notions of deriva-
tion and Jordan derivation of I'-rings. Then we recall the definitions of left derivation
and right derivation of I'-rings. We also recall the definitions of Jordan left derivation
and Jordan right derivation of I'-rings in the first section.

The second section develops some useful consequences regarding Jordan left deriva-
tions of I'-rings which are very much needed for proving the main results of this
chapter.

The result of the third section has been emanated from a theorem due to Joso
Vukman which states that, if R is a 2-torsion free and 3-torsion free semiprime ring
which admits Jordan derivations D : R — R and G : R — R such that D*(z) = G(x)
for all x € R, then D = 0. Here, we extend this result to the I'-ring theory in
the case of Jordan left derivation by showing that if M is a 2 and 3-torsion free
semiprime I'-ring ; d : M — M and G : M — M are Jordan left derivations such
that d*>(M) = G(M), then d = 0.

Finally, we conclude this chapter by showing that under a suitable condition

every nonzero Jordan left derivation d of a 2-torsion free prime I'-ring M induces the

23
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commutativity of M, and accordingly, d is a left derivation of M.

1.1 Introduction

The notions of derivation and Jordan derivation of a I'-ring have been introduced by
M. Sapanci and A. Nakajima [36]. Afterwards, K. W. Jun and B. D. Kim [24] obtained
some significant results due to Jordan left derivation of a classical ring. Y. Ceven [10]
worked on left derivations of completely prime I'-rings and obtained some extensive
results of left derivation and Jordan left derivation of a I'-ring. M. Soyturk [37]
investigated the commutativity of prime I'-rings with the left and right derivations.
He obtained some results on the commutativity of prime I'-rings of characteristic not
equal to 2 and 3. Some commutativity results of prime I'-rings with left derivations
were obtained by Asci and Ceran [1]. A. C. Paul and A. K. Halder [35] worked on
Jordan left derivations of two torsion free I'M-Modules. They proved that if M is a
prime ['-ring, then every Jordan left derivation is a left derivation.

In view of the concepts of left derivation and Jordan left derivation of classical
rings developed by K. W. Jun and B. D. Kim [24], some important results due to
these concepts in case of certain I'-rings have been determined by Y.Ceven [10] after
introducing the notions of left derivation and right derivation of I'-rings as defined

below.

Definition 1.1.1. In a I'-ring M, an additive mapping d : M — M is said to be
a left derivation if d(aab) = aad(b) 4+ bad(a) holds for all a,b € M;« € T" and d is
called a right derivation if d(aab) = d(a)ab+ d(b)aa holds for all a,b € M;a € T.

Definition 1.1.2. Let M be a I'-ring. An additive mapping d : M — M is said to
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be a Jordan left derivation if d(aaa) = 2aad(a) holds for all a € M;a € T and d is

called a Jordan right derivation if d(aca) = 2d(a)aa holds for all a € M;a €T

In [10], Y. Ceven gave an example of a left derivation and a Jordan left derivation

on a I'-ring as follows.

Example 1.1.1. Let R be an associative ring with 1 and d : R — R be a left

n.1
deriwation. Let M = M;5(R) and I' = , then M 1is a I'-ring.

Define a mapping D : M — M by D((a,b)) = , then D is a left derivation
on M. Let N = {(a,a) : a € R} C M, then N is a T'-ring. Define a mapping

D:N — M by D((a,a)) = (d(a),d(a)), then D is a Jordan left derivation on N.

Except otherwise mentioned, throughout this chapter, M represents a I'-ring
satisfying the condition aabfc = afbac for all a,b,c € M;a,3 € I' and it is referred

to as the symbol (*).

1.2 Some Consequences of Jordan Left Derivations

We recall some useful results that have already been proved earlier. We begin with

the following Lemma proved by Y.Ceven [10].

Lemma 1.2.1. Let d be a Jordan left derivation of a two torsion free I'-ring M. For
all a,b € M;a €T

(1) d(aab + baa) = 2aad(b) 4 2bad(a);

In particular, if M is a 2-torsion free and satisfies the condition (*), then

(i1) d(aabfa) = afaad(b) 4+ 3aabfd(a) — baafd(a);
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(i71) d(aabfc+ cabBa) = afcad(b) + cfaad(b) + 3aabBd(c) + 3cabfd(a) — bacfd(a) —
baafd(c).

Some parts of the following lemma are essentially proved in [8, 9, 10, 24, 36]

Lemma 1.2.2. Let M be a two torsion free I'-ring satisfying the condition (*) and
d be a Jordan left derivation on M. Then for all a,b € M;a,3 €1 :
i) |a, blofacd(a) = aala,b],Bd(a);

(i
(i1) [a, blof(d(aad) — aad(b) — bad(a)) = 0;
(”Z> [a7 b]aﬁd([a’v b]a) = 0§
(

iv) d(acafBb) = aBacd(b) + (aBb + bBa)ad(a) + aad([a, b]s).
Proof. (i) By Lemma 1.2.1(iii), we have

d(aabBe+cabBa) = afcad(b)+cBaad(b)+3aabBd(c)+3cabfd(a)—baaBd(c)—bacd(a).
Replacing ¢ by aab, we get

d((aad)B(aab) 4+ (aab)abfa) = af(aab)ad(b) + (aab)Bacd(b)

+ 3aabfd(aab) + 3(aab)abfd(a) — baafd(aad) — ba(aab)Bd(a).
This implies,

2(aab)fd(aab) + d(aa(bab)fa) = afacbad(b) + aabBaad(b)

+ 3aabfd(aab) + 3(aab)abfd(a) — baafd(aad) — ba(aab)Bd(a).
Using Lemma 1.2.1(ii), we obtain

—aabfd(aadb)+afaad(bab)+3aababfd(a)—babaafd(a) = afaabad(b)+aabfaad(b)

+ 3aababfd(a) — baafd(aab) — baaabfd(a).
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= —aabfd(aab) + 2aBaabad(b) — babaafd(a) = aBaabad(b) + aabBaad(b)
— baafBd(aab) — baaabBd(a).
This yields,
(aab — baa)Bd(aab) = afacbad(b) — aabBaad(b) — babaafBd(a) + baaabfd(a)
= aaaabBd(b) — aabaaBd(b) — babaafd(a) + baaabBd(a)
— aa(aab — baa)Bd(b) + ba(aab — baa)fd(a).
(1.1)
Replacing b by a+ b in (1.1), we get
(aab—baa) B(2acd(a) +d(aabd)) = aa(aab—baa)Bd(a+b)+(a+b)a(aab—baa)Bd(a).
= 2(aab—baa)Baad(a)+(aab—baa)Bd(aab) = 2aa(aab—baa)Bd(a)+ac(aab—baa)3d(b)
+ ba(aab — baa)Bd(a).

Using (1.1), we obtain

2(aab — baa)Baad(a) + aa(aab — baa)Bd(b) + ba(aab — baa)Bd(a)
= 2a0(aab — baa)Bd(a) + aa(aab — baa)Bd(b) + ba(aab — baa)Bd(a).
= (aab — baa)Baad(a) = ac(aab — baa)Bd(a).
Therefore,
[0, b]o Bacd(a) = aca, blBd(a).

(ii) Replacing a by a + b inLemma 1.2.2 (i)
((a+b)ab—ba(a+b))B(a+b)ad(a+b) = (a+b)a((a+b)ab—ba(a+b))Bd(a+Db).
= (aab — baa)f(aad(a) + bad(a) + aad(b) + bad(b)) = aa(aab — baa)F(d(a) + d(b))

+ ba(aab — baa)B(d(a) + d(b)).
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= (aab—baa)Pacd(a)+(aab—baa)fbad(a)+(acb—baa) Saad(b)+(aab—baa) Bbad(b)

= aa(aab—baa)fd(a)+ac(acb—baa)Bd(b)+ba(aab—baa)Bd(a)+ba(aab—boa)3d(D).
Now, using Lemma 1.2.2(i), we have

aa(aab—baa)pd(a)+ (aab—baa)Sbad(a)+ (aab—baa) Sacd(b) —ba(baa—aab) 5d(b)

— aa(aab—baa)Bd(a)+aa(aab—baa) Bd(b)+ba(aab—baa) Bd(a)—ba(baa—aab) Bd(b).
Thus, using (1.1)
(aab — baa)B(bad(a) + aad(b)) = (aab — baa)Bd(aab).
Therefore, we obtain
(aab — baa)B(d(aab) — aad(b) — bad(a)) = 0.

This implies,
[a, b]oB(d(aab) — acd(b) — bad(a)) = 0.

(iii) Using Lemma 1.2.1(i) in Lemma 1.2.2(ii), we get
(aab — baa)B(—d(baa) + 2aad(b) + 2bad(a) — aad(b) — bad(a)) = 0.

Therefore,

(aab — baa) f(d(baa) — aad(b) — bad(a)) = 0. (1.2)
Subtracting (1.2) from Lemma 1.2.2(ii), we get
(aah — baa)fd(acd) — d(baa) = 0.

Therefore,

[a, b]ofd([a,bls) = 0.
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(iv) From Lemma 1.2.1(i), we have
d(aad + baa) = 2aad(b) + 2bad(a).

Replacing bBa for b, we get

d(aabfa + bfaca) = 2aad(bfBa) + 2bfacd(a). (1.3)
Again replacing afb for b in Lemma 1.2.1(i)

d(acafBb + afbaa) = 2aad(afb) 4+ 2afbad(a). (1.4)
Subtracting (1.3) from (1.4) and using the condition (*), we get

d(acafBb + aabfBa — aabfa — baafa) = 2aad(afb — bfa) + 2(afb — bfa)ad(a).
Therefore,
d(acafb — baafa) = 2aad(afb — bfa) + 2(afb — bfa)ad(a). (1.5)

Now, replacing afa for a in Lemma 1.2.1(i) and using the condition (*)

d(afaab + baafa) = 2afacd(b) + 2bad(afa) = 2afaad(b) + 4baafd(a)

= d(acafb + baafBa) = 2aBaad(b) + 4bBaad(a). (1.6)
Adding (1.5) and (1.6), we get
d(2acaBb) = 2aBaad(b) + 2aad(afb — b3a) + 2(aBb + bfa)ad(a).
Since M is 2-torsion free, we have

d(aaafb) = afaad(b) + (afb + bfa)ad(a) + aad([a,b]s).
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Lemma 1.2.3. Let M be a 2-torsion free and 3-torsion free I'-ring, and d : M — M
be a Jordan left derivation. If d([[d(x), x]a,x]a) = 0 holds for all z € M;a € T, then
[d(z), z]oad(z) = 0 is fulfilled for all x € M;a € T.

Proof. Since d([[d(x), x]a, x]o) = 0. Thus
0 = d([[d(x), z]a, 7]a)
= d([(d(z)ox — zad(z)), 2]a)
= d(d(zx)araxr — rad(r)axr — rad(r)ar + rarad(z))
= d(d(z)arax + razad(x)) — 2d(zxad(z)ox).

Now, using Lemma 1.2.1(i) and Lemma 1.2.1(ii), we get
2(zax)ad(d(z))+2d(z)ad(rar) —2zarad(d(z))—b6rad(x)ad(z)+2d(x)azad(z) = 0.
= 2rarad®(r)+4d(r)avad(r) —2rarad®(x) —6rad(z)ad(z) +2d(z)arad(z) = 0.
= 6(d(x)ax — zad(z))ad(x) = 0.

Thus, we have

6[d(z), x]aad(z) = 0.

Since M is 2 and 3-torsion free. Hence, we conclude that [d(x), z],ad(z) = 0 for all

reMacel. ]

1.3 Jordan Left Derivations on Semiprime I'-Rings

In classical ring theory, Joso Vukman [38] proved that if d is a Jordan left derivation
of a 2-torsion free semiprime ring R and if there exists a positive integer n such that

D(z)" =0 for all x € R, then D = 0. He also proved that for a 2-torsion free and
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3-torsion free semiprime ring R admits Jordan derivations D : R — Rand G : R — R
such that D?(x) = G(z) for all # € R, then D = 0.
Here, we extend the above mentioned result to the I'-ring theory in the case of

Jordan left derivation.

Theorem 1.3.1. Let M be a 2-torsion free and 3-torsion free semiprime I'-ring. If
d: M — M and G : M — M are Jordan left derivations such that d*(M) = G(M),
then d = 0.

Proof. Let x € M, then zax € M. Putting zaz for z in d*(x) = G(z).
d(d(zazx)) = G(rax).

= d(2zad(z)) = 2zaG(x).

= d(zad(z)) = zaG(x). (1.7)
Now, we prove that, for all x € M and a € T'.
d(d(z)az) = 2d(z)ad(x) + raG(x). (1.8)
Using Lemma 1.2.1(i), we have
d(d(x)ar + zad(z)) = 2d(x)ad(x) + 2zad®(z).

Using (1.7), we obtain

d(d(x)az) = 2d(z)ad(z) + 2zad*(z) — d(zad(z))
= 2d(z)ad(x) + 2xaG(x) — vaG(z)
= 2d(x)ad(x) + zaG(z)

= 2d(z)ad(x) + d(zad(x)).
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Therefore,

d(d(x)ax — rad(x)) = 2d(z)ad(z).
(1.9)
= d[d(x),x]q = 2d(z)ad(x).

Linearize (1.9) and using (1.9), we get

d([d(z +y),x + yla) = 2d(x + y)ad(z + y).
= d([d(z) +d(y),z + yla) = 2(d(z) + d(y))a(d(z) + d(y)).
= d([d(z), x]a + [d(y), 2]a + [d(z), yla + [d(y), y]a)
= 2(d(x)ad(x) + d(z)ad(y) + d(y)ad(z) + d(y)ad(y)).
= d([d(y), z]a + [d(2), yla) = 2d(x)ad(y) + 2d(y)ad(z).
Putting y = zaz in the above relation then using Lemma 1.2.1 and (1.9), we obtain
0 = d([d(z), zazla + [d(zaz), z]s) — 2d(z)ad(zaz) — 2d(zaz)ad(z)
= d([d(z), t]acr + zad(z), 2]a) + 2d(zald(z), 2]a) — 4d(z)azad(z) — dzad(z)ad(z)
= 9[d(z), 2]aad(z) + 2zad([d(z), 2)]a) + 2d(zald(z), ]a) — 4d(z)azad(z) — Avad(z)ad(z)
= 2d(z)azad(z) — 2rad(z)ad(r) + dvad(z)ad(z) + 2d(zald(z), 2].) — 4d(z)azad(z)
— dzad(z)ad(z)
= —2d(z)azad(z) — 2rad(x)ad(z) + 2d(zald(z), z]).
Thus, we have
d(zald(z),2].) = d(z)azad(z) + rad(z)ad(z),¥ © € M,a € T. (1.10)

We prove the identity

d([d(z), z]aax) = d(x)azad(x) + zad(z)ad(z),¥Y x € M,a €T. (1.11)
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Using Lemma 1.2.1(i) and (1.9), we have

d([d(z), z]aax + zald(x), x]s) = 2[d(x), x]sad(x) + 2zad([d(x), z]s)
= 2[d(z), z]oad(z) + dzad(z)ad(z).

Now, applying (1.10), we obtain

d([d(x), x]pax) = 2[d(z), z]sad(x) + dxad(z)ad(x) — d(zald(z), z],)

= 2d(x)azad(x) — 2zad(x)ad(z) + 4rad(z)ad(x)
—d(z)azad(z) — rad(x)ad(z)
= d(z)azad(x) + zad(z)ad(z),V v € M;a € T.

Which completes the proof of (1.11). Using (1.10) and (1.11), we obtain
d([[d(z), x]a, x]a) = d([d(2), z]sax — zald(x), z]s) = 0. (1.12)
By Lemma 1.2.3, it follows
[d(x),z]qad(z) =0,V 2z € M;a €. (1.13)

Using (1.13) and Lemma 1.2.1(i) , we obtain

= 2d(z)ad([d(x), x]s) + 2[d(x), z]oad(d((z)).

Using (1.9) and d*(z) = G(x), we have
d(d(z)ald(z), z]a) = 4d(x)ad(x)ad(x) + 2[d(x), z],aG(z),YV 2 € M;a e . (1.14)
Now, we prove the relation

d(d(z)ald(z), z]e) = —6[d(z), z]oaG(x),V 2 € M;a €T, (1.15)
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Using (1.13) and Lemma 1.2.1(ii), we obtain
0 = d[(d(z), z]aad(x))
= d(d(z)azad(z)) — d(zod(x)ad(z))
= d(z)ad(z)ad(z) + 3d(z)azad(d(z)) — vad(z)ad(d(r)) — d(zad(z)ad(z)).
Thus, we have
d(zad(z)ad(z)) = d(z)ad(z)ad(z) + 3d(x)azaG(z) — vad(z)aG(z),¥ « € M,a € T.

Using Lemma 1.2.1(i) and d*(z) = G(z), we have

d((d(z)ad(z))az + za(d(x)ad(z))) = 2d(z)ad(x)ad(z) + 2zad(d(x)ad(z))
= 2d(x)ad(x)ad(x) + 2za2d(z)ad(d(z)) = 2d(x)ad(x)ad(x) + drad(z)aG(x).
(1.16)

From the above relation and (1.16), it follows

d(d(z)ad(z)ax) = 2d(z)ad(x)ad(z) + dzad(z)aG(z) — d(zad(z)ad(z))
= 2d(z)ad(z)od(z)+4zad(z)aG (z) —d(z)ad(z)ad(z)+3d(x)azaG () —rad(z) oG (z)
= d(z)ad(z)ad(z) + Szad(z)aG(z) — 3d(z)ezaG(z). (1.17)
By the operation (1.17)-(1.16), we obtain
d(d(z)ad(z)az) — d(zad(z)ad(z)) = 6rad(z)aG(z) — 6d(z)azaG(z).
= d([d(x)ad(z), 2]s) = 6[z, d(z)].0G().
Thus, we have according to (1.13)

6lz, d(2)]aaG(z) = d([d(x)ad(z), x])
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This implies,
d(d(z)ald(z), z]a) = —6[d(z), z]oaG(x),Vz € M,a € T.
Which completes the proof of (1.15). By (1.15), (1.14) becomes

d(z)ad(z)ad(z) 4 2[d(x), x],aG(z) = —6[d(z), z],aG(x).

= d(z)ad(z)ad(z) + 2[d(z), z],aG(x) = 0. (1.18)
Now, starting from (1.13) and using Lemma 1.2.1(ii) and (1.9), we obtain

0 =d(d(x)ald(z), z],ad(z))
= d(z)ad(z)ad([d(r), 7]s) + 3d(z)ald(z), ¥]sad®(z) — [d(z), ¥]sad(x)ad?(z)
= 2d(x)ad(x)ad(x)ad(z) + 3d(z)ald(x), x],aG(z) — [d(x), z]sad(z)aG(z).

Using (1.13), we have

2d(z)ad(x)ad(z)ad(z) + 3d(x)ald(x), z],aG(z) = 0.
= 4d(z)ad(x)ad(x)ad(x) + 6d(z)ald(z), z].aG(z) = 0.
= d(z)ad(z)ad(x)ad(x) + 3d(z)ad(z)ad(z)ad(z) + 6d(x)ald(z), z],aG(x) = 0.
= d(z)ad(z)ad(x)ad(x) + 3d(z)a(d(z)ad(z)ad(z) + 2[d(x), z],aG(x)) = 0. (1.19)
Therefore, using (1.18), we get (d(z)a)?d(x) = 0. This implies, d(z) is a nilpotent ele-

ment of M. Since semiprime I'-ring does not contain any non-zero nilpotent element,

consequently d(z) =0 for all z € M and a € T O
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1.4 Commutativity in Prime ['-Rings with Jordan
Left Derivations

In this section, we obtain the commutativity result of a 2-torsion free prime I'-rings
with Jordan left derivations under the condition (*), aabfc = afbac for all a,b,c € M
and «, 0 € I', and consequently, we prove that every Jordan left derivation is a left

derivation.

Theorem 1.4.1. Let M be a 2-torsion free prime I'-ring satisfying the assumption
(*). If there exists a nonzero Jordan left derivation d : M — M, then M is commu-

tative.
Proof. Let us assume that M is non commutative. Lemma 1.2.2(i) can be written as
(xa(ray — yax) — (ray — yax)ax)Bd(z) =0,V x,y € M,a,3 € T.

This gives,

(razay — 2zayar + yazax)fd(z) = 0.

Replacing [a, b], for x, we have
(0, byala, B ayBd([a, bl,)—2la, Hayala, blyAd((a, by)+yale, blyala, by Bd(la, by) = 0.
By Lemma 1.2.2(iii), we get
[0, ala, BayBd(ja, ) = 0.
By the primeness of M, we have [a, b],a[a,b], = 0 or d([a, b],) = 0. Suppose that,

la,b],ala, b, =0,V aeTl. (1.20)
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By Lemmas 1.2.1(i) , 1.2.1(ii), 1.2.2(iii) with the use of (1.20), we get

W = d({a, b, BBla,bayala,b), + [a,b),ayala, b, fla, bl 5a)
= 2[a, b}, Bapd((a, bl ayala,bl,) + 2[a, b, ayala, b, 5d((a, b, )
— 2[a, b}, 8xla, Bl,ala. blad(y) + 6[a, b, BwBla,bl,ayad((a, b,)
~ 2, ], BxByala,bl,ad((a.bl,) + 2la. bl ayala, b, 8d([a, b, f)
= 6[a, b}, 8xla, b, ayad((a, bl,) — 2[a, b}, BaByala,b],ad((a, },)
+ 2la, b, ayala, b}, 8d([a. ], B)
= 6[a, 5], 8x3la, b, ayad([a, bl,) + 2[a, b, ayala, b, 5d((a, ], 52).

On the other hand, by Lemma 1.2.1(ii) with the use of (1.20)

W = d([a, b], 5(x]a, bl,ay)ala, bly) + d([a, blyayala, by 5la, 0], 5x))
= d([a, b}, 5(xa, by ay)afa, bl,)
= [a, blyafa, bl fd(x5la, blyay) + 3la, bly B fla, blyayad((a, b))
— xf[a, blyaypla, by ed(la, b))
= 3la, 0], 8z fa, b, ayad(la, b],).

Comparing these two expressions for W with the use of the condition (*), we obtain
3[a, b, Bxala, bl,ayBd([a, bl,) + [a, bl,ayB2[a, bl ad(]a, b],Bx) = 0. (1.21)
Also, using Lemma 1.2.1(i) and Lemma 1.2.2(iii), we obtain

V = d([a, b azfla, b, + zala, b, Bla, b))
= 2[a, b],ad(zB[a, bl,) + 2z 6[a, b],ad([a, b))

= 2[a, bl,ad(zB[a, bl,).
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On the other hand, by Lemma 1.2.1(ii) with the use of (1.20)

V =d([a, b],0xp(a, b], + zala, b, Bla, b],)
— d([a, blyawBla. bl,)
= [a, ], B[a, b, ad(x) + 3[a, b],azBd([a, b],) — zala,b],Bd([a, b],)
— 3[a, b, azBd([a, b],).

Comparing these two expressions for V| we obtain
3[&, b]’YOéxﬁd([aﬁ b}v) = 2[@, b]vozd(xﬁ[a, b]’Y) (122)
Using (1.20), we have

[a, b],ad(xfa, bl, + [a,b],fz) = [a, b]ya(226d([a, b],) + 2[a, b],Bd(x))
= 2[a, bl oz Bd([a,bl,) + 2[a, bl a[a, b, [d(x)
= 2[a, bl axBd([a,bl,).

Now, using (1.22), we get

3la, blya(d(xpla, bly) + d([a, b, 5x)) = 6la, b0z Bd([a, b))
= 2.3[a, b]yaxpd([a, bl,) = 2.2[a, b],ad(zF]a, bl,) = 4]a, b],ad(zS]a, b],).
= 3[a, bl a(d(zBa, bly) + 3[a, bl,ad([a, bl,Bz) = 4[a, bl ad(zB[a, b,).
Therefore,
[a,b],ad(zB]a,b],) = 3a, b],ad([a, b], (7). (1.23)

Using (1.23), we have

[a, b ad(z]a, bl + [a, bl, fx) = 3a, bl,ad([a, 0], 6x) + [a, b]ye(d([a, 0], fx)
(1.24)

= 4[a, b],ad([a, b],Bx).
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We, also obtain that

la,b],ad(zB]a, bl + [a,b],Bx) = [a, bl,a2zBd([a, b],) + [a, b],a2[a, b],(d(x)

(1.25)
= 2[a, blyaxBd([a, bl).
From (1.24) and (1.25), we obtain
4[a, bl ad(a, b],fx) = 2[a, bl axfd(]a, b],).
Since M is 2- torsion free, we have
2la, byad(a, B, 62) = [0, yazhd((a, ). (1.26)
From (1.21)and (1.26), we get
3[a, b, Bzala, bl ayBd([a, bly) + [a, bl 0ybla, bl,axd([a, b],) = 0. (1.27)

Replacing yala, b], By for x in (1.26)

2(a, bl,ad([a, b], Byala, bl,By) = [a, b],ayBla, bl ayBd([a, b],).
= 2{a, Bya2[a, B Byad(o, Blyy) = [a, byayBla, Baybd(a, Bl,).

= 4la, bl,afa, 0], Byad([a, b, By) = [a, b],oyBla, by Bd([a, b, ).

Using (1.20), we get

[a, b],ayBla, b,y Bd([a, b],) = 0. (1.28)

Now, replacing y by z + y in (1.28)
[a, b]yo(z + y)Bla, blya(x + y)Bd([a, b],) = 0.
Using (1.28), we obtain

[a, bl axf]a, bl ayBd([a, bl,y) + [a, b],ayBla, b axBd([a, bl,) = 0. (1.29)



Subtracting (1.29) from (1.27) and since M is 2-torsion free, we obtain
la, bl oz fa, bl ayBd([a, bl,) =0,V y € M.

Since M is prime and non commutative, so we have

d([a’ b]v) =0.
= d(avyb) = d(bya),¥Y a,b € M;~ €T.

Using (1.30), we get

d((baa)Ba + af(baa)) = d((baa)Ba) + d(af(baa))
= d((baa)Ba) + d((baa)Ba)
= 2d((baa)Ba).

Using Lemma 1.2.1(ii), we obtain

2d((baa)fa) = d((baa)fa + af(baa)) = d((baa)fa) + d(af(baa)).
= 2d((baa)fa) — d((baa)fBa = d(afbaa).

= d(baafa) = acafd(b) 4+ 3afbad(a) — bfacd(a).
On the other hand, using Lemma 1.2.1(i), we get
d(aa(bfa) + (bfa)aa) = 2aad(bfa) + 2(bfa)ad(a).
Also, we have
d(aa(apb) + (afb)aa) = 2acad(afb) + 2(afb)ad(a).
By the operation (1.33) -(1.32) and using the condition (*), we obtain

d(aaafBb — bfaaa) = 2aad([a, blg) + 2[a, blgad(a),V a,b € M;a, 5 €T
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(1.34)
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Now, putting afa for a in Lemma 1.2.1(i), we have
d(aBaab + baaBa) = 2aBaad(b) + 2bad(aBa) = 2(afaad(b) + ba2afd(a)).
Using the condition (*), above equation reduces to
d(acafb + bfaaa) = 2(aBaad(b) + 2baafd(a)). (1.35)
Subtracting (1.34) from (1.35) and using the condition (¥), we get
d(2baafa) = 2aBacd(b) + dbaaBd(a) — 2aad([a, bs) — 2[a, blsad(a)).
Therefore,
d(baafBa) = aBaad(b) + 2baafd(a) — aad(|a, bls) — aBbad(a) + bBaad(a)
— aBaad(b) + 3baaBd(a) — aad([a, b]s) — aBbad(a).
= d(baafa) = acaBd(b) + 3bBaad(a) — afbad(a). (1.36)
From (1.36) and (1.31), we obtain
acaBd(b) + 3aBbad(a) — bfaad(a) = acaBd(b) + 3bBaad(a) — aBbad(a).
= —3(bBa — aBb)ad(a) — (bBa — aBb)ad(a) = 0.
= —3[b, a]sad(a) — [b, a]sad(a) = 0.
= 4[b, a]gad(a) = 0.
Since M is 2-torsion free, hence
[b, a] sad(a) = 0. (1.37)
Now, putting byz for b in (1.37), we get

[byz, algad(a) = 0.
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= ([b,algyx + aly, Blax + by[z, a]B)ad(a) = 0.

Since aly, 8.z = a(yaf — Pay)x = ayafx — afayr = 0, using the condition (*).

Therefore, we get

([b, a]gyx + by[z, a]B)ad(a) = 0.
= [b, a|gyrad(a) + by[z, a]fad(a) = 0.

= [b,a|gyrad(a) =0,V a,b € M;a, 3,y €T

Since M is prime, thus d(a) = 0. Hence, we conclude that if d # 0, then M is

commutative. OJ

Theorem 1.4.2. If M is a 2-torsion free prime I'-ring satisfying the assumption (*)

then every Jordan left derivation on M is a left derivation.

Proof. Since M is commutative. Thus aab = baa for all a,b € M and o € I'. By

Lemma 1.2.1(i), we have
2d(aab) = 2aad(b) + 2bad(a).
Since M is 2-torsion free, we get

d(aab) = aad(b) + bad(a),V a,b € M;a €T.



Chapter 2

Derivations on Semiprime ['-Rings

This chapter deals with derivation and Jordan derivation of I'-rings to characterize
them in case of semiprime and completely semiprime ['-rings. We recall the definitions
of derivation and Jordan derivation of I'-rings in the first section.

The second section develops some useful consequences regarding the derivation
and Jordan derivation of semiprime I'-rings which are very much needed for proving
our main result in this section and to develop some needful results for the next section.
Then we prove that under a suitable condition every Jordan derivation of a 2-torsion
free semiprime I'-ring is a derivation.

In the next, we develop some immediate consequences relating to the concepts of
derivation and Jordan derivation of completely semiprime I'-rings. The goal of the
third section is to prove an analogous result to the previous one by showing that under
a suitable condition every Jordan derivation of a 2-torsion free completely semiprime

[-ring is a derivation.
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2.1 Introduction

I. N. Herstein [19] proved a well-known result in prime rings that every Jordan deriva-
tion is a derivation. Afterwards, many Mathematicians studied extensively the deriva-
tions in prime rings. M. Bresar [6] has extended this result for semiprime rings. The
concepts of derivation and Jordan derivation in I'-rings have been introduced by M.
Sapanci and A. Nakajima in [36] as below and proved the above mentioned result in

completely prime I'-rings.

Definition 2.1.1. If M is a I'-ring, then an additive mapping d : M — M is called
a derivation of M if d(aab) = aad(b) 4+ d(a)ab is satisfied for all a,b € M and o € T.

Definition 2.1.2. Let M be a I'-ring and d : M — M be an additive mapping of
M. If d(aca) = aad(a) + d(a)aa holds for all @ € M and « € T, then d is called a

Jordan derivation.

In [36], M. Sapanci and A. Nakajima gave an example of a derivation and a Jordan

derivation on a I'-ring in the following way.

Example 2.1.1. Let R be an associative ring with 1 and d : R — R be a derivation.
n.l

Let M = M;5(R) and T = :n € Z p, then M is a I'-ring. Define a
0

mapping D : M — M by D((a,b)) = (d(a),d(b)). Then D is clearly an additive
mapping and hence it is a deriwation on M. Let N = {(a,a) : a € R}. Then N is a
[-subring of M. Define a mapping D : N — N by D((a,a)) = (d(a),d(a)), then D

1s a Jordan deriwvation on N.
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2.2 Jordan Derivations on Semiprime ['-Rings

For the sake of completeness of the study of this chapter, we prepare some useful

results on Jordan derivation of ['-rings in the following way.

Lemma 2.2.1. Let M be a I'-ring and d be a Jordan derivation of M. Then for all
a,b,c € M and o, 3 € T', the following statements hold:

(i) d(aab + baa) = d(a)ab + d(b)aa + aad(b) + bad(a).

(i) d(aabfa + afbaa) = d(a)abfa + d(a)Bbaa + aad(b)fa + afd(b)aa + aabfd(a) +
afbad(a).

In particular, if M is 2-torsion free and satisfies the condition (*), then

(111) d(aabfa) = d(a)abfa + aad(b)Ba + aabfd(a).

(iv) d(aabfc + cabfa) = d(a)abfc + d(c)abfa + aad(b)Fc + cad(b)fa + aabfd(c) +
cabfd(a).

Proof. Compute d((a + b)a(a + b)) and cancel the like terms from both sides to
obtain(i). Then replace afb + bfa for b in (i) to get (ii). Using the condition (*)
and since M is 2-torsion free, (iii) follows from (ii). And, finally (iv) is obtained by

replacing a + ¢ for a in (iii). O

Definition 2.2.1. Let d be a Jordan derivation of a I'-ring M. For all a,b € M and
a € I') we define G, (a,b) = d(aad) — d(a)ab — aad(b). Thus, we have G,(b,a) =
d(baa) — d(b)aa — bad(a).

Remark 2.2.1. d is a derivation of a I'-ring M if and only if G,(a,b) = 0 for all

a,be M and a € T'.

Lemma 2.2.2. Let d be a Jordan derivation of a I'-ring M. For any a,b,c € M and
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a,f €T, (i) Gola,b) + Gu(b,a) = 0; (i1) Go(a+b,¢) = Gula,c) + Gu(b, ¢);
(177) Gala,b+ c) = Gu(a,b) + Gala, ¢); (iv) Gatpla,b) = Gula,b) + Ga(a,b).

Proof. (i) By the definition of G,(a,b) and using Lemma 2.2.1(i), we get

Gala,b) + Ga(b,a) = d(aab) — d(a)ab — aad(b) + d(baa) — d(b)aa — bad(a)
= d(aab + baa) — d(a)ab — aad(b) — d(b)aa — bad(a)
= d(a)ab + d(b)aa + aad(b) + bad(a) — d(a)ab — aad(b)
— d(b)aa — bad(a)
=0.

(ii) By the definition of G,(a,b), we get

Gola+b,¢) =d((a+b)ac) —d(a+ b)ac — (a + b)ad(c)
= d(aac + bac) — d(a)ac — d(b)ac — aad(c) — bad(c)
= d(aac) — d(a)ac — aad(c) + d(bac) — d(b)ac — bad(c)
= Gola,c) + Ga(b, c).

(iii)-(iv): Proofs are obvious. O

Lemma 2.2.3. Assume that M is a 2-torsion free I'-ring satisfying the condition (*)
and d is a Jordan derivation of M. Then for all a,b,m € M and o, 3,7 €T :

(¢) Ga(a, b)Bmrla, bla + la, blafmnGa(a, b) = 0;

(i1) Gala,b)amala,bl, + [a, bloamaGa(a,b) = 0;

(1ii) Go(a,b)fmpBla,bl, + [a, blaSmBG4(a,b) = 0.



Proof. (i) For any a,b,m € M and «, 3,7 € T, using Lemma 2.2.1(iv), we have
W = d(aabfm~ybaa + baafmyaad)
= d((aab)pmy(baa) + (baa)Bmy(aad))
= d(aab)Smybaa + aabBd(m)ybaa + aabfmyd(baa)
+ d(baa)Bmyaad + baafd(m)yaab + baafmyd(aab).
On the other hand, using Lemma 2.2.1(iii)
W = d(aa(bfm~yb)aa + ba(afmya)ab)
= d(aa(bfmyb)aa) + d(ba(afmya)ab)
= d(a)abfmybaa + aad(bfmyb)aa + aabfmybad(a) + d(b)aafmyaad
+ bad(apmya)ab + baafmyaad(b)
= d(a)abfmybaa + aad(b) fmybaa + aabBd(m)ybaa + aabfmyd(b)aa
+ aabfmybad(a) + d(b)aafmyaadb + bad(a)fmyaab + baaBd(m)yaab

+ baafmryd(a)ab + baafmyaad(b).
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Equating two expressions for W and cancelling the like terms from both sides, we get

d(aab) Bmybaa + aabfmyd(baa) + d(baa)Bmyacd + baaBmyd(acd)

= d(a)abfmybaa + aad(b) Bmybaa + aabfm~yd(b)aa + aabfmybad(a)

+ d(b)aafmyaab + bad(a)Smyaab + baafmyd(a)ab + baafmyaad(b).

This gives,

d(aab)Bmybaa — d(a)abfmybaa — aad(b)Smybaa + d(baa)Bmyacb

— d(b)aafmyaab — bad(a)Smyaab + acbfmyd(baa) — acbfmyd(b)aa

— aabpfmybad(a) + baafmyd(aab) — baafmyd(a)ab — baafmyaad(b) = 0.
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This implies,
(d(aab) — d(a)ab — aad(b))fmybaa + (d(baa) — d(b)aa — bad(a)) Bmyacd
+ aabfmy(d(baa) — d(b)aa — bad(a)) + baafSm~y(d(aadb) — d(a)ab — aad(b)) = 0.
Now, using the Definition 2.2.1 and Lemma 2.2.1(i), we obtain

Gola,b)pmybaa + G4 (b, a) fmyaab + aabfmyG, (b, a) + baafm~G,(a,b) = 0.
= G,(a,b)fmybaa — G, (a,b)fmyaab — aabfmyG,(a,b) + baafmyG.(a,b) = 0.
= —Gqo(a,b)pmy(aadb — baa) — (aab — baa)myG,(a,b) = 0.
This implies,
Gaola,b)pmyla, bls + [a, b]ofmyGa(a,b) =0,Y a,b,m € M, «, 3,7 € T.
If we consider W = d(aabamabaa+baaamaaab) and W = d(aabfmpbaa+baafmpBaab)

for (ii) and (iii) respectively and proceeding in the same way as in the proof of (i) by

the similar arguments, we get (ii) and (iii). O
In the rest of this section, M represents a semiprime ['-ring.

Lemma 2.2.4. Suppose a,b,m € M, if aamfBb+ bampBa = 0 for all m € M and
a, B €T, then aamfBb =0 = bamfa.

Proof. Let x € M and 7,0 € I' be any elements. Using the relation aamb+bampBa =
0 for all m € M, a, 8 € T repeatedly, we get
(aamfb)yxd(aamBb) = —(bampBa)yxd(aam(b)
= —(ba(mpPayx)da)ampBb = (aa(mpPBayxr)ob)amBb
= aamfB(ayxdb)amfBb = —aamfB(byrda)amBb

= —(aampBb)yxd(aampb).
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= 2((aampBb)yxo(aampBb)) = 0.

Since M is 2-torsion free, we have
(aampBb)yxd(aamPBb) = 0,V a,b,x,m € M;«, 3,7,0 € I

Therefore,

(aamBb) L' MT (aampBb) = 0,V a,b,m € M;a, 5 € T.

By the semiprimeness of M, we get aamfb = 0. Similarly, it can be shown that

bamBa = 0. O

Corollary 2.2.5. Let d be a Jordan derivation of M, and let a,b,m € M;a,3,v €T
be any elements, then (i) G4 (a,b)Bmyla,bl, = 0; (ii) [a, bloaSmyGa(a,b) = 0;

(131) Go(a, b)amala, bl, = 0; (1) [a, bloamaG,(a,b) = 0;

(v) Gala, B)FmB(a, bla = 0 (v3) [0, blaSmBGala,b) = 0.

Proof. Applying the result of Lemma 2.2.4 in that of Lemma 2.2.3, we obtain these

results. O

Lemma 2.2.6. Suppose d is a Jordan derivation of M, then for any a,b,x,y,m €
M;a, B,v €T, (i) Gala,b)BmBlz, ylo = 0; (id) [z, ylafmBGa(a,b) = 0;
(i17) Gol(a,b)BmpB[z,yl, = 0; (iv) [z, y],fmPBGa(a,b) = 0.

Proof. (i) If we substitute a + x for a in the Corollary 2.2.5(v), we get
Gola+ x,b)BmpBla+ x,bl, =0
This implies,

Gal(a, b)ﬁmﬁ[a, b]a"’Goz(a’ b)ﬁmﬂ[&:, b]a‘i‘Goc(aj’ b)ﬁmﬁ[a’ b]a‘i‘Goc(m’ b)ﬂmﬁ[.ﬁlﬁ, b]a = 0.
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Using Corollary 2.2.5(v), we have
Gala,b)fmflz,bla + Galz,b)Bmpla, blo = 0.

= Gola,b)pmpBx,bl, = —Ga(x,b)Smpla,b],.
Thus, we obtain

(Gala, b)mBlz, ba) BmB(Gala, b)Bmpz, bla) = —Gala, b)BmpBz, blafmBGa(x, b)FmSla, bl
=0.

By the semiprimeness of M, we get
Gola,b)pmpx,bl, = 0.

Similarly, by replacing b + y for b in this result, we get
Ga(a,b)BmpBlz,yla = 0.

(ii) Proceeding in the same way as described above by the similar replacements suc-

cessively in Corollary 2.2.5(vi), we obtain
[z,y],fmpBG(a,b) =0,Y a,b,x,y,m € M,a,3 €T.
(iii) Replacing o + v for a in (i), we get
Ga+7(a7 b)ﬁmﬁ[% ?J]aﬂ = 0.
Using Lemma 2.2.2(iv), we have

(Ga(aa b) + Gv(av b))ﬁmﬁ([:ﬁ, y]a + [‘757 y]v) = 0.

Therefore,

Gaola,b)pmBz, ylat+Gala, b)Bmplz, y]v+G7(aa b)Bmp|z, y]a+G7(aa b)Bmp|z, y]7 = 0.
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Using Lemma 2.2.6(i), we get

Gala,b)BmpBlz,y), + Gy (a, b)mBlz, yla = 0.

= Ga(a,b)Bmplz,yl, = —G,(a,b)Bmplz, yla.
Thus, we obtain
(Gala, b)mpBla, yly) FmB(Gala, b)mplz, yl,) = =Gala,b)Fmb(z, yl,FmBG, (e, b)implz, yla

= 0.
Hence, by the semiprimeness of M, we obtain
Gal(a,b)Bmpflz, yly = 0.

(iv) As in the proof of (iii), the similar replacement in (ii) produces (iv). O
Lemma 2.2.7. ([13], Lemma 3.6.1) Every semiprime I'-ring contains no nonzero

nilpotent ideal.

Corollary 2.2.8. ([13], Corollary 3.6.2) Semiprime I'-rings have no nonzero nilpo-

tent element.

Lemma 2.2.9. ([13], Lemma 3.6.2) The centre of a semiprime I'-ring does not con-

tain any nonzero nilpotent element.

Theorem 2.2.10. Let M be a 2-torsion free semiprime I'-ring satisfying the condition

(*), and let d be a Jordan derivation of M. Then d is a derivation of M.

Proof. Let d be a Jordan derivation of a 2-torsion free semiprime I'-ring M and let

a,b,y,m € M and «, 5 € I'. Then by Lemma 2.2.6(iii), we get
[Ga(a,b),ylsBmPBGala,b),yls = (Gala,b)By — yBGa(a, b)) BmpBGala,b),yls
= Gala,b)BypmpBGala,b), yls — yBGa(a, b)BmpB[Gala,b), yls

=0.
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Since yfm € M and G,(a,b) € M, for all a,b,y,m € M and «, 3 € I'. Hence, by the
semiprimeness of M, [G4(a,b),y]s = 0, where G,(a,b) € M, for all a,b,y € M and
a, 8 € T. Therefore, G,(a,b) € Z(M), the centre of M. Now, let v, € I'. By Lemma
2.2.6(ii), we have

Gola,b)y[x, y]admdéGy(a, b)y[x, yle = 0.

But M is semiprime, we get
Gaola,b)y[z,yla = 0. (2.1)
Also, by Lemma 2.2.6(i), we have
[, YlayGala, b)omd[z, ylayGala, b) = 0.
Hence by the semiprimeness of M, we get
[z, y]ayGal(a,b) = 0. (2.2)
Similarly, by Lemma 2.2.6(iv), we have
Gala,b)y[2,ylsdmoGa(a, b)y[z,y]s = 0.
Since M is semiprime, it follows that
Gaola,b)y[z,y]sg = 0. (2.3)
Also, by Lemma 2.2.6(iii), we have
[z, yl3yGala, b)dmélz, ylgyGala, b) = 0.
Hence, by the semiprimeness of M, we get

[z,y]s7Gala, b) = 0. (2.4)
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Thus, we have

2Ga(a,b)yGal(a,b) = Gala,b)7(Gala, b) + Gala, b))
= Gala, b)Y(Gala,b) — Go(b, a))
= Ga(a,b)y(d(aab) — d(a)ab — aad(b) — d(baa) + d(b)aa + bad(a))
= Ga(a, b)y(d(aab — baa) + (bad(a) — d(a)ab) + (d(b)aa — aad(b)))
= Gala,b)v(d([a,]a) + [b, d(a)la + [d(b), ala)
= Gala,b)yd([a, ba) — Gala, b)v[d(a), bla — Gala, b)v]a, d(b)]a-
Since d(a), d(b) € M, using (2.1), we get
Gal(a,b)yld(a), bla = Gala, b)v[a, d(b)]a = 0.
Therefore,
2Ga(a,b)7Ga(a,b) = Gala, b)yd([a, bla). (2.5)

Adding (2.3) and (2.4), we obtain

Gala, b)ylr, yls + [, y]57Gala, b) = 0.
Then by Lemma 2.2.1(i) with the use of (2.3), we have

0= d(Ga(a,b)y[z,y]s + [x,yl37Gala, )
= d(Gala,b))v[, yls + d([z, yls)1Gala, b) + Gala, b)yd([z, y]) + [z,y]s7d(Gala, b))
= d(Gala,b))v[, yls + 2Ga(a, b)yd([z,yls) + [x, y]s7d(Gala, b)).

Since Gu(a,b) € Z(M) implies d([z,y]5)1Gu(a,b) = Gala,b)yd([z,y]s). Hence, we

get

2Ga(a, b)vd([z, ylp) = —d(Gala, b)) [z, yls = [, ylp7d(Gala, b)). (2.6)
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Then, from (2.5) and (2.6), we have

4G (a,b)vGo(a,b) = 2G4 (a, b)vd(|a, bl,)
= —d(Ga(a, b))’}/[a, b]a - [av b]afyd(Ga(a’v b))

Thus, we obtain
4Ga(a,b)7Gala, b)7Gala, b) = —d(Gala, b))va, blayGala, b)—[a, blayd(Gala, b))yGala, b)
Here, we have by using (2.4)
d(G4(a,b))yla, blayGala,b) =0
and also, by Corollary 2.2.5(vi)
[a, blavd(Go(a, b))vGo(a,b) = 0.
Since d(G,(a,b)) € M, for all a,b € M and « € I'. So, we get
4G, (a,b)vGo(a, b)yGy(a,b) = 0.

Therefore,

4(Gy(a,b)y)*Gy(a,b) = 0.

Since M is 2-torsion free, so we have
(Gala,b)y)*Gala,b) = 0.

But, it follows that G,(a,b) is a nilpotent element of the I'-ring M. Since by Lemma
2.2.9, the centre of a semiprime I'-ring does not contain any nonzero nilpotent element,
so we get Go(a,b) =0 for all a,b € M and « € T'. It means that, d is a derivation of

M. ]
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2.3 Jordan Derivations on Completely Semiprime
['-Rings

In sequel to the last result, now we prove it analogously in case of a 2-torsion free
completely semiprime I'-ring with the condition (*) aabfc = afbac for all a,b,c € M
and «, 0 € I'. That is, here we have to show that under the above condition every
Jordan derivation of a 2-torsion free completely semiprime I'-ring is a derivation of
M. To reach our goal in this section, we develop some useful results in the following

way.

Lemma 2.3.1. Suppose d is a Jordan derivation of a 2-torsion free I'-ring M sat-
isfying the condition (*), then G, (a,b)B[a,bls + [a,b]laBGa(a,b) =0 for all a,b € M
and o, 3 € T.

Proof. For any a,b € M and «, § € I', we have, using Lemma 2.2.1(i)

W = d(aabfbaa + baafaab)
= d((aab)B(baa) + (baa)B(aabd))
= d(aab)f(baa) 4+ (aab)Bd(baa) + d(baa)((aab) + (baa)Bd(aab).

On the other hand, using Lemma 2.2.1(iii)

W = d(ac(bBb)aa + ba(aBa)ab)
= d(a)a(bBb)aa + aad(bfb)aa + aa(bfb)ad(a) + d(b)a(afa)ab
+ bad(afa)ab + ba(afa)ad(b)
— d(a)abBbaa + aad(b) fbaa + aabfd(b)aa + aabfbad(a)

+ d(b)aafaab + bad(a)Baab + baafd(a)ab + baafacd(b).
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Equating the two expressions for W, we get

(d(aab) — d(a)ab — aad(b))fbaa + (d(baa) — d(b)aa — bad(a))Baab
+ aabB(d(baa) — d(b)aa — bad(a)) + baaB(d(aab) — d(a)ab — aad(b)) = 0.
Now, using the Definition 2.2.1, we obtain
Gaola,b)pbaa + Gy (b, a)Baad + aabfG, (b, a) + baaBG,(a,b) = 0.
Using Lemma 2.2.2(i), we have
Gol(a,b)Bbaa — Gy (a,b)Baab — aabBG,(a,b) + baafG,(a,b) = 0.
This implies,

Gala,b)Bla,ble + [a,b]ofGs(a,b) =0,Y a,b € M,a, €T

In the rest of this section, M represents a completely semiprime I'-ring.

Lemma 2.3.2. Let a,b € M and o € T be any elements. If aab + baa = 0, then

aab =0 = baa.

Proof. Let 6 € T" be any element. Suppose a,b € M and « € I' such that aab+baa =

0. Using the relation aab = —baa repeatedly, we get

(aab)d(aad) = —(bava)d(aab) = —(b(aad)a)ab

= (a(aad)b)ab = aa(adb)ab = —aa(bda)ab = —(aab)d(aab).

This implies,
2((aab)d(aad)) = 0.
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Since M is 2-torsion free, thus
(aab)d(aad) = 0.

Therefore, (aab)I'(aad) = 0. By the complete semiprimeness of M, we get aab = 0.

Similarly, it can be shown that, baa = 0. 0

Corollary 2.3.3. If d is a Jordan derivation of M, then for all a,b € M and o, 3 €
[, (i) Ga(a,b)Bla, ble = 0; (i1) [a,bloSGa(a,b) = 0.

Proof. Applying the result of Lemma 2.3.2 in that of Lemma 2.3.1, we obtain these

results. 0

Lemma 2.3.4. For every a,b,xz,y € M, and o, 3,7 € I, the following statements
are true: (i) Go(a,b)fBx,yla = 0; (it) [z, y]|aBGala,b) =0
(i) Gala,5)8l. yl, = 0: (iv) [z, 5}, 3Ga(a,b) = 0.

Proof. (i) If we substitute a + x for a in the Corollary 2.3.3(i), then we get
Gola+ z,b)Bla+ z,b], = 0.
Using Lemma 2.2.2(ii), we have
Ga(a,b)Bla, b + Gala, b)Blx, bl + Ga(x, b)Bla, bla + Galx, b)Blz, blo = 0.

Now, using Corollary 2.3.3(i), we obtain

Gola,b)f[x,blo + Go(z,b)Ba, bl, = 0.
= Go(a,b)fz, bl = —Ga(x,b)bla,b],.

Therefore,

(Ga(aw b)ﬁ[l‘, b]a)ﬁ(Ga(CL, b)ﬁ[l‘, b]a) = _Ga(a7 b)ﬁ[l‘, b]aﬂGa(‘ra b)ﬁ[av b]a = 0.
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By the complete semiprimeness of M, we obtain
Gaola,b)B[z, bl = 0.

Similarly, by replacing b + y for b in this result, we get
Gala,b)f[x,yla = 0.

(ii) Proceeding in the same way as described above by the similar replacements suc-

cessively in Corollary 2.3.3(ii), we obtain
[z, y|afGa(a,b) =0,¥ a,b,x,y € M,a, 3 €T.
(iii) Replacing « + v for a in (i), we get
Gl (@, B2, Yoy = 0.

Using Lemma 2.2.2(iv), we have

(Gala,) + G (0, 0Bz o + [7,5),) = .
= Go(a,b)f[r,y]a + Gula,b) bz, yl, + G,(a,b) B[z, y|o + G,(a,b) 5]z, y], = 0.
Thus using (i), we get
Gaola,b)Bx,yl, + Gy (a,b)B[z,y]a = 0.
= Go(a,b)Bz,y], = —G,(a,b)B[x, yla.
Thus, we have
(Gala, b)Blz, yly)B(Gala, b)Blz, yly) = —Gala, b)Blz, yl,BG,(a, b)Blz, yla = 0.

Hence, by the complete semiprimeness of M, we obtain

Gala.b)Be,yl, = 0.
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(iv) By performing the similar replacement in (ii)(as in the proof of (iii)), we get this

result. O

Lemma 2.3.5. (/13], Lemma 3.7.1) Every completely semiprime I'-ring has no nonzero

nilpotent ideal.

Corollary 2.3.6. ([13], Corollary 3.7.2) Completely semiprime I'-rings have no

nonzero nilpotent element.

Lemma 2.3.7. ([13], Lemma 3.7.2) The centre of a completely semiprime I'-ring

does not contain any nonzero nilpotent element.
We are now ready to prove our main result as follows.

Theorem 2.3.8. Fvery Jordan derivation of a 2-torsion free completely semiprime

[-ring M satisfying the condition (*) is a derivation of M.

Proof. Let d be a Jordan derivation of a 2-torsion free completely semiprime I'-ring

M, and let a,b,y € M;«, 3 € T'. By Lemma 2.3.4(iii), we have

[Gala,b),y]p7[Gala,b), yls = (Gala,b) By — yBGala,b))v[Gala,b), yls
= Gola,0)Byy[Gala,b),yls — yBGala, b)v[Gala,b), yls

=0.

Since fyy € ' and Gy(a,b) € M for all a,b,y € M and «, € I'. Hence, by the

complete semiprimeness of M, we get
(Gola,b),ylpg=0,YVa,bye M;a,B el

= Gola,b) € Z(M),¥Y a,be M;a €T.
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Now, from Lemma 2.3.4(iii)

Gala,b)v[z,yls = 0. (2.7)
Also, by Lemma 2.3.4(iv)
[z,y]37Ga(a,b) = 0. (2.8)
Thus, we obtain
2Ga(a,b)yGa(a,b) = Ga(a, b)y(Gala,b) + Ga(a, b))
= Gola,b)v(Gu(a,b) — Gu(b, a))
= Go(a,b)y(d(aab) — d(a)ab — aad(b) — d(baa) + d(b)aa + bad(a))
= Gu(a,b)y(d(aab — baa) + (bad(a) — d(a)ab) + (d(b)aa — aad(h)))
= Gala, b)y(d([a, bla) + [b, d(a)]a + [d(b), aa)
= Gala,b)7vd([a,bla) — Gala, b)yld(a), bla — Gala,b)v]a, d(b)]a-
Since d(a),d(b) € M, using Lemma 2.3.4(i) , we get
Gala,b)y[d(a),bla = 0 = Ga(a, b)y[a, d(b)]a-
Therefore,
92G (@, b)1Gu(a,b) = Gola, b)yd([a, bla). (2.9)
Adding (2.7) and (2.8), we obtain
Gala, b)ylr, yls + [, y]57Gala, b) = 0.
Then by Lemma 2.2.1(i), we have
0 = d(Gala,b)[z,yls + [2,y]7Gala, b))

= d(Gala, D)z, yls + d([z, yl3)1Gala, b) + Gala, b)yd([z, yls) + [z, yl57d(Gala, b))

= d(Gala,b))v[z,yls + 2Ga(a, b)yd([x, yls) + [7,y]s7d(Gala,b)).
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Since G, (a,b) € Z(M) and therefore

d([z, yls)1Gala, b) = Gala, b)vd([z,y]s).

Hence, we get

2Ga(a, b)vd([z, ylp) = —d(Gala, b))z, yls = [z, ylp7d(Gala, b)) (2.10)
Then from (2.9) and (2.10), we have
Gala,b)yGala, b) = 2G4 (a, b)yd([a, bla)
= —d(Gala,b))7]a, b]a — [a, b]ayd(Gala, b)).
Thus, we obtain

4G o (a,b)yGo(a, b)yGo(a,b) = —d(Gola, b))y[a, blayGal(a, b)—[a, b]ovd(Ga(a, b)) yGala,b).

Here, we have by Corollary 2.3.3(ii), d(Ga(a,b))y]a,blavGa(a,b) = 0, and also by
Lemma 2.3.4(iv), [a, b]oavd(Ga(a, b))yGa(a, b) = 0, since d(G,(a, b)) € M, and yd(G,(a, b))
v €T forall a,b € M,a € I'. Therefore, we get

4G o (a, b)yG4(a, b)yGy(a,b) = 0.

= 4(Ga(a,b)7)’Gala,b) = 0.

Since M is 2-torsion free, so we have
(Gala,b)7)*Gala,b) = 0.

But, it follows that G,(a,b) is a nilpotent element of the I-ring M. Since by Lemma
2.3.7, the centre of a completely semiprime I'-ring does not contain any nonzero
nilpotent element, so we get G,(a,b) = 0 for all a,b € M and o € I'. Thus we

conclude that, d is a derivation of M. O



Chapter 3

Higher Derivations

In view of the notions of derivation and Jordan derivation of I'-rings, here we introduce
the concepts of higher derivation and Jordan higher derivation of I'-rings. Following
the notions of higher derivation and Jordan higher derivation of I'-rings we then
introduce the concepts of higher left derivation and Jordan higher left derivation
of I'-rings. Introductory discussions concerning these concepts are described in the
first section. Finally, we introduce the concepts of generalized higher derivation and
Jordan generalized higher derivation of I'-rings in the first section.

In the second section, we show that under a suitable condition, the existence of
a nonzero Jordan higher left derivation on a 2-torsion free prime I'-ring M forces M
commutative.

We use the concept of Jordan derivation and derivation of a ['-ring introduced by
M. Sapanci and A.Nakajima in the third section to develop a number of important
results on Jordan derivations of a 2-torsion free I'-ring. Here, we show that every
Jordan derivation of a 2-torsion free prime I'-ring is a derivation which is very much

needed for proving the remaining result of this chapter.

62
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Our main result in the fourth section aims to prove that, every Jordan higher
derivation of a 2-torsion free prime I'-ring with the condition aabfc = afbac for all
a,b,c € M and o, 8 € T, is a higher derivation of M.

Then we prove the analogous result corresponding to the above mentioned result
considering Jordan generalized higher derivation of a prime I'-ring instead of Jordan
higher derivation of a prime I'-ring almost similar way which states that every Jordan
generalized higher derivation of a 2-torsion free prime I'-ring is a generalized higher

derivation.

3.1 Introduction

In classical ring theory, I. N. Herstien [21], introduced the notions of derivation and
Jordan derivation of rings; he proved in [19] that, every Jordan derivation in a 2-
torsion free prime ring is a derivation. M. Ferrero and C. Haetinger [15] extended
Herstein’s theorem to higher derivations, by using Jordan triple higher derivations.
Also, Haetinger in [17] worked on higher derivations on prime rings and extended
Awtar’s result [3] to higher derivations in Lie ideals of prime rings.

By the motivations of the above mentioned works, in this chapter we work on
higher derivation, Jordan higher derivation, higher left derivation, Jordan higher left
derivation, generalized higher derivation and Jordan generalized higher derivation of
[-rings.

The notions of derivation and Jordan derivation of I'-rings have been introduced

by M. Sapanci and A. Nakajima [36] as follows.

Definition 3.1.1. For a I'-ring M, if d : M — M is an additive mapping such
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that d(aab) = d(a)ab + aad(b) holds for all a,b € M and a € T, then d is called a
deriwation of M ; d is called a Jordan derivation of M if d(aca) = d(a)aa + aad(a)
holds for all @ € M and o € T.

Following these derivations, here we introduce higher derivation and Jordan higher

derivation of I'-rings in the following way.

Definition 3.1.2. Let D = (d;)ien, be a family of additive mappings of a I'—ring
M such that dy = idys, where idy, is an identity mapping on M and Ny = N U {0}.
Then D is a higher derivation of M if for each n € Ny and i, j € Ny,

(aad) Zd b),Va,be M;a €T,

i+j=n

and D is a Jordan higher derivation of M if

(aca) Z d;(a ),WWae M;ael.

i+j=n

Example 3.1.1. Let R be an associative ring with 1. Let us consider M = M 5(R)

n.1l
and I' = n€Z p, then M is a I'-ring. Let f, : R — R be a higher

0
derivation for each n € Ny. Forn € Ny, we define additive mappings d,, : M — M by

d,((a,b)) = (fu(a), fu(b)). Then an easy verifications leads to us that d,, is a higher
derivation of M. Let P = {(a,a) : a € R}, then P is a I'-ring contained in M. In
fact, P is a sub I'-ring. Define d,((a,a)) = (fn(a), fu(a)), then d, is a Jordan higher

derivation of P.

Continuing in the similar way as that has been done by the earlier prominent
algebraists we then introduce higher left derivation and Jordan higher left derivation

of I'-rings in the following way.



65

Definition 3.1.3. Suppose D = (d;);en, is a family of additive mappings of a I'-ring
M such that dy = idy;, where idy; is an identity mapping on M and Ny = N U {0}.
Then D is called a higher left derivation of M if for each n € Ny and 7, 57 € Ny,

dp(acb) = Y (di(a)ad;(b) + di(b)ad;(a)),V a,b € M;a €T,

i+j=n.i<j

and D is called a Jordan higher left derivation of M if

dy(aca) = Z di(a)ad;(a),Va e M;a el

i+j=n,i<j
Example 3.1.2. Let the I'-ring M as in Example 3.1.1 Suppose N = {(a,a) : a € R},
then N is a I'-subring of M. If d, : R — R is a higher left derivation for each
n € Ny. Then for n € Ny, we define the additive mappings D, : M — M by
Dy, ((a,b)) = (dn(a),dn(b)). Then it is clear that D,, is a higher left derivation on M.
If we define a mapping D,,: N — N by D,((a,a)) = (d,(a),d,(a)), then it is obvious
that D,, is an additive mapping and therefore D, is a Jordan higher left derivation
on M.

The notions of generalized derivation and Jordan generalized derivation of a I'-ring

have been introduced by Y. Ceven and M. A. Ozturk [11] as below.

Definition 3.1.4. Assume that M is a I'-ring and f : M — M be an additive
mapping. Then f is called a generalized derivation of M if there exists a derivation
d: M — M such that f(aab) = f(a)ab+ aad(b) holds for all a,b € M and o € T'; f
is a Jordan generalized derivation of M if there exists a derivation d : M — M such

that f(aca) = f(a)aa + acd(a) holds for all @ € M and o € T.

Finally, we introduce generalized higher derivation and Jordan generalized higher

derivation of I'-rings as follows.
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Definition 3.1.5. If F' = (f;)icn, is a family of additive mappings of a I'-ring M such
that fo = idy;, where idy; is an identity mapping on M and Ng = N U {0}. Then F
is said to be a generalized higher derivation of M if there exists a higher derivation

D = (d;)ien, of M such that for each n € Ny and i, j € Ny,

n(aad) Zfl Jad;(b),V a,be M;a €T,

i+j=n
and F' is said to be a Jordan generalized higher derivation of M if there exists a higher

derivation D = (d;);en, of M such that

(aca) Zfz Jadj(a),Y a € M;a eT.

i+j=n
Example 3.1.3. Let R be an associative ring with 1 and let F = (f;)ien be a gen-
eralized higher derivation on R. Then there exists a higher derivation D = (d;)ien
of R such that fo(zy) = >, ;_, fi(x)d;(y), for all z,y € M. Now if we us consider
the T-ring M as in Example 3.1.1, and define the mapping K = (k;)ien of M by
kn((z,y)) = (dn(x),dn(y)), then K is a derivation of M. Let G = (gi)ien be an
additive mapping of M defined by g,((z,v)) = (fu(z), fu(y)). Then it is clear that
G is a generalized higher derivation on M with the associated derivation K. Let us
define N = {(x,x) : x € R} of M, then N is a I'-ring contained in M. We define the
mapping G = N — N by gn((z,2)) = (fu(2), fu(z)) and kn((z,2)) = (dn(2), dn(z)),
then we have seen that G is a Jordan generalized higher derivation on N with the

associated generalized higher derivation K.

Throughout this chapter (unless otherwise stated), M is a 2-torsion free prime
[-ring which satisfies aabfc = afbac for all a,b,c € M; o, € I' and we use the

symbol (*) corresponding to this assumption.
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3.2 Commutativity in Prime ['-Rings with Jordan
Higher Left Derivations

M. Soyturk [37] investigated the commutativity of prime I'-rings with left and right
derivations. He obtained some significant results on the commutativity of prime I'-
rings of characteristic not equal to 2 and 3. M. Asci and S. Ceran [1] obtained some
commutativity results of prime I'-rings with left derivations. Some commutativity
results in prime rings with Jordan higher left derivations were obtained by Kyuoo-
Hong Park [34] on Lie ideals and obtained some fruitful results relating this.

In sequel to the result of the first chapter, here we prove it analogously in case of
higher left derivation. That is, we show that under a suitable condition, the existence
of a nonzero Jordan higher left derivation on a 2-torsion free prime I'-ring M forces

M commutative.

Theorem 3.2.1. Let A = (d,)nen be a Jordan higher left derivation on M. If A # 0,

that is, if there exists n € N such that d,, # 0, then M is commutative.

Proof. We use the method of induction. If n = 1, that is, if d; is a Jordan left
derivation on M, then we assume that M is non commutative. By the proof of
Theorem 1.4.1, we have d;(a) = 0, for all @ € M. Assume that n > 2 and d,,, = 0 for
all m < n. Then d, is a Jordan left derivation on M and from the above argument,

it follows that d,, = 0. Hence we conclude that A = 0. This completes the proof. [J
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3.3 Jordan Derivations in Prime ['-Rings

In this section, we show that every Jordan derivation of a 2-torsion free prime I'-ring

is a derivation. For this we prepare the following Lemma.

Lemma 3.3.1. Let a,b € M be any elements. If aampBb + bampBa = 0 for all
mée M;a,3 €T, thena=0 orb=0.

Proof. Replacing m by sdaut in aampBb + bamfBa = 0, where s,t € M;0,u € T,
we get aasdautSb + basdautPa = 0. Since basda = —aasdb and autSb = —butfBa.

Substituting these, we obtain
— aasdbutfBa — aasébutfBa = 0.
= 2aasdbutfa = 0.

Since M is 2-torsion free, so
aasobutfa =0,Yte M; B, u €.

Therefore, (aasdb)I'MT'a = 0,Y a,b,s € M;«,d € I'. Since M is prime, thus we have
aasdb = 0 or a = 0. Suppose aasdb = 0. Again applying the primeness of M, we get
a=0orb=0. O]

Theorem 3.3.2. If d is a Jordan derivation of a 2-torsion free prime I'-ring M

satisfying the condition (*), then d is a deriwation of M.

Proof. By Lemma 2.2.3 and Lemma 3.3.1; M being prime, we have G,(a,b) = 0 or
la,b], =0. Foralla e M,let A={be M : G,(a,b) =0} and B={be€ M : [a,b], =
0.} Then A and B are two additive subgroups of M such that AU B = M. Then by
the Brauer’s trick, either A = M or B = M.
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By the similar argument, let M ={a e M : M = A} or M ={a € M : M = B}.
For the later case, M is commutative. That is, aab = baa. In view of Lemma 2.2.1(i),
we have 2d(aab) = 2d(a)ab + 2aad(b). Since M is 2-torsion free, we obtain that d
is a derivation of M. For the former case, G,(a,b) = 0 and it follows that d is a

derivation on M. ]

3.4 Jordan Higher Derivations in Prime ['-Rings

The objective of this section is to study Jordan higher derivations of prime I'-rings.
Higher derivations have been studied by many authors [14, 15, 16, 17, 32, 34] in
classical rings. We extend some of these results in prime I'-rings by the concept of
Jordan higher derivations.

Here, we extend the result of W. Cortes and C. Haetinger [14] considering Jordan

higher derivations in prime I['-rings.

Lemma 3.4.1. Assume that D = (d;)sen is a Jordan higher derivation of M. Then
for all a,b,c € M;a, 6 €T andn € N,

(i) dn(acb +baa) = ¥, [di(a)ad; (b) + di(b)ad,(a)];

(ii) dn(acbBa) = 3, i nldi(a)ad;(b) Bdi(a)];

(iii) dn(aabBe + cabBa) = Y.,y [di(a)ad; (b) By (c) + di(c)ad;(b)Bdi(a)).

Proof. The proofs of (i) and (ii) are similar to the corresponding proofs of Lemma

2.2.1(i) and Lemma 2.2.1(iii). Replacing a by a + ¢ in (ii) and using (ii), we obtain

W =d,((a + c)abB(a+c)) Z di(a + c)ad;(b)Gdy(a + c)

i+j+k=n
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= > (di(a) + di(c))ad;(b)B(dx(a) + di(c) = > di(a)ad;(b)Bdx(a)
i+j+k=n i+j+k=n

+ > di(a)ad;(0)Bdr(c)+ Y di(c)ad;(b)Bdi(a)+ > di(c)ad;(b)Bdi(c).

i+j+k=n i+j+k=n i+j+k=n

Also, we have

W = d,(aabfBa + aabfc + cabfa + cabfc)

= d,,(aabBa) + d,,(cabfc) + d,(aabfc + cabfa)

= > di(a)ad;(b)Bdr(a) + > dif (b)Bdy,(c) + d,(aabfc + cabfa).
i+j+k=n i+j+k=n
By comparing the two results for W, we obtain (iii). O

Definition 3.4.1. For every Jordan higher derivation D = (d;);en of M, we define
¢n(a,b) = dy(aad) — 3, ;_, di(a)ad;(b) for all a,b € M;a € " and n € N.

Remark 3.4.1. D is a higher derivation of M if and only if ¢%(a,b) = 0 for all
a,be M;a el and n € N.

Lemma 3.4.2. For every a,b,c € M;a,8 €T andn € N,
(1) p(a,b) + ¢ (b, a) = 0; (ii) ¢y (a+ b, c) = ¢ (a, c) + ¢7(b, ¢);
(i) 62(a,b+ ¢) = ¢8(a,b) + 62 (a, o); (iv) 6277 (a,b) = 62 (a,b) + d2(a,b).

Proof. (i) By the Definition 3.4.1 and using the Lemma 3.4.1(i), we obtain

¢ (a,b) + ¢ (b,a) = dy(aab) — Y di(a n(baa) = Y dib

i+j=n i+j=n

= d,(aab + baa) — Z di(a)ad;(b) — Z d;(b)ad;(a

i+j=n i+j=n

= > dia)ad;(b) + Y di(bad;(a) = > di(a)ad;(b

i+j=n 1+j=n i+j=n

— > di(b) =0.

i+j=n
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(ii) By the Definition 3.4.1, we get

¢(a+0b,c) =dy((a+b)ac) — Zda—l—bad c)

i+j=n
= d,(acc + bac) — Z d;(a)ad;(c) — Z d;(b)ad;(c
i+j=n i+j=n
(aac) Z d;( n(bac) — Z d;(b
i+j=n i+j=n
= ¢h(a,¢) + (b, ).
(iii)-(iv): These are also easy to proof. O

Lemma 3.4.3. Suppose D = (d;)ien is a Jordan higher derivation of a I'-ring M.
Let n € N and assume that a,b € M;«,(,v € I'. If ¢ (a,b) =0, for every m < n,

then ¢%(a,b)Bwyla,bls + [a, blafwyds(a,b) =0, for every w € M.
Proof. We consider G = d,,(aabfwybaa + baafwyaab). First, we compute
G = d,(aa(bfwyb)aa) + d,(ba(afwya)ab).

Using Lemma 3.4.1(ii), we have

= Y di(a)ad,(bBwyb)adi(a) + > di(b)ad,(aBwya)ad(b)

i+p+l=n i+p+i=n
= Y di(a)ad;(0)Bdi(w)ydi(D)adi(a)+ D di(b)ad;(a)Bdy(w)ydy(a)ady (D).
i+j+k+ht=n i+j+k+htl=n

On the other hand
G = d,((aab)fwy(baa) + (baa)Bwy(aab)).

Using Lemma 3.4.1(iii), we obtain

G = Z (d,(aab)Bds(w)ydi(baa) 4 d,(baa)Bds(w)yd:(aab))

r4+s+t=n

Z d,(aab)fds(w)ydi(baa) + Z d,(baa)Bds(w)yd(aad).

r+s+t=n r+s+t=n
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Thus comparing both expressions for GG, we obtain

> di(a)ad;(b)Bde(w)ydy(b)adi(a) = > dr(aab)Bd,(w)ydy(baa)
i+j+k+h+l=n r+s+t=n
+ Y dib)ad;(a)Bdi(w)ydn(a)ad(b)— Y d.(baa)Bd,(w)yd;(aab) = 0.
i+j+k+h+l=n r4s+t=n

(3.1)

By the inductive assumption we can put d,(zay) for > d;(z)ad;(y), when r < n.

i+j=r

Therefore,

> di(a)ad;(b)Bd(w)ydy(b)adi(a) — Y d.(aad)Bd,(w)yd,(baa)

i+j-+k+h+l=n rtstt=n

Z di(a b)) Bwybaa + aabBwy( Z dp(b)ad;(a))

i+j=n h+l=n

i+j<n,h+l<n

+ Z d;(a)ad;(b)Bd(w)ydy(b)ad(a) — d,((aab)Bwy(baa)
it+j+k+h+l=n
i+j=r<n,p+q=t<n

— (aab)fuwyd,(baa) — Y di(a)ad;(b)Bdy(w)ydy(b)ad,(a)
r+s+t=n
= ((acb) — Z di(a B(wybaa) — (aabfw)y(d, (baa) — Z dp(b)ad(a
i+j=n h+l=n

= —(¢n(a,b)fwybaa + aabfwyen(b,a)). (3.2)

Similarly,

> di(b)ad;(a)Bde(w)ydy(a)adi(b) — D dy(baa)d(w)yd,(aad)

i+j-+k+h+i=n rtstt=n

—(¢%(b, @) Bwyaab + baafwyes(a,b)). (3.3)

Hence, by using (3.2) and (3.3) in (3.1), we get

o5 (a,b)fwybaa + aabfwyds(b,a) + @5 (b, a)pwyaadb + baafwyds(a,b) = 0.
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By Lemma 3.4.2(i), we have

o5 (a,b)fwybaa — aabfuwyds(a,b) — ¢n(a,b)fwyaad + baafwyds(a,b) = 0.

This implies,

(b';f(a, b)ﬁwv[a, b]a + [aa b]a5w7¢g(a, b) = O,V w e M.

Now, we prove the main result.

Theorem 3.4.4. Let M be a 2-torsion free prime I'-ring satisfying the condition (*).

Then every Jordan higher derivation of M is a higher derivation of M.
Proof. By definition, we have

¢y (a,b) =0,Va,be M,aeT.
Also, by Theorem 3.3.5,

¢¥(a,b) =0,Va,be M,aeT.

Now, we proceed by induction. Suppose that, ¢ (a,b) = 0. This implies , d,,(aab) =
> itjem dila)ad;(b) forall a,b€ M;a €I and m < n. Taking a,b € M, by Lemma

3.4.3, we get
¢f{(a» b)ﬁw’Y[aa b]a + [CL, b]aﬁwV(bz(aa b) =0,YweMapByel.

Since M is prime, so by Lemma 3.3.1 ¢%(a,b) = 0, or [a,b], = 0. Using the similar
arguments as used in the proof of Theorem 3.3.2, we obtain that every Jordan higher

derivation of M is a higher derivation of M. ]
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3.5 Jordan Generalized Higher Derivations in Prime
['-Rings

The notion of generalized derivation was introduced by B. Hvala [23] and M. Bresar
[7]. Afterwards, many authors have investigated comparable results on prime and
semiprime rings with generalized derivations. The notions of generalized derivation
and Jordan generalized derivation of I'-rings have been introduced by Y. Ceven and M.
A. Ozturk [11]. A. Nakajima [32] defined the notion of generalized higher derivations
and investigated some elementary relations between generalized higher derivations
and higher derivations in the usual sense. W. Cortes and C. Haetinger [14] proved
that every Jordan generalized higher derivations of a ring is a generalized higher
derivation.

We extend the above mentioned result in prime I'-rings considering Jordan gener-
alized higher derivations of prime I'-rings. We need the following Lemmas for proving

this result.

Lemma 3.5.1. Let F' = (f;)ien be a Jordan generalized higher derivation of a I'-ring
M with the associated higher derivation D = (d;);en. Then for each fired n € N; for
all a,b,c € M and o, 3 € T', the following statements hold:

(i) fulacb + baa) = ¥, [fi@)ad;(8) + fi(bads(a)];

(2) fo(aabBa) = Zi+j+k:n[fi(a)04dj(b)ﬁdk(a)];

(i) fulaabfe + cabBa) = X, pnfi(@)ads (0)3de(c) + filc)ads (5) (@)

Proof. Since F' = (f;)ien, is a Jordan generalized higher derivation of M, we have

fulaaa) = Y fi(a)d;(a).

i+j=n
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Now, replacing a+b for a and simplifying, we obtain (i). Then replacing b by ab+bfSa
in (i) and using the condition (*), we obtain (ii). For (iii), we replace a by a + ¢ in

(ii), we obtain

w = (a+ c)abf(a + c)

= falw)= > fia)ad;(0)Bdk(c) + Y filc)ad;(b)Bdx(a)
i+j+k=n i+j+k=n
+ Y fila)ad;(b)Bd(a) + > fila)ad;(b)Bdy(c).
i+j+k=n i+j+k=n

On the other hand, using (ii)

falw) = falaabfe + cabfa) + Z (fila)ad;(b)Bdr(a) + fi(c)ad;(b)Bdk(c)).

i+j+k=n

Comparing the above two expressions for f,(w), we obtain (iii). ]

Definition 3.5.1. For every Jordan generalized higher derivation F' = (f;);en of M,
we define ¢ (a,b) = fu(aad) =32, ,_, fila)ad;(b), for all a,b € M;v € T'and n € N.

Lemma 3.5.2. With our notations as above, the following are true:
() 5 (b, a) = =i (a, b); (id) ¥5(a+ b, c) = ¥i(a, c) + (b, c);
(i1i) ¥y (a, b+ ¢) = ¥ (a, b) + U5 (a, 0); (iv) ¥ (a,b) = ¥y (a,b) + ¥ (a, b).

Proof. (i) By the definition of ¢%(a,b) and using Lemma 3.5.1(i), we obtain

Ui(a,b) + ¥ (b,a) = fulaab) = Y fila)ad;(b) + fu(baa) = > fi(b)ad;(

i+j=n i+j=n
= falaad + baa) — > fila)ad;(b) — > fi(b)ad;(a)
i+j=n i+j=n
= Y fila)ad;(b)+ Y filbad;(a) = > fila
i+j=n i+j=n i+j=n

— > filb)ad;(a) =

i+j=n
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(ii)-(iv): The proofs are obvious. O

Remark 3.5.1. Tt is clear that, F'is a generalized higher derivation of M if and only
if Y% (a,b) =0 for all a,b € M,a €I and n € N.

Lemma 3.5.3. If F' = (fi)ien is a Jordan generalized higher derivation with the asso-
ciated higher derivation D = (d;);en of a U-ring M. Assume that a,b € M; o, 3,7 €T
andn € N. If Y% (a,b) =0 for every m < n, then ¥%(a,b)Bwy|a, bl = 0, for every

w e M.

Proof. Let G = f,(aabfwybaa + baafwyaab). Using Lemma 3.5.1(ii) and Lemma

3.4.1(ii), we obtain

G = folaa(bfuwyb)aa) + fn(ba(afwya)ab)

= Y fila)ad,(bBuwyb)adi(a) + Y fi(b)ad,(aBwya)ady(b)

i+p+l=n i+p+i=n
= Y fia)ad;(d)Bdy(w)ydu(b)adi(a)+ Y filb)ad;(a)Bdi(w)ydy(a)ady(b)
i+j+k+h+i=n i+j+k+h+l=n

On the other hand, using Lemma 3.5.1(iii), we get

G = fu((aab)pwy(baa) + (baa)Bwy(aab))

= > (f(aab)Bd(w)ydy(baa) + f(baa)Bd,(w)yd,(aabd))

r+s+t=n

= Y filaab)Bd(w)yydy(baa) + Y f,(baa)Bds(w)yd,(aad)

r+s+t=n r+s+t=n
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Comparing the two expressions for GG, we have

> fila)ad;(b)Bdp(w)ydy(b)adi(a) — > fr(aab)Bdy(w)yd(baa)

i+j+k+h+l=n r+s+t=n
Y. frlbaa)Bd(w)ydi(aab) — Y (filb)ad;(a)Bdy(w)ydy(a)ad,(b).
r+s+t=n i+j+k+h+l=n

(3.4)
Since fu(ray) = >, ;. fi(z)ad;(y), when m < n and D = (d;)ien is a higher

derivation of M. Therefore,

> fila)ad;(b)Bdp(w)ydy(b)adi(a) = > fr(aab)Bd(w)ydy(baa)

i+j+k+h+l=n r4+s+t=n
Z fi(a)ad; (b)) fwybaa + aabBwy( Z dp(b)ad(a))
i+j=n h+l=n
i+j<n,htl<n

+ > (fi(a)ad;(0)Bd(w)ydn(b)adi(a)) — fu((aab)uwy(baa)
i+j+k+h+l=n
i+j=r<n,pt+q=t<n

— (aab)Bwyd, (baa) — > (fila)ad;(b)Bds(w)ydy(b)ad,(a))

r+s+t=n

—(fn((acb) — Z fila)ad;(b))S(wybaa) — (acbfw)y(d, (baa) — Z dp(b)ad(a
i+j=n h+l=n

— (W5 (a, b)Buwybaa + aabfwydy (b, a)). (3.5)

Similarly,

> (filb)ad;(a)Bdy(w)ydy(a)ad (b)) — Y (dr(baa)dd,(w)yds(aab))

i+j+k+h+l=n r—+s+t=n

= — (o (b, a) fwyaadb + baafwyen(a,b)). (3.6)

Hence, by using (3.5) and (3.6) in (3.4), we get

P (a, b)fuybaa + aabBfwyen(b,a) + ¥ (b, a)Bwyaad + baafwydy(a,b) = 0.
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By Lemma 3.5.2(i), we have

¢ (a,b)Buwrbaa — aabBuydl(a,b) — v5(a,b)Fwyaab + baafuwydl(a,b) = 0.
This implies,
02 (a, B)Bun{a, bla + [0, blafuwr62 (a,b) = 0, w € M.

Since D = (d;);en is a higher derivation of M. Thus, by Theorem 3.4.4, we have

¢%(a,b) =0 for all a,b € M;a € I';n € N and hence accomplishes the proof. ]
Lemma 3.5.4. For all a,b,c,d € M and o, 3,7 € T, ¥%(a,b)Bwyc,d], = 0.

Lemma 3.5.5. Ifa,b,c,d € M and o, 3,7,0 € I' are any elements, then

Y (a,b)Bwyle,d]s = 0.

The proofs of the above two lemmas are similar to the proof of Lemma 2.19 and

Lemma 2.20 in [12].

Lemma 3.5.6. Let M be a commutative I'-ring, and let F' = (f;)ien be a Jordan
generalized higher derivation of M with an associated higher derivation D = (d;);en-
Assume that a,b € M;a,5 € T and n € N. If Y% (a,b) = 0 for all m < n, then
VP (a,b)aa = 0.

Proof. Since M is a commutative ['-ring and D = (d;);cy is a higher derivation of M.
Let W = f,(acaBb + bBaca) = f,(ac(apb) + (aBb)aa). Then using Lemma 3.5.1(i),
we have

W =Y (fi(a)ad;(apb) + fi(aBb)ad;(a))

i+j=n

= > (fila)adi(a)Bd(0)) + > (fi(aBb)ad;(a)).

i+k+l=n i+j=n
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On the other hand, using Lemma 3.5.1(ii) and commutativity of M, we get

W = f.(acaBb + bfaaa) = f,(aabfa) + f.(afbaa)

> fila)ad;(b)Bdp(a) + Y fi(a)ad;(b)Bdi(a)

i+j+k=n i+j+k=n
> fila)ad;(a)Bdp(d) + > fila)ad;(b)Bdi(a).
i+j+k=n i+j+k=n

Comparing both expressions for W and cancelling the like terms from both sides, we

obtain

Z fz aﬁb ad Z fz 6d Ozdk<(l).

i+j=n i+j+k=n
By assumption, we can put fn,(apb) = >, ;_,, fi(a)Bd;(b), when m < n. Therefore,

i+j<n r4+s=i<n
> fila)Bd;(b)adi(a)+fu(aBb)aa—( > fi(a)Bd;(b)aa— Y fr(a)Bds(b)ad;(a).
i+j+k=n i+j=n i+j=n
= (falaBb) = Y fi(a)Bd;(b))aa = 0.
i+j=n

= 1%(a,b)aa =0,V a,b € M;o, 3 € T;n € N.
[

We are now concluding this chapter by proving our main result of this section as

follows.

Theorem 3.5.7. Fvery Jordan generalized higher derivation of a prime I'-ring is a

generalized higher deriwation.

Proof. Let F = (fi)ieny be a Jordan generalized higher derivation of a prime I'-ring
M. By definition ¢§(a,b) = 0 for all a,b € M and a € I". Also, by Theorem 2.4 in
[11], we have

¢?(a7b>207 Va,bEM;aGF.
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Now, we proceed by induction. Suppose that % (a,b) = 0, this implies, d,,(aab) =
> ivjem fila)ad;(D), for all a,b € M and o € I and m < n. Taking a,b,¢c,d € M
and «, 3,7, € I'. By Lemma 3.5.5, we get ¢¥%(a, b)Bw~y|c,d]s = 0, for every w € M.
Since M is prime, ¥%(a,b) = 0, or [¢,d|s = 0. If [¢,d]s # 0, then ¥%(a,b) = 0. If
[e,d]s = 0, that is, cdd — déc = 0,V ¢,d € M;§ € T', then M is commutative. Now,

by Lemma 3.5.6 and commutativity of M, we obtain
Y5 (a,b)aa = 0.

By linearizing of the above expression with respect to a yields

Y (a+c,b)afa+c) =0.
= Y5 (a,b)aa + Y7 (c,b)aa + ¥ (a, b)ac + P2 (c, b)ac = 0.
= VP (c,b)aa + ¥’ (a,b)ac = 0.

= ’(a,b)ac = —?(c,b)aa,¥ a,b,c € M;a, B €T.

Since M is a commutative. Thus, for all m € M;a,v,d € T', we have

(¥ (@, b)ac)yymd (¢ (a,b)ac) = —(¥;(c, b)aa)ymd (v (a, b)ac)
= — (¢ (c,b)ac)yymd(¥)(a, b)aa)
= 0.
Since M is prime, we have ¥%(a, b)ac = 0. Therefore, ¢%(a, b)acyt?(a,b) = 0, for

c € M and v € T'. By the primeness of M, we get ¥°(a,b) =0,Ya,be M;3€l. O



Chapter 4

Derivations on Lie Ideals

We start the discussion with the introductory definitions of derivation and Jordan
derivation on Lie ideals in I'-rings. Then we introduce the concepts of higher deriva-
tion and Jordan higher derivation on Lie ideals in I'-rings.

In the next, we develop some consequences relating to the concept of Jordan
derivations on Lie ideals of I'-rings. Then we prove that if d : M — M is a Jordan
derivation on an admissible Lie ideal U of a 2-torsion free prime I'-ring M, then
d(uav) = d(u)av+uad(v) for all u,v € U;a € T', and if U is a commutative Lie ideal
of M such that uau € U for all u € U;a € T, then d(uav) = d(u)ov + uad(v) for all
u,v €U and a € T'.

In the third section of this chapter, we prove the analogous results corresponding
to the above mentioned results with the same conditions considering Jordan higher
derivations on Lie ideals of prime I'-rings instead of Jordan derivations on Lie ideals

of prime I'-rings almost similar way:.

81
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4.1 Introduction

I. N. Herstein [19] proved a well-known result in prime rings that every Jordan deriva-
tion is a derivation. Afterwards many Mathematicians studied extensively the deriva-
tions in prime rings. Awtar [3] extended this result in Lie ideals.

We introduce the concept of derivation and Jordan derivation on Lie ideals of

['-rings to extend the above mentioned results in the following way.

Definition 4.1.1. If U is a Lie ideal of a I'-ring M. An additive mapping d : M — M

is said to be a derivation on a Lie ideal U if
d(uow) = d(u)av + uad(v),¥ u,v € U;a € T,
and d : M — M is said to be a Jordan derivation on a Lie ideal U if
d(uau) = d(u)ou + vad(u),¥ u € U;a € T.

We now give examples of a Jordan derivation and a derivation on a Lie ideal U of

a [-ring M, where M satisfies aabBc = afbac for all a,b,c € M;a, (3 €T

Example 4.1.1. Suppose a € M and o € T are fized elements. Define d : M — M
by d(z) = aax — zaa¥ x € U. Then for ally € U and f €T,

d(yBy) = ac(yPy) — (yBy)ea
= aoyPy — yoafy + yaafy — yPyaa
= (aay — yaa)By + yPaay — yByaa
= (aay — yaa)By + yB(aay — yaa)

=d(y)py +yBd(y),YyeU;BeT.
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Therefore, d is a Jordan derivation on U. Again for all x,y € U and § € T', we have

d(xBy) = aa(zfy) — (zBy)aa
= aaxBy — xaafBy + vaaBy — xfyaa
= (aox — zaa) By + xfacy — xfyaa
= (acx — raa)By + xB(acy — yaa)
=d(z)By + xBd(y),¥ z,y € U; 3 € T.

Hence d is a deriwation on U of M.

We now give an example of a Jordan derivation on a Lie ideal of a I'-ring which

is not a derivation on a Lie ideal of a I'-ring.

Example 4.1.2. If U is a Lie ideal of a I'-ring M, and Let d : M — M be a
derivation on U. Suppose My = {(z,x) :x € M} and I'y = {(a, ) : a € T'}. Define

addition and multiplication on M by

(z,2) + (y,y) = (¢ +y, 2 +y) and (z,2)(o, a)(y, y) = (zay, roy)
then My is a T'y-ring. Define Uy = {(u,u) : u € U}, for uar — zau € U,
(u7 u) (Oé, Oé) (ZE, 3?) - (Zﬂ, I‘)(Oz, Oé) (u7 U,) = (UO[,I‘, UQ$) o (LUO[U, .’L‘OéU)
= (uax — rau, uar — rau) € Uy

Hence Uy is a Lie ideal of My. Define a mapping D : My — M; by D((z,x)) =

(d(x),d(x)). Then it is clear that D is an additive mapping on Uy of M,. For all
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(u,u) € Up; (v, c0) € Ty, we get
D((u, w)(av, @) (u,w)) = D((uou, uaw))

= (d(uaw), d(uau))
= (d(u)ou + uad(u), d(w)ou + uad(u))
= (d(u)au, d(u)au) + (uod(u), uad(w))
— (d(u), d(u))(c, @) (1) + (u,u)(a, @) (d(w), d(u))
— D((u, w) (@, @), u) + (u, w)(ev, @) D((u, ).

Therefore, D is a Jordan derivation on Uy, of My which is not a derivation on Uy of

M.

Now, we introduce the concepts of higher derivation and Jordan higher derivation

on Lie ideals in I'-rings as follows.

Definition 4.1.2. If D = (d;);en, is a family of additive mappings on a Lie ideal U
of a I'-ring M such that dy = idy;, where id); is an identity mapping on M and N
denotes the set of natural numbers including 0. Then D is called a higher derivation
on a Lie ideal if for each n € Ny and 7,7 € Ny,

(aad) Zd b),Va,beU,a €T,

i+j=n

and D is called a Jordan higher derivation on a Lie ideal if

(aca) Zd ),VaeU;ael.

i+j=n

Example 4.1.3. Let R be a commutative ring with characteristic 2 having unity

n.l
element 1. Consider M = M;5(R) and I' = :n € Zp, then M is a I'-
n.l

ring. Let N = {(z,z) : x € R}, then N is a Lie ideal of M. Letd, : R — R be a
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higher derivation for n € Ny. Define d,, : M — M by D,((a,b)) = (dn(a),d,(b)).

n

Then for each (a,a), (b,b) € N and e I', we have
n
n
Dy((a,a) (b,b)) = Dn((an + an)(b, b))
n

= D, (anb + anb, anb + anb)

= (d,,(anb + anb), d,,(anb + anb))

= () (di(a)nd;(b) + di(a)nd; (b)), D (di(a)nd;(b) + di(a)nd; (b))

=Y () dita)) | "] (d50), ds(0)
it+j=n n

Therefore, D,, is a higher derivation on a Lie ideal N of M.

Example 4.1.4. Suppose U is a Lie ideal of a I'-ring M. Let d, : M — M be a
higher derivation on U of M, then for each n € Ny,
d, (uaw) = Z di(u)ad;(v), Vu,v e U; a eT.
i+j=n
If we consider My = {(z,z) :x € M} andI'y = {(o, ) : « € T'}. Define addition and

multiplication on My by

(z,2) + (y,y) = (z +y,z +y) and (2, z)(a, @) (y,y) = (vay, zay)
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then M is a I'y1-ring. Also, define Uy = {(u,u) : u € U}, then for uax — zau € U,

(u,u)(a, a)(z,x) — (z,2)(a, a)(u, u) = (uax, uar) — (zou, rou)

= (uax — rau,uar — rau) € U;.

Hence Uy is a Lie ideal of M. Now, define a mapping D,, : My — My by D, ((z,x)) =
(dn(x),dn(x)). Then for all (u,u) € Uy and (a, o) € I'y, we have

D, ((u, uw)(a, @) (u,u)) = Dy (uou, uaw)
= (dp(uau), d, (uaw))

= () di(wads(u), Y di(u)ad;(u))

i+j=n i+j=n

= Z (di(w), di(u)) (v, a)(d;(u), dj(u))

i+j=n

= 37 Dif(ww)) (@ @)Dy (. ).

i+j=n
Therefore, D,, is a Jordan higher derivation on a Lie ideal Uy of My. Also, we have

seen that it is not a higher derivation on a Lie ideal Uy of M.

Throughout this chapter (until otherwise stated), M is a 2-torsion free ['-ring
satisfying the condition (*), aabfc = afbac for all a,b,c € M; a,f € ', and U is a

Lie ideal of M.



87

4.2 Jordan Derivations on Lie Ideals of Prime [I'-
Rings

Our purpose in this section is to prove our main results stated at the beginning of this
chapter. In order to prove these results we have to determine some essential Lemmas

as bellow.

Lemma 4.2.1. Let U be a Lie ideal of a I'-ring M such that uauw € U for allu € U

and o € T'. If d is a Jordan derivation on U of M, then for all u,v,w € U and

a, B €T, the following statements hold:

(i)d(uav + vau) = d(u)ov + d(v)au + vad(v) + vad(u);

(i1)d(uovfu+ufvau) = d(u)ovfu+d(u) fvou+uad(v) fu+ufd(v)au+uavfd(u) +

ufvad(u).

In particular, if M is 2-torsion free and satisfies the condition (*), then

(111) d(uavfu) = d(u)avfu + uad(v)Bu + vovfd(u);

(1v) d(uowfw+wavfu) = d(u)ovfw+d(w)ovfutuad(v) fw+wad(v) futuavFd(w)+
wavfd(u).

Proof. (i) Since U is a Lie ideal satisfying the condition uau € U for allu € U;a € T.
For u,v € U;a € T', we have (uav+vau) = (u+v)a(u+v) — (uau+vav) this implies
(uav+vau) € U. Also, [u,v], = uav—vau € U and it follows that 2uav € U. Hence

duavfw = 2(2uav)fw € U for all u,v,w € U and o, 5 € T.
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Therefore,

d(uov +vou) = d((u + v)a(u + v) — (uou + vav))
= d(u+ v)a(u+v) + (u+ v)ad(u + v) — d(w)au — vad(w) — d(v)av — vad(v)
= d(u)au + d(u)av + d(v)ou + d(v)av + uad(u) + uad(v) + vad(u) + vad(v)
— d(u)au — uad(u) — d(v)av — vad(v)
= d(u)aw + uad(v) + d(v)au + vad(u).

(ii) Replacing ufv + vGu for v in (i) and using this, we get

d(ua(ufv + vfu) + (ufv + vhu)au) = d(u)a(ufv + vhu) + uad(ufv + viu)
+ d(upfv + vpu)ou + (ufv + vpu)ad(u).
= d((uau)Bv+vf(uau))+d(uavfutufvaun) = d(u)a(ufov+vbu)tua(d(u) fv+ubd(v)

+d(v)u+vid(u))+(d(uw) fv+ufd(v)+d(v) Sutvpd(u))cutufvad(u) +vLucd(u).

This implies,

d(uaw)fv + (vow)fd(v) + d(v) B(uau) + vid(uau) + d(uovfu + ufvau)
= d(u)oufv + d(u)ovfu + uad(u)fv + uaufd(v) + uad(v) fu + vavfd(u)

+ d(u)fvau + ufd(v)ou + d(v) fuoau + vEd(u)ou + ufvad(u) + vBuad(u).
This implies,
d(u)oufvtuad(u) fr+ucufd(v)+d(v) Suautvbd(u)cut+vBuad(u)+d(vavfutufvaun)

= d(u)aufv+d(u)ovfu+uad(u) fv+ucufBd(v) + uad(v) fu+uavfd(u) +d(u) fvau

+ ufd(v)au + d(v) fuau + vEd(u)au + ufvad(u) + vBuad(u).
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Now, cancelling the like terms from both sides we get the required result. Using the
condition (*) and since M is 2-torsion free, (iii) follows from (ii). And finally (iv) is

obtained by replacing v + w for u in (iii). O

Definition 4.2.1. Let U be a Lie ideal of a I'-ring M, and d be a Jordan derivation
on U of M. We define ¢,(u,v) = d(uav) — d(u)av — uad(v) for all u,v € U and

ael.

Remark 4.2.1. d is a derivation on U of M if and only if ¢, (u,v) = 0 for all u,v € U

and o €T

As immediate consequences emanated from the definition of ¢, (u,v), we have

Lemma 4.2.2. If d is a Jordan deriwation on U of M, then for all u,v,w € U and
a, B €T, (i) da(u,v) = =da(v,u); (i) ¢a(u + w,v) = ¢a(u,v) + da(w,v);
(199) Pa (U, v + W) = al(u, V) + Go(u, w); (1) Pays(u, v) = do(u,v) + dg(u,v).

Proof. The proof of this lemma is immediate from Lemma 2.2.2 if in the statement

of the lemma we replace G, by ¢, and a,b,c € M by u,v,w € U. O

Lemma 4.2.3. Let U be an admissible Lie ideal of M. If d is a Jordan derivation
on U of M, then ¢q(u,v)Bwyu, v], + [u, v]oSwyde(u,v) =0, for all u,v,w € U and

a,p,vel.

Proof. U is an admissible Lie ideal of M. Thus, for all u € U;a € I'uau € U.
If u,v € U and a € I', then (uav + vau) = (u + v)a(u + v) — (uau + vaw) this
implies, (uaw + vau) € U. In addition, [u,v], = uav —vau € U and therefore

2uav € U and 4ducvfw = 2(2uawv)pw € U, for all u,v,w € U,a, 3 € I'. Now, let
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z = 4(vavfwyvau + vaufwyuav). Then using Lemma 4.2.1(iv), we have

d(z) = d((2uaw) fwy(2vau) + (2vau) fwy(2uav))
= d(2uaw) fwy(2vau) 4+ 2uav fd(w)y2vau + 2uav fwyd(2vau) + d(2vau) Swy(2uav)

+ 2vaufd(w)y2uav + 2vaufuwyd(2uav).

On the other hand, using Lemma 4.2.1(iii), we have

d(x) = d(ua(dvfuwyv)au + va(dufwyu)av)
= d(u)odvfwyvau + uad(dvfwyv)au + uadvfuwyvad(u) + d(v)odufwyuav
+ vad(4dufwyu)ov + vodufwyuad(v)
= 4d(u)avfwyvou + duad(v) fwyvau + duavfd(w)yvau + duovfwyd(v)ou
+ duovpwyvad(u) + 4d(v)cufwyuov + dvad(u) fuyuav + dvaufd(w)yuov
+ dvoufuwyd(u)ov + dvaufwyuad(v).
Comparing the two right sides of d(z), we obtain
4(d(uaw)fwyvau + d(vau) fwyuav + uavfuwyd(vau) + vaufwyd(uav))
= 4(d(u)avfuwyvau + uad(v) fwyvau + d(v)aufwyuav + vad(u) Swyuav
+ uavfwyd(v)au + uovfwyvad(u) + vaufwyd(u)av + voufwyuad(v)).
This yields,
4((d(uav) — d(u)ov — uad(v))fwyvau + (d(vau) — d(v)ou — vad(u)) fwyuav+
uovfwy(d(vou) — d(v)au — vad(u)) + vaufwy(d(uav) — d(u)ov — uad(v))) = 0.

Using the Definition 4.2.1, this implies

Ao (u, v) fwyvan 4+ ¢ (v, u) Swyuav + uavSwyp (v, u) + vaufuwyd(u, v)) = 0.
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Using Lemma 4.2.2(i), we get

4(a(u, v)Byvan — g, v) Buryuay — uavuyde(u,v) + vaubuwyga(u, v)) = 0.

= —4(¢a(u, v)fwy(uav — vau) + (uav — vaw) Bwyde(u,v)) = 0.
= 4(Pa(u, v) wy[u, vl + [u, v]afwyga(u,v)) = 0.
Since M is 2-torsion free, we get ¢ (u, v)Bwy[u, v]a + [U, V]afwyps(u,v) = 0, for all

u,v,w € U;a,B,v€T. O
In the rest of this section, M represents a prime I'-ring.

Lemma 4.2.4. (18], Lemma 1) Assume that U is a Lie ideal of M with U ¢ Z(M).
Then there exists an ideal I of M such that [I, M]r C U but [I, M]r is not contained
in Z(M).

Proof. Since M is 2-torsion free and U is not contained in Z(M), it follows from the
result in [1] that [U, Ulr # 0 and [I, M]r C U, where [ = IT[U,U]rI'M # 0 is an ideal
of M generated by [U, Ulr. Now, U is not contained in Z (M) implies that [I, M]r is
not contained in Z(M); for if [I, M|r C Z(M), then [I,[I, M]r|r = 0, which implies
that I C Z(M) and hence I # 0 is an ideal of M, so M = Z(M). O

Lemma 4.2.5. ([18], Lemma 2) Let U be a Lie ideal of M such that U ¢ Z(M). If
a,b € M (resp.b € U and a € M) and aaUpBb = 0, for all o, 3 € T, then a = 0 or
b=0.

Proof. By Lemma 4.2.4, there exists an ideal I of M such that [I, M]r C U and
[I, M]r is not contained in Z(M). Now take w € U,c € I,m € M and o, 3,7 € T', we
have [caafu, m|r € [I, M]r C U and so

0 = ad[caafu, m],pub, for all §, pp € T
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= ad[caa, m],Bupb + adcaafu, m|,pub, by using (*)

= ad[caa, m],Bupb, since af[u, m],ub € afU ub

= ad(caaym — mycaa)Bupb

= adcaaymfBuub — admycaaBuub

= adcaaymBuub, by using assumption afupub = 0. Thus adlaayM BU ub = 0.

If a # 0, then by the primeness of M,Uub = 0. Now, if u € U and m € M, then
[u,m], € U for all @« € I'. Hence [u,m|,0b = 0 for all § € I". Since maufb = 0, so
uamBb = 0. But U # 0, we must have b = 0. Similarly, it can be shown that if b # 0,

then a = 0. OJ

Lemma 4.2.6. Assume that U is an admissible Lie ideal of M. If a,b € M (resp.
a € M and b € U) such that aaxBb + bazxfa = 0 for all x € U and o, € T, then
acx(3b = bazxfa = 0.

Proof. For x,y € U and using the relation aax(3b = —baxBa three times, we obtain

daaxBbyydacxfb = —4bazfayydaaxrfb = —ba(dxBayy)daczFb
= aa(4xPavyy)dbaxfb = dacx[(ayyob)az b = —daaxBbyydaazBb.
Therefore,
SaaxBbyydacx b = 0.
By the 2-torsion freeness of M, (acz(3b)yyd(aaxd) = 0. By Lemma 4.2.5, we get

acax(3b = 0. Similarly, it can be shown that baxfBa = 0. O

Lemma 4.2.7. Let U be an admissible Lie ideal of M ; G1,Gs,...,G, be additive
groups; S : Gy X Gy X ... X Gy = M and T : Gy X Gy X ... X G,, — M be mappings

which are additive in each argument. If Sy(aq, ..., an)BxvTy(aq, ...,a,) = 0 for every
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xeUa; € Gijyi = 1,2,....n;a, 3,7 € T, then Sy(aq, ..., a,)B2yTs(by, ..., b,) = 0 for

every b; € Gi,i =1,2,...,n.

Proof. 1t suffices to prove the case n = 1. The general proof is obtained by induction

on n. If S,(a)BxyTy(a) = 0 for every u € U,a € Gy, we get
(To(a)BzySy(a)) pyv(To(a)BrySy(a)) = 0,V z,y € U, u,v € T

Then by Lemma 4.2.5, T, (a)BzvS,(a) = 0 for every z € U,a € Gy and «, 3,7 € T.

Now, linearizing S, (a)BzyT,(a) = 0, we obtain
Su(@) By Ta(b) + Sa(b)BayTa(a) = 0,Y z € U,a,b € Gi.
So, for all z,y € U,
(Sa(a) By To() iy ((Sa(a) BzyTa(b)) = —Sala)BayTa(b) pyvSa(b) fzyTo(a) = 0.

Thus, by Lemma 4.2.5, S, (a)52vT,(b) = 0. Similarly, we can prove that T, (b)5zvS.(a) =0
forall a,b € Gy and o, 3,y € I'. Putting a+9 for o in the equation S, (a)BxyT,(b) =0
and using Lemma 4.2.2(iv) S, (a)B82vT5(b) + Ss(a)BxyT,(b) = 0. Therefore, we have

(Sal@) 32Ty (6)) iy (Sa(@) 329 T3 (8)) = —Sal@) B2y Ty(b)uyvSs (@) BaryTa(b) = 0.
Hence, by Lemma 4.2.5, S, (a)BxyT5(b) = 0. O
We have all ideas for the proof at hand now.

Theorem 4.2.8. Assume that U is an admissible Lie ideal of M. Ifd: M — M is a

Jordan derivation on U of M, then d(uav) = d(u)av+uad(v) for allu,v € U,a € T.

Proof. By Lemma 4.2.3, we have ¢, (u,v)Bwy[u,v]s + [u, v]aBwyda(u,v) = 0 for all

u,v,w € U and «, 3,7 € I'. Using Lemmas 4.2.6 and 4.2.7, we have



94

¢o(u,v)fwylz,yls = 0 for all uw,v,w,z,y € U and «, 3,7, € I'. Since U is an
admissible Lie ideal of M, so, [z, y]s # 0. Hence by Lemma 4.2.5, ¢, (u,v) =0. O

Theorem 4.2.9. Let U be a commutative Lie ideal of M such that uau € U for all

u €U and a € I'. Then every Jordan derivation on U of M is a derivation on U of

M.

Proof. Suppose U is a commutative Lie ideal of M. Then for every u € U,x € M
and o € T', we have [u, [u, x]4]o = 0. For every z € M, we have 3z € M for every
6 € I'. Replacing x by x(3z, we obtain
0= [u, [u, 6z]4)a

= [u, 2B, 2o + [, ¥]aBz]a

= [u, 2B, Z]a]a + [u, [u, 2]afz]a

= 20, [u, z]ala + [U, 2]oBu, 2]a + [u, [u, £]a]oa 8z + [u, 2]aBu, z]a

= 2[u, z|aflu, z]qa-
By the 2-torsion freeness of M, we obtain [u, z],0[u, 2], = 0. Now, replacing z by

zym for every m € M,y € I', we obtain

0 = [, 2]afBlt, 2]
= [u, zlaf2y[u, mla + [u, 2]afBlu, Zlaym
= [u, 2]aB27[u, m]a.
Since M is prime, [u,z], = 0, or [u,m], = 0, for all z;m € M. In either case,
U C Z(M) . Hence by Lemma 4.2.1(i), we have 2d(aab) = 2(d(a)ab+ aad(b)) for all

a,b € U and « € I'. By the 2-torsion freeness of M, we get d(aab) = d(a)ab+ aad(b)
for all a,b € U and a € T'. O
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4.3 Jordan Higher Derivations on Lie Ideals of Prime
['-Rings

Here, we determine a number of very significant consequences relating to the concept
of Jordan higher derivations on Lie ideals of a prime I'-ring to extend the results
stated at the beginning of this chapter following [15, 17] in classical ring theory to

[-ring theory.

Lemma 4.3.1. Let U be a Lie ideal of a I'-ring M such that uau € U for all
u€eUand a € . If D = (d;)ien is a Jordan higher derivation on U. Then for all
u,v,w e U;a,f €l andn € N:

(i) dn(uav +vau) =37 . [di(u)ad;(v) + di(v)ad;(u)]

(i) dn(uavfu) =32 ;4 pnldi(u)ad; (v) By (u)]

(711) d,,(uavfw + wavfu) = Z¢+j+k:n[di(u)04dj (v)Bdi(w) + d;(w)ad;(v) Bdy(u)).

Proof. The proofs of (i) and (ii) are similar to the corresponding proofs of Lemma
4.2.1(i) and Lemma 4.2.1(iii). Replacing u by v+ w in (ii), we obtain S = d,,((u

w)avfB(u + w)) and compute this, using (ii). It follows that

S =d,((u+ w)avf(u+ w))

= > diwad;(v)Bdy(u)+ > di(w)ad;(v)Bdy(w)+ Y di(w)ad;(v)Bdy(u)

i+j+k=n i+j+k=n i+j+k=n

+ ) di(w)ad;(v)Bdy(w).

i+j+k=n
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On the other hand

S = d,(vavfu) + d,(wavfw) + d, (uavfw + wav[u)

Z di(u v)Bdy(u Z di(w)ad;(v)Bdg(w) + d,(vavfw + wavfu).
i+j+k=n i+j+k=n
By comparing the two results for S, we obtain (iii). O

Definition 4.3.1. If U is a Lie ideal of a ['-ring M. For every Jordan higher derivation
D = (d;)ien on U of M, we define ¢ (u,v) = d,(uawv) — >, ., di(u)ad;(v), for all

u,v € Uya € I' and n € N.

Remark 4.3.1. ¢S (u,v) = 0 for all u,v € U;a € I and n € N if and only if D is a

higher derivation on U of M.

The following results will be used in the next lemma.
Lemma 4.3.2. For every u,v,w € U;a, 3 €' and n € N,
(1) o5 (u, v) + ¢y, (v, u) = 0; (i) ¢ (u+ v, w) = ¢ (u, w) + ¢y (v, w);
(i) 65 (1, v + ) = ¢, v) + 65 (i, w); (i) 6P, v) = B3, 0) + B (u,v).
The proofs are obvious from the Definition 4.3.1

Lemma 4.3.3. Let U be an admissible Lie ideal of a 2-torsion free I'-ring M, and let
D = (d;)ien be a Jordan higher derivation on U of M. Let n € N and assume that
u,v € Uy, B,y € T If o2 (u,v) = 0, for every m < n, then ¢&(u,v)fwy[u,v]s +

[u, v]o fwyeS(u,v) = 0, for every w € U.

Proof. Since U is an admissible Lie ideal of M. Hence, for all u,v € U and « €

T, (uov +vau) = (u+v)a(u +v) — (uau + vav) so, (uav +vau) € U. Now [u, v], =
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uav — vau € U, and therefore 2uav € U and 4duavfw = 2(2uav)pw € U for all
u,v,w € Usa, B €T. Let A = d,(duavfwyvau+4dvaufwyuaw). First, using Lemma

4.3.1(ii), we obtain

A = d,,(va(4vfwyv)au) + d,(va(dufwyu)av)

=4 ) (di(wady(vBuwyv)adi(u)) +4 > (di(v)ady(ufwyu)ad(v))

i+p+l=n i+p+l=n
=4 Z d;(w)ad;(v) Bd,(w)ydy(v)ad;(u)+4 Z d;(v)ad;(u) Bdy(w)ydy(u)ad;(v)
itjtkthtl=n i+ jtkthtl=n

Now, using Lemma 4.3.1(iii), we get

A = d,((2uaw)fwy(2vau) + (2vau) fwy(2uaw))

= Z (d-(2uav)fds(w)yd:(2vau) + d,.(2vau) Bds(w)yd, (2uav))

r4+s+t=n
=4 Z (uaw) Bds(w)ydy(vau)) + 4 Z (d, (vau)Bds(w)yds (uaw)).
r+s+t=n r+s+t=n

Comparing both the expressions for A, we obtain

Y. (dilwad;(v)sdy(w)yyd(v)adi(w) = Y (dr(uav)fd,(w)ydi(vau))

i+j+k+h+l=n r4+s+t=n
+ Y (di)ad;(w)fdi(w)ydn(u)adi(v) = Y (dr(vaw)fdy(w)ydy(uav)) = 0.
i+j+k+h+l=n r+s+t=n

(4.1)

By the assumption, we have d,,(zay) = 3, ,._ di(z)ad;(y), when m < n, for x =
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u,v and y = v, u. Consequently,

Y. (diwad;(v)sdi(w)yyd(v)ad(w) = Y (dr(uav)fd(w)ydi(vaw))

i+j+k+h+l=n r+s+t=n
Z d;(u v)) Bwyvou + uavBwy( Z dp(v)ad;(u))
i+j=n h+l=n

itj<n,htl<n

+ Y (di(w)ad;(v)Bdi(w)ydn(v)adi(u) — dy((uav) Buwy(vau)
i+j+k+h+l=n
i+j=r<n,p+q=t<n

— (uaw)fwydy (vau) — Y. (diw)ad;(v)3dy(w)yd,y(v)ady(u))
r+s+t=n
= (uaw) Z di(u Bwyvau)—(uavfw)y(d, (vaw) Z dp(v)ad;(u
i+j=n h+l=n

— (¢ (u, v) Bwyvou + uavfuwygy (v, ). (4.2)

Similarly,

Y. (diw)ad;(w)fdi(w)yyd(w)adi(v) = Y (dr(vau)fd,(w)ydy(uav))

i+j+k+htl=n rsHt=n
= (630 w) By + vauBun (. v)). (43)
Hence, by using (4.2) and (4.3) in (4.1), we get
o5 (u, v) fwyvau + uavBuwydsn (v, u) + ¢n (v, u)fwyuav + vaufwypn(u,v) = 0.
By Lemma 4.3.2(i), we have
o5 (u, v) fwyvau — uavBwyds (u, v) — ¢o(u, v)fwyucv + vaufwypn(u,v) = 0.
This implies,

P8 (u, v) wylu, v]a + (U, v]aBwyel (u,v) = 0,V w € U.
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Now, we are ready to prove our main results.

Theorem 4.3.4. Let U be an admissible Lie ideal of a 2-torsion free prime I'-ring
M. Then every Jordan higher derivation on U of M is a higher derivation on U of
M.

Proof. By definition ¢§(u,v) = 0 for all u,v € U and a € I". Also, by Theorems 4.2.8
and 4.2.9, ¢%(u,v) = 0 for all u,v € U and a € I'. Now, we proceed by induction.

Suppose that ¢ (u,v) = 0. This implies,

(uaw) Zd ), Vu,velU,a el ,m<n.

i+j=m

Taking u,v € U, by Lemma 4.3.3, we have
O (u, v) Bwylu, v]a + [u, v]aSwydy (u,v) =0,V u,v,w € Usa, B,y € T.

Since M is prime, by Lemma 4.2.6 and Lemma 4.2.7 ¢%(u,v)Swy[z,y|s = 0 for all
w,v,2,y € U and o, 3,7 € I'. But U € Z(M), so we have [z,y]s # 0. Therefore, by

Lemma 4.2.5 we obtain ¢%(u, v) = 0. O

Theorem 4.3.5. Assume that U is a commutative Lie ideal of a 2-torsion free prime
L-ring M such that uau € M for all w € U and o € I'. Then every Jordan higher

deriwation on U of M is a higher derivation on the same.

Proof. By the similar arguments which are used in the proof of the Theorem 4.2.9,
we obtain that U C Z(M). Using this in Lemma 4.3.1(i), we get

2d,, (uaw) = 2 Z d;(u)ad,;(v

i+j=n
Since M is 2-torsion free, so we have

(uaw) Zd ),Vu,v € U;a € T

i+j=n



Chapter 5

Generalized Derivations on Lie
Ideals

In this chapter, we continue our study on Lie ideals of I'-rings. This chapter makes
a study of generalized derivations and generalized higher derivations on Lie ideals
of I'-rings analogous to the study of derivations and higher derivations on Lie ideals
of I'-rings in the preceding chapter. We define various derivations on Lie ideals of
['-rings which are generalized derivation, Jordan generalized derivation, generalized
higher derivation and Jordan generalized higher derivation.

In the next, we construct some more significant results due to the defined concept
of Jordan generalized derivations on Lie ideals of I'-rings in sequel to the previous
results of the foregoing chapter. Here we consider f : M — M is a Jordan generalized
derivation on a Lie ideal U of a 2-torsion free prime I'-ring M with an associated
Jordan derivation d : M — M on U. We prove that if U is an admissible Lie ideal of
M, then f(uav) = f(u)av+uad(v) for all u,v € U;a € T, and if U is a commutative
Lie ideal of M, then every Jordan generalized derivation on U of M is a generalized
derivation on the same.

In the third section of this chapter, we develop some consequences relating to

100
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the concept of Jordan generalized higher derivations on Lie ideals of I'-rings to prove
the analogous results corresponding to the above mentioned results considering this

derivation.

5.1 Introduction

M. Ashraf and N. Rehman [2] considered the question of I. N. Herstein [21] for a Jor-
dan generalized derivation. They showed that in a 2-torsion free ring R which has a
commutator right nonzero divisor, every Jordan generalized derivation on R is a gen-
eralized derivation on R. In 2000, Nakajima defined a generalized higher derivation
in [31] and gave some categorical properties which are related to [30]. He also treated
generalized higher Jordan and Lie derivations. Later, Cortes and Haetinger [14] ex-
tended the theorem of M. Ashraf and N. Rehman [2] to generalized higher derivations.
They proved that if R is 2-torsion free ring which has a commutator right nonzero
divisor, then every Jordan generalized higher derivation on R is a generalized higher
derivation on R.

First, we introduce the concepts of generalized derivation and Jordan generalized

derivation on Lie ideals of I'-rings in the following way:.

Definition 5.1.1. If U is a Lie ideal of a I'-ring M. Then an additive mapping
f M — M is said to be a generalized derivation on a Lie ideal U if there exists a
derivation d : M — M such that f(uav) = f(u)av + uad(v) for all u,v € U;a € T'
and f : M — M is said to be a Jordan generalized derivation on a Lie ideal U if
there exists a derivation d : M — M on U such that f(uau) = f(u)au + uad(u) for

allue U;a eT.
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We now give examples of a Jordan generalized derivation and a generalized deriva-
tion on a Lie ideal U of a I'-ring M, where M satisfies aabfc = afBbac for all
a,b,c e M;a,B €T.

Example 5.1.1. Ifa € M and o € T are fixed elements. Define f : M — M by

f(z) = acx + zaa and d(z) = xaa — acx. For all z,y € U and B € ', we obtain

f(yBy) = aa(yPBy) + (yBy)oa
= aayPy +yaafy — yaafy + yLyaa
= (aay + yaa)By + yByaa — acy)
= f(y)By +yBd(y),Vy e U; Bl

Therefore, f is a Jordan generalized derivation on U.

Also, for all x,y € U and f € T', we get

f(zBy) = aa(zBy) + (zBy)aa
— aaxBy + zaaBy — vaafy + xfyaa
= (aaz + zaa)By + xf(yaa — aay)
= f(x)By + xfd(y),Vz,y e U; f €I

Therefore, f is a generalized derivation on U of M.

The following example shows that every Jordan generalized derivation on a Lie

ideal of a I'-ring need not be a generalized derivation on the same.

Example 5.1.2. Suppose f: M — M 1is a generalized derivation with an associated
derwation d on U of M. Let My = {(z,z) :x € M} and I'; = {(a,0) : a € T'}. If

we define addition and multiplication on My by (z,z) + (y,y) = (z + y,x + y) and
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(x,2) (o, @) (y,y) = (vay,zay). Then My is a T'y-ring. Define Uy = {(u,u) : u € U}.

Then for uax — xau € U,

(u,u) (e, @) (z, ) — (z,2)(a, @) (u, u) = (uax, uax) — (zou, rau)

= (uax — rau, uar — xau) € Uy.

Hence Uy is a Lie ideal of M;. Now, we define a mapping F : M; — My by
F((u,w)) = (f(u), f(u)) and D((u,u)) = (d(u),d(u)). Then it is clear that F is
a Jordan generalized derivation on Uy of My with an associated derivation D on Uy

of My. Obuviously, F is not a generalized derivation on Uy of M.

Now, we introduce the concepts of generalized higher derivation and Jordan gen-

eralized higher derivation on Lie ideals of a I'-ring in the following way.

Definition 5.1.2. Suppose U is a Lie ideal of a I'-ring M. Let F' = (fi)ien, be
a family of additive mappings on U such that fy = idj;, where id); is an identity
mapping on U of M and Ny denotes the set of natural numbers including 0. F is
a generalized higher derivation on a Lie ideal U if there exists a higher derivation

D = (d;)ien, on U such that for each n € Ny;i,j € Ny,

(aab) = Y fi(a)ad;(b),V a,b e Usa €T,

i+j=n
and F'is a Jordan generalized higher derivation on a Lie ideal U if there exists a
higher derivation D = (d;);en, on U such that for each n € Ny; 1,5 € Ny,
(aca) ZfZ Jadj(a),Ya e U;a eT.
i+j=n
The following are examples of a Jordan generalized higher derivation and a gen-

eralized higher derivation on a Lie ideal of a I'-ring.
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Example 5.1.3. Suppose N is a Lie ideal of a I'-ring M as in FExample 4.1.3. Let
U be a Lie ideal of R and f, : R — R be a generalized higher derivation on U of R

with an associated higher derivation d, : R — R on U, where n € Ny. So, we have

f(uav) = Z fitw)ad;(v), Vu,o e U; ae€T.
i+j=n

Define mappings
Fo: M — M by Fy((a,b)) = (fu(a), fu(b));

D,: M — Mby D,((a,b)) = (d,(a),d,(b)).

n
For each (a,a), (b,b) € N and e I', we have
n
n
F.((a,a) (b, b)) = F,,(anb + anb, anb + anb)
n

= (fn(anb + anbd), f,(anb + anb))

= (D (fila)nd;(b) + filand;()), Y (fila)nd;(b) + fila)nd; (b))

- S @) | | g
= " Rl@a) | | Dilnb).

Therefore, F,, is a generalized higher derivation on a Lie ideal N of M.

The next example gives an application of Jordan generalized higher derivation and
a generalized higher derivation on a Lie ideal of a I'-ring which shows that every Jor-
dan generalized higher derivation on a Lie ideal of a I'-ring need not be a generalized

higher derivation.
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Example 5.1.4. Let U be a Lie ideal of a I'-ring M, and f,, : M — M be a generalized
higher derivation on U with an associated higher derivation d,, : M — M on U. Thus,

we have

fn(uav) = Z filw)ad;(v), ;Yu,veU; ael.

i+j=n

Consider My,I'y and Uy as in FExample 4.1./ . Now, define mappings
Fn : Ml - Ml by Fn((l‘,l‘)) = (fn(x)7fn(x))a

D, : My — M, by D,((z,z)) = (d,(x),dp(x)).
Then for all (u,u) € Uy and (o, ) € 'y, we have

F.((u,w)(a, a)(u,w)) = F,(uou, uau)
= (ful(uau), fo(uau))
= (Y filwad;(u), Y filu)ad;(u))

i+j=n i+j=n

= 37 (i), fi(w) (@, @) (ds (w), ds (w))

i+j=n

= > Fil(uu) (e, @)Dj((u,u)).

i+ji=n
Therefore, F,, is a Jordan generalized higher derivation on a Lie ideal Uy of My with
an associated higher derivation D, on Uy of My. Also we have seen that it is not a

generalized higher derivation on Uy of M.

Except otherwise mentioned, throughout this chapter hereafter, U represents
a Lie ideal of a 2-torsion free I'-ring M and M satisfies aabfc = afbac for all a, b, c €

M;a, 3 € T which is marked by (*).
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5.2 Jordan Generalized Derivations on Lie Ideals
of Prime I'-Rings
The following lemma is the basic tool for our work in this section.

Lemma 5.2.1. If aca € U for alla € U and o € I'. Assume that f is a Jordan
generalized derivation on U of M with an associated derivation d. Then for all a,b,c €
U and o, € T, the following statements hold:

(1) flaab+ baa) = f(a)ab+ aad(b) + f(b)aa + bad(a);

(i1) f(aabBa+ afbaa) = f(a)abfa+ aad(b)Ba+ aabfd(a) + f(a)Bbaa+ afd(b)aa +
afBbad(a).

In particular, if M is 2-torsion free and satisfies the condition (*), then

(111) f(aabfa) = f(a)abfa + aad(b)Ba + aabfd(a);

(iv) f(aabfc+ cabfa) = f(a)abfc+ aad(b)Bc+ aabfd(c) + f(c)abfa + cad(b)Fa +
cabfd(a).

Proof. Since U is a Lie ideal satisfying the condition aaa € U, for all a € U, € T'.
For a,b € U,a € I',(aab + baa) = (a + b)a(a + b) — (aca + bab) and therefore

(aab + baa) € U. Then,

f(aab + baa) = f((a+b)a(a + b) — (aaa + bab))
= f(a+b)a(a+b) + (a +bad(a +b) — f(a)aa — aad(a) — f(b)ab — bad(b)
= f(a)aa + f(a)ab+ f(b)aa + f(b)ab + aad(a) + acd(b) + bad(a) + bad(b)
— f(a)aa — aad(a) — f(b)ab — bad(b)

= f(a)ab + aad(b) + f(b)aa + bad(a).



107

Replacing afb + bBa for b in (i), we get

flaa(aBb+bBa)+(afb+bfa)aa) = f(a)a(aBb+bfa)+aad(aBb+bba)+ f(afb+bfa)aa

+ (afBb+ bfBa)ad(a).

= f((aca)Bb+bf(aca))+ f(aabBa+afbaa) = f(a)a(afb+bfa)+ac(d(a)Bb+aBd(b)

+d(b)Ba+bBd(a))+ (f(a)Bb+apBd(b)+ f(b)Ba+bBd(a))aa+ afbad(a)+bBaad(a).
This implies,
flaaa)Bb + (aaa)Bd(b) + f(b)B(aaa) + bBd(aca) + f(aabfa + afbaa)

= f(a)aafb+ f(a)abfa + acd(a)Bb + acaBd(b) + acd(b)Ba + aabBd(a)

+ f(a)pbaa + afd(b)aa + f(b)Baca + bfd(a)aa + afbad(a) + bfacd(a).
This yields,
fla)aaBb+aad(a)Bb+acafd(b)+ f(b) Saca+bfd(a)aa+bBaad(a)+ f (aabfa+afbaa)

= f(a)aafb+ f(a)abfa + acd(a)Bb + acaBd(b) + acd(b)Ba + aabBd(a)

+ f(a)Bbaa + afd(b)aa + f(b)Baca + bfd(a)aa + afbad(a) + bfacd(a).

Cancelling the like terms from both sides, we get the required result. Using the

condition (*) and since M is 2-torsion free, (iii) follows from (ii). O
And, finally (iv) is obtained by replacing a + ¢ for a in (iii).

Definition 5.2.1. Let f be a Jordan generalized derivation on U of M with an
associated derivation d. We define ¢, (u,v) = f(uaw) — f(u)ov — uad(v) for all

u,v € U and a € T,
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Remark 5.2.1. ¢, (u,v) = 0 if and only if f is a generalized derivation on U of M.

Lemma 5.2.2. With the notations as above. For all u,v,w € U and o, 3 € T,

(1) Ya(u,v) = —=ho(v,u); (i1) Vo (u + w,v) = Yo (u,v) + Yo (w,v);
() ot 0+ ) = (1 0) + Pty 10); (70) P2t 0) = Yl 0) + st 0).

Proof. This follows by a repetition of the argument used in the proof of Lemma

2.2.2. O
Next, we go through the following results.

Lemma 5.2.3. IfU is an admussible Lie ideal of a prime I'-ring M and f is a Jordan

generalized deriwvation on U of M with an associated derivation d, then
Vo (u, v)fwylu, vy = 0,V u,v,w € U; o, B,y €T

Proof. Since U is an admissible Lie ideal of M, so it satisfies the condition uau € U
for all u € U, € T'. Now, for u,v € U, € T, we have (uav + vau) = (u + v)a(u +
v) — (uau 4+ vav) and therefore (uav + vau) € U. Also, [u,v], = uoav —vaa € U
and it follows that 2uav € U. Hence, 4ducvfw = 2(2uav)fw € U for all u,v,w €
U, €T. Let z = 4(uavfuwyvau + vaufwyuav). First, using Lemma 5.2.1(iv),

we have

f(z) = f((2uav)fwy(2vau) + (2vau) fwy(2uav))
= f(2uav)Buwy(2vau) + 2uavfd(w)y2vau + 2uavfwyd(2vau)+

f(2uaw) fwy(2uav) + 2vaufd(w)y2uav + 2vaufwyd(2uav).
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Now, using Lemma 5.2.1(iii) and Lemma 4.2.1(iii), we obtain

f(@) = flua(dvBuyv)au + va(duBuwyu)av)
= 4f (u)avBuyvou + uad(4vfwyv)au + duavBuwyvad() + Af (v)auBuwyuay
+ vad(duBuwyu)av + dvaufwyuad(v)
= 4f (u)avBwyvautduad(v) Buyvau+duav Bd(w)yvou-+duay fuwyd(v)au-+duav Swyvad(u)

+4 f(v)aupwyuav+dvad(u) Swyuav+4dvaufd(w)yuav+4vaufwyd(u) cv+4vaufwyuad(v).
Comparing the two right sides of f(x), we obtain
4( f (uaw) pwyvau + f(vou)Bwyuov + vovfwyd(vou) + voufwyd(uow))

= 4(f(u)avfwyvau + uad(v) fwyvau + f(v)oufwyuav + vad(uw)fwyuav

+ uavBwyd(v)au + uavBuwyvad(u) + vouBwyd(u)av + vouBuwyuad(v)).
This implies,
4((f(uaw) — f(w)aw — uad(v))fuwyvau + (f(vaw) — f(v)ou — vad(u)) Buwyuav
+uawBwy(d(vow) — d(v)au — vad(w)) +vouBuy (d(uav) — d(w)av — uad(v))) = 0.
Using the Definition 5.2.1, we obtain
(1 (1, 0) Bwryvant + Vo (v, u) fuwyuav + uavBuyée (v, u) + vouBuwyd,(u,v)) = 0.

Since d is a derivation on U of M, hence by Theorem 4.2.8, ¢,(u,v)) = 0 and

da(v,u)) =0,V u,v € U;a € T, consequently
Ao (u, v)Buwyvan + Po(v, u) fuyuav) = 0.
Using Lemma 5.2.2(i), and since M is 2-torsion free, so we get

Vo (u,v)fwylu,v]y = 0,V u,v,w € U; o, B,y € T.
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We are now concluding this section by proving the following two theorems.

Theorem 5.2.4. Let U be an admissible Lie ideal of a prime I'-ring M. If f: M —
M is a Jordan generalized derivation on U, then f(uav) = f(u)av + uad(v) for all

u,v e Us;ael.
Proof. By Lemma 5.2.3, we have
Yo (u, v)fwylu,v)y = 0,V u,v,w € U; o, B,y € T
Using Lemma 4.2.7, we get
Yo (u, v)pwylz,yls = 0,Y u,v,w,z,y € U;a, B,7,0 € T

Since U is an admissible Lie ideal of M, consequently [z,y]s # 0. Therefore, by
Lemma 4.2.5, we get ¢, (u,v) = 0. O

Theorem 5.2.5. Let U be a commutative Lie ideal of a prime U'-ring M such that
uau € U for allu € U and o € I'. Then every Jordan generalized derivation on U of

M is a generalized derivation on the same.

Proof. Since U is a commutative Lie ideal of M, [u,v], = 0 for all u,v € U and o € T.

So, by Lemma 4.2.9, U C Z(M). Now, by Lemma 5.2.1(iv), we obtain

f(uwovpwtwovfu) = f(u)ovfw+ f(w)ovfutuad(v)Sutwad(v)SutuavBd(w)+wovBd(u)
(5.1)

Since uau € U for all w € U and o € ', we find that

uav +vau € UV u,ve U;a el.
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Also, we have

uav —vau € UV ue U;ael.

These two relations yield that 2uav € U. Since U is commutative, we get uav = vau
for all u,v € U and o € I'. So, in view of Lemma 5.2.1(i) and using the condition (*),
we get
2f (uawfw + wavfu) = f((2uav)fw + wh(2uav))
= f(2uav)fw + f(w)B2uav + 2uavfd(w) + wid(2uawv)
= 2(f(uaw)Pw + uavfd(w) + f(w)Luav + wld(u)av + whuad(v)).

Using the 2-torsion freeness of M, we obtain

f(uavfw +wavfu) = f(uav)fw + uavfd(w) + f(w)Buav + wld(u)av + whuad(v).
(5.2)
Combining (5.1) and (5.2), using the fact that uav = vau,U C Z(M) and the
condition (*)
(f(uaw) — f(u)av —uad(v))pw = 0,Y u,v,w € U;a, B € T.

This implies,

Yo (u,v)pw =0,Yu,v,w € U;a, B €T.
Now, putting [w, m], for w, for every m € M and v € I, we get

Yo(u,v)Blw,m], = 0.

= Y (at, 0By — i, 0) By = O,
Since Y, (u,v)pw = 0, we have 1, (u,v)FM~yw = 0. Since U # 0 and M is prime,

we find that 1, (u,v) = 0 for all u,v € U and « € I'. Therefore, we get the required

result. O
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5.3 Jordan Generalized Higher Derivations on Lie
Ideals of Prime I'-Rings

First, we develop some consequences relating to the concept of Jordan generalized
higher derivations on Lie ideals of a I'-ring to extend the results stated at the beginning

of this chapter following [14, 15, 16, 17] classical ring theory to I'-ring theory.

Lemma 5.3.1. Let U be a Lie ideal of M such that aca € U, for all a € U and
a€Tl. If F = (f)ien is a Jordan generalized higher derivation on U of M with an
associated higher derivation D = (d;)ien,- Then ¥ a,b,c € U;a, 8 € I' and n € N,
(1) fulacd +baa) =37, [fi(a)ad;(b) + fi(b)ad;(a)];

(i) fulaabfa) =3 ;. lfi(a)ad;(b)Bdy(a)];

(i) fo(acbBc +cabfa) =32 oyl fila)ad;(b)Bdy(c) + fi(c)ad;(b) Bdi(a)].

Proof. The proofs of (i) and (ii) are similar to the corresponding proofs of Lemma

5.2.1(i) and Lemma 5.2.1(iii). Replacing a by a + ¢ in (ii), and compute it using (ii)

X = (a+c)abf(a+ c)

= fu(X)= Y fila)ad;(0)Bdi(c)+ D filc)ad;(b)Bdy(a)
i+j+k=n i+j+k=n
+ > fila)ad;(0)Bde(a) + Y filc)ad;(b)Bdi(c).
i+j+k=n i+j+k=n

On the other hand, using (ii)

fu(X) = falaabBe + cabfa) + Z (fila)ad;(b)Bdi(a) + fi(c)ad;(b)Bdk(c)).

i+j+k=n

By comparing the two results for f,(X), we obtain (iii). O
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Definition 5.3.1. For every Jordan generalized higher derivation F' = (f;);en on U
of M, we define ¢y (a,b) = fu(aab) — >, ,_, fi(a)ad;(b), for all a,b € U;a € I and

n € N.

Remark 5.3.1. F is a generalized higher derivation on U of M if and only if % (a, b) =
0, for all a,b € U;a € T" and n € N.

Lemma 5.3.2. The following are true for all a,b,c € U;a, 3 € T' and n € N,
(Z) ¢g(a7 b) + Wf(b» CL) = 0; (”) Wf(a + b, C) = ¢S(a7 C) + Wf(b» C);
(”Z> 1/}?{(0,, b+ C) = 1/}1%(0’7 b) + wg(% C); (“}) ¢g+ﬁ(a7 b) - Wf(a’ b) + 1/}5(0’7 b)

Proof. This follows by a repetition of the argument used in the proof of Lemma

3.4.2. [l

Lemma 5.3.3. Let M be a 2-torsion free I'-ring and U be a Lie ideal of M such
that aca € U for all a € U and o € T'. If F' = (f;)ien s a Jordan generalized
higher derivation on U of M with an associated higher derivation D = (d;)ien,-
Suppose that n € Nya,b € U;a, 3,y € I' and 9% (a,b) = 0, for every m < n, then
Ve (a,b)fwyla, blo =0, for every w € U.

Proof. Since U is a Lie ideal satisfying the condition aaa € U, for all a € U,a € T'.
For a,b € U,a € T',(aab + baa) = (a + b)a(a + b) — (aca + bab) and therefore
(aab+baa) € U. Also, [a,b], = aab—baa € U and it follows that 2aab € U. Hence,
daabfc = 2(2aab)fc € U, for all a, b, c € U, o, B € I'. Suppose H = 4f,(aabfwybaa+

baafwyaab). First, by using Lemma 5.3.1(iii), we get

H = f,((2aab)fwy(2baa) + (2baa) fwy(2aad))

=4 Z (fr(aad)fds(w)ydi(baa) + f,(baa)Bds(w)ydi(aab))

r+s+t=n
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= 4 Z fr(aad)Bds(w)ydy(baa) + 4 Z fr(baa)Bds(w)yds(aad).

r4+s+t=n r+s+t=n

Again, by using Lemma 5.3.1(ii) and Lemma 4.3.1(ii), we obtain

H = f,(aa(4bfwyb)aa) + f,(ba(dafwya)ad)

=4 Z fila)ad,(bBwyb)ad;(a) + 4 Z fi(b)ad,(afwya)ad(b)

=4 Z fila)ad;(b)Bdy(w)~ydp (b)ad;(a)+4 Z fi(b)ad;(a)Bd(w)ydy(a)ad(b)

i+jt+k+htl=n i+jt+k+htl=n

Comparing the two expressions for H, we have

> fila)ad;(b)Bdi(w)yd(b)adi(a) — > fr(aab)Bd(w)ydy(baa)

i+j+k+h+l=n r+s+t=n
+ Y fib)ad;(a)Bdi(w)ydn(a)adi(b)— > f,(baa)Bd(w)yd;(aab) = 0.
i+j+k+h+l=n r+s+t=n

Since D = (d;);en is a higher derivation on U of M and f,(uaw) =2, ., fi(u)ad;(v),

when m < n. Therefore,

> fila)ad;(b)Bdp(w)ydy(b)adi(a) = > fr(aab)Bdy(w)ydy(baa)

i+j+k+h+l=n r4+s+t=n
Z fila)ad; (b)) fwybaa + aabBwy( Z dp(b)ad(a))
i+j=n h+l=n
i+j<n,htl<n

+ > (fi(a)ad;(0)Bd(w)ydn(b)adi(a)) — fu((aab)uwy(baa)
i+j+k+h+l=n
i+j=r<n,pt+q=t<n

— (acb) Bwyd, (baa) — > (fi(a)ad;(b)Bdy(w)yd,(b)ad,(a))
r+s+t=n
= —(fn((acb) — Z fila)ad;(b))G(wybaa) — (acbfw)y(d, (baa) — Z dp(b)ad(a))
i+j=n h+l=n

— (o (a, b) fwybaa + aabfwyes (b, a)).
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Similarly,

> fib)ad;(a)Bdp(w)ydy(a)adi(b) = > dy(baa)Bds(w)ydy(aabd)

i+j+k+h+i=n r+st+t=n

= — (Y5 (b, a) Bwyaab + baafwy e, (a,b)).

Hence, we get

Pi(a, b)fuybaa + aabfwydn(b,a) + o (b, a)fwyaad + baafwydy(a,b) = 0.

By Lemma 5.3.2(i), we have

¢ (a,b)Burbaa — aabBuwydl(a,b) — ¥E(a,b)Burach + baafurdl(a,b) = 0.
This implies,
Un(a,b) fwy[a, blo + [a, b]afwydy(a,b) = 0,¥ w € U.

Since D = (d;);en is a higher derivation on U of M. Thus, by Theorem 4.3.4, we

have ¢%(a,b) =0,V a,b € U;a € I';n € N and hence accomplishes the proof. O
We conclude this chapter by proving following two theorems.

Theorem 5.3.4. Assume that M is a prime I'-ring and U is an admissible Lie ideal
of M. Then every Jordan generalized higher derivation on U of M is a generalized

higher derivation on the same.

Proof. By definition 9§ (a,b) = 0, for all a,b € U and a € I'. Also, by Theorem 5.2.4,
§(a,b) = 0, for all a,b € U and a € T'. Now, we proceed by induction. Suppose
that 5, (a,b) = 0, when m < n. This implies, f,,(aab) =3, fi(a)ad;(b), for all

a,be U,a el and m <n. Taking a,b € U, by Lemma 5.3.3, we get

Yo (a,b)fwyla, bl =0,Yw e Usa, B,y €T
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In view of Lemma 4.2.7, we obtain
wz(a7 b)/gw,}/[x7 y]6 = 07va7 b7x7 y?w e U; a?ﬁ? 775 6 :['—"
Since U € Z(M), [z,y]s # 0. So, by Lemma 4.2.5 ¢%(a, b) = 0. O

Lemma 5.3.5. Let M be a prime I'-ring and U be a commutative Lie ideal of M
such that uau € U for allu € U and o € T'. Let F = (f;)ien be a Jordan generalized
higher derivation on U of M with the associated higher derivation D = (d;)ien. If
Ve (u,v) = 0, for every m < nyju,v € U and o € T, then % (u,v)pw = 0 for all
weUpBel.

Proof. Since U is a commutative Lie ideal of M such that uau € U for all u € U and
a € I'. Hence, by Lemma 4.2.9, U C Z(M). Now, in view of Lemma 5.2.1(iii), we

obtain

fa(uavfw + wavpu) = Z (fi(u)ad;(v)Bd(w) + fi(w)ad;(v)Bd,(u)).  (5.3)

i+j+k=n
By Lemma 5.3.1(i), using uav = vau and the condition (*), we have
2fn(uavfw + wavfu) = fr,((2uav)fw + wh(2uav))

=2 3 (fulwaw)Bd;(w) + fi(w)Bd; (uav))

i+j=n
=2 Z filuaw)pd;(w) + 2 Z fi(w)Bd;(vau)
i+j=n i+j=n
=2 ) (filuow)Bd;(w) +2 Y filw dq(u)).
i+j=n i+p+q=n
This follows that,
fo(uavfw + wavpu) = Y (filuaw)fd;j(w) + Y fi(w dy(u)).  (5.4)

i+j=n i+p+q=n
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Comparing (5.3) and (5.4), we get

> (filuaw)Bdi(w) = > (filw)ad;(v)Bdi(w)

i+j=n i+j+k=n
pHg=i<n
= (fn(uaw)pw + Z fp(w)ad,(v)Bd;(w) = ( Z fi(w)ad;(v))pw
p+q+j=n i+j=n
i+j<n
+ Y flwad;(v)Bdi(w).
i+j+k=n
This implies,
(Fufwor) — 3 S o
i+j=n
Therefore, ¥%(u,v)fw = 0, for all u,v,w € U and o, € T O]

Theorem 5.3.6. Let M be a prime I'-ring and U be a commutative Lie ideal of M
such that uauw € U for all w € U and o € I'. Then every Jordan generalized higher

derivation on U of M is a generalized higher derivation on the same.

Proof. By definition we have ¥§(u,v) = 0 for all u,v € U and o € I'. Now we prove
the theorem by induction. If n = 1, then by Theorem 5.2.5 we obtain 9 (u,v) = 0
for all u,v € U and a € T'. Now we assume that n > 2 and ¥%(u,v) = 0 for all

m < n. Then by Lemma 5.3.5, we have
P(u,v)fw =0,V u,v,w € U; o, f €T (5.5)

Since w € U, we have [w,m], € U for all m € M and v € I'. Replacing w by [w, m],
and using (5.5), we obtain % (u,v)Bmyw = 0. Since U # 0, the primeness of M

implies that, ¢¥%(u,v) = 0 for all u,v € U and « € T'. This is the required result. [



Chapter 6

(U, M )-Derivations

This chapter deals with (U, M)-derivations and higher (U, M)-derivations of I'-rings.
Here we introduce the concepts of (U, M )-derivation and higher (U, M )-derivation in
[-rings. Introductory discussions concerning these concepts are described in the first
section.

The second section develops some relevant important results due to the newly
introduced concept of (U, M)-derivation in I'-rings. Then we generalized the results
of A. K. Faraj, C. Haetinger and A. H. Majeed [16] in I'-rings by the new concept
of (U, M)-derivation. Here we prove that, if U is an admissible Lie ideal of a prime
[-ring M, and d is a (U, M)-derivation of M then d(uav) = d(u)av + uad(v) for
all u,v € U and a € T'. After that, we prove d(uam) = d(u)am + uad(m) for all
ueUmeéeM and a € I', when uau € U for all u € U and a € T'.

In the next, we develop some consequences relating to the concept of higher
(U, M)-derivations of I'-rings. We conclude this chapter by showing that if U is
an admissible Lie ideal of a prime I'-ring M, and D = (d;);en is a higher (U, M)-
derivation of M then (i) d,(uav) = >
and (ii) d,,(uam) ="

di(u)ad;(v) for all u,v € Uy € I''m € N

i+j=n

di(u)adj(m) for allu € Uym € M,a € I" and n € N.

i+j=n

118
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6.1 Introduction

We begin by explaining the introductional background behind the notions of the
(U, M)-derivation and higher (U, M)-derivation in I'-rings. In 1950, I. N. Herstein
20, 21, 22] initiated the study of Lie and Jordan structure of associative rings. The
relationship between usual derivations and Lie ideals of prime rings has been exten-
sively studied in the last 40 years, in particular, when this relationship involves the
action of the derivations on Lie ideals. R. Awtar [3] extended the Herstein’s theorem
to Lie ideals. He proved that if U is a Lie ideal of a 2-torsion free prime ring R such
that u> € U for allu € U and d : R — R is an additive mapping such that d is deriva-
tion on U of R, then d is a derivation on U of R. Also, C. Haetinger in [17] extended
Awtar’s result to higher derivations. A. K. Faraj, C. Haetinger and A. H. Majeed
[16] introduced (U, R)— derivations in rings as a generalization of Jordan derivations
on Lie ideals of rings. The notion of (U, R)-derivation extends the concept given of
R. Awtar [3]. A. K. Faraj, C. Haetinger and A. H. Majeed [16] proved that if R is a
prime ring, char(R) # 2, U a square closed Lie ideal of R and d a (U, R)-derivation
of R then d(ur) = d(u)r 4+ ud(r) for all uw € U,r € R. This result is a generalization
of the result of R. Awtar [3].

Continuing in the similar way as that has been done earlier by the above mentioned
prominent algebraists we then introduce the concepts of (U, M )-derivation and higher

(U, M)-derivation of I'-rings in the following way.

Definition 6.1.1. Suppose U is a Lie ideal of a I'-ring M. An additive mapping
d: M — Misa (U M)- derivation of M if d(uam + sau) = d(u)am + uad(m) +

d(s)au + sad(u) holds for all u € U;m,s € M and a € I'.
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The existence of a Lie ideal of a I'-ring and a (U, M)-derivation of a I'-ring are

confirmed by the following example.

Example 6.1.1. If R is an associative ring with 1, and U is a Lie ideal of R.

n.1
Let M = M;2(R) and I' = :n € Zyp, then M is a I'-ring. Let N =
0

{(z,z) : . € R} C M, then N is a sub I'-ring. Let Uy = {(u,u) : uw € U}, then for

una —anu € U for allu € U and a € M, we get

(u,u) ! (a,a) — (a,a) ! (u,u) = (una,una) — (anu, anu)
0 0

= (una — anu,una — anu) € U.

Thus, Uy is a Lie ideal of N. Let d: R — R be a (U, R)-derivation. Now, we define
a mapping D : N — N by D((z,z)) = (d(x),d(x)). Then

D((u,u) z (a,a) + (b,b) Z (u,u)) = D((una,una) + (bnu, bnu))

= D((una + bnu,una + bnu)) = (d(una + bnu), d(una + bnu))

= (d(u)na + und(a) + d(b)nu + bnd(u), d(u)na + und(a) + d(b)nu + bnd(u))

(d(u)na + und(a), d(u)na + und(a)) + (d(b)nu + bnd(u), d(b)nu + bnd(u))

= (d(uw)na,d(u)na) + (und(a),und(a)) + (d(b)nu, d(b)nu) + (bnd(u), bnd(u))

— (@) dw) | " | @a)+ @) | | (@), d@) + @) dp) | | ()
0 0 0
Lm0 || ), )
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()| " | @a)+@w | " | @)+ Do) | | ww
0 0 0

+ (b, b) ! D((u,u)) = D(ur)ax +wyaD(zx) + D(y)ou; + yaD(uy),

n
where up = (u,u), 0 = ,x = (a,a),y = (b,b). Therefore,

0

D(uyox 4+ youy) = D(wy)ox + wiaD(x) + D(y)ouy + yaD(uq).
Hence D is a (Uy, N)—derivation of N.

Definition 6.1.2. Let U be a Lie ideal of a I'-ring M, and let D = (d;);en, be a
family of additive mappings of M into itself such that dy = idy;, where idy; is an
identity mapping on M. Then D is a higher (U, M )-derivation of M if for each n € N,
dy(vam + sou) = Y (di(u)ad;(m) + di(s)ad;(u))
i+j=n

holds for all w € U;m,s € M and o, 5 € I.

Example 6.1.2. Suppose N and U; are as in Example 6.1.1. Let d, : R — R be
a higher (U, R)-deriwation. If we define a mapping D, : N — N by D,((z,z)) =
(dn(z),dn(x)). Then by the similar calculation as in Example 6.1.1, we can show

that, D,, is a higher (Uy, N)-derivation of N.

Throughout this chapter (unless otherwise stated), U represents a Lie ideal
of a 2-torsion free I'-ring M, and M satisfies the assumption aabfc = afbac for all

a,b,c € M; o, 5 €T, it is denoted by (*).
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6.2 (U, M)-Derivations in Prime ['-Rings

This section is to develop the necessary results in order to reach the goal of the next

section. All these results are due to the concept of (U, M)-derivations of a I-ring.

Lemma 6.2.1. Let d be a (U, M)-derivation of M. Then

(i) d(uampu) = d(u)amfu + vad(m)fu + vamfBd(u) for all w € Uym € M and
a,Bel;

(11) d(uoampPv + vampfu) = d(u)ampBv + uad(m)Bv + vamfBd(v) + d(v)ampBu +
vad(m)fu + vamfd(u) for all u,v € Uym € M and o, € T.

Proof. By the definition of (U, M)-derivation of M, we have
d(uam + sau) = d(u)am + uad(m) + d(s)au + sad(u),Vu € Uym,s € M;a €T

Replacing m and s by (2u)fm + mfB(2u) and let w = ua((2u)fm + mpB(2u)) +
((2u)fm + mB(2u))au. Then using the definition of (U, M)-derivation and the con-
dition (*), we get
d(w) = 2(d(uw)o(uBm + mBu) + uad(uBm + mBu) + d(uBm + mBu)au + (ubm + mBu)ad(u))
= 2(d(u)aupfm + d(u)ampPu + vad(u) fm + uoufd(m) + uad(m)Bu + vamBd(u)
+ d(u) fmou + upd(m)au + d(m)Buau + mpBd(uw)ou + ufmad(u) + mPBuad(u))
= 2(d(uw)oufm + d(u)amBu + uad(w)Bm + uoud(m) + uad(m)Bu + uamBd(u)
+ d(u)amfBu + uad(m)fu + d(m)aufu + mad(uw)fu + vamfBd(u) + maoufd(u)).

(6.1)
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Also, we have
d(w) = d((2uau)fm + mB(2uauw)) + 2d(uamBu) + 2d(ufman)
= 2(d(u)auBm + uad(u)Bm + uouBd(m) + d(m)Bucu + mBd(u)ou + mBuad(u)
+ 2d(uamBu) + 2d(uamBu)
= 2(d(u)aupfm + uad(u) fm + voufBd(m) + d(m)aufu + mad(u) fu + moufd(u))
+ dd(uampBu).
(6.2)
By comparing (6.1) and (6.2), and since M is 2-torsion free, we obtain
d(uampBu) = d(u)oampBu + uad(m)Bu + uamBd(uw),Y u € Uym € M;a, B € T. (6.3)
If we linearize (6.3) on u, then (ii) is obtained. 0

Definition 6.2.1. For a (U, M)-derivation d, we define ¢, (u, m) = d(uam)—d(u)am—

uad(m) for all w € U;m € M and o € T.

Lemma 6.2.2. Let d be a (U, M)-derivation of a T'-ring M. For all u,v € U;m,n €

M and o €T, the following statements are true:

(1) a(m, u) = =@a(u, m); (i1) Palu +v,m) = ¢a(u, m) + ¢a(v,m);

(1id) ga(u,m +n) = ¢a(u,m) + ¢a(u, n); (V) Garp(u,m) = ¢a(u,m) + ¢5(u, m).

Proof. (i) Using Definition 6.2.1, we get

(1, 1) + o (m, 1) = d(uam) — d(u)am — uad(m) + d(maw) — d(m)aa — mad(u)

= d(uam + maw) — d(w)am — uad(m) — d(m)au — mad(u)
— d(u)am + d(m)aa + uad(m) + mad(u) — d(u)am — uad(m)
— d(m)au — mad(u) = 0.

= Po(m,u) = —¢q(u,m).
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(ii) By the definition of (U, M )-derivation of M, we obtain

Gt +v,m) = d((u+ v)am) — d(u + v)am — (u+v)ad(m)
= d(uam + vam) — d(u)am — d(v)am — uad(m) — vad(m)
= d(uam) — d(u)am — uad(m) + d(vam) — d(v)am — vad(m)
= ¢a(u,m) + da(v,m).

(iii) and (iv): The proofs are too obvious to perform. O

Lemma 6.2.3. Let U be a nonzero admissible Lie ideal of a 2-torsion free prime

[-ring M. Then U contains a nonzero ideal of M.

Proof. Since U is a noncentral Lie ideal of M, if x,y € U are any two elements, then

xay — yax # 0 for every o € I'. For any m € M, using the condition (*)

za(yBm) — (yBm)ax = va(yfm) — yazfm + yoxfm — (yBm)ax
— (way — yaz)Bm + yfrom — yBmoz
= (zxay — yax)pm + yB(xam — mazx) € U.
Since U is a square closed Lie ideal of M,2yB(zam — max) € U this leads us,

2(zay — yax)fm € U for all m € M. Now for any m,s € M, we have
(2(zay — yax)fm)as — sa(2(xay — yax)pm) € U; (2(zay — yax)Sm)as € U.
This implies,
sa(2(xay — yax))fm € UN m,s € M;a,5 €T.

Let I = MT2(xay —yax)'M. Then it is clear that [ is an ideal contained in U. Now,
we have to show that I is nonzero. Suppose that I = 0. By the 2-torsion freeness of

M, xay = yax and this a contradiction. Therefore, I is a nonzero ideal of M. O
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Lemma 6.2.4. Let U be a Lie ideal of a prime I'-ring M such that U ¢ Z(M). Then

there exist elements a,b € U such that [a,b], = aab — baa # 0.

Proof. Assume that [z,y], = 0 for every x,y € U and « € T". This gives [U, U]r = 0,
a contradiction to our assumption. So, there exist elements a,b € U such that

la, b, = aab — baa # 0. O

Lemma 6.2.5. Assume that U is an admissible Lie ideal of a 2-torsion free prime

[-ring M. If tavBv + vBvat =0, for anyt € M;v e U and o, €T, thent = 0.

Proof. Since tavpv + vBvat = 0 for all v € U,t € M and «,3 € I'. Linearize on v,

where v € U
0=ta(u+v)B(u+v)+ (u+v)3(u+v)at
= ta(ufu + ufv + vfu + vfv) + (ufu + ufv + vBu + vPv)at
= ta(ufv + vfu) + (ufv + vBu)at.
Replacing v by vav, we get
ta(upvav + vavpu) + (ufvav + vavfu)at = 0. (6.4)
Applying tavfv + vBvat = 0 in (6.4), and using the condition(*)
taufvav — vavftau — uatfvav + vavPuat = 0.
= (tau — uat)Bvav — vavf(tau — uat) = 0.

Therefore,

[t, u]ofvav — vavft, ul, = 0. (6.5)

Again applying tavfBv + vfvat =0 in (6.5), we get

[t, ulofvav — (—[t, ul,fvav) = 0.
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= 2[t, u|ofvav = 0.

By the 2-torsion freeness of M,
[t, u]ofvav =0,V u,v € Ust € M;a, 5 €T

This implies,
(M, UlrI'(vawv) = 0.

By Lemma 6.2.3, U contains a nonzero ideal I of M and this gives us, [M, U|r['IT (vav) =
0. Therefore, [M, U]’ MTIT (vav) C [M,U]rTIT (vav) = 0. Since M is prime, so
IT(vav) =0 or [M,U]r = 0. If IT'(vav) = 0, then for I # 0 and by Lemma 6.2.4, we
get U = 0, which is a contradiction. Therefore, [M,Ulr = 0, that is tfv — vGt = 0
forall ve Ut e M, €T. Since tavfv + vBvat = 0, and applying tfv = vt
0 = tavfv + vavft

= tavfv + vatPu

= tavfv + tavPu

= 2tavfu.
By the 2-torsion freeness of M, tavBv = 0 for all v € U,t € M,3 € I'. Linearize

tavBv = 0 on v, where u € U
0 =ta(u+v)p(u+v)
= ta(ufv + vfu).

This implies,

ta(ufv + vPu)yuat = 0.

= taufvyuat + tavPuyuat = 0.
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Since uyuat = 0 and tau = uat. Therefore,
(tau)pvy(tau) = 0.
By the primeness of M, tau = 0. Since ufm—mpu € U forall ue Um e M, €T.

Therefore, ta(ufm—mpBu) = 0, that is, tauSm —tamBu = 0. This implies, tamfBu =

0. But w # 0 and M is prime, consequently, t = 0. n
As explained earlier, the goal of this section is to prove the following theorem.

Theorem 6.2.6. Let U be an admissible Lie ideal of a 2-torsion free prime I'-ring
M, and let d be a (U, M)-derivation of M. Then ¢q(u,v) = 0 for all u,v € U and

ael.
Proof. Let @ = 4(uawB[u, v]ayvou + vauSu, v]ayuav). Then using Lemma 6.2.1(ii),
we get
d(z) = d((2uov)B[u, v]a(2vau) + (2vau)B[u, v]a7 (2uav))
= d(2uav)Blu, v]a (2vau) + 2uavd(Blu, v]a)y2vau + 2uavBlu, v]avd(2vau)
+ d(2vow) Blu, v]ay(2uav) + 2vaud(Blu, v]a)y2uan + 2vauflu, vlayd(2uav).
On the other hand using Lemma 6.2.1(i), we get
d(z) = d(uo(4vB[u, v]ayv)ou + vo(duBu, vlayu)av)
= d(w)advBlu, v]ayvau + uad(@vBu, v]ayv)au + uadvBlu, v]ayvad(u)
+ d(v)adufu, vlayuav + vad(4uBlu, viayu)ov + vaduSu, v]ayuad(v)
= 4d(u)awBlu, v]avou + duad(v)Bu, v]ayvau + duavd(Blu, v )yvau
+ duawBlu, v]ard(v)au + duawBlu, v]ayvad(u) + dd(v)ouBlu, v]ayuan
+ dvad(w)Blu, vlayuav + dvaud(Blu, vla)yuay + dvauSlu, vlayd(u)au

+ dvauflu, v],yuad(v).
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Equating these two expressions for d(z) and using the Definition 6.2.1, we obtain

4(d(uav)—d(u)av—uad(v))fu, v]oyvau+4(d(vou) —d(v)au—vad(uw)) Blu, v]o yuow

+uavfSlu, v]yy(d(vau)—d(v)au—vad(u))+4vaufu, v],y(d(uav) —d(u)av—uad(v)) = 0.

= 4(¢a (u, v)Blu, v]ayvau + da(v, ) B, vayuav + uavBlu, v]ayda(v, u)
+ vauBu, v]ayda(u, v)) = 0.
Using Lemma 6.2.2(i), we get
4(¢a(u, v)Blu, v]ayvau—do(u, v) Blu, v]ayuov—uavBlu, vlayga(u, v)+vauu, vlayda(u, v)) = 0.
= 4(Pa(u, v)Blu, v]ay[u, vla + [u, v]aBu, v]ayPalu, v)) = 0.
Using the condition (*) and 2-torsion freeness of M,
e (11, 0)[tt, V] Bl Vo + [, v]a B, V]avda(u, v) = 0,Y u,v € U, v, B, € T

Since U ¢ Z(M), and therefore, [u,v], # 0 for all u,v € U and o € I'. Hence by

Lemma 6.2.5, we obtain ¢, (u,v) =0 for all u,v € U and a € T'. ]

Lemma 6.2.7. Let U be an admissible Lie ideal of a 2-torsion free prime I'-ring M,
and d be a (U, M)-derivation of M. Then ¢g(uau,m) =0 for alluw e U,m € M and
a,fel.

Proof. By Theorem 6.2.6, we have ¢,(u,v) = 0 for all u,v € U;a € . Thus for all

u € Umeée M and a, 8 € I', we obtain

0= Qba(u’ ufm — mﬁu)
= d(ua(ufm — mpu)) — d(u)a(ufm — mpu) — uad(ufm — mpPu)
= d(uaufm — uamfu) — d(u)a(ufm — mpu) — uad(ufm — mpu)

= d(uaufm)—d(uampu)—d(u)aufSm+d(u)amBu—ua(d(u) Sm+ufd(m)—d(m)Su—mpBd(u))
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= d(uaupm) — d(u)amfBu — uad(m)fu — uampfd(u) — d(uw)cufm + d(u)amfu
— uad(u) fm — uaufd(m) + vad(m)Bu + uamBd(u)
= d(uaupfm) — d(u)oufm — uvad(u)fm — uaufd(m)

= d((uau)fm) — d(uow)fm — —(uaw)Sd(m) = ¢g(uau, m).
O
Now, we prove the other result as follows:

Theorem 6.2.8. Let U be a square closed Lie ideal of a 2-torsion free prime I'-ring
M, and d be a (U, M)-derivation of M. Then d(uam) = d(u)am + uad(m) for all

uelUmeM and a €T,

Proof. Since d is a (U, M)-derivation of a prime I'-ring M, so for all u € Uym € M

and «, 3 € I', we have
d(ua(ufm) + (upm)ou) = d(u)oufm +uad(upfm) + d(ufm)ou + ufmad(u). (6.6)
On the other hand
d(uoufm + ufmau) = d(uaufm) + d(u)Bmau + ufd(m)au + ufmad(u).  (6.7)
From Lemma 6.2.7, we have
¢p(uau,m) =0,Yue U;me M;a,f €.

= d(uaupfm) — d(u)oufm — uad(u) Sm — uvauBd(m) = 0.

= d(uaufm) = d(u)aufm + uad(u)Bm + uauBd(m). (6.8)
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Now, using (6.8) in (6.7), we get
d(uoufm + ufmau) = d(u)aufm + uad(u)Sm + voaufd(m) + d(u)fmaou
+ ufd(m)au 4+ upfmad(u). (6.9)
Comparing (6.6) and (6.9), we get
uad(ufm) + d(upm)au = uad(u)fm + vouBd(m) + d(u) Smau + ufd(m)au.
Using Definition 6.2.1, we obtain
uagg(u,m) + ¢g(u,m)au =0,Yu e Ume M;a,B €. (6.10)
Linearizing (6.10) on u and using (6.10)
(u+v)apg(u+v,m)+ ¢g(u+v,m)a(u+v) = 0.
= uagg(u, m) + uags(v, m) + vags(u, m) + vagg(v,m)

+ ¢p(u, m)au + dg(u, m)av + ¢g(v, m)au + ¢g(v, m)av = 0.

= uapg(v,m) + vapsg(u, m) + ¢g(u, m)av + ¢s(v, m)auw = 0. (6.11)
Replacing v by vyv in (6.11) and using Lemma 6.2.7, we get

(vyv)ags(u, m) + ¢g(u, m)a(vyv) = 0.

It U ¢ Z(M), using Lemma 6.2.5, ¢g(u,m) =0 for all u € Uym € M and 3 €T.

If U C Z(M), by the 2-torsion freeness of M, (vyv)ags(u, m) = 0. Therefore,
0 = co(vyv)aps(u,m) = (vyv)dcapg(u, m), where ¢ € M and § € I'. Since M
is prime, so vyv = 0 or ¢g(u,m) = 0. But v # 0, hence ¢g(u,m) = 0 for all

u€eUme M and § € I'. This completes the proof of the theorem. O
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6.3 Higher (U, M)-Derivations in Prime I'-Rings

Ferrero and Haetinger [15] extended Herstein’s [19] theorem to higher derivations
using Jordan triple higher derivations. Also, Haetinger extended Awtar’s [3] result
to higher derivations. We generalized a result of A. K. Faraj, C. Haetinger and A. H.
Majeed [16] in I-rings by the new concept of higher (U, M)-derivations. In order to
prove the desired result stated at the beginning of the chapter, we have to determine

some important results in the following way.

Lemma 6.3.1. Let D = (d;)ien be a higher (U, M)-derivation of a 2-torsion free
U-ring M. Then d,(vampBu) =3, .., di(u)ad;(m)Bdy(u) for all u € Uym € M
and o, 3 € T.

Proof. Let x = ua((2u)fm + mpB(2u)) + ((2u)fm + mB(2u))au. Replacing m and s

y (2u)pfm + mpB(2u) in Definition 6.1.2, and using the condition (*)

do(x) = ) (di(w)ad;((2u)Bm +mf(2u)) + di((2u) 5m + mpB(2u))ad;(u))

=2 Y di(wa Y ((di(u)Bdy(m) + di(m)Bd(w) +2 > Y (d,
i+j=n I+t=j i+j=n p+q=t
dp(m)Bdq(u))ad;(w))
=2 Z w)ady(u) fdy(m) 4 di(u)ady (m) By (u)) + 2 Z (dp(u)Bdg(m)od;(u)
+ dp(m) Bdg(u)od;(u))
=2 Z d;(w)ad; (v) Bdy(m) + 2 Z d;(w)ad;(m)Bd,(v)

+2 > dy(wady(m)Bd;(u)+2 > dy( w)Bd;(u). (6.12)

pt+qtj=n p+q+j=n
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On the other hand
dn(z) = dn((2uau)fm + mB(2uau)) + 2d, (uampfu) + 2d, (ufmau)
= d,((2uau)Sm + mp(2uau)) + 2d, (vampBu) + 2d,(vamfu))

=2 Z (wow) Bdj(m) + d;(m)Bd;(uow)) + 4d, (uampPBu)

i+j=n
=2 ) > di(wads(u)Bd;(m) +2 Y Y di(m)ad(u)Bdi(u) + 4d, (uamBu)
i+j=nr+s=i i+j=nt+k=j
=2 > dy(u)ad,(u )42 > di(m)ad,(u)Bdy(u) + 4d, (uamBu).
r+s+j=n i+t+k=n
(6.13)
Now, comparing (6.12) and (6.13), we get
4d, (uampPu) = 4 Z di(u)adj(m)Bdi(u),Yue Ume M;a,B €.
i+j+k=n
Using 2-torsion freeness of M, we get the desired result. O]

Lemma 6.3.2. If D = (d;)ien 1s a higher (U, M)-derivation of M. Then for all
u,v € Usm € M and o, B € T, dy(uamBot+vamfBu) =32, .1, di(u)ad;(m)Bdy(v)+
d;(v)ad;(m)Bdy(u).

Proof. Linearizing of d,(uampBu) = 32, ..., di(u)ad;(m)Bdy(u) with respect to u,

we obtain
dy((u 4 v)amB(u + v)) Z di(u + v)ad;(m)Bdg(u + v)
i+j+k=n
= | Z (di(uw)ad;(m)Bdy(u) + d;(u)ad;(m)Bd,(v) + d;(v)ad,;(m)Bd(u)

+ di(v)ad;(m)Bdy(v)). (6.14)
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On the other hand

dp((u+v)ampB(u+v)) = d,(uvampu) + d,(uampv + vampfu) + d,(vamfv)

= > (di(w)ad;(m)di(u) + dy(uamBu + vamu)

itj+h=n
+ > (d m)Bdy(v). (6.15)
i+j+k=n
Now, comparing (6.14) and (6.15)
d,(uampv + vamfu) = Z d;(u m)Bdi(v) + d;(v)ad;(m)pBd;(u).
i+j+k=n
[

Definition 6.3.1. For every higher (U, M)-derivation D = (d;);en of M, we define
on(u,m) = dp(uam) — 32, . di(u)ad;(m) for all u € Uym € M,a € I' and n € N.

Remark 6.3.1. ¢%(u,m) = 0 for all u € Uym € M, € I and n € N if and only if
dp(uam) =3, di(u)ad;(m) for allu € Uym € M,a € I" and n € N.

Lemma 6.3.3. Let D = (d;);en be a higher (U, M)-derivation of M. Then for every
w,veU m,pe M;a,0 €€l andn e N
(0)gn (u, m) + ¢ (m, w) = 0; (id)d5 (u + v, m) = ¢ (u, m) + ¢;; (v, m);

(“Z>¢g(u7 m+ p) = (;5%(“7 m) + ng(uvp); (Z'U)qb?ﬁ_ﬁ(u, m) = ¢g<u7 m) + ¢£(u7 m)

Proof. (i) By the Definition 6.3.1 and using the definition of higher (U, M )-derivation
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of M, we obtain

oo (u, m) + ¢ (m,u) = d,,(uam) Z di(u (mau) Z d;(m

i+j=n i+j=n

= d,(uam + mou) — Z di(u)ad;(m) — Z d;(m)ad;(u

i+j=n i+j=n

= Z di(u)ad;(m) + Z di(m)ad;(u) — Z di(u)ad;(m)

i+j=n i+j=n i+j=n

- di(m = 0.

i+j=n
(ii) By the definition of ¢%(u, m), we get

oo(u+v,m) =d,((u+v)am) — Zdu—irv&d m)

i+j=n
= d,(uam + vam) — Z d;(u)ad;(m) — Z d;(v)ad;(m
i+j=n i+j=n
(uam) Z di(u (vam) Z d;(v
i+j=n i+j=n
= ¢g(u7 m) + ¢g('U, m)
(iii) and (iv) are very easy to proof. O

Theorem 6.3.4. If U is an admissible Lie ideal of a 2-torsion free prime I'-ring M ,
and D = (d;)ien 1s a higher (U, M)-derivation of M. Let n € Nyu,v € U;o, 3,7 € T
and ¢5(u,v) = 0 for every p < n, then ¢5(u,v) = 0 for all u,v € U;a € T' and

n € N.

Proof. Let T = d,,(4uavfwyvau + dvaufwyuav). By Lemma 6.3.1, we get

T = d,,(ua(4vBwyv)au) + d, (va(dufwyu)av)

=4 Z w)ad,(vpwyv)ad(u)) + 4 Z (d;(v)ad,(ufwyu)ad;(v))

i+p+l=n i+p+l=n

=4 Z di(uw)ad;(v) By (w)ydp (v)ody (w)+4 Z d;(v)ad;(w) Bdy(w)ydp (u)ad(v).

i+j+k+h+l=n i+j+k+hti=n
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On the other hand by Lemma 6.3.2, we obtain

T = dn((2uav) fwy(2vau) + (2vaw) fwy(2uav))

= Z (d-(2uaw)fdgs(w)yd(2vau) + d,.(2vau) Bds(w)yd, (2uav))

r+s+i=n
=4 Z d,(uow) fdg(w)ydy(vau) + 4 Z d, (vau) Bds(w)yds (uaw).
r+s+t=n r+s+t=n

Comparing above two expressions for 7', we obtain

> di(wad;(v)Bdp(w)ydy(v)adi(u) — Y dr(uow)Bds(w)ydi(vouw)
i+j+k+h+l=n r+s+t=n
+ Z d;(v)ad;(uw) Bdi(w)ydp (uw)ad (v Z d,(vau)Bds(w)ydi(uav) = 0.
i+j+k+h+l=n r+s+t=n

Since ¢ (u,v) = 0, for every p < n, that is d,(uav) =3, ;_ di(u)ad;(v). Therefore,

> (diwad;(v)Bdy(w)ydi)ady(u)) = Y (dr(uow)Gds(w)ydy(vau))

i+j+k+h+l=n r+s+t=n
Z d;(u v)) Bwyvau + uow Buwy( Z dp(v)ad;(u))
i+j=n h+l=n
i+j<n,h+l<n
S (du)ad; (o) Bdy(w)rd(v)adi(u)) — du((uaw)Bun (o)
itj+k+htl=n
i+j=r<n,p+q=t<n
~anfurd o) — S (di(u)ad;(v)3d,(w)ydy(v)ad,(u)
r+s+t=n
= ((uaw) Z d;(u Blwyvau)—(uavfw)y(d, (vaw) Z dp(v)ad;(u
i+j=n h+l=n

= — (¢} (u, v) Bwyvau + vavBwydy, (v, u)).

Proceeding as above, we also have

> di(w)ad;(u)Bdp(w)ydy(w)ad(v) — Y dr(vaw)Bds(w)ydy(uov)

i+j+k+h+l=n r+s+t=n

= (5 (v, u) Bwyuaw + vauSwydy (u, v)).
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Therefore,

¢ (u, v) Bwyvan + uavfwydy, (v, u) + ¢p (v, u)Bwyuav + vaupwyd, (u,v) = 0.

By Lemma 6.3.3(i), we obtain

oo (u, v) fwyvau — uavfwydn(u,v) — ¢n(u, v)wyuav + vaufwydn(u,v) = 0.
This implies,
o5 (u, v) fwylu, v)o + [u, v]aSwydn(u,v) =0, ¥V w € U.
In view of Lemma 4.2.6 and Lemma 4.2.7, we obtain ¢2%(u, v)Swy[z,yls = 0 for all

u,v,w,z,y € U and o, 3,7, € T. Since [z,y|s # 0 as U € Z(M). Hence by Lemma
4.2.5, we obtain ¢%(u,v) =0 for all u,v € U;a € T and n € N. ]

Lemma 6.3.5. Let U be an admissible Lie ideal of a prime I'-ring M, and D = (d;)ien
be a higher (U, M)-derivation of M. Then ¢2(ufu,m) = 0 for all u € Uym €
M;a,6 €T andn € N.
Proof. By Theorem 6.3.4, we have ¢&(u,v) = 0 for all u,v € U and a € I". Now for
any m € M, replacing v by ufm — mpBu, we get
0 = ¢f (u, ubm — mpu)

= dp(ua(ufm — mpu)) Z d;(u)adj(upm — mpu)

i+j=n
= d,(uaupfm) — d,(vamfu) — Z d;(u Z b(w)Bdy(m) — dy(m)Bd,(u))
1+j=n p+q=j
= d,(uoupfm) — d,(uvampfu) — Z d;(u )+ Z di(u m)Bd,(u)
i+p+g=n i+p+g=n
= d,(uaufm) — d,(vamfu) — Z d;(u w)fBdy(m) + d,,(vamfu)
i+p+q=n

= d,(ufuam) — Z Zd w))ady(m) = ¢ (ufu, m).

s+q=n i+p=s
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]

Theorem 6.3.6. Let U be an admissible Lie ideal of a 2-torsion free prime I'-
ring M, and D = (d;)ien be a higher (U, M)-derivation of M. Then d,(ufm) =
> ivjon di(u)Bd;(m) for allu € Uym € M,3 €T andn € N.

Proof. By Definition 6.3.1, we have

o5 (u,m) =0,YueUméeMacT.
Also, by Theorem 6.2.8,

¢ (u,m)=0YuecUméeMacl.

Now, we proceed by induction. Suppose ¢fj(u, m) =0forallu e Ume M,a €T
and p € N. This implies, d,(uam) =3, . di(u)ad;j(m),u € Uym € M and a € T’
and p < n, where p,n € N. Since D = (d;);en is a higher (U, M)-derivation of M.

Therefore,

dy(uo(uBm) + (upm)au) = >~ (di(w)ad;(ufm) + di(ufm)ad;(u))

i+j=n
= uody, (ufm) + dy, (u)o(ufBm) + ”Z@ d;(u)ad;(ufm)
iti=n
+ (ufm)ad,(u) + d,(ufm)au + ”23" d;(uBm)ad;(u)
i+j=n
= uad, (ufm) + dy, (u)o(ufm) + f di(u)o Y dy(u)Bdy(m
itj=n s
+ (ufBm)ad, (1) + dn( uﬁmau—l—lf () di(u)Bdy(m))ad;(u)

i+j=n l4+q=i
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7,5+t<n
= uad,(ufm) + dp(w)o(uBm) + > di(u)ad,(u)Bd,(m)
i+s+t=n Lewion
+ (uBm)ad, (u) + dy(ufm)au+ Y di(u)Bdy(m)ad;(u). (6.16)
l+q+j=n

On the other hand, using Lemma 6.3.1 and Lemma 6.3.5, we get

dy(ua(ufm) + (upm)ou) = d,(vaufm) + d,(ufmou)

Z dp(u)oudy(u Z di(u m)ady(u)

p+g+j=n i+j+k=n
p,gtj<n
= d,(u)aufm + ua Z dq(u)Bd;( Z dy( w)Bd;(m)
q+j=n ptg+j=n
i+j,k<n
+ ufmad, (u Z d;(u m)au + Z d;(u u)adi(m). (6.17)
i+j=n i+j+k=n

By comparing (6.16) and (6.17), and using the condition (*)

uad, (upm) + dp(ufm)ou = ua Z dy( Z di(u
gt+j=n i+j=n
= ua(d,(ufm) — Z dy( d,(upm) — Z d;(u =0.
qtj=n i+j=n

= uad? (u,m) + ¢ (u,m)au = 0. (6.18)
Linearizing of (6.18) with respect to u, gives us
&) (u,m)aw + ¢ (v, m)au + uag (v, m) + vag, (u,m) = 0.
Replacing v by vawv, then using Lemma 6.2.5 and Lemma 6.3.5, we get
o2 (u,m) =0,YueUmeM,aeT',neN.

Hence d,(ufm) =3, ,_, di(u)Bd;(m) for allu €e Uym € M, €"andn e N. [



Chapter 7

Generalized (U, M )-Derivations

This chapter makes a study of generalized (U, M )-derivations and generalized higher
(U, M)-derivations of I'-rings analogous to the study of (U, M )-derivations and higher
(U, M )-derivations of I'-rings in Chapter 6. In view of the notions of (U, M )-derivation
and higher (U, M )-derivation of I'-rings here we introduce the concepts of general-
ized (U, M )-derivation and generalized higher (U, M )-derivation of I'-rings. We start
the discussion with the introductory definitions of generalized (U, M )-derivation and
generalized higher (U, M)-derivation of T'-rings.

In the next, associated with some important consequences due to (U, M)-derivations
of I'-rings developed in the previous chapter, here we determine some useful signifi-
cant results on generalized (U, M )-derivations of I-rings. Then we extend the results
of A. K. Faraj, C. Haetinger and A. H. Majeed [16] in I'-rings by the new concept of
generalized (U, M)-derivations of I'-rings.

Finally, we conclude this chapter by proving the analogous results corresponding
to the results of previous chapter considering generalized higher (U, M)-derivations
of prime I'-rings instead of higher (U, M)-derivations of prime I'-rings almost similar

way after developing a number of results regarding this derivation.
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7.1 Introduction

A. K. Faraj, C. Haetinger and A. H. Majeed [16] introduced generalized (U, R)-
derivations in rings as a generalization of Jordan derivations on Lie ideals of a ring.
They extended Awtar’s [3] theorem to generalized higher (U, R)-derivations by prov-
ing that if R is a prime ring, char(R) # 2, U is an admissible Lie ideal of R and
F = (fi)ien is a generalized (U, R)-derivations of R, then f,(ur) =3, ._ fi(u)d;(r)
forallu e Uyjr € R,n € N.

Following the notions of (U, M)-derivation and higher (U, M )-derivation of a I'-
ring in the previous chapter here we introduce the concepts of generalized (U, M)-

derivation and generalized higher (U, M)-derivation of I'-rings in the following way.

Definition 7.1.1. Let U be a Lie ideal of a I'-ring M. An additive mapping f :
M — M is a generalized (U, M)-derivation of M if there exists a (U, M)-derivation
d of M such that f(uam + sau) = f(u)am + uad(m) + f(s)au + sad(u) is satisfied

forallu e U;m,s € M and a € T.

The following are examples of (U, M)-derivation and generalized (U, M )-derivation

of a I'-ring.

Example 7.1.1. Let R be an associative ring with 1, and let U be a Lie ideal of

n.l
R. Let M = M;s(R) and I' = :n € Zy, then M is a I'-ring. Let

0
N ={(z,x):x € R} C M, then N is a sub I'-ring of M. Let Uy = {(u,u) : u € U},

then Uy is a Lie ideal of N. Let f : R — R be a generalized (U, R)-derivation .
Then there exists a (U, R)-derivation d : R — R such that f(uz + su) = f(u)x +

ud(z) + f(s)u + sd(u),¥Y u € U,z,s € R. If we define a mapping D : N — N by
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D((xz,z)) = (d(z),d(x)), then we have

D((u, u) ( ! ) (2,2) + (1) ( " ) (u,u)) = D((unz, unz) + (ynu, ynu))

= D((unx + ynu, unz + ynu)) = (d(unz + ynu), d(unx + ynu)).

After calculation as in Example 6.1.1, we have

D(ujaxy + yrauy) = D(up)azy + wyaD(zy) + D(yr)ouy + yraeD(uy),

n
where uy = (u,u), a = ,x1 = (z,z) and yy = (y,y). Hence D is a (Uy, N)—
0

derivation on N. Let F : N — N be the additive mapping defined by F((z,x)) =

n
(f(x), f(x)), then considering u; = (u,u) € U, a = el andxy = (z,2),y1 =
0

(y,y) € N, we have
F(uiaz + yrouy) = F((unx + ynu, unx + ynu)) = (f(unz + ynu), f(unx + ynu))
= (f(u)nz + und(z) + f(y)nu + ynd(u), f(u)nz + und(x) + f(y)nu + ynd(u))
= (f(u)nz + und(z), f(u)nx + und(zx)) + (f(y)nu + ynd(u), f(y)nu + ynd(u))

= (f(wnz, f(u)nz) + (und(z), und(x)) + (f(y)nu, f(y)nu) + (ynd(w), ynd(u))



142

= F(uiazr; + yau) = F(uy))ar, + wyaD(xy) + F(y)ouy + yiaD(uq).

Hence F is a generalized (Uy, N)—derivation on N.

Definition 7.1.2. If U is a Lie ideal of a I'-ring M and F' = (f;)ien, is a family of
additive mappings of M into itself, where fy = idys then F' is a generalized higher
(U, M)-derivation of M if for each n € N there exists an higher (U, M)-derivation
D = (d;);en of M such that
faluam + sau) = Y (fi(u)ad;(m) + fi(s)ad;(u))
i+j=n

holds for all u € U,m,s € M and o, (3 € T'.

Example 7.1.2. Let U be a Lie ideal of an associative ring R with 1, and let f, :
R — R be a generalized higher (U, R)-derivation . Then there exists a higher (U, R)

dertvation d,, - R — R such that

foluz +yu) = Y (filw)d;(@) + fiy)d;(w),¥ v € U,z,y € R.

i+j=n
Suppose N and Uy are as in Example 7.1.1. If we define a mapping D,, : N — N
by D,((z,x)) = (du(x),d,(x)). Then D, is a higher (Ui, N)-derivation on N. Let
F, : N — N be the additive mapping defined by F,((x,x)) = (fu(x), fu(x)). Then
by the similar calculation as in Example 7.1.1, we can show that, F,, is a generalized

higher (U, N )-derivation on N .

Except otherwise mentioned, throughout this chapter, M is a 2-torsion free
['-ring which satisfies the assumption aabfc = afbac for all a,b,c € M; o, 3 € " and

it is denoted by (*); U is a Lie ideal of M.
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7.2  Generalized (U, M)-Derivations in Prime [I'-
Rings

To determine some important results of prime I'-rings with generalized (U, M )-derivations,

we have to develop some needful results proceeding as follows.

Lemma 7.2.1. If f is a generalized (U, M )—derivation of M for which d is the
associated (U, M)—derivation of M. Then for all u,v € U; m € M and o, f € T,

(i) fluamBu) = f(u)amBu + uad(m)Bu + uomBd(u):

(it) f(uampPv + vampPu) = f(u)ampBv + uad(m)fv + vamfBd(v) + f(v)ampBu +
vad(m)fu + vampd(u).

Proof. By the definition of generalized (U, M)-derivation of M, we have f(uam +
soau) = f(u)am + uad(m) + f(s)au + sad(u) for all w € U;m,s € M and a € T.
Replacing m and s by (2u)fm + mfB(2u) and let w = ua((2u)fm + mpB(2u)) +

((2u)Bm + mpB(2u))ou.

On the one hand

fw) = 2(f(w)a(ufm+mpu)+uad(ufm+mpBu)+ f (ufm+mBu)au+(ufm+mpBu)ad(u))
= 2(f(w)aufm + f(u)ampu + uad(u)Sm + vaufd(m) + uad(m)u + vamBd(u)
+ f(u)fmau + ufd(m)au + f(m)Buau + mpBd(u)au + ufmad(u) + mpuad(w))
= 2(f(w)aufm + f(w)amBu + uad(uw)Bm + vauBd(m) + uad(m)Bu + uamBd(u)

+ f(w)ampBu + uad(m)Bu + f(m)oufu + mad(u)fu + vampBd(u) + maufd(u)).
(7.1)

On the other hand

f(w) = f((2uaw)fm + mpB(2uau)) + 2f(uampPu) + 2 f (ufmau)
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= 2(f(u)aufm+uad(u) Smtuaufd(m)+ f (m)Buaut+mpBd(u)aut+mpPuad(u))+4 f (uamBu)

= 2(f(u)aufm+uad(u) SmtuauBd(m)+ f (m)aufut+mad(u) Su+maufBd(u))+4 f (uampPu).

Comparing (7.1) and (7.2), and since M is 2-torsion free
fluampu) = f(u)amfu+uad(m)bu+uvamfBd(u),¥Yu e U;m e M;a,3 €. (7.3)
If we linearize (7.3) on u, then (ii) is obtained. O

Definition 7.2.1. Let f be a generalized (U, M)-derivation with the associated
(U, M )-derivation d of M. We define ¥, (u,m) = f(uam) — f(u)am — uad(m) and

®,(u,m) = d(uam) — d(u)am — uad(m) for allu € U;m € M and o € T.
Directly from the definition, the following properties follow at once.

Lemma 7.2.2. If f is a generalized (U, M)-derivation of M, then for all u,v €
U;mneManda,B €T,
()P (u,m) = =Dy (m,u); (1) Py (u + v,m) = Py (u, m) + P (v, m);

(179) Do (u,m +n) = Oo(u, m) + P (u, n); (10) Lot s(u, m) = 4 (u, m) + Pg(u, m).

Proof. (i) By the definition of ®,(u, m), we have ®,(u,m) = f(uam) — f(u)am —

uad(m), using the Definition 7.1.1

(7.2)

D, (u,m) + ®o(m,u) = f(uam) — f(u)am —uad(m) + f(mau) — f(m)aa — mad(u)

= f(uam + mau) — f(u)am — uad(m) — f(m)au — mad(u)

= f(u)am + f(m)aa + uad(m) + mad(u) — f(u)am — uad(m)

— f(m)au — mad(u) = 0.

= O, (u,m) = —Py(m,u).
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(ii) By the definition of ®,(u, m), we get

O, (u+v,m)=f((u+v)am) — f(u+v)am — (u+ v)ad(m)
= f(uam +vam) — f(u)am — f(v)am — uad(m) — vad(m)
= [(uam) — f(u)am —uad(m) + f(vam) = f(v)am — vad(m)
= O, (u,m) + o (v, m).
(iii)- (iv): These are too easy to prove. O
Lemma 7.2.3. With our notations as above, for any w,v € U; m € M and o, 3 € T,
the following are true:
(1) Walu,m) = =Wa(m, u); (i) Vo(u+v,m) = Va(u,m) + Va(v,m);

(193) Wolu,m+n) = Vo(u,m) + Yo (u,n); (iv) Yois(u,m) = Vy(u,m) + ¥a(u, m).
Proof. Proceeding in the same way of the proof of above lemma. m

In obtaining our main result of this section, the following Lemma plays an impor-

tant role.

Lemma 7.2.4. If U is an admissible Lie ideal of a 2-torsion free prime I'-ring
M and f is a generalized (U, M)—derivation of M for which d is the associated
(U, M)—derivation of M, then U, (u, v)Bwy[u,v]s = 0 for allu,v,w € U and o, 3,7y €
I.

Proof. Let x = 4(uavfwyvau + vaufwyuav). Using Lemma 7.2.1(ii), we have
f(@) = f((2uaw)Bwy(2vau) + (2vau) Bwy(2uav))

= 4f(uow)Bwyvou + duavfd(w)yvau + duavfwyd(vau) + 4 f (vou) fwyuow

+ dvaufd(w)yuav + dvaufwyd(uav).
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On the other hand, using Lemma 7.2.1(i), we have

F(x) = f(ua(dvfuyv)au + va(dufuwyu)an)

= f(u)advBuwyvou + vad(dvfwyv)ou + uadvfuwyvad(u) + f(v)odufwyuov
+ vad(4ufuwyu)av + vaduBwyuad(v)

= 4f (u)avBwyvou + duad(v) Buwyvau + ducw Bd(w)yvau + duovBwyd(v)au

+ duavfuwyvad(u) + 4f(v)oufwyuov + dvad(u) fuyuav + dvaufd(w)yuav

+ dvaupwyd(u)av + dvaufwyuad(v).
Comparing the right side of f(z) and using the 2-torsion freeness of M
f(uav)fwyvau + vovpwyd(vau) + f(vau)fwyuov + voaufwyd(uav)
= f(uw)avfwyvau + uad(v) fwyvau + uavfwyd(v)au + uavfwyvad(u)

+ f(v)aufwyuov + vad(u) fwyuov + vaufwyd(u)av + voufwyuad(v).

Therefore,

(f(uaw) — f(u)av — uad(v))fwyvau + (f(vau) — f(v)ou — vad(uw)) Swyuov
+ uavfwy(d(vau) — d(v)au —vad(u)) + vaufwy(d(uov) — d(u)av —uad(v)) = 0.
Using the Definition 7.2.1, we obtain

U, (u, v)fwyvau + Y, (v, u) fwyuav + uavfuwyP, (v, u) + vaufwy®, (u,v) = 0.
Now, using Lemma 7.2.2(i) and 7.2.3(i), we have

U, (u, v) wylu, v]s + [u, v]afwyPq(u,v) = 0,¥ u,v,w € Usa, 3,7y € T

Since d is a (U, M)-derivation, we have ®,(u,v) = 0 for all u,v € U and o € T, by

Lemma 6.2.6. Using this we obtain the desired result. O]
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Now, we prove the following two theorems with generalized (U, M )-derivation of

a prime I'-ring M.

Theorem 7.2.5. Assume that U is an admissible Lie ideal of a 2-torsion free prime
[C-ring M, and f is a generalized (U, M)-derivation of M, then ¥, (u,v) = 0 for all

u,v €U and a € T'.
Proof. By Lemma 7.2.4, we have
U, (u,v)fwylu,v]le = 0,Y u,v,w € Usa, 3,7y € T
Using the Lemma 4.2.7 in the above relation, we obtain
U, (u, v)wylz,yls = 0,Y u,v,w,z,y € U;a, 3,7,0 € T

Since U is not contained in Z(M), so [z,yls # 0. Thus, by Lemma 4.2.5, we get

U, (u,v) =0 for all u,v € U and a € T'. O

Remark 7.2.1. If we replace U by a square closed Lie ideal in the Theorem 7.2.5, then

the theorem is also true.

Theorem 7.2.6. Let U be a square closed Lie ideal of a 2-torsion free prime I'-ring

M, then f(uam) = f(u)am + uad(m) for allu € Uym € M and o € T.

Proof. From Theorem 7.2.5 and Remark 7.2.1, we have
U, (u,v) =0,VuveU,ael (7.4)

Replacing v by ufSm — mfu in (7.4), we get ¥, (u,ufm — mfu) = 0. Since uffm —
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mpu € U for all u € U, m € M and a, 8 € T. Therefore,
0 = W, (u, uBm — mBu)

— f(ua(uBm — mBu)) — f(u)a(uBm — mpu) — uad(um — mBu)
— f(uauBm) — f(uamBu) — f(u)aupm + f(u)amBu — uad(u)fm
— waufd(m) + uad(m)Bu + uamBd(u)
= f(uoufm) — f(u)omBu — uad(m)Bu — uamBd(u) — f(u)ausm
+ f(wamBu — uad(u)Bm — uauBd(m) + vad(m)Bu + uamd(u)
= f(uauBm) — f(u)auBm — uad(w)Bm — uouBd(m).

This implies,

fluaupm) = f(u)aufm + uad(uw)Sm + vauBd(m).
= f((uau)pm) — f(uou)fm — (uau)Bd(m) = 0.

= Ug(uau,m)=0,YueUme M;a,8€T. (7.5)

Now, let * = waufm + ufmau. Then by the definition of generalized (U, M)-

derivation, we have

f(z) = f(uw)aupm + uvad(upm) + f(ufm)au + ufmad(u) 76)
= f(w)aufm + vad(u)fm + vaufd(m) + f(ubm)au + ufmad(u).

On the other hand, using (7.5) and Lemma 7.2.1(i)
f(x) = fluauBm) + f(ufmau)
= f(u)aupm + uad(uw)Sm + vaufd(m) + f(u)Smou + ufd(m)au + ufmad(u).
(7.7)

Comparing (7.6) and (7.7), we get

(f(uBm) — f(u)Bm — uBd(m))au = 0.
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This yields,
Us(u,m)au=0,YueUme M;a,f€T. (7.8)

Linearize (7.8) on u and using equation (7.8), we get
Us(u, m)av 4+ ¥s(v, m)au = 0. (7.9)
Replacing v by vyv in equation (7.9), we obtain
Vs (u, m)avyv + Wg(vyv, m)au = 0.

Since ¥g(vyv,m) = 0 for all v € U;m € M and (3, € I". This is seen in the equation

(7.5) for vyv in place of uau. Therefore, we have
Us(u,m)avyv =0,V u,v € Uym € M;a, 3,7 €. (7.10)
Replacing v by w + v in (7.10) and using (7.5), we obtain
Us(u, m)a(u+v)y(u+v) =0.

o W, m)a(uys + wy + vy + vy0) = 0.
= Wg(u, m)auyv + Vg(u, m)ovyu = 0.
Now using (7.8), this implies Wg(u, m)avyu = 0 for all u,v € U;m € M and o, 3,7 €

I'. Since U is noncentral, by Lemma 4.2.5, Wg(u,m) = 0 for all u € U;m € M and

s erl. O
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7.3 Generalized Higher (U, M )-Derivations in Prime
['-Rings

Here, we determine a number of important consequences relating to the concept of
generalized higher (U, M )-derivations of a I'-ring to extend the results stated at the
beginning of this chapter following [14, 15, 16, 17] classical ring theory to I'-ring

theory.

Lemma 7.3.1. Let F' = (f;)ien be a generalized higher (U, M)-derivation of M. Then
faluampu) =37, . fi(w)ad;(m)Bdg(u) for allu € Uym € M and o, B € T,
Proof. Let x = ua((2u)fm + mpB(2u)) + ((2u)fm + mB(2u))au. Replacing m and

s by (2u)Bm +mpB(2u) in fy(uam + sau) =3, filu)ad;(m) + fi(s)ad;(u) and

using the condition (*), we get

+Z fi(w)ad; ((2u) Bm +mf3(2u)) + fi((2u)Bm + mB(2u))ad; (u)
_2;]2 l; (u)Bdy(m) + dy(m)Bdy(u +2+Z ; (f,(w)Bdy(m
+ fp(m)Bdy(u))ad; (u)
=2 %} (fi(w)adi(u)Bd,(m) + fi(u)ad(m)Bdy(u)) + 2 +¥_ (fp(w)Bg(m)ad;(u)
+ fp(m)Bdy(w)ad; (u)).

Therefore,

_2 Z fz adl ﬁdt +2 Z fz adl ﬁdt()

i+l+t=n i+l+t=n

+2 Z fp(w)ad,(m)pd;(u) + 2 Z fp(m)ad,(u)Bd;(u). (7.11)

p+g+j=n ptg+j=n
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Again, by the definition of higher (U, M)-derivation and using the condition (*)
() = fu((Quaw)Bm + mpB(2uaw)) + 2 f,(uampu) + 2 f,(ufmau)
= fu((2uaw)fm + mB(2uau)) + 2 f, (uampBu) + 2 f, (uamBu)

= Z (fi(2uaw)Bd;(m) + f;(m)Bd;(2uau)) + 4 f,(uambu)

i+j=n
=23 (Y fr(wady(w)Bdi(m)+2 Y film)a( Y dn(w)Bdi(w)) + 4f,(vamBu)
i+j=n r4+s=i i+j=n h+k=j
=2 Z fr(u)ads(u )+ 2 Z fi(m)Bdy(uw)ady(u) + 4 fn(uamfu).
r4+s+j=n i+h+k=n
(7.12)
Now, comparing (7.11) and (7.12), we get
4f,(uampPu) = 4 Z filw)ad;(m)Bd,(u),Yue U;me M;a,5 €l
itj+k=n
Using 2-torsion freeness of M, we get the desired result. ]

Lemma 7.3.2. Let F' = (fi)ien be a generalized higher (U, M)-derivation of M.

Then fo(uampBv +vampBu) =3, o, filw)ad;(m)di(v) + fi(v)ad;(m)Bdy(u), for
allu,v e Uym e M and o, 3 € T.

Proof. Linearizing of f,(uamfBu) =3, .. ., fi(u)ad;(m)Bdy(u) with respect to u,

fal(u +v)amfB(u + v)) Z filu 4+ v)ad;(m)Bdi(u + v)

i+j+k=n

= Y filwad;(m)Bde(u) + > filw)ad;(m)Bdy(v)

i+j+k=n i+j+k=n

+ Y fiw)adi(m)Bde(u) + Y fi(v)ad;(m)Bdy(v). (7.13)

i+j+k=n i+j+k=n
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On the other hand

fal(u +v)amfB(u +v)) = f,(uampu) + fn(uampv +vampPu) + f,(vampv)

Z filu m)Bdi(u) + fr(uampv +vampu) + Z fi(v)ad;(m)Bdg(v).
i+j+k=n i+j+k=n
(7.14)
By comparing (7.13) and (7.14), we have the required result. O

Definition 7.3.1. Let F' = (f;);en be a generalized higher (U, M)-derivation of M.
For every fixed n € N, we define o5 (u, m) = fy(uam) — >, . fi(u)ad;(m), for all
u€U;mée M;a € T. Also, let D = (d;);en be a higher (U, M)-derivation of M.
For every fixed n € N, we define ¢5(u, m) = dn(uam) — >, di(u)ad;(m) for all

ueUymeM;ael.

Remark 7.3.1. Y3 (u,m) = 0, for all w € U;m € M;a € I' and n € N if and only
if fu(uam) =32, filwad;(m), for all w € Uym € M;a € I' and n € N. Also
¢S (u,m) =0, for all u € U;m € M;a € I' and n € N if and only if d,,(uam) =

Y iri—n di(w)ad;(m), for all u € Uym € M;a € I and n € N,

Lemma 7.3.3. If F = (f,)ien is a generalized higher (U, M)-derivation of M, then
for every u,v €e U; m,pe M; a, B €T andn € N :
(@) (u, ) + 5 (m, w) = 05 (id)y (u 4 v, m) = o (u, m) + (v, m);

(10002 (uy m -+ p) = 03, m) + 62w, p): ()0, m) = 08 (11, m) + B2 (w, m).

Proof. (i) By Definition 7.3.1, and using generalized higher (U, M )-derivation

U8 (u,m) 98 (m, ) = fuluam) =Y fi(u)ad;(m)+fo(mau)= Y fi(m

i+j=n 1+j=n



= fn(uam + mau) — Z filw)ad;(m) — Z film)ad;(u

i+j=n i+j=n

= Y filwad;(m)+ Y film)ad;(w)= Y fiu)ad;(m)= Y fi(m)ad;(u) =

i+j=n i+j=n i+j=n i+j=n

(ii) By the definition of ¥%(u, m), we get

P(u+v,m) = fu((u+v)am) — Zf,u—l—vad( )

i+j=n
= fo(uam + vam) — Z filw)ad;(m) — Z fi(v)ad;(m
i+j=n i+j=n
(uam) Z filu m) + fn(vam) Z fi(v)ad;(
i+j=n i+j=n

= W;(U? m) + 1?2(“7 m)

(iii) and (iv) are also obvious.

Now, we prove our main results as below.
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Theorem 7.3.4. Let U be an admissible Lie ideal of a prime I'-ring M and F =

(fi)ien be a generalized higher (U, M )-derivation of M. Then % (u,v) = 0, for all

u,v € U; a €T’ andn € N.

Proof. Induction Beginning: We know by Theorem 7.2.8, % (u,v) = 0, for all

u,v € Uya € T so Y% (u,v) = 0, holds when n = 1.

Induction Hypothesis: Assume ¢ (u,v) = 0, holds for all u,v € U; « € T such

that m € N and m < n.
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Let x = 4(uavfwyvau + vaufwyuawv). Then, using Lemma 7.3.2, we have

fulz) = fu((Quav)fwy(2vau) + (2vau) fwy(2uav))

=4 Z fi(uaw)Bd;(w)ydg(vau) + 4 Z fi(vaw) Bd;(w)ydy(uaw)
i+j+k=n i+j+k=n
i,k<n

= 4f, (uav)pwyvau + duavfwyd, (vau) + 4 Z filuaw)Bd;(w)ydg(vou)
i+j+k=n
i,k<n
+ 4 f, (vau) fwyuov + dvoufwyd, (uow) + 4 Z filvauw)pd;(w)ydi(uav).
i+j+k=n

Also, by Lemma 7.3.1 and since D = (d;);en is a higher (U, M )-derivation of M.

Fa(2) = fal(2uav) Bwy(2van)) + fal(2vau) fuwy(2uav))

= Z 2fi(uow) Bd;(w)vy2d,(vou) + Z 2fi(vau)Bd;(w)y2d, (uav)

i+j+q=n i+j+k=n
= duavSwy Z ds(v)ady(u) + 4 Z fi(u v) Bwyvau
s+k=n i+p=n
s+k,i+p<n
+ Z fi(w)ady,(v) Bdy(w)yds(v)ady(u) + dvaufwy Z d,(u)ady(v)
i+p+q+s+k=n r4+k=n
i+l r+k<n
+4 ) fiw)ad(w)fuyuav + Y fi(v)ad)(u)Bdy (w)yd, (u)ady(v).
i+l=n i+l+t+r+k=n

Comparing the two expressions of f,,(z) and using 2 (u,v) = 0, for all u,v € U €

I'ym < n, we get

A( fr(uaw) Z fi(u v))Pwyvau + 4( fr(vaw) Z fi(uw)ad,(v)) fwyuaw

i+p=n i+l=n

+vaufuwy(d, (uav) Z fr(w)ady (v))+4uavfwy(d, (vau) Z fs(u)adg(v)) = 0.
r+k=n st+k=n

= 497 (u, v) fwyvau+4y (v, u) fwyuav+duav fwy e, (v, u)+4voubwy ey (u, v) = 0.
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Using Lemma 7.3.3 (i) and 2-torsion freeness of M, we get

U (u, v) fwy(u, v]a + [u, v]aSwyd; (u, v) = 0.

Since D = (d;);en is a higher (U, M)-derivation of M, thus we have ¢%(u,v) = 0. By
Lemma 4.2.5 and since U is noncentral, thus 9% (u,v) = 0, for all u,v € U;a € I" and

n € N. OJ

Theorem 7.3.5. Let U be an admissible Lie ideal of a prime U'-ring M and F =
(fi)ien be a generalized higher (U, M)-derivation of M. Then f,(ufm) = Ziﬂzn fi(w)Bd;(m)
forallue Uyme M;3 €l andn € N.

Proof. ¢¥{(u,m) = 0, for all w € U;m € M;a € T' (by Theorem 7.2.8). Now, we
assume by induction on n € N, that 2 (u,m) =0, forallu € U;m € M;a € T';m €
N such that m < n.

Since F' = (f;)ien is a generalized higher (U, M)-derivation and D = (d;);en is a
higher (U, M )-derivation of M, so we have

0 = 45 (u, ufm — mpu)
= fo(ua(ufm — mpu)) Z fi(w)ad;(ufm — mpu)

i+j=n
= fuluaupm) — f(uampBu) — " fi(w)ad(w)Bd(m) + Y fi(w)ad;(m)Bdy(u)
i+l+t=n i+j+k=n
= faluaupm) — fo(uampBu) — Y fi(w)ad)(u)Bd,(m) + f.(uampBu).
i+l+t=n
Therefore, we have
folwouBm) = > fi(u)ad(u)Bd,(m). (7.15)

i+l+t=n
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Since F' = (f;)ien is a generalized higher (U, M)-derivation of M, thus we have

Falua(upm) + (ubm)aw) = Y~ (filu)ad;(ubm) + fi(ufm)ad;(u))

i+j=n
1,5<n
= fo(w)aufm + uad, (ufm) + Z fi(w)ad;(upm)
i+j=n
1,7<n
+ fo(upm)au + ufmad, (u Z fi(upm)ad;(u). (7.16)
i+j=n

Since Y& (u,m) =0forallu e Uym € M;a € I';m < n.

Therefore,
i,l+t<n
frolua(upm) + ufmau) = f,(v)a(ufm) + vad, (ufm) + Z fi(w)ad(uw)Bdy(m)
i+l4+t=n
ptq,j<n "
+ fu(upm)au + ufmad, (u Z fp(w)Bdy,(m)ad;(u). (7.17)
p+q+j=n

On the other hand, using Lemma 7.3.1 and equation (7.15), we get

fo(ua(ufm) + (upm)au) = f,(uaufm) + f,(vampu)
= Y filwad(w)bd,(m)+ > filwad;(m)sd(u)

i+l+t=n i+j+k=n
i,l+t<n
= fo(waufm +ua Y di(u)Bdi(m)+ Y fi(u)adi(u)Bd,(m)
l+t=n i+l+t=n
i+j,k<n
+uamfBd,(u) + (Y fiwad;(m))Bu+ > fiu)ad;(m)Bdi(u). (7.18)
i+j=n i+j+k=n

Comparing (7.17) and (7.18) and using the condition (*), we get

dn(ufm) = Y di(u)Bdy(m)) + (fulufm) = > fi(u)Bd;(m

l+t=n i+j=n

= uad) (u,m) + ¥ (u,m)au =0,V u € Uym € M;a,3 € I';n € N.
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By Theorem 6.3.6, ¢(u,m) =0,V u € U;m € M;3 € T';n € N, hence
VP (u,m)au=0YueU;mée M;a,3€T;neN. (7.19)
Linearizing of (7.19) with respect to u, gives us
VP (u, m)av + P (v,m)au = 0,Y u,v € Uym € M;a, 3 €T;n € N. (7.20)
Replacing v by vBv in (7.20) and since 12 (vBv, m) = 0, thus
VP (u,m)avpyv = 0,Yu,v € Uym € M;a, 3 €T;n € N. (7.21)
Again, replacing v by u + v in (7.21), then using (7.19) and 2 (vBv, m) = 0,
VP (u,m)avBu =0,V u,v € Uym € M;a, 3 € T;n € N.
Since U # 0, hence by Lemma 4.2.5
VP(u,m)=0YueU;me M;BeTl;necN.

This proves the claim.



Bibliography

[1]

[4]

M. Asci and S. Ceran, The commutativity in prime gamma rings with left deriva-

tions, International Mathematical Forum 3 (2007), no. 2, 103—-108.

Mohammad Ashraf and Nadeem-Ur-Rehman, On Lie ideals and Jordan left
derivations of prime rings, Archivum Mathematicum (Brno) 36 (2000), 201~
206.

R. Awtar, Lie ideal and Jordan derivations of prime rings, Proceedings of the

American Mathemtatical Society 90 (1984), 9-14.

W. E. Barnes, On the I'-rings of Nobusawa, Pacific J. Math. 18 (1966), no. 3,
411-422.

G. L. Booth, On the radicals of T'x-rings, Math. Japanica 32 (1987), no. 3,
357-372.

M. Bresar, Jordan derivations on semiprime rings, Proceedings of the American

Mathemtatical Society 104 (1988), no. 4, 1003—1004.

, On the distance of the composition of two derivations to the generalized

derivations, Glasgow Mathematics 33 (1991), 89-93.

158



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

159

M. Bresar and J. Vukman, Jordan derivations on prime rings, Bulletin of Aus-

tralian Math. Soc. 37 (1988), 321-322.

, On the left derivations and related mappings, Proceedings of the Amer-

ican Mathemtatical Society 110 (1990), no. 1, 7-16.

Y. Ceven, Jordan left derivations on completely prime T'-rings, C. U. Fen-

Edebiyat Fakultesi Fen Bilimleri Dergisi 23 (2002), 39-43.

Y. Ceven and M. A. Ozturk, On Jordan generalized derivations in I'-rings,

Hacettepi Journal of Mathematics and Statistics 33 (2004), 11-14.

S. Chakraborty and A. C. Paul, On Jordan generalized k-derivations of semi-

prime T'x-rings, Bulletin of the Iranian Math. Society 36 (2010), no. 1, 41-53.

, k-derivations and k-homomorphisms of T'-rings, Lap Lambert Academic

Publishing GmbH & Co. KG, Germany (2012).

W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings,

Turk. Journal of Mathematics 29 (2005), 1-10.

M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein,

Qaeestiones Mathematcae 25 (2002), 1-9.

A. K. Faraj; C. Haetinger and A. H. Majeed, Generalized higher (U,R)-
derivations, JP Journal of Algebra, Number Theory and Applications 16 (2010),

no. 2, 119-142.

C. Haetinger, Higher derivations on Lie ideals, Tendencias em Matematica Apli-

cada e Computacional 3 (2002), no. 1, 141-145.



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

160

A. K. Halder and A. C. Paul, Jordan left derivations on Lie ideals, Punjab
University Journal of Mathematics 44 (2012), 23-29.

I. N. Herstein, Jordan derivations on prime rings, Proceedings of the American

Mathemtatical Society 8 (1957), 1104-1110.

, Lie and Jordan structures in simple associative rings, Bulletin of the

American Mathemtatical Society 67 (1961), no. 6, 517-531.

, Topics in Ring Theory, The University of Chicago Press, Chicago
(1969).

, On the lie structure of an associative ring, J. Algebra 14 (1970), 561—

571.

B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4,
1147-1166.

K. W. Jun and B. D. Kim, A note on Jordan left derivations, Bulletin of the

Korean Mathemtatical Society 33 (1996), no. 2, 221-228.

S. Kyuno, Gamma Rings and Radicals, Contributions to General Algebra 4,
Proc. Krems Conf., August 16-23, 1985, Verlag Holder-Pichler-Tempsky, Wein
1987-Verlag B.G. Teubner,Stuttgart.

, On the semi-simple gamma rings, Tohoku Math. J. 29 (1977), 217-225.
, On prime gamma rings, Pacific J. Math. 75 (1978), 185-190.

, A gamma ring with minimum conditions, Tsukuba J. Math. 5 (1981),
no. 1, 47-65.



[29]

[30]

[31]

[32]

[35]

[36]

161

J. Luh, On the theory of simple T'-rings, Michigan Math. J. 16 (1969), 65-75.

A. Nakajima, On categorical properties of generalized derivations, Science Math-

ematics 2 (1999), no. 3, 345-352.

, Generalized Jordan derivations, Proceedings of the third Korea-China-

Japan International Symposium on Ring Theory (2000), 235-243.

, On generalized higher derivations, Turk. Journal of Mathematics 24

(2000), no. 3, 295-311.

N. Nobusawa, On a generalization of the ring theory, Osaka Journal of Mathe-

matics 1 (1964), 81-89.

Kyuoo-Hong Park, Jordan higher left derivations and commutativity in prime
rings, Journal of the Chungcheong Mathematical Society 23 (2010), no. 4, 741
748.

A. C. Paul and Amitabh Kumer Halder, Jordan left derivations of two torsion

free I'M -modules, Journal of Physical Sciences 13 (2009), no. 2, 13-19.

M. Sapanci and A. Nakajima, Jordan derivations on completly prime I'-rings,

Math Japonica 46 (1997), no. 1, 47-51.

M. Soyturk, The commutativity in prime gamma rings with derivations, Turk. J.

Math. 18 (1994), 149-155.

Joso Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama

University 39 (1997), 1-6.



Index

[-subring , 18
a-centre of a I'-ring, 21
(U, R)-derivation, 140
(U,M)-derivation, 119

[-ring, 16

['y-ring, 17

2-torsion free , 21

admissible Lie ideal, 20
annihilator, 19

Brauer’s trick, 20

centre of a I'-ring, 21
characteristic not equal to 2, 21
characteristic not equal to n, 21
commutative I'-ring, 21
commutator, 19

completely prime I'-ring, 22
completely semiprime ['-ring, 22
derivation, 44

essential ideal, 19

generalized higher derivation, 66

generators, 19

higher derivation, 64

higher left derivation, 65

ideal of a I'-ring, 18

Jordan derivation, 44

Jordan generalized derivation on a Lie ideal,
101

Jordan generalized higher derivation, 66

Jordan higher derivation, 64

Jordan higher left derivation, 65

Jordan left derivation, 25

Jordan product, 19

Jordan right derivation, 25

left annihilator, 19

left derivation, 24

left ideal, 18

Lie ideal, 20

Lie product, 19

n-torsion free, 21

nil ideal, 22

162



nilpotent element, 22
nilpotent ideal, 22
nonzero divisor, 21
prime ['-ring, 22
principal ideal , 19
right annihilator, 19
right derivation, 24
right ideal, 18
semiprime ['-ring, 22

square closed Lie ideal, 20
Ann(I), 19

commutators identities, 19
derivation on a Lie ideal, 82
finitely generated, 19

generalized (U, M)-derivation, 140
generalized (U, R)-derivation, 140
generalized derivation, 65

generalized derivation on a Lie ideal, 101
generalized higher (U, M)-derivation, 142
generalized higher (U, R)-derivation, 142
generalized higher derivation on a Lie ideal,

103

163

higher (U, R)-derivation, 142
higher (U,M)-derivation, 121

higher derivation on a Lie ideal, 84
identity mapping, 103

Jordan derivation on a Lie ideal, 82

Jordan generalized derivation, 65

Jordan generalized higher derivation on a
Lie ideal, 103

Jordan higher derivation on a Lie ideal,

84
left nonzero divisor, 21
right nonzero divisor, 21
smallest ideal, 19

two sided ideal , 18

two-sided nonzero divisor, 21



