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PREFACE 

 

The thesis entitled "A Study on Turbulent and Magneto-hydrodynamic turbulent 

Flow in Incompressible Fluid" is being presented for the award of the degree of 

Master of Philosophy in Applied Mathematics. It is the outcome of my research works 

conducted in the Department of Applied Mathematics, Rajshahi University, Rajshahi, 

Bangladesh under the supervision of Dr. Abul Kalam Azad, Associate Professor, 

Department of Applied Mathematics, Rajshahi University, Rajshahi-6205, 

Bangladesh. 
 

The thesis has been divided into five chapters.  

The first chapter is a general introductory chapter and gives the general idea of 

turbulence, distribution functions and their principal concepts. Some results and 

theories which are needed in the subsequent chapters have been included in this 

chapter. Types and examples of turbulence, different stages of Reynolds number, 

Reynolds equation, averaging rules, Coriolis effect etc have been briefly discussed. 

Distribution functions, Joint distribution functions, equation of motion of dust 

particles, spectral representation of turbulence and Fourier Transformation of the 

Navier-Stockes equation have also been discussed. Lastly, a brief review of the past 

researchers related to this thesis have also been studied in this chapter. Throughout the 

work we have considered the flow of fluids to be isotropic and homogeneous. The 

notions generally adopted are those used by Taylor, Vonkarman, Hinze, Reynolds, 

Deissler, Sarker, Kisore, Batchelor, Coriolis and Lundgren. 

 

The Second chapter consist of two parts. In part A, we have studied the decay of 

temperature fluctuations in dusty fluid homogeneous turbulence prior to the final 

period considering correlations between fluctuating quantities at two- and three- 

point. In this part we have tried to solve the correlation equations by converting it to 

spectral form by taking their Fourier transform. Lastly, by integrating the energy 

spectrum over all wave numbers, the energy decay law of temperature fluctuations in 

homogeneous turbulence before the final period in presence of dust particle is 

obtained.  
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In part B, we have studied the decay of temperature fluctuations in dusty fluid 

homogeneous turbulence before the final period in presence of Coriolis force and 

have considered correlations between fluctuating quantities at two- and three- points 

by neglecting the fourth order correlation in comparison to the second and third order 

correlations. The correlation equations for two- and three- point in a rotating system 

in presence of dust particles are obtained and these equations are converted to spectral 

form by taking their Fourier transforms. Finally by integrating the energy spectrum 

over all wave numbers, the energy decay law of temperature fluctuations in 

homogeneous dusty fluid turbulence before the final period in presence of Coriolis 

force is obtained.  

 

The Third chapter consists of two parts. In part A, we have studied the joint 

distribution functions for simultaneous velocity, temperature, concentration fields in 

turbulent flow undergoing a first order reaction in presence of Coriolis force. The 

various properties of the constructed joint distribution functions have been discussed. 

In this chapter we have tried to derive the transport equations for one and two point 

joint distribution functions of velocity, temperature, concentration in convective 

turbulent flow due to first order reaction in presence of coriolis force. 

 

 In part B, we have an attempt to derive the transport equation for the joint 

distribution function of certain variables in convective turbulent flow undergoing a 

first order reaction in a rotating system in presence of dust particles.  Equations for the 

evolution of one- point and two- point joint distribution function for velocity, 

temperature and concentration in convective turbulent flow field undergoing first- 

order reaction in a rotating system in presence of dust particles have been derived. 

Finally we have made a result with comparison of the equation for one- point 

distribution function in the case of zero coriolis force in the absence of the dust 

particles and negligible diffusivity. 

 

In Chapter four, we have studied the statistical theory of certain variables for three- 

point distribution functions in MHD turbulent flow in a rotating system in presence of 

dust particles. In this chapter we have made an attempt to derive the transport 

equations for evolution of distribution functions for simultaneous velocity, magnetic, 

temperature and concentration fields in MHD turbulent flow due to Coriolis force in 
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presence of dust particles and various properties of the distribution function have been 

discussed. 

 

In Chapter five, we have made an attempt to discuss the summary about the whole 

thesis.  

 

The following research papers are extracted from this research work. No. 1 and 2 have 

been published, and other three communicated for publication in different national 

and international journals: 

1. Azad M.A.K. and Mumtahinah Mst. Decay of Temperature Fluctuations in 

Dusty Fluid Homogeneous Turbulence Prior to the Final Period. Res. J. Appl. 

Sci. Engng. Tech., 6(8), 1490-6, 2013 

2. Azad M.A.K. and Mumtahinah Mst. Decay Of Temperature Fluctuations In 

Dusty Fluid Homogeneous Turbulence Prior To The Ultimate Period In 

Presence Of Coriolis Force. . Res. J. Appl. Sci. Engng. Tech., 7(10), 1932-

39, 2013 

3. Azad M.A.K. and Mumtahinah Mst. Transport Equation for the Joint 

Distribution Functions of Certain Variables in Convective Turbulent Flow in 

Presence of Coriolis Force Under Going a First Order Reaction. 

(Communicated for publication) 

4. Mumtahinah Mst and Azad M.A.K.. Transport Equation for the Joint 

Distribution Functions of Certain Variables in Convective Dusty Fluid 

Turbulent Flow in a Rotating System Under Going a First Order Reaction. 

(Communicated for publication) 

5. Mumtahinah Mst and Azad M.A.K.. Statistical Theory of Certain Variables 

for Three- Point Distribution Functions in MHD Turbulent Flow in a Rotating 

System in Presence of Dust Particles. (Communicated for publication) 
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CHAPTER-I 

 GENERAL INTRODUCTION  

 

1.1 Basic Concept of Turbulence 
Fluids are anything that flow conventionally classified as either liquids or gases, 

treated as continuous media, and their motion and state can be specified in terms of 

the velocity u, pressure p, density ρ, etc evaluated at every point in space x and time t. 

Fluid dynamics is the natural science of fluids that deals with fluid flow. It is a 

subdiscipline of fluid mechanics. Fluid dynamics is one of the most important area of 

Physics. 

 

Our life would not exist without fluids, and without the behaviour that fluids exhibit, 

the air we breathe and the water we drink are fluids and it makes most of our body 

mass. Fluid phenomena often studied by physicists, astronomers, biologists and others 

who do not  necessarily deal in the design and analysis of devices. Atmospheric 

scientists study global circulation for long-range weather prediction and analysis of 

climate change; mesoscale weather patterns for short-range weather prediction,  

tornado and hurricane warnings and pollutant transport. Ocean circulation patterns are 

studied in Oceanography to find out causes of El Ni˜no, effects of ocean currents on 

weather and climate, and effects of pollution on living organisms. Convection in the 

Earth’s mantle is studied in Geophysics to understand plate tectonics, earthquakes, 

volcanoes and Production of the magnetic field. In biological sciences circulatory and 

respiratory systems in animals, and cellular processes are under the study area of 

Fluid Dynamics. 

 

It is easily recognized that a complete listing of fluid applications would be nearly 

impossible simply because the presence of fluids in technological devices is 

ubiquitous. Internal combustion engines in all types of transportation systems 

(Turbojet, scramjet, rocket engines), Waste disposal (chemical treatment, incineration, 

sewage transport and treatment), Steam, gas and wind turbines, and hydroelectric 
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facilities for electric power generation, Pipelines (crude oil and natural gas transferral, 

irrigation facilities and office building and household plumbing), Fluid/structure 

interaction (design of tall buildings, continental shelf oil-drilling rigs, aircraft and 

launch vehicle airframes and control systems, dams, bridges, etc.), Heating, 

ventilating and air-conditioning (HVAC) systems, Cooling systems for high-density 

electronic devices, Solar heat and geothermal heat utilization, Artificial hearts, kidney 

dialysis machines, insulin pumps - these all are just few examples of application of 

fluid dynamics in technologies. 

 

Fluid dynamics offers a systematic structure that embraces empirical and semi-

empirical laws derived from flow measurement and used to solve practical problems. 

The solution to a fluid dynamics problem typically involves calculating various 

properties of the fluid, such as velocity, pressure, density, and temperature, as 

functions of space and time. 

 

The flow of fluids can be qualitatively characterized as laminar or turbulent. Laminar 

flow is typically either a very slow motion or involves a level of viscosity. Fluid 

particles move evenly and slide across each other in layers (lamina is Latin for layer, 

plate), and are therefore laminar. However, turbulent flows (turbulentus is Latin for 

uneven) are characterized by quick motion or a low effect of viscosity, when even 

minor perturbations in stream grow uncontrollably and cause unpredictable local 

behaviour of fluid and intensive eddy mixing in the whole area. 

 

Nearly all macroscopic flows encountered in the natural world and in engineering 

practice are turbulent. Winds and currents in the atmosphere and ocean; flows through 

residential, commercial, and municipal water (and air) delivery systems; flows past 

transportation devices (cars, trains, aircraft, ships, etc.); and flows through turbines, 

engines, and reactors used for power generation and conversion are all turbulent.  

 

Turbulence is an enigmatic state of fluid flow that may be simultaneously beneficial 

and problematic. For example, in airbreathing combustion systems, it is exploited for 

mixing reactants but, within the same device, it also leads to noise and efficiency 

http://en.wikipedia.org/wiki/Flow_measurement
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Temperature
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losses. Within the earth’s ocean and atmosphere, turbulence sets the mass, 

momentum, and heat transfer rates involved in pollutant dispersion and climate 

regulation. 

Defining turbulence is a very critical job. As stated in Oxford dictionary Turbulence is 

violent or unsteady movement of air or water, or of some other fluid. Turbulent flow 

is flow that is “irregular” in time and space. However this is not exact mathematical 

definition. In Turbulence or turbulent flow is a flow regime characterized by chaotic 

property changes that includes low momentum diffusion, high momentum convection, 

and rapid variation of pressure and velocity in space and time. According to Webster's 

"New International Dictionary", turbulence means agitation, commotion and 

disturbance. This definition however, is too general and not sufficient to characterize 

turbulent fluid motion in the modern sense. Lesieur [62] with some humour stated, 

"Turbulence is a dangerous topic which is at the origin of serious fights in scientific 

meetings since it represents extremely different points of view, all of which have in 

common their complexity, as well as an inability to solve the problem. It is even 

difficult to agree on what exactly is the problem to be solved." 

 

In 1937 Taylor and Vonkarman [106] gave the definition: "Turbulence is an irregular 

motion which in general makes its appearances in fluids, gaseous or liquid, when they 

flow past solid surfaces or even when neighbouring streams of the same fluid flow 

past or over one another". As per the  definition the flow has to satisfy the condition 

of irregularity. Irregularity is a very important feature of turbulence and because of it, 

describing the motion in all details as a function of time and space coordinates is 

impossible. However, using laws of probability the irregularity of turbulent can be 

described. It appears possible to indicate distinct average values of various important 

quantities, such as velocity, pressure, temperature etc. If turbulent motion were 

entirely irregular, it would be inaccessible to any mathematical treatment. Therefore, 

it is not sufficient just to say that turbulence is an irregular motion. 

 

Hinze [42] suggested that, "Turbulent fluid motion is an irregular condition of flow in 

which various quantities show a random variation with time and space co-ordinates, 

so that, statistically distinct average values can be discerned". This definition 

http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Momentum_diffusion
http://en.wikipedia.org/wiki/Convection
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Velocity
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incorporated both time and space co-ordinates and justified that turbulent motion is 

not only irregular in time.  

 

Oertel et al [74] said that Turbulence is the swirling motion of fluids that occurs 

irregularly in space and time. 

 

Reynolds [83] made the first systematic experimental investigation of turbulent flow. 

Taylor and Vonkarman [106], Stanisic [103], Deissler [32] developed the idea of 

turbulent flow. According to Stanisic the study of interaction between a magnetic 

field and turbulent motion of an electrically conducting fluid is called magneto-

hydrodynamics. Deissler [32, 33] developed a theory for homogeneous turbulence, 

which was valid for times before the final period. Sarker and Kisore [96] studied the 

decay of MHD turbulence before the final period. 

 

But a universally accepted definition of a turbulent flow is given as the flow in which 

variables like velocity, density, pressure etc. are random variables having some mean 

values. The ratio of the random part of the motion to the mean motion in a turbulent 

flow is called the intensity of the turbulence. 

 

Actually Turbulence is better to express as a list of properties and attributes that can 

help to identify turbulent flows:  

 

Randomness: Turbulent flow is unpredictable in the sense that small random 

perturbations during a particular period of time are amplified to that level, and after a 

certain period of time deterministic prediction of further development becomes 

impossible.  

 

Diffusitivity: Mixing of transported scalar quantities occurs relatively more quickly 

than during molecular diffusion. The intensity of this mixing can be several orders of 

magnitude greater than mixing occurring as a result of molecular diffusion. 

 



Chapter-I          5 

 

 
 

 
 

 

Vorticity: Turbulent flows are characterized by high local values of vorticity related 

to the presence of vortex structures. The field of vorticity is generally non-

homogeneous and changes dynamically in time. Vortex structures tend to be referred 

to as coherent vortices or more generally coherent structures. 

Scale spectrum: Vortex structures, which occur spontaneously in a turbulent flow 

field, are characterized by a wide scale of length measuring units. The structures size 

is characterized by dense spectrum typical for fractals. Turbulent flow field can be 

characterized as a dynamical system with a “very high” number of degrees of 

freedom.  

 

3D structure: Vortex structures occur in the space of a turbulent flow field in random 

locations and with random orientation. The 3D structure of the vector field of velocity 

fluctuations originates from this situation. During certain boundary conditions, the 

structures greater than the certain limit size can be spatially arranged; for example, 

they can have a planar character.  

 

Dissipation: Turbulence is a dissipative process, which means that the kinetic energy 

of the motion of a fluid is dissipated at the level of small vortices and changes to heat. 

Therefore, in order for turbulent flows to be conserved over the long term, it is 

necessary to supply energy to the system from outside. This is done in the area of 

large scales; energy is collected from the main stream. The energy is then transferred 

towards smaller scales with the help of cascade transfer.  

 

Non-linearity: Turbulent flows are basically non-linear, and their occurrence is 

conditioned on the application of non-linearities, when a growth of small 

perturbations occurs. The development as well as the interaction of individual 

structures in the turbulent flow field can be described only with a non-linear 

mathematical model. 

 

The flow of water in the river, clouds in the sky, burning flames, the starry universe – 

these are some examples of phenomena that we can label as turbulent. Ever since 

ancient times Turbulence has always been a fascinating phenomenon for people. 
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Though thinkers are continuously trying, the process of recognizing the laws of 

turbulence has not been finished due to its variability and complexity. 

 

The fascinating complexity of turbulence has attracted the attention of scientists for 

centuries. One of the first known findings about the structure of turbulence in modern 

times was the observation of fluid flows by Leonardo da Vinci. Leonardo illustrated 

the flow of water as a moment when the turbulent flow field is comprised of various 

structures of various sizes. Figure 1.a. 
 

 

 

 

 

 

 

 

 

 
 

Figure 1.a Painting by Leonardo da Vinci showing turbulence in flow of water. 
 

Another historical example of a regular structure in turbulent flow is the known red 

spot on Jupiter. It is basically an enormous storm – turbulent vortex (anti-cyclone) and 

has lasted at least 350 years (in 1655 it was first observed by French astronomer 

Cassini). Figure 1.b 

 

 

 

 

 

 

 
 

Figure 1.b: Turbulent vortex in Jupiter 
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The word turbulence is employed to label many different physical phenomena, which 

exhibit the common characteristics of disorder and complexity. It is the ubiquitous 

presence of spontaneous (intrinsic) fluctuations, distributed over a wide range of 

length and time scales makes the very nature of the turbulent fluctuations extremely 

peculiar. Turbulence has to do with non-linearity; there is no hint of the non-linear 

solutions in the linearized approximations, and strong departure from absolute 

statistical equilibrium.  

 

Everyday experiences enable us to recognize turbulence. The smoke that rises from a 

cigarette or fire shows the irregular behavior of the moving air that carries it. Wind is 

subject to sharp local changes in direction and speed, which can have dramatic results 

for sailors and pilots. During transport by passenger aircraft, the term “turbulence” is 

often associated with buckling seatbelts. The term is also used when describing free 

streams and streaks. When water flows in a river, its presence has an important effect 

for the settling of sediment on the bottom. Quick flow of fluid around an obstacle or 

around an aviation profile creates turbulence in the between layer and creates a 

turbulent jolt causing increased resistance strength, which causes the flow fluid to 

affect the obstacle. The behavior of most oceanic and atmospheric flows cannot be 

exactly predicted, because they fall into the category of turbulent flows, and the same 

applies to flows of planetary scales. Small-scale turbulence in the Earth atmosphere 

represents a serious problem during astronomical observations conducted from the 

Earth surface, and it is a decisive factor to take into consideration when selecting an 

observatory. The atmospheres of planets such as Jupiter and Saturn, the solar 

atmosphere and the Earth outer atmosphere are turbulent. Galaxies typically have the 

shape of vortices similar to those that occur in turbulent streams, such as flows in a 

mixing layer of two streams of different velocity. These are formed as a result of 

turbulent phenomena. We can name a lot of other similar examples from 

aerodynamics, hydraulics, nuclear and chemical engineering, oceanology, 

meteorology, astrophysics, cosmology or geophysics. On the opposite field of the 

spectrum there are quantum vortices occurring in a superfluid fluid, which have 

dimensions expressible in multiples of the average size of an atom. The realm of 
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turbulence therefore includes our observed universe, and turbulence is a typical kind 

of behavior of that universe in all of its degrees. 

 

1.2 Example of Turbulence: 

Turbulent motion is the most common motion in nature. Laminar flow is rather an 

exception and is limited to flow that can be characterized by very low velocity and 

thus Reynolds number (Re) values. In view of the definition of Re, this means that 

either the flow speeds are very low (such as melting of glaciers) or the typical 

dimension of the area is very small (such as motion of microorganisms in fluid) or the 

fluid shows extremely high viscosity (such as the motion of lubricant in bearings). Of 

course, a combination of these situations can also be considered. 

 

Grid turbulence: A classic example of turbulent flow is flow behind a grid made 

from rods, which have regular square eyes. Behind individual rods, wakes are formed, 

which interact with each other and very quickly cause flow of a homogeneous 

structure (at a distance of about 20 spaces from the grid). The resulting flow, which is 

usually referred to as “grid turbulence”, has certain beneficial properties. Mainly it is 

to a great extent homogeneous in a statistical sense in a level parallel to the grid 

generator of turbulence. The fluctuations also show a high level of isotropy, and 

deviations are in order of percentages.  

 

For its beneficial properties as well as for its relatively easy achievability in 

laboratory conditions, grid turbulence has been considered an etalon of turbulent flow. 

 

Free shear layers: The occurrence of free shear layers is unusually common, such as 

during surrounding of bodies or during flows through curved or non-prismatic 

(expansion) channels or at the boundary of an area of flow fluid in an unlimited space 

(jet). A free shear layer is nearly always unstable and results in the creation of vortex 

structures. In practice, we encounter free shear layers everywhere where a jet of fluid 

blown into a calm environment occurs or in connection with separation of a boundary 

layer. 
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Boundary layers: During flow in the boundary layer on the surrounded surface, the 

decisive parameter is the Reynolds number, where the length parameter can be 

thickness of the layer or the distance of the particular location from the beginning of 

the boundary layer, meaning for example from the leading edge. At a certain value of 

this parameter, a transition occurs of the boundary layer to turbulence. The boundary 

layer also has a turbulent structure.  

 

Wakes: Wakes behind bluff bodies have a turbulent character with a dominant quasi-

periodic low-frequency component. In relation to bluff bodies, the Reynolds number 

is decisive, where the length parameter is the transverse dimension of the bluff body. 

A typical situation is transverse surrounding of a cylinder, when a quasi-periodic von 

Kármán-Bénard vortex street occurs in the wake.  

 

Heat transfer: Also during flow combined with heat transfer, we can often observe 

behaviour of fluid that can be described as turbulent. If fluid flow occurs as a result of 

heat transfer, it is referred to as natural convection. Thermal energy then causes fluid 

flow, which under certain conditions can be turbulent. An example is  the surface of 

the sun, in which turbulent convective flow in the solar atmosphere is very apparent. 

This is caused by differences in temperatures between the surface of the sun and 

higher layers of its atmosphere and the lower temperatures on the surface in areas of 

sun spots. The photograph shows obvious turbulent sections and a cell structure in the 

background, which is related to Rayleigh-Bénard convection. 

 

Chemical turbulence: Chemical reactions are processes with various non-linear 

dynamic characteristics. Non-linearities have their origin in the interaction of various 

particles between each other and in the behaviour of individual particles. An example 

is a Belousov-Zhabotinsky reaction, during which an oscillating reaction occurs 

without any variable external influences. It has been shown that for achievement of a 

homogeneous structure of a mixture (reactants are citric acid, potassium bromide, 

sulfuric acid and cerium ions), very intensive mixing is necessary, or otherwise the 

result is non-homogeneousness of both a stationary character (Turing structures) and a 

non-stationary character. Through intensive mixing, a structure can be maintained 
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more or less homogeneous. Of course if we do not apply mixing, certain unstable 

frequencies occur in flows, which can culminate into quasi-stationary structures, 

which differ from each other based on their chemical contents. During a Belousov-

Zhabotinsky reaction, when regular spiral structures are created as a result of periodic 

oscillations, which are related to global Hopf bifurcation. The chemical particles 

participating in the reaction differ by color. This is a very stable process also known 

as a “chemical clock”. If we breach the equilibrium of the particles entering into the 

reaction, then the reaction will either be stopped or will transit to a stormy turbulent 

regime. 

 

Burning: Burning is another area with the occurrence of a whole range of turbulent 

conditions. It basically involves a combination of the two previously mentioned cases; 

it is a chemical reaction which is strongly exothermal and under normal circumstances 

irreversible. 

 

1.3 Different Types of Turbulence 

Taylor and Vonkarman [106] have stated that turbulence can be generated by the 

friction forces at fixed walls (fluid flow through conduits, fluid flow past solid 

surfaces) or by the flow of layers of fluids with different velocities past or over one 

another. 

 

This definition indicates that there are two distinct types of turbulence. 

(i)  Wall turbulence: Turbulence is generated by the viscous effect due to presence of 

a solid wall is designated as wall turbulence. 

(ii) Free turbulence: Turbulence in the absence of wall generated by the flow of layers 

of fluids at different velocities is called free turbulence.  

 

1.4 Isotropic Turbulence 

Batchelor [22] and Hinze [42] discussed homogenous isotropic turbulence in greater 

detail in their study. Isotropic turbulence is the simplest type of turbulence, because 

statistical features of it have no preferred direction or orientation. No average shear 

stress can occur and consequently, no velocity gradient is found in  the mean velocity. 
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This mean velocity, if it occurs, remains constant throughout the field.  A minimum 

number of quantities and relations are required to describe structure and behavior of 

Isotropic turbulence because of its simplicity and not having preference of any 

specific direction. However, actual turbulent flow showing true isotropy cannot be 

found - that indicates this type of turbulence has only hypothetical existence - though 

conditions may be made such that isotropy is more or less closely approached. 

 

In isotropic turbulence the mean value of any function of the velocity components and 

their derivatives is unaltered by any rotation or reflection of the axes of references. 

Thus in particular,  2
3

2
2

2
1 uuu ==    and   0133221 === uuuuuu . 

 

So, if the turbulent fluctuations are completely isotropic, that is, if they do not have 

any directional preference, then the off-diagonal components of 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥����� vanish, and the 

normal stresses are equal. This is illustrated in Figure 1.C 

 

 

 

 

 

 

 

 
 

Figure 1.c: Isotropic Turbulence 

 

Isotropy introduces a great simplicity into the calculations. The study of isotropic 

turbulence may also be of practical importance, since far from solid boundaries it has 

been observed that 2
3

2
2

2
1 ,, uuu  tend to become equal to one another, e.g. in the 

natural winds at a sufficient height above the ground and in a pipe flow near the axis. 
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1.5 Homogeneous Turbulence 

Turbulence which has quantitatively the same structure in all parts of the flow field is 

called homogeneous turbulence. In a homogeneous turbulent flow field, the statistical 

characteristic are invariant for any translation in the space occupied by the fluid. The 

conception of homogeneous turbulence is also idealized, in that there is no known 

method of realizing such a motion exactly.  

 

However, the idealization of turbulence as being homogeneous or spatially stationary 

and isotropic allows some significant simplifications. Turbulence behind a grid towed 

through a nominally quiescent fluid bath is approximately homogeneous and 

isotropic, and turbulence in the interior of a real inhomogeneous turbulent flow is 

commonly assumed to be homogeneous and isotropic.  

 

1.6 Convective Turbulent Flow 

Convection is an important turbulent process. Turbulent convection or Rayleigh-

Bénard convection in a fluid heated from below and cooled from above is found to 

play a major role in a great deal of natural and industrial processes, e.g., in the sun, 

planetary atmospheres, industrial manufacturing, and many other places. When the 

temperature difference exceeds a particular level, the heated fluid rises and the cooled 

fluid falls, thereby forms one or more convection cells. Increasing the difference 

causes the well-defined cells to become turbulent. Turbulent convection occurs in 

earth’s outer core, atmosphere, and oceans, and is found in the outer layer of the sun 

and in giant planets. A very common example is found in the photosphere of the sun, 

where an irregular and continuously changing polygonal pattern of bright areas 

surrounded by darker boundaries is a dominant feature. 

 

1.7 Laminar Flow and Turbulent Flow: 
Viscous flows generically fall into two categories though the boundary between them 

is imperfectly defined - laminar and turbulent. The basic difference between the two 

categories is phenomenological. Reynolds [83] demonstrated it in a dramatic way by 

injecting a thin stream of dye into the flow of water through a tube (Figure 1.D). At 

low flow rates, the dye stream was observed to follow a well-defined straight path, 
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indicating that the fluid moved in parallel layers (laminae) with no unsteady 

macroscopic mixing or overturning motion of the layers. Such smooth orderly flow is 

called laminar. However, if the flow rate was increased beyond a certain critical 

value, the dye streak broke up into irregular filaments and spread throughout the cross 

section of the tube, indicating the presence of unsteady, apparently chaotic three-

dimensional macroscopic mixing motions. Such irregular disorderly flow is called a 

turbulent. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.d: Reynold's experiment to distinguish between lamina and turbulent flows. At 
low flow rates (the upper drawing), the pipe flow was laminar and the dye filament 
moved smoothly through the pipe. At high flow rates (the lower drawing), the flow 
became turbulent and the dye filament was mixed throughout the cross section of the 
pipe.  

 

Laminar flow or streamline flow occurs when a fluid flows in parallel layers, with no 

disruption between the layers [85].  At low velocities the fluid tends to flow without 

lateral mixing, and adjacent layers slide past one another like playing cards. There are 

no cross currents perpendicular to the direction of flow, nor eddies or swirls of fluids 

[38]. In laminar flow the motion of the particles of fluid is very orderly with all 

particles moving in straight lines parallel to the pipe walls [72]. Laminar flow tends to 

occur at lower velocities, below the onset of turbulent flow. Figure 1.e is showing 

Laminar Flow. 
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Turbulent flow is a less orderly flow regime that is characterized by eddies or small 

packets of fluid particles which result in lateral mixing. Turbulent flows can often be 

observed to arise from laminar flows as the Reynolds number is increased. The 

transition to turbulence happens because small disturbances to the flow are no longer 

damped by the flow, but begin to grow by taking energy from the original laminar 

flow. Figure 1.f shows Turbulent flow. 

 

 

 

 

 

 

 

 
 

Figure 1.f 
 

Reynolds demonstrated that the transition from laminar to turbulent flow always 

occurred at a fixed value of the ratio that bears his name, the Reynolds number, 𝑅𝑅𝑅𝑅 =
𝑉𝑉𝑉𝑉
𝑣𝑣

~ 2000 to 3000 where V is the velocity averaged over the  tube’s cross section, d is 

the tube diameter, and v is the kinematic viscosity. 

 

1.8 Reynolds Number and its Effect on Turbulent Flow 

In the year 1883 a British physicist Osborne Reynolds [84] demonstrated that the 

transition from laminar to turbulent flow in a pipe depends upon the value of a 

mathematical quantity equal to the average velocity of flow times the diameter of the 

tube times the mass density of the fluid divided by its absolute viscosity.  

Mathematically, 

Reynolds no. = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

= 𝜌𝜌𝜐𝜐2
𝜇𝜇𝜇𝜇
𝑑𝑑

= 𝜌𝜌𝜌𝜌𝜌𝜌
𝜋𝜋

= 𝑉𝑉𝑉𝑉
𝜈𝜈

 

Where  V  mean velocity of liquid 

 d  diameter of pipe 

 ν  kinematics viscosity of liquid 

Figure 1.e 

http://en.wikipedia.org/wiki/Eddies
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This mathematical quantity is a pure number without dimensions that represents the 

type of flow, i.e., either the flow is laminar or turbulent.  The number is called 

Reynolds number after the name of its inventor. Reynolds [84] found that to be 

laminar flow the number should remain less than 2000. For the Reynolds number 

between 2000 to 2300, the flow is neither laminar nor turbulent. However, when the 

Reynolds number for a flow exceeds 2300, it becomes turbulent. 

 

1.9 Critical Reynolds Number: 
Reynolds conducted in a series of experiments in which water at rest in a tank was 

allowed to flow through a glass pipe. Reynolds argued that it was likely to exist a 

critical value of a certain non-dimensional quantity beyond which a  laminar flow 

gives rise to a "sinuous" motion.  It was found from Reynolds observations of the 

flow for tubes with different diameter, different velocities, with altered kinetic 

viscosity through changes in temperature that as the velocity of the fluid exceeds 

some critical value, the stationary and the regularity of the flow break off. Small 

(velocity) disturbances are no longer damped by the laminar flow, but grow by 

extracting kinetic energy from the mean flow. Disordered swirling motions, in which 

fluid particles follow complicated (non-brownian) trajectories, take place. The flow is 

then called turbulent. In this situation, velocity gradients are much larger and the 

Reynolds number at which there is a transition from laminar to turbulent flow is 

called Critical Reynolds Number.  

 

The approximate value of the critical Reynolds number Recr at which the laminar 

regime breaks down was established to be order of 2×103. Later with Reynolds 

apparatus, Ekman [37] was able to maintain laminar flow up to a critical Reynolds 

number of 4×104 when the testing conditions were made extremely free from 

disturbances. Therefore, critical Reynolds number are classified into two 

(i) Upper critical Reynolds number 

(ii) Lower critical Reynolds number 
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1.10 Upper Critical Reynolds Number 

The upper critical Reynolds number is a number at which the flow enters from 

transition to turbulent flow. However, several more recent investigators [40, 81] have 

repeatedly demonstrated that there is no definite upper critical Reynolds number 

rather the numerical value depends largely on the test conditions affecting the initial 

turbulence of flow. 

 

Obviously, the upper critical Reynolds number is a function of initial disturbances; its 

numerical values always increase with a decrease in disturbances. For engineering 

purposes, high numerical values of the upper critical Reynolds number are of limited 

practical significance; the transition from laminar to turbulent flow in a tube may be 

assumed to take place at 2100-4000. 

 

1.11 Lower Critical Reynolds Number 

The lower critical Reynolds number is a number which defines the below limit of 

laminar flow. In other words the critical Reynolds number at which the flow enters 

from laminar to transition period is known as a lower critical Reynolds number. At 

lower critical Reynolds number is taken to be approximately 2000. 

 

In brief status of flow can be can be changed at various phases of Reynolds number. 

When it is smaller than the critical Reynolds number i.e. R < Recr, the flow is 

laminar. If the Reynolds number is greater than the critical Reynolds number i.e. R > 

Recr, the flow is turbulent. Transition normally takes place at Reynolds number 2000-

4000. 

 

1.12 Averaging Procedure: 
Averaging method is unavoidable for the statistical formulation of the theory of 

turbulence. In turbulent flow the instantaneous velocity u is the sum of the time 

average part u� and fluctuating velocity u′ i.e. 

u = u� + u′.                         (1.12.1) 

Where, u�  mean velocity 
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u′ fluctuating velocity and 

u  velocity of motion 

 

In taking the average of a turbulent quantity, the result depends not only on the scale 

used but also on the demand of averaging. Pai [75] introduced four different kinds of 

averaging procedure to study turbulent flows. These are time average, space average, 

space-time average and ensemble average. 

 

Time average can be used for quasi-steady turbulent flow field. For a homogeneous 

turbulence flow field, space average can be considered. If the flow field is steady and 

homogeneous, space-time average is used. Lastly, if the flow field is neither steady 

nor homogeneous, we assume that averaging is taken over a large number of 

experiments that have initial and boundary conditions. This type of average is called 

ensemble average or statistical average. Ensemble average is more general than the 

time and space averages and very useful for the study in homogeneous, non-stationary 

turbulent flow. This type of averaging can be applied to any flow. However, like the 

time and space averages, the physical interpretation of the ensemble average is not so 

simple. In general the hierarchy of correlations completely determine any turbulent 

field. According to Leslie's [61] the assemble average is defined as- 

〈𝑢𝑢𝑖𝑖 , (𝑟𝑟, 𝑡𝑡)〉, 〈𝑢𝑢𝑖𝑖(𝑟𝑟, 𝑡𝑡)𝑢𝑢𝑗𝑗(𝑟𝑟′, 𝑡𝑡)〉, 〈𝑢𝑢𝑖𝑖(𝑟𝑟, 𝑡𝑡)𝑢𝑢𝑗𝑗(𝑟𝑟′, 𝑡𝑡)𝑢𝑢𝑚𝑚, (𝑟𝑟′′, 𝑡𝑡)〉 

where 〈 〉 denote the ensemble average. 

 

In homogeneous isotropic turbulence the first correlation represents the mean 

velocity, and is simply zero, the pair correlation 〈ui(r)uj(r′)〉 is often considered to be 

a sufficient description of turbulent flow. The higher order correlations are assumed to 

give less and less information so that only a finite number of correlations are required 

to determine the statistical properties of turbulence. 

 

The double correlation tensor Rij(r�, x�, t) for two-points separated by the space vector r� 

is defined by 

Rij(r�, x�, t) = 〈ui �x� −
1
2

r�, t� uj �x� +
1
2

r�, t�〉 
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Similarly, the triple correction tensor Tijk or higher correlation tensors can be 

introduced. 

 
The Fourier transform of Rij with respect to r� defined by 

∅𝑖𝑖𝑖𝑖�𝑘𝑘� , 𝑥𝑥�, 𝑡𝑡� =
1

(2𝜋𝜋)3�𝑒̅𝑒�𝑘𝑘� ,𝑟̂𝑟�𝑅𝑅𝑖𝑖𝑖𝑖(𝑟̂𝑟, 𝑥𝑥�, 𝑡𝑡)𝑑𝑑𝑟̂𝑟
∞

−∞

 

represents the energy spectrum function E�k�, t� in the sense that it describes the 

distribution of kinetic energy over the various wave number component of turbulent 

flows. The Fourier transform defined above can be treated as generalized functions or 

distributions in the sense o Lighthill [63]. It follows from the inverse Fourier 

transform that  

1
2
〈𝑢𝑢2〉 =

1
2
〈𝑢𝑢𝑖𝑖(𝑥𝑥�)𝑢𝑢𝑗𝑗(𝑥𝑥�)〉 =

1
2
𝑅𝑅𝑖𝑖𝑖𝑖(𝑜𝑜, 𝑥𝑥�, 𝑡𝑡) = � 𝐸𝐸�𝑘𝑘� , 𝑡𝑡�𝑑𝑑𝑘𝑘.�

∞

0

 

So that E�k�, t� represents the density of contributions to the kinetic energy in the wave 

number of space k, thus the investigation of the energy spectrum function E�k�, t� is 

the central problem of the dynamics of turbulence. 

 

The mathematical form of the four methods of averaging procedure are given below 

(i) Time average for stationary turbulence 

𝑡𝑡
𝑢𝑢

(𝑥𝑥, 𝑡𝑡) = lim
𝑇𝑇→∞

1
2𝑇𝑇

� 𝑢𝑢(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑.
+𝑇𝑇

−𝑇𝑇

 

The scale used in the averaging process determines the value of the period 2T. 

 

(ii) Space average in which we take the average over all the spaces at a given time, i.e. 

s
u

(x, t) = lim
vb→∞

1
Vb

� u(s, t)ds.
vb

 

The scale used in the averaging process determines the volume of space Vb. 
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(iii) Space time average in which we take the average over a long period of time and 

over the space. i.e., 

s, t
u

(x, t) = lim
T→∞,vb→∞

1
2T ⋅ Vb

� � u(s, y)dsdy
+T

−Tvb

 

The scale used determines both the values of T and Vb. 

(iv) Statistical average in which we take the average over the whole collection of 

sample turbulent functions for a fixed time, i.e. 

ω
u

(x, t, w) = � u(x, t,ω)du(ω)
Ω

 

over the whole Ω space of ω, the random parameter, where ∫ dμ(ω) = 1.Ω  

The essential characteristic of the turbulent motion is that the turbulent fluctuations 

are random in nature. A turbulent velocity field can be regarded as a random vector 

field of a set of vectors in space and time. Any random vector field can be regarded as 

a field consisting of three random scalar fields as its components. A random scalar 

function u(x, t,ω) is a function of the spatial co-ordinates x and time t, which depends 

on a parameter ω. The parameter ω is chosen at random according to some 

probability law in a space.  

 

In the experimental investigation we use time averages almost exclusively, space 

averages seldom and never statistical averages. In theory, we use almost exclusively 

the statistical averages.  

 

For stationary homogeneous turbulence we may expect and assumed that the three 

averaging lead to the same result 
t
u

=
s
u

=
ω
u

 

which is Ergodic hypothesis. 

 

1.13 Reynolds Rules of Averages 

Osborne Reynolds [83] introduces elementary statistical motion into the consideration 

of turbulent flow. In the theoretical investigation of turbulence, he assumed that a 
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turbulent flow instantaneously satisfies the Navier-Stokes equations and that the 

instantaneous velocity may be separated into a mean velocity and a turbulent 

fluctuating velocity. However, it is virtually impossible to predict the flow in detail at 

high Reynolds numbers, as there is an enormous range of length and time scales to be 

resolved.  

 

If u, P, T and ρ be respectively the instantaneous velocity, pressure time and density, 

then the process of averaging are written as 

u = u� + u′, P = P� + P′, ρ = ρ� + ρ′, T = T� + T′ etc.  

Here the quantities with bar denote mean values and the quantities with prime denote 

fluctuating values. 

Furthermore, u�′ = P�′ = T�′ = 0. 

 

In the study of turbulence we often have to carry out an averaging procedure not only 

on single quantities but also on products of quantities. 

 

In order to develop the rule of averaging, three arbitrary statistically dependent 

physical quantities e.g., A, B, C can be considered, each consisting of a mean and 

fluctuating part, i.e. 

A = A� + a, B = B� + b and C = C� + c                  (1.13.1) 

then A� = A� + a������� = A� + a� = A�,  when a� = 0           (1.13.2) 

 

In the above relations we used the properties that the average of the sum is equal to 

the sum of the averages and the average of a constant times B is equal to the constant 

times the average of B. 

Then, 

A�B����� = A�B� = A�B�                      (1.13.3) 

A�b���� = A�b� = A�b� = 0     ∴ b� = 0            (1.13.4) 

B�a���� = B�a� = B�a� = 0     ∴ a� = 0            (1.13.5) 
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Similarly, 

𝐴𝐴𝐴𝐴���� = (𝐴̅𝐴 + 𝑎𝑎)(𝐵𝐵� + 𝑏𝑏)�������������������� = 𝐴̅𝐴𝐵𝐵����� + 𝐴̅𝐴𝑏𝑏���� + 𝑎𝑎𝐵𝐵����� + 𝑎𝑎𝑎𝑎��� = 𝐴̅𝐴𝐵𝐵� + 𝑎𝑎𝑎𝑎���        (1.13.6) 

 

Note that the average of a product is not equal to the product of the averages terms 

such as a�b� are called correlations. 

 

1.14 Reynolds Equations and Reynolds Stresses 
We usually assume that in turbulent flow, instantaneous velocity components satisfy 

the Navier-Stockes equation 
∂U
∂t

+ (U.∇)U = F − 1
ρ
∇p + v∇2U.              (1.14.1) 

The tensor form the equation (1.14.1) can be written as 
∂u�i
∂t

+ uj
∂ui
∂xj

= F − 1
ρ
∂p
∂xi

+ ν ∂2ui
∂uj ∂uj

            (1.14.2) 

 

Substituting  the expression for the instantaneous velocity components ui = u�i + ui′, 

into the Navier-Stockes equation (1.14.2) for an incompressible fluid after neglecting 

the body force and taking the mean values of these equations according to Reynolds 

rule of averaging (1.13.1) - (1.13.6), we have the following Reynolds equation of 

motion for the turbulent flow of an incompressible fluid. 

ρ �∂u�i
∂t

+ u�j
∂u�i
∂xj
� = − ∂P�

∂xi
+ μ ∂2u�i

∂xj ∂xj
+ ∂

∂xj
�ρuı′uȷ′������,          (1.14.3) 

here  i and j run from 1 to 3 and Einstein's summation convection is used. The bar 

represents the mean value and the prime represents the turbulent fluctuation. 

Additional terms over the Navier-Stockes equations are due to Reynolds stress are 

−ρμı′2������ and the eddy stresses are −ρuı′uȷ ′�������(i ≠ j), where ρ is the density of the fluid. 

These stresses represent the rate of transfer of momentum across the corresponding 

surfaces because of turbulent velocity fluctuations.  

 

The solutions of Reynolds equation represent the turbulent flow, but as in the case of 

Navier-Stockes equation it is not possible to solve Reynolds equations for many 

practical purposes. In general the Reynolds equations are not sufficient to determine 
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the unknown variable ui, uj (i, j = 1,2,3), p and Reynolds stresses. This is one of the 

main difficulties in theoretical investigation of turbulent flow. In similar way, 

Reynolds equation of motion for the turbulent flow of a compressible fluid may be 

obtained. But the expressions for the eddy stresses (Reynolds stresses) of 

compressible fluid are much more complicated because the fluctuations of density 

should be considered. 

 

1.15 Coriolis Force 
In a rotating coordinate system there is an apparent force which deflects an object in 

internal motion from a straight line path, the resulting path is curve in the direction 

opposite to the direction of coordinate rotation, then the deflection force is called 

Coriolis (1792-1843), has traditionally been derived as a matter of coordinate 

transformation by essentially kinematical technique. This has the consequence that it's 

physical significance for processes in the atmosphere, as well for simple mechanical 

systems. It also helps to clarify the relation between angular momentum and rotational 

kinetic energy and how an inertial force can have a significant effect on the movement 

of a body and still without doing any work. 

 

The mathematical expression of the Coriolis acceleration is ac = −2Ω × v, where ac 

is the acceleration of the particle in the rotating system, v is the velocity of the particle 

in the rotating system, and Ω is the angular velocity vector which has magnitude equal 

to the rotation rate ω and is directed along the axis of rotation of the rotating reference 

frame, and × symbol represents the cross product operator. 

 

Hence mathematically the Coriois force is Fc = −2mΩ × v, where m is the mass of 

the relevant object. 

 

1.16 Coriolis Effect 
The Coriolis effect is a deflection of moving objects when they are viewed in a 

rotating reference frame. In a reference frame with clockwise rotation, the deflection 

is to the left of the motion of the object; in one with counter-clockwise rotation, the 
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deflection is to the right. The Rotation of the earth and the inertia of the mass 

experiencing the effect create Coriolis effect. When Newton's laws of motion govern 

the motion of an object in a (non accelerating) inertial frame of reference are 

transformed to a rotating frame of reference, the Coriolis and centrifugal forces 

appear. Both the forces are proportional to the mass of the object. The Coriolis force 

is proportional to the rotation rate and centrifugal force is proportional to its square. 

The Coriolis force acts in a direction perpendicular to the rotation axis and to the 

velocity of the body in the rotating frame and is proportional to object's speed in 

rotating frame. The centrifugal force acts outwards in the radial direction and is 

proportional to the distance of the body from the axis of the rotating frame. This effect 

is responsible for the rotation of large cyclones. The practical impact of the Coriolis 

effect is mostly caused by the horizontal acceleration component produced by 

horizontal motion. 

 

There are other components of the Coriolis effect. Eastward-travelling objects will be 

deflected upwards (feel lighter), while westward-travelling objects will be deflected 

downwards (feel heavier). This is known as the Coriolis effect. This aspect of the 

Coriolis effect is greatest near the equator. The force produced by this effect is similar 

to the horizontal component but the much larger vertical forces due to gravity and 

pressure mean that it is generally unimportant dynamically. Coriolis effect is an 

inertial force described by the 19th century French engineer and mathematician 

Gustave-Gaspard Coriolis in 1835. Coriolis showed that if the ordinary Newtonian 

laws of motion of bodies are to be used in a rotating frame of reference, an inertial 

force acting to the right of the direction of body motion for counter clockwise rotation 

of the reference frame or to the left for clockwise rotation must be included in the 

equations of motion. 

 

The effect of the Coriolis force is an apparent deflection of the path of an object that 

moves within a rotating coordinate system. The object does not actually deviate from 

its path but it appears to do so because of the motion of the coordinate system. The 

Coriolis deflection is therefore related to the motion of the object, the motion of the 

earth and the latitude (Figure 1.g). The coriolis effect has great significance in 
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astrophysics and stellar dynamics in which it is a controlling factor in the directions of 

rotation of sunspots. It is also significant in the earth sciences especially meteorology, 

physical geology, and oceanography, in that the earth is a rotating frame of reference, 

and motions over the surface of the earth are subject to acceleration from the force 

indicated. Thus the Coriolis force figures prominently in studies of the dynamics of 

the atmosphere in which it affects prevailing winds, the rotation of storms and in the 

hydrosphere in which it affects the rotation of the oceanic currents. 

 

 

Figure 1.g: Coriolis Effect 

1.17 Correlation Function 
In 1935, Taylor [105] introduced new notions into the study of the statistical theory of 

turbulence. He successfully developed a statistical theory of turbulence which is 

applicable to continuous movements and which satisfies the equation of motion. 

 

The first important new notion was that of studying the correlation or coefficient of 

correlation between two fluctuating quantities in turbulent flow. In his theory, Taylor 

makes much use of the correlation between the components of the fluctuating at 

neighbouring points. Denoting the components of the fluctuating velocity at one point 

p by u1, u2, u3 and another point p/by u1
/, u2

/ , u3
/ . 

 

The correction function between any of the ui and uj
/ where i. j = 1, 2 or 3 are defined 

as ρij = uiuj′,                          (1.17.1) 

where the bar denotes the average by certain process. 

  



Chapter-I          25 

 

 
 

 
 

 

Sometimes it is convenient to use the correlation coefficient such as  

Rij =
uıuȷ′������

�ui
2�uj

′2
              (1.17.2) 

By Cauchy inequality, we have 

uıuȷ′����� − �ui2�uj′
2 ≤ 0              (1.17.3) 

hence −1 ≤ Rij ≤ 1. 

If we consider ui and uj′ as the velocity components is a flow field, the correlation of 

equation (1.17.1) as a tensor of second rank. By a different process of averaging we 

obtain different kinds of correlation functions. If we consider ui and uj′ are the velocity 

components at a given point in space, ui and uj′ are functions of time; hence; we should 

take the time average in equation (1.17.1) to  get the correlation function ρij. 

 

If we consider ui and uj′ as the velocity components at a given time, ui and uj′ are 

functions of space co-ordinates x(x1, x2, x3); hence we should take the space average 

in equation to get the correlation function. More generally if we consider ui and uj′ as 

functions of both time t and spatial co-ordinates  x(x1, x2, x3); we should  take a 

space-time average in equation (1.17.1) to get the correlation function. The correlation 

function between the components of the fluctuating velocity at the same time two 

different points of the fluid, first introduce by Taylor [105] has been investigated 

extensively in the isotropic turbulence. 

 

The correlation function between two fluctuating velocity components at the same 

point and at the same time gives the Reynolds stress. The correlation function 

between two fluctuating quantities may also be defined in a manner similar to above. 

 

1.18 Distribution Function 

In molecular kinetic theory in physics, a particle's distribution function is a function 

of seven variables, f�x, y, z, t, vx, vy, vz�, which gives the number of particles per unit 

volume in phase space. It is the number of particles per unit volume having 
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approximately the velocity �vx, vy, vz� near the place (x, y, z) ant time (t). The usual 

normalization of the distribution function is  

n(x, y, z, t) = � fdvxdvydvz, 

N(t) = � ndx dy dz 

Here, N is the total number of particles and n is the number density of particles - the 

number of particles per unit volume or the density divided by the mass of individual 

particles.  

 

A distribution function may be specialized with respect to a particular set of 

dimensions, e.g., take the quantum mechanical six dimensional phase spaces 

f�x, y, z, t, px, py, pz� and multiply by the total space volume to give the momentum 

distribution i.e. the number of particles in the momentum phase space having 

approximately the momentum �px, py, pz�. 

 

Particle distribution function are often used in plasma physics to describe wave 

particle interactions and velocity-space instabilities. Distribution function are also 

used in fluid mechanics, statistical mechanics and nuclear physics. 

 

The basic distribution function uses the Boltzmann constant k and temperature T with 

the number density to modify the normal distribution, 

 

𝑓𝑓 = 𝑛𝑛
�(2𝜋𝜋𝜋𝜋𝜋𝜋)3

𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑚𝑚�𝑣𝑣𝑥𝑥2+𝑣𝑣𝑦𝑦2+𝑣𝑣𝑧𝑧2�
2𝑘𝑘𝑘𝑘

�. 

 

Related distribution function may allow bulk fluid flow, in which case the velocity 

origin is shifted, so that the exponent's numerator is m �(vx − ux)2 + �vy − uy�
2

+

(vz − uz)2� ; �ux, uy, uz� is the bulk velocity of the fluid. Distribution function may 

also feature non isotropic temperatures, in which each term in the exponent is divided 

by a different temperature. 
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The mathematical analogy of a distribution is a measure; the time evolution of a 

measure on a phase space is the topic of study in dynamical systems. 

 
1.19 Joint Distribution Function 

A joint distribution function is a function DXY(x, y)in two random variables X and Y 

defined by 

DXY(x, y) = P(X ≤ x, Y ≤ y), 

where x and y are arbitrary real numbers. 

DX(x) = P(X ≤ x) = P(X ≤ x, Y ≤ ∞) = lim
n→∞

DXY(x, y),  

DY(y) = P(Y ≤ y) = P(X ≤ ∞, Y ≤ y), lim
n→∞

DXY(x, y),  

 

here DX(x) is termed as the marginal distribution function of X corresponding to the 

joint distribution function DXY(x, y) and  DY(y) is termed as the marginal distribution 

function of Y corresponding to the joint distribution function DXY(x, y). 

 

So that the joint probability function satisfies 

DXY[(x, y) ∈ C] = � P(X, Y)
(X,Y)∈C

dXdY 

DXY[x ∈ A, y ∈ B] = �
Y∈B

� P(X, Y)
X∈A

dXdY 

DXY(x, y) = P{X ∈ (−∞, x), Y ∈ (−∞, y)} 

= �
x

−∞

� P(X, Y)

y

−∞

dXdY 

and 

 DXY(a ≤ x ≤ a + da, b ≤ y ≤ b + db) = ∫b+dbb ∫ P(X, Y)a+da
a dXdY ≈

P(a, b)dadb 

Two random variables X and Y are independent if  

DXY(x, y) = DX(x)DY(y) for all x and y 

and joint probability density function by differentiation as follows 
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P(x, y) =
∂2D(x, y)
∂x ∂y

= lim
δx→0,δy→0

P(x ≤ X ≤ x + δx, y ≤ Y ≤ y + δy)
δxδy

 

A multiple distribution function is of the form 

DX1…..Xn(x1, … . . , xn) = P(X1 ≤ x1, … … , Xn ≤ xn). 

 

1.20 Distribution Function in Turbulence and its Properties 

The dynamical equations describing the time evolution of the finite dimensional 

probability distributions in turbulence were first proposed by Lundgren [66] and 

Monin [70, 71], Lundgren [66] considered a large ensemble of identical fluid system 

in turbulent state. In his consideration each number of the ensemble is an 

incompressible fluid in an infinite space with velocity u�(r�, t) satisfying the continuity 

and Navier-Stockes equations. The only difference in the members of ensemble is the 

initial conditions that vary from member to member. He considered a function 

F(u�(r�1, t), u�(r�2, t) −−−) whose ensemble is given as 〈F(u�(r1, t), (r2, t) −−−)〉 and 

defined one-point distribution function f1(r�1 ⋅ ν1, t) such that f1(r�1 ⋅ ν�1, t)dν�1 is the 

probability that the velocity at a point r�1 at time t is in element dν�1about ν�1and is 

given by f1(r�1, ν�1, t) = 〈δ�u�(r�1, t)� − ν�1〉 

and two-points distribution function is given by 

 f2(r�1, ν�1, r�2, ν�2, t) = 〈δ(u�(r1, t) − ν�1)δ(u�(r2, t) − ν�2)〉 

 

In short one and two-point distribution function are denoted as f1
(1) and f2

(1,2). Here δ 

is the dirac-delta function, which is defined as  

�δ (u� − υ�)dν� = �10 elsewhere
at the point u�=υ� 

and 〈      〉 denote the ensemble average. 

 

1.21 Dust Particles 

Dust means dry fine powdery material. As stated in Oxford Dictionary, dust is Fine, 

dry powder consisting of tiny particles of earth or waste matter lying on the ground or 

on surfaces or carried in the air. Dust consists of particles in the atmosphere that 

comes from various sources such as soil dust lifted by wind, volcanic eruptions and 

pollution. Dust in homes, offices, and other human environments contains small 
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amounts of plant pollen, human and animal hairs, textile fibres, paper fibres, minerals 

from outdoor soil, human skin cells, burnt meteorite, particles and many other 

materials which may be found in the local environment. Homogenous and passive 

dust particles in the boundary layers are entrained and adverted under the influence of 

a turbulent flow. 

 

1.22 Equation of Motion of Dust Particles 
Knowledge of the behaviour of discrete particles in a turbulent flow is of great interest 

to many branches of technology, particularly if there is a substantial difference 

between particles and the fluid. Saffman [86] derived an equation that described the 

motion of a fluid containing small dust particles, which is applicable to laminar flows 

as well as turbulent flow. 

 

A more plausible explanation seems to be that the dust damps the turbulence. A dust 

particle in air or in any other gas has a much larger inertia than the equivalent volume 

of air will not therefore participate readily in turbulent fluctuations. The relative 

motion of dust particles and the air will dissipate energy because of the drag between 

dust and air and extract energy from turbulent fluctuations. If as certainly seems 

possible, the turbulent intensity is reduced than the Reynolds stresses will be 

decreased and the force required to maintain a given flow rate will likewise be 

reduced. 

 

In order to formulate the problem in a reasonably simple manner and to bring out the 

essential features, we shall make simplifying assumption about the motion of dust 

particles. It will be supposed that their velocity and number density can be described 

by fields u(x�⃗ , t) and N(x�⃗ , t). We also assume that the bulk concentration (i.e. 

concentration of volume) of dust is very small so that the effect of dust particles on 

the gas is equivalent to an extra force KN(υ�⃗ − u�⃗ ) per unit volume, where u�⃗ (x�⃗ , t) the 

velocity of the gas and K is constant. It is also supposed that the Reynolds number of 

the relative motion of dust and gas is small compared with unity, so that the force 

between the dust and gas is proportional to the velocity. Then with small bulk 
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concentration and the neglect of the compressibility of the gas, the equations of 

motion and continuity of the gas are: 

𝜌𝜌 �𝜕𝜕𝑢𝑢��⃗
𝜕𝜕𝜕𝜕

+ (𝑢𝑢 ⋅ ∇)𝑢𝑢�⃗ � = −∇p + ν∇2u�⃗ + KN(ν�⃗ − u�⃗ ),           (1.22.1) 

div 𝑢𝑢�⃗ = 0,               (1.22.2) 

where p, ρ and μ are the pressure, density and viscosity of the clean gas respectively. 
If dust particles are spheres of radius ε, then by Stocke's drag formula,  K = 6πμε. 

As will be seen below, the effect of the dust is measured by the mass concentration, 

say f. The bulk concentration if f ρ
ρ1

 where ρ1 is the density of the material in the dust 

particles. For common materials ρ
ρ1

 will be of the order of several thousand or more, 

so that the mass concentration may be significant fraction of unity, while the bulk 

concentration is small. It is to be noted that for suspension in liquids, the bulk and 

mass concentration will roughly be the same. So that the qualitative differences in the 

motion of dusty gases and the suspensions in the liquids may be expected. For 

spherical, the Einstein increase in the viscosity is 5
2
μf ρ

ρ1
, which is negligible for a 

dusty gas but may be significant for a liquid suspension. The force exerted on the dust 

by the gas is equal and opposite to the force exerted on the gas by dust, so that the 

equation of motion of the dust is, 

𝑚𝑚𝑚𝑚 �𝜕𝜕𝜈𝜈��⃗
𝜕𝜕𝜕𝜕

+ (𝜈⃗𝜈 ⋅ ∇)𝜈⃗𝜈� = 𝑚𝑚𝑚𝑚𝑔⃗𝑔 + 𝐾𝐾𝐾𝐾(𝜈⃗𝜈 − 𝑢𝑢�⃗ ),          (1.22.3) 

where mN the mass of the dust per unit volume and g�⃗  is the acceleration due to 

gravity. The buoyancy force is neglected since ρ
ρ1

 is small. 

 

The equation of continuity of the dust is, 
∂N
∂t

+ div(Nν�⃗ ) = 0                              (1.22.4) 

Here, ν = μ
ρ
 is kinetic viscosity of the clean gas and τ = M

K
 is  called the relaxation 

time of the dust particles. It is measure of the time for the dust to adjust to changes in 

the gas velocity. For spherical particles of radius ε, 

𝜏𝜏 =
4
3𝜇𝜇𝜀𝜀

3𝜌𝜌1
6𝜋𝜋𝜋𝜋𝜋𝜋

 or 𝜏𝜏 = 2
9
𝜀𝜀2

𝜈𝜈
𝜌𝜌1
𝜌𝜌

             (1.22.5) 
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where 4
3
με3ρ, mass of single spherical dust particle of radius ε; ρ1, density of the 

material in the  dust particles. 

 

The effect of dust is described in two parameters f and τ. The former describes how 

much dust is present and the latter is determined by the size of individual particles. 

Making the dust fine, will decrease τ, and making coarse, will increase τ in a manner 

proportional to the surface area of the particles. 

 

1.23 Order of Reaction and Rate of Reaction 

The rate of a chemical reaction is the amount of substance reacted or produced per 

unit time. The rate law is an expression indicating how the rate depends on the 

concentrations of the reactants. The power of the concentration in the rate law 

expression is called the order with respect to the reactant. The rate of change of 

concentration as a function of time and may be expressed either in the form of 

disappearance of reactants or the appearance of new products. According to Bansal 

[21] the general reaction equation in which A and B are transformed to P give 

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 → 𝑐𝑐𝑐𝑐,                        (1.23.1) 

The reaction rate can be written as −1
a
d[A]
dt

,− 1
b
d[B]
dt

, + 1
c
d[P]
dt

   

and the rate law may be written in the form of equation 

−1
a
d[A]
dt

= k[A]n[B]m,                        (1.23.2) 

where [A], [B] and [P] denote the active concentrations in moles/litre species. A, B 

and P, t represent the time, n and m are integers, k is the proportionality constant 

referred to as the reaction rate constant or specific rate constant, and a, b, c are the 

stoichiometric coefficients. 

 

Since the concentrations of A and B are diminishing, −1
a
d[A]
dt

, − 1
b
d[B]
dt

, are negative 

number while 1
c
d[P]
dt

 is positive, any of these derivatives may be used to express the 

rate of the reaction. 
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The order of a reaction is the algebraic sum of the exponents of all the concentration 

terms, which appear in the rate law (1.23.2). For the reaction given in equation 

(1.23.1) 

−
1
a

d[A]
dt

= k[A]n[B]m 

where n is the order of the reaction with respect to A and m is the order of the reaction 

with respect to B. The overall order of the reaction is given by the sum (n + m). 

 

A reaction is said to be of the first order if the rate of the reaction is proportional to 

the concentration of only one of the reacting substances. Let us consider a reaction in 

which A is being transformed to product P, (A → P). If C is the concentration of A, 

then the differential rate law can be written as  

−
dC
dt

= k1[C] 

where k1is the first order rate constant and t the time.  

 

This can be rearranged to  

−
dC
C

= k1dt 

Integrate both sides of the above equation to obtain 

−lnC = k1 + θ, where θ is a constant of integration. 

 

1.24 Spectral Representation of the Turbulence 

The solution of the Navier-Stockes equation is merely related to theoretical treatment 

of the turbulence. An alternative approach is based on the spectral form of the 

dynamical Navier-Stockes equation. The spectral form of the turbulence is still under-

determined but it has a simple physical interpretation and is more convenient. The 

spectral approach is almost exclusively used for the description of homogeneous 

turbulence [56, 57]. The principal concepts of spectral representation in the study of 

turbulence are described below: 

 

If we neglect the body forces from the Navier-Stockes equation (1.14.2) and multiply 

the xi-component of Navier-Stockes equation written for the point P by uj′ and 
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multiply the xj′ component of the equation written for the point P′ by ui′ adding and 

taking ensemble averages 

∂
∂t

uıuȷ′����� + uȷ′uı
∂uı
∂xı

��������� + uıuȷ′
∂uȷ′

∂xȷ′
���������

= −1
ρ
�uȷ′

∂p
∂xı

������ + uı
∂p′

∂xȷ′
�������

� + ν �uȷ′
∂2uı
∂xı2

��������
+ uı

∂2uȷ′

∂xı2
��������

�        (1.24.1) 

 

Since in homogeneous turbulence the statistical quantities are independent of position 

in space and considering the point P and P′. Separated by a distance vector r̅ and 

applying the laws of spatial covariance, a simplified form of equation (1.24.1) is 

obtained as: 

∂
∂t

uıuȷ′����� = − ∂
∂r1

�uıuȷ′ul�������� − uıuȷ′ul′��������� + 1
ρ
�
∂puȷ′

∂rl

�����
+ ∂p′uȷ

∂rȷ

������
� + 2ν

∂2uıuȷ′������

∂rl
2                     (1.24.2) 

 

The covariance uıuȷ′����� is not suitable for direct analysis of quantitative estimate of the 

turbulent flows and it is better to use the three-dimensional Fourier transforms of uıuȷ′����� 

with respect to r̅. The variable that corresponds to r̅ in the three dimensional wave-

number space is a vector K = (K1, K2, K3). We define the wave number spectral 

density as: 

ϕij�K��⃗ � = 1
(2π)3 ∫uıuȷ′����� exp(−iK�. r̅)dr̅ = 1

(2π)3∭uiujexp{−i(K1r1 + K2r2 +

                  K3r3)} dr1dr2dr3                      (1.24.3) 

 

It can be shown that uıuȷ′����� has a continuous range of wavelength, ϕij(K�) has a 

continuous distribution in wave number space. We can rigorously regard 

ϕij�K��⃗ �dK1dK2dK3 as the contribution of elementary volume dK1dK2dK3, centred at 

wave number K� and therefore representing a wave number of length 2π
�K��⃗ �

, in the 

direction of vector K��⃗  to the value of uıuȷ′����� hence the name "Spectral density". This is 

consistent with the behaviour of the inverse transform  

uıuȷ′(r)��������� = ∫ ϕij�K��⃗ �exp�iK��⃗ . r�dK��⃗∞
−∞                                                                      (1.24.4) 

The one dimensional wave number spectrum of uıuȷ′����� for a wave number component in 

the xl direction is 

ϕij(Kl) = 1
2π ∫ uıuȷ′�����(rl)exp�−iK��⃗ l. rl�

∞
−∞ drl                  (1.24.5) 
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whose inverse is  

uiuj′(r) = ∫ ∅ij(Kl)exp(ikl, r1). dKl
∞
−∞                                                                 (1.24.6) 

The equation (1.24.2) for unstrained homogeneous turbulence becomes on Fourier 

transforming  as 
∂ϕij�K��⃗ �

∂t
= Γij�K��⃗ � + Πij�K��⃗ � − 2νKl

2.ϕij�K��⃗ �           (1.24.7) 

where Γ  and Π are the transforms of the triple product and pressure terms 

respectively. 

 

1.25 Fourier Transformation of the Navier-Stockes Equation: 

The main reason for using Fourier transformation is that they convert differential 

operators into multipliers. The equations are so complicated in configuration (or 

coordinate) space that very little can be done with them and the transformation to 

wave number (or Fourier) space simplifies them very considerably. 

 

Another and more mathematical argument shows that these transforms are right 

method of treating a homogeneous problem, associated with any correlation function, 

ϕ(x�⃗ , x�⃗ ′) is a sequence of Eigen functions ϕ(x�⃗ , x�⃗ ′) and their associated Eigen-values 

λ(n�⃗ ). These quantities satisfy the equation. 

∫ϕ(x�⃗ , x�⃗ ′) ψ(n�⃗ , x�⃗ )d3x�⃗ ′ = λ(n�⃗ )ψ(n�⃗ , x�⃗ )           (1.25.1) 

and the orthonormalization relation 

∫ψ(n�⃗ , x�⃗ )ψ∗(m���⃗ , n�⃗ )d3x�⃗ = 1,   if m = n             (1.25.2) 

= 0, otherwise. 

 

These equations imply that ϕ is a scalar. Actually it is a tensor of order two, but this 

complicates the argument without introducing anything essentially new. The index n�⃗  

is in general a complex variable and ψ∗ denotes the complex conjugate of ψ (strictly, 

ψ∗ is the adjoint of ψ, but since ϕ is real and symmetric the adjoint is simply the 

complex conjugate). The integrations in equations (1.25.1) and (1.25.2) are overall 

space, which may be finite or infinite. If the space is finite n�⃗  is usually an infinite but 

countable sequence, while if space is infinite n�⃗  will be a continuous variable, Here all 

the Eigen functions have real Eigen-values. If follows from (1.25.1) and (1.25.2) that, 
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ϕ(x�⃗ ⋅ x�⃗ ) = �λ(n�⃗ ).ψ(n�⃗ . x�⃗ )
all n

ψ∗(n�⃗ , x�⃗ ′)                                                                     (1.25.3) 

and this is the diagonal representation of the correlation function in terms of its Eigen 

functions. Evidently these functions are only defined 'within a phase' that is, a factor 

exp(iγ) can be added to ψ(n�⃗ , x�⃗ ) without altering ϕ(x�⃗ , x�⃗ ′) provided γ is real and 

independent of x. For a homogeneous field, ϕ is a function of (x�⃗ , x�⃗ ′) only and the 

problem is to find the Eigen functions which are also homogeneous within a phase in 

the sense that, 

ψ(n�⃗ , x�⃗ ′) =  exp(iγ) ψ(n�⃗ , x�⃗ + a),  

This equation is satisfied by the Fourier equation 

ψ(n�⃗ , x�⃗ ) =  exp(in�⃗ . x�⃗ ) = exp�in�⃗ jx�⃗ j�  

with γ = −n�⃗ . a�⃗ . In this situation (instance), therefore, "the index", n�⃗  is a wave 

number. Equation (1.25.3) becomes 

ϕ(x�⃗ , x�⃗ ′) = �λ(n�⃗ )exp{in(x�⃗ − x�⃗ ′)} 

so that λ(n�⃗ ) may be identified with ϕ(n�⃗ ), the Fourier transform of the correlation 

function. 

 

Since we  are considering homogeneous isotropic turbulence, the turbulent field must 

be infinite in extent. This produces, mathematical difficulties, which can only be 

resolved by using functional calculus. This difficulty is avoided by supposing that the 

turbulence is confined to the inside of a large box with sides (a1, a2, a3) and that it 

obeys cyclic boundary conditions on the sides of this box. The ai is allowed to tend to 

infinity at an appropriate point in the analysis. Thus the Fourier transform is defined 

by 

Ui(x�⃗ ) = (2π)3(a1, a2, a3)−1� ui�K��⃗ �
k

exp�iK��⃗ . x�⃗ �                                                   (1.25.4) 

Here K��⃗  is limited to wave vectors of the form 

 2n1π
a1

, 2n2π
a2

, 2n3π
a3

 

where ni are integers while the ai are the sides of the elementary box. As these sides 

become infinitely large equation (1.25.4) goes over into standard form, 

Ui(x�⃗ ) = ∫ui�K��⃗ �. exp�iK��⃗ . x�⃗ �d3K��⃗ .              (1.25.5) 



Chapter-I          36 

 

 
 

 
 

 

The inverse (1.25.5) is 

ui�K��⃗ � = (2π)−3 � ui(x�⃗ )exp�−iK��⃗ . x�⃗ �
box

d3x                                                               (1.25.6) 

 

The Fourier transform of Navier-Stockes equation may be written as 

�
d
dt

+ νK2�ui�K��⃗ � = Mijm�K��⃗ �.�uj�P��⃗ �
Δ

. Um(r⃗)                                                      (1.25.7) 

where,   is a short notation for the integral operator in  

∬Uj�K��⃗ �Um(r⃗). δ�K��⃗ − P��⃗ − r⃗�. (d3p�⃗ )(d3p�⃗ )           (1.25.8) 

where, δK, p + r is the Kronecker delta symbol which is zero unless 

K��⃗ = p�⃗ + r⃗ 

Here, Mijm�K��⃗ � is a simple algebraic multiplier and not a differential operator. We 

have  

Mijm�K��⃗ � = −1
2

i. Pijm�K��⃗ �                                                                                    (1.25.9) 

where, Pijm�K��⃗ � = KmPij�K��⃗ � + KjPim�K��⃗ � 

and Pij = δij −
KiKj
K2

 

Pij�K��⃗ � is the Fourier transform of Pij(∇) but Pijm�K��⃗ � is not the transform of Pijm(∇). 

 

As it is stands, equation (1.25.7) cannot describe stationary turbulence since it 

contains no input of energy to balance the dissipative effect of viscosity. In real life 

this input is provided by effects, such as the interaction of mean velocity gradient with 

the Reynolds stress, which are incompatible with the ideas of homogeneity and 

isotropy.  

 

To avoid this difficulty we introduce  in to the right hand side of equation (1.25.7) a 

hypothetical homogeneous isotropic stirring force fi. Then the equation becomes 

� d
dt

+ νK2�ui�K��⃗ � = Mijm�K��⃗ � ∑ uj�P��⃗ �Δ um(r⃗) + ∂i�K��⃗ �                    (1.25.10) 

 
 

�  
Δ
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1.26 A Brief Description of Past Researches Relevant to this Thesis 

Work 

Turbulence is a leading topic in modern fluid dynamics research, and some of the best 

known physicists have worked in this area during the last century. Among them are G. 

I. Taylor, Kolmogorov, Reynolds, Prandtl, Vonkarman, Heisenberg, Landau, 

Millikan, and Onsagar. 

 

The first systematic work on turbulence was carried out by British physicist Osborne 

Reynolds [83] in 1883. His experiments in pipe flows showed that the flow becomes 

turbulent or irregular when the dimensionless ratio, later named the Reynolds number 

by Sommerfeld, exceeds a certain critical value. This dimensionless number 

subsequently proved to be the parameter that determines the dynamic similarity of 

viscous flows. Reynolds also separated turbulent flow-dependent variables into mean 

and fluctuating components, and arrived at the concept of turbulent stress. 

 

In 1921 Taylor [105], in a simple and elegant study of turbulent diffusion, introduced 

the idea of a correlation function. He showed that the root-mean-square distance of a 

particle from its source point initially increases with time as t, and subsequently as 

t1/2, as in a random walk. Taylor continued his outstanding work in a series of papers 

during 1935-1936 in which he laid down the foundation of the statistical theory of 

turbulence. 

 

Among the concepts he introduced were those of homogeneous and isotropic 

turbulence 

and of a turbulence spectrum. Although real turbulent flows are not isotropic 

(turbulent shear stresses, in fact, vanish for isotropic flows), the mathematical 

techniques involved have proved valuable for describing the small scales of 

turbulence, which are isotropic or nearly so. In 1915 Taylor also introduced the 

mixing length concept, although credit goes to Prandtl for making full use of the idea. 

 

During the 1920s Prandtl [80] and his student Vonkarman, working in Gottingen, 

Germany, developed semi-empirical theories of turbulence. The most successful of 
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these was the mixing length theory, which is based on an analogy with the concept of 

mean free path in the kinetic theory of gases. By guessing at the correct form for the 

mixing length, Prandtl was able to deduce that the average turbulent velocity profile 

near a solid wall is logarithmic, one of the most reliable results for turbulent flows. It 

is for this reason that subsequent textbooks on fluid mechanics have for a long time 

glorified the mixing length theory. Recently, however, it has become clear that the 

mixing length theory is not helpful since there is really no rational way of predicting 

the form of the mixing length. In fact, the logarithmic law can be justified from 

dimensional considerations alone. 

 

Some very important work was done by the British meteorologist Lewis Richardson 

[85]. In 1922 he wrote the very first book on numerical weather prediction named 

"Weather Prediction by Numerical Process". In this book he proposed that the 

turbulent kinetic energy is transferred from large to small eddies, until it is destroyed 

by viscous dissipation. This idea of a spectral energy cascade is at the heart of our 

present understanding of turbulence. However, Richardson’s work was largely 

ignored at the time, and it was not until some 20 years later that the idea of a spectral 

cascade took a quantitative shape in the hands of Kolmogorov [57] and Obukhov [73] 

in Russia. Richardson also did another important piece of work that displayed his 

amazing physical intuition. On the basis of experimental data for the movement of 

balloons in the atmosphere, he proposed that the effective diffusion coefficient of a 

patch of turbulence is proportional to l4/3, where l is the scale of the patch. This is 

called Richardson’s four-third law, which has been subsequently found to be in 

agreement with Kolmogorov’s famous five-third law for the energy spectrum. 

 

The Russian mathematician Kolmogorov, generally regarded as the greatest 

probabilist of the twentieth century, followed up on Richardson’s idea of a spectral 

energy cascade. He hypothesized that the statistics of small scales are isotropic and 

depend on only two parameters - the kinematic viscosity and the average rate of 

kinetic energy dissipation per unit mass of fluid. Using this idea, in 1941 Kolmogorov 

[57] and Obukhov [73] independently derived that the spectrum in the inertial 

subrange must be proportional to  𝜀𝜀2 3� 𝑘𝑘−5 3� , where k is the wave number. This law 
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name as five-thirds law is one of the most important results of turbulence theory and 

is in agreement with high Reynolds number observations. 

 

Recent decades have seen much progress in theory, calculations, and measurements. 

Among these may be mentioned the work on the modeling, coherent structures, direct 

numerical simulations, and multidimensional diagnostics. Observations in the ocean 

and the atmosphere (which Vonkarman called “a giant laboratory for turbulence 

research”), in which the Reynolds numbers are very large, are shedding new light on 

the structure of stratified turbulence. 

 

Recently, Azad and Sarker [2] derived the statistical theory of certain distribution 

function in MHD turbulence in a rotating system in presence of dust particles. Sarker 

and Azad [94] studied the decay of temperature fluctuations in homogeneous 

turbulence before the final period for the case of multi-point and multi-time 

considering rotating system and dust particle. Azad et al. [11], Azad et al. [12] and 

Azad and Sarker [5] also studied the decay of temperature fluctuations in dusty fluid 

MHD turbulence before the final period with taking rotating system. Kishore and 

Dixit  [51], Kishore and Singh [49],  Dixit and Upadhaya [34], Kishore and Golsefield 

[52] discussed the effect of coriolis force on acceleration covariance in ordinary and 

MHD turbulent flow. Kishore and Sarker [48] studied the rate of  change of vorticity 

covariance in MHD turbulence in a rotating system. Sarker [90] studied the Thermal 

decay process of MHD turbulence in a rotating system. Sarker [89], Sarker and 

Rahman [95] considered dust particles on their own works. 

 

The essential characteristic of turbulent flows is that turbulent fluctuations are random 

in nature and therefore by the application of statistical laws, it has been possible to 

give the idea of turbulent fluctuations. The turbulent flows in the absence of external 

agencies always decay. Batchelor and Townsend [23], Deissler [32, 33], Ghosh [39, 

40] had given various analytical theories for the decay process of turbulence so far. 

Further Monin and Yaglom [70] gave the spectral approach for the decay process of 

turbulence. Also Sarker and Kishore [97] discussed the decay of MHD turbulence 

before the final period. The approach is phenomenological in the sense that they 
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considered the region where the variation of the mean temperature and mean velocity 

may be neglected because of the transportation of the thermal energy from place to 

place is very rapid. 

Deissler [32, 33] developed a theory for homogeneous turbulence which was valid for 

times before the final period. Using Deissler's theory  Loeffler and Deissler [64] 

studied  the temperature fluctuations in homogeneous turbulence before the final 

period. Sarker and Rahman [88] studied the decay of temperature fluctuations in 

MHD turbulence before the final period. Sarker and Islam [92] considered the decay 

of dusty fluid turbulence before the final period in a rotating system. 

 

Sarker and Rahman [95] discussed the decay of turbulence before the final period in 

presence of dust particles. Sarker and Islam [93] studied the effect of very strong 

magnetic field on acceleration covariance in MHD turbulence of dusty fluid 

turbulence in a rotating system. Further using Deissler's theory Kumar and Patel [59] 

studied the first order reactants in homogeneous turbulence before the final period for  

the case of multi-point and single time. The problem [59] also extended to the case of 

multi-point and multi-time concentration correlation in homogeneous turbulence by 

Kumar and Patel [60]. The numerical result of Kumar and Patel [60] carried out by 

Patel [76]. 

 

Following Deissler's approach Sarker and Islam [91] studied the decay of MHD 

turbulence before the final period for the case of multi-point and multi-time. Islam 

and Sarker [44] discussed the first order reactant in MHD turbulence before the final 

period of decay for the case of multi-point and multi-time. Sarker and Islam [92] also 

studied the decal of dusty fluid turbulence before the final period in a rotating system. 

 

But at first Lundgren [65] derived the dynamical equations, which are describing the 

time evolution of the finite dimensional probability distribution of turbulent 

quantities. Lundgren [65] derived a hierarchy of coupled equations for multi-point 

turbulence velocity distribution function. Further Lundgren [66] considered a similar 

problem for non-homogeneous turbulence. Bigler [25] gave the hypothesis that in 

turbulent flow the thermo-chemical quantities can be related locally a few scalars. 
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Further Janicka, Kolbe and Kollmann [46] and Pope [78] have a more suitable model 

for the probability density function of scalars in turbulent reacting flows. Also 

Kishore [47] studied the distribution function in the statistical theory of MHD 

turbulence of an incompressible fluid. Pope [79] derived the transport equation for the 

joint probability density function of velocity and scalars in turbulent flow. Kishore 

and Singh [49] derived the transport equation for the bivariate joint distribution 

function of velocity and temperature in turbulent flow. Kishore and Singh [50] have 

been derived the transport equation for the joint distribution function of velocity, 

temperature and concentration in convective turbulent flow. Dixit and Upadhyay [35] 

considered the distribution function in the statistical theory of MHD turbulence of an 

incompressible fluid in the presence of the coriolis force. Kollmann and Janicka [56] 

derived the transport equation for the probability density function of a scalar in 

turbulent shear flow and considered a closure model based on gradient flux model. 

 

But at this stage, one is met with the difficulty that the N-point distribution function 

depends upon the N+1-point distribution function and thus result is an unclosed 

system. This so-called "closer problem" is encountered in turbulence, kinetic theory 

and other non-linear system. Sarker and Kishore [96] discussed the distribution 

function in the statistical theory of convective MHD turbulence of  an incompressible 

fluid. Further Sarker and Kishore [98] discussed the distribution function in the 

statistical theory of convective MHD turbulence of  mixture of miscible 

incompressible fluid. Azad et al. [7,8,9] studied the first order reactant in MHD 

turbulence before the final period of decay considering rotating system and dust 

particles. Sarker et al. [99] studied the first order reactant in MHD turbulence before 

the final period of decay for the case of multi-point and multi-time in presence of dust 

particles. Aziz et al. [17, 18] extended their problem for the case of multi-point and 

multi-time for a rotating system. Aziz et al. [19, 20] studied the statistical theory of 

distribution function in magneto-hydrodynamic turbulence in a rotating system with 

dust particles undergoing a first order reaction. Azad et al. [10] premeditated the 

statistical theory of certain  distribution function in MHD turbulent flow for velocity 

and concentration undergoing a first order reaction in a rotating system. Recently 

Azad et al. [15] studied the transport equation for the joint distribution function of 
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velocity, temperature and concentration in convective turbulent flow in presence of 

dust particle. 

 

By analyzing the above theories we have extracted the following chapters. 

 

In part A of Chapter-II , we have studied the decay of temperature fluctuations in 

dusty fluid homogeneous turbulence prior to the final period considering correlations 

between fluctuating quantities at two- and three- point. We have obtained the energy 

decay law of temperature fluctuations in homogeneous turbulence before the final 

period in presence of dust particle. 

 

In part B of Chapter-II, we have studied the decay of temperature fluctuations in dusty 

fluid homogeneous turbulence before the final period in presence of Coriolis force 

and have considered correlations between fluctuating quantities at two- and three- 

points by neglecting the fourth order correlation in comparison to the second and third 

order correlations. For solving the correlation equations are converted to spectral form 

by taking their Fourier transform. Finally we have put an effort to integrate the energy 

spectrum over all wave numbers, the energy decay law of temperature fluctuations in 

homogeneous dusty fluid turbulence before the final period in presence of Coriolis 

force is obtained.  

 

In part A of Chapter-III, the joint distribution functions for simultaneous velocity, 

temperature, concentration fields in turbulent flow undergoing a first order reaction in 

presence of Coriolis force have been studied. The various properties of the 

constructed joint distribution functions have been discussed. In this chapter we have 

to derive transport equations for one and two point joint distribution functions of 

velocity, temperature, concentration in convective turbulent flow due to first order 

reaction in presence of Coriolis force. 

 

In part B of chapter-III, we have studied the joint distribution functions for 

simultaneous velocity, temperature, concentration fields in turbulent flow undergoing 

a first order reaction in a rotating system in presence of dust particles. In this chapter, 
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we have made an attempt to derive the transport equations for the joint distribution 

function of certain variables in convective turbulent flow undergoing a first order 

reaction in a rotating system in presence of dust particles. 

 

In chapter-IV, we have studies the statistical theory of certain variables for three-point 

distribution functions in MHD turbulent flow in a rotating system in presence of dust 

particles. In this chapter we have derived the transport equations for evolution of 

three- point distribution function for simultaneous velocity magnetic, temperature and 

concentration field. 

 

In Chapter-V, we have made an attempt to discuss the summary about the whole 

thesis. 
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CHAPTER-II 

PART-A 
 

DECAY OF TEMPERATURE FLUCTUATIONS IN DUSTY 
FLUID HOMOGENEOUS TURBULENCE PRIOR TO THE 
FINAL PERIOD 
 

 

2.1 Introduction:  

Interest in motion of dusty viscous fluid has developed rapidly in recent years. Such 

situations occur in movement of dust-laden air, in problems of fluidization, in the use 

of dust in gas cooling system and in sedimentation problem in tidal rivers.  

 

Taylor [105] has been pointed out that the equation of motion of turbulence relates the 

pressure gradient and the acceleration of the fluid particles and the mean–square 

acceleration can be determined from the observation of the diffusion of marked fluid 

particles. The behavior of dust particles in a turbulent flow depends on the 

concentration of the particles and the size of the particles with respect to the scale of 

turbulent fluid.  

 

Corrsin [31] had made an analytical attack on the problem of turbulent temperature 

fluctuations using the approaches employed in the statistical theory of turbulence. His 

results pertain to the final period of decay and for the case of appreciable convective 

effects, to the “energy” spectral from in specific wave- number ranges.  

 

Deissler [32, 33] developed a theory for homogeneous turbulence, which was valid 

for times before the final period. Following Deissler’s theory Loeffler and Deissler 

[64] studied the decay of temperature fluctuations in homogeneous turbulence before 

the final period. Sarker and Azad [94]; Azad  and Sarker [3];  Azad  and Sarker [4]; 

Azad  et al [11];  Azad  and Sarker [5]; Azad et al. [12] also studied the decay of 

temperature fluctuations in homogeneous and MHD dusty fluid turbulence. Azad et al 

[15] studied transport equation for the joint distribution function of velocity, 
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temperature and concentration in convective turbulent flow in presence of dust 

particles. Bkar Pk et al [30] considered first-order reactant in homogeneous dusty 

fluid turbulence prior to the ultimate phase of decay for four-point correlation in a 

rotating system. Molla et al [68] studied the decay of temperature fluctuation  in 

homogeneous turbulence before the final period in a Rotating System. Sarker et al 

[101] measured Homogeneous  dusty fluid turbulence in a first order reactant for the 

case of multi Point and multi time prior to the final period of decay.  

 

Saffman [86] derived an equation that describes the motion of a fluid containing small 

dust particle, which is applicable to laminar flows as well as turbulent flow. Kishore 

and Sarker [53] studied the rate of change of vorticity covariance in MHD turbulent 

flow of dusty incompressible fluid. Rahman [82] also studied the Rate of change of 

vorticity covariance in MHD turbulent flow of dusty fluid in a rotating system. 

Kishore and Sinha [54] also studied the rate of change of vorticity covariance of dusty 

fluid turbulence.  

 

They had considered dust particles and Coriolis force in their won works. In their 

study, they considered two and three point correlations and neglecting fourth- and 

higher-order correlation terms compared to the second- and third-order correlation 

terms. Sinha [103] had considered the effect of dust particles on the acceleration of 

ordinary turbulence.  Kishore and Singh [55] had studied the statistical theory of 

decay process of homogeneous hydro- magnetic turbulence. Dixit and Upadhyay [34] 

also had deliberated the effect of Coriolis force on acceleration covariance in MHD 

turbulent dusty flow with rotational symmetry. Kishore and Golsefied [52] considered 

the effect of Coriolis force on acceleration covariance in MHD turbulent flow of a 

dusty incompressible fluid. They had also considered dust particle in their own work.  

 

In this chapter, by analyzing the above theories we have studied the decay of 

temperature fluctuations in homogeneous turbulence prior to the final period in 

presence of dust particle considering the correlations between fluctuating quantities at 

two- and three- point and single time. In solving the problem, it seems logical to use 

the approach which has already been employed with success for studying turbulence. 

In this work, Deissler’s method is used to solving the problem. Through the study we 
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have obtained the energy decay law of temperature fluctuations in homogeneous 

dusty fluid turbulence prior to the final period. In the result, it is shown that the 

energy decays more rapidly than clean fluid. 

 

METHODOLOGY 

 

2.2 Correlation and Spectral equations: 
For an incompressible fluid with constant properties and for negligible frictional 

heating, the energy equation may be written at the point P 
~~

~
~ 2
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(2.2.1) 

Where, 

=T~ Instantaneous values of temperature. 

=iu~  Instantaneous velocity, 

=ρ Fluid   density, 

=pc Heat capacity at constant pressure, 

=k Thermal conductivity, 

=ix Space co-ordinate, 

=t Time, 

Separate these instantaneous values into time average and fluctuating components as 

TTT +=~  and iii uuu +=~  equation (2.2.1) may be written  
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ρ

γ = ,  

From the case of homogeneity it follows that 0=
∂
∂

ix
T   and in addition the usual 

assumption is made that T  is independent of time and that ;0=iu Thus equation 

(2.2.2) simplifies to  
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where ,
γ
ν

=Ρr  Prandtl number, ν  =Kinematic Viscosity. 

Equation (2.2.3) holds at the arbitrary point P.  For the point Ρ′  the corresponding 

equation can be written as 
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Multiplying equation (2.2.3) byT ′ , equation (2.2.4) by T  and taking time average 

and adding the two equations gives 
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The continuity equation is  
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Substitution of equation (2.2.6) into (2.2.5) yields 
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By use of a new independent variable iii xxr −′=    i,e 
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This equation is converted into spectral form by use of the following three 
dimensional Fourier transforms  
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And by interchanging ΡandΡ′ ,  
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Substitution of equations (2.2.9) - (2.2.11b) into equation (2.2.8) leads to the spectral 

equation  

 

 

Equation (2.2.12) is analogous to the two point spectral equation governing the decay 

of velocity fluctuations and therefore the quantity ( )kττ ′  may be interpreted as a 

temperature fluctuation “energy” contribution of thermal eddies of size k
1 . Equation 

(2.2.12) expresses the time derivative of this “energy” as a function of the convective 

transfer to other wave numbers and the “dissipation” due to the action of thermal 

conductivity. The second term on the left hand side of equation (2.2.12) is the so 

called transfer to term while the term on the right hand side is “dissipation” term.  

 

2.3 Three points correlation and spectral equations: 
In order to obtain single time and three point correlation and spectral equation we 

consider three points Ρ′Ρ,  and  Ρ ′′  with position vectors r̂  and r ′ˆ are considered. 

 

 

 
 

For the two points Ρ′  and Ρ ′′ we can write a relation according to equation (2.2.7), 
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Equation (2.3.1) multiplied through by ,ju  the j-th velocity fluctuation component at 

point. Then the equation at the pointΡ  can be written as 
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The momentum equation at pointΡ , in presence of dust particles 
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Here, 

=turbulent velocity component 

=dust velocity component 

(Dimension of frequency) 

 

N, constant number density of dust particle 

Substituted equation (2.3.3) into equation (2.3.2) the result on taking time averages is  
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Making use of the relations iiiiii xxrandxxr ′−′′=′−′=   allows equation (2.3.4) 

can be written as  
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( )[ ] )8.3.2(                       ˆˆˆˆˆˆexp aKdKdrKrKiTTuv jij ′⋅′+⋅′′′=′′′′′ ∫ ∫
∞
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Six-dimensional Fourier transforms for quantities this equation may be defined as 
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              (2.3.8)
 

 

 
Interchanging the points Ρ ′′Ρ′ and  shows that   

( )[ ] KdKdrKrKiTTuuTTuu ijijij
ˆˆˆˆˆˆexp ′⋅′+⋅′′′′=′′′′=′′′′′ ∫ ∫

∞
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∞
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θθββ        (2.3.8b) 

 
Using equation (2.3.6) – (2.3.8.b) into equation (2.3.5) then the transformed equation 

can be written as  
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If the derivative with respect to jx  is taken of the momentum equation (2.3.4) for 

pointΡ , and taking time average the resulting equation is  
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In terms of the displacement vectors randr ′ˆˆ   this becomes 
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Taking the Fourier transform of equation (2.3.11) and then solving for θθα ′′′  we get  

 

[ ]
[ ] ( )12.3.2              

2
2

θθββ
ρ

θθα ′′′
+′+′′
+′+′′−

=′′′ ij
jjjjjj

ijijij

kkkkkk
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Equation (2.3.12) can be used to eliminate  θθα ′′′  from equation (2.3.9). 

 

2.4 Solution for times before the final period: 
To obtain the equation for final period of decay the third-order fluctuation terms are 

neglected compared to the second-order terms. Analogously, it would be anticipated 

that for times before but sufficiently near to the final period the fourth-order 

fluctuation terms should be negligible in comparison with the third-order terms. If this 

assumption is made then equation (2.3.12) shows that the term  θθα ′′′   associated 

with the pressure fluctuations, should also be neglected. Thus equation (2.3.9) 

simplifies to 

( ) ( ) ( ) ( )1.4.2                 0121 22 =′′′

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Where, θθγθθβ ′′′=′′′ jjR  

and 1-R=S, R and S are arbitrary constant. 

Inner multiplication of equation (2.4.1) by jk  and integrating between tandt0  gives    
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Now, letting 0=′r  in equation (2.2.6) and comparing the result with the equation 

(2.1.10) shows that  

( ) ( )3.4.2   ˆˆˆˆ KdKKkKk iiii ′′′′′=′ ∫
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Substituting of equation (2.4.2) and (2.4.3) into equation (2.1.12), we obtain  
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Now, ( )321
ˆ kdkdkdKd ′′′≡′  can be expressed in terms of  ξandk ′  as   

( ) ( )5.4.2                                                                        cos2ˆ 2 kddkKd ′′−=′ ξπ  

Substituting equation (2.4.4) into (2.4.3) yields  

( ) ( ) ( ) ( )[ ]
( ) ( )( ) ( )coscos21exp

ˆ,ˆˆ,ˆ22ˆ2ˆ

1

1

220

0
2

kddfskkkk
tt

KKKKkiKk
t
K

r
rr

r

iii
r

′

























 Ρ
−′Ρ+′+Ρ+

Ρ
−

−×

′−−′′′−′′′′=′
Ρ

+
∂
′∂

∫

∫

−

∞

∞−

ξ
υ

ξ
ν

θθβθθβπττνττ

        (2.4.6)

 

 

In order to find the solutions completely and following Loeffler and Deissler [64], we 

assume that 
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where 0δ  constant depending on the initial condition. The negative sign is placed in 

front of 0δ in order to make the transfer of energy from small to large wave no. for 

positive value of 0δ . Substituting equation (2.4.7) into equation (2.4.6)  
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Multiplying both sides of equation (2.4.8) by 2k  and defining the spectral energy 

function 

( ) ).8.4.2(                ˆ2 2 aKkE ττπ ′=
  

and the resulting equation is  
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Integrating equation (2.4.9.a) w.r.to ξ , we have   
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Again integrating equation (2.4.9.b) w.r.to k ′we have 
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The equation (2.4.10) indicates that w must begin as 4k for small k . The condition of 

w is fulfilled by the equation (2.4.10). It can be shown, using equation (2.4.10) that 

( )11.4.2          0
0
∫
∞

=dkw

 

 It is be expected physically since w is a measure of the transfer of “energy” and the 

total energy transferred to all wave numbers must be zero. 

 

The necessity for equation (2.4.11) to hold can be shown as follows if equation 

(2.2.10) is written for both kandk − , and resulting equations differentiated with 

respect to ir  and added, the result is, for 
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Since according to the equations (2.4.8), (2.4.9) and (2.2.12), 
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The linear equation (2.4.9) can be solved for w as  
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Where, ( )kJ  is an arbitrary function of k. 

 

For large times, Corrsin [31] has shown the correct form of the expression for E to be  
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where 0N  is an constant which depends on the initial conditions. Using equation 

(2.4.13) to evaluate ( )kJ  in equation (2.4.12) yields 
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Now, substituting the values of w and ( )kJ  as given by the equation (2.4.10) and 

(2.4.14) into equation (2.4.12) gives the equation. 

( ) ( )

( )
( ){ }

( )( )
( )

( )
( )

( )( )
( )
( ) ( )

( ) ( )

( ) 















ΡΡ+

+Ρ−Ρ
+

−Ρ+

+Ρ−Ρ
−

−Ρ+

−ΡΡ
+

−

Ρ
×









Ρ+Ρ
−Ρ+−

×

−
Ρ+

Ρ
+








Ρ

−
−=

2
1

2
5

92

2
1

0
2

82

2
3

0

6

2
5

0
2

4

0
2

0

2
7

2
3

2
5

00
22

0

13

3238

13

3234

13

67

2

3

1
21exp

exp
12

2exp,

rr

rr

r

rr

r

rrr

rr

r

r

r

r

Fk

tt

k

tt

k

tt

k

ttk

ttfsttkkNtkE

ηυ

υυ

υ

υ

πδυ
π

  

  



Chapter-II          55 

 
 

 

 

( )
( ){ } ( )( )

( )

( )
( )

( )( )
( )
( ) ( )

( ) ( )

( ) 















ΡΡ+

+Ρ−Ρ
+

−Ρ+

+Ρ−Ρ
−

−Ρ+

−ΡΡ
+

−

Ρ
×









Ρ+Ρ
−Ρ+−

×−×
Ρ+

Ρ
+

2
1

2
5

92

2
1

0
2

82

2
3

0

6

2
5

0
2

4

0
2

0

2
7

2
3

2
5

0

13

3238

13

3234

13

67

2

3

1
21expexp

14

rr

rr

r

rr

r

rrr

rr

r

r

r

Fk

tt

k

tt

k

tt

k

ttkttfs

ηυ

υυ

υ

υ

πδ

                    (2.4.15) 

where, 
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Putting 0ˆ =r  in equation (2.2.9) and we use the definition of E given by the equation 

(2.4.15), the result is  
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Substituting equation (2.4.15) into (2.4.18) gives  
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                     (2.4.20) 

R is a function of Prandtl no. 

 

Equation (2.4.19) is the decay law of temperature fluctuation in homogeneous 

turbulence in presence of dust particle prior to the ultimate period. The first term of 

the right side of equation (2.4.19) corresponds to the temperature energy for two point 
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correlation and the second terms represents the energy for the three point correlation. 

This second term becomes negligible at large times leaving the final period decay law 

previously found by Corrsin [31]. 2T is the total “energy” (the mean square of the 

temperature fluctuations).  

 

2.5 Results and Discussion 

Equation (2.4.19) is the decay law of temperature fluctuation in homogeneous 

turbulence before the final period in presence of the dust particle. In the absence of 

the dust particle, i.e. 0=f , then the equation (2.4.19) becomes  
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−− −+−= ttBttA ,which was obtained earlier by Loeffler and Deissler [64]. 
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−

. 

Due to the effect of dust particle in homogeneous turbulence, the temperature energy 

decays more rapidly than the energy for clean fluid prior to the ultimate period. For 

large times, the second term in the equation (2.4.19) becomes negligible leaving the 

2
3

−  power decay law for the ultimate period. 
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CHAPTER-II 

PART-B 
 
DECAY OF TEMPERATURE FLUCTUATIONS IN DUSTY 
FLUID HOMOGENEOUS TURBULENCE PRIOR TO THE 
ULTIMATE PERIOD IN PRESENCE OF CORIOLIS FORCE 

 

 

 

2.6 Introduction 
In geophysical flows, the system is usually rotating with a constant angular velocity. 

Such large-scale flows are generally turbulent. When the motion is referred to axes, 

which rotate steadily with the bulk of the fluid, the Coriolis and centrifugal force must 

be supposed to act on the fluid. On a rotating earth the Coriolis force acts to change 

the direction of a moving body to the right in the Northern Hemisphere and to the left 

in the Southern Hemisphere. This force plays an important role in a rotating system of 

turbulent flow, while centrifugal force with the potential is incorporated in to the 

pressure.  

 

In a turbulent flow the behaviour of the dust particles depends on the concentration of 

the particles and the size of the particles with respect to the scale of turbulent fluid. 

Saffman [86] derived an equation that describe the motion of a fluid containing small 

dust particle, which is applicable to laminar flows as well as turbulent flow. 

 

Kishore, and Sarker [53] studied the rate of change of vorticity covariance in MHD 

turbulent flow of dusty incompressible fluid. Also Rahman [82] studied the Rate of 

change of vorticity covariance in MHD turbulent flow of dusty fluid in a rotating 

system. Kishore and Sinha [54] also studied the rate of change of vorticity covariance 

of dusty fluid turbulence. Corrsin [31] had made an analytical attack on the problem 

of turbulent temperature fluctuations using the approaches employed in the statistical 

theory of turbulence. His results pertain to the final period of decay and for the case of 

appreciable convective effects, to the “energy” spectral from in specific wave- 

number ranges. Deissler [32, 33] developed a theory for homogeneous turbulence, 
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which was valid for times before the final period. Following Deissler’s theory 

Loeffler and Deissler [64] studied the decay of temperature fluctuations in 

homogeneous turbulence before the final period. Sarker and Azad [94]; Azad  and 

Sarker [3];  Azad  and Sarker [4]; Azad  et al [11];  Azad  and Sarker [5]; Azad et al. 

[12] also studied the decay of temperature fluctuations in homogeneous and MHD 

dusty fluid turbulence. Azad et al [15] studied the transport equatoin for the joint 

distribution function of velocity, temperature and concentration in convective tubulent 

flow in presence of dust particles.  Molla et al [69] also studied decay of temperature 

fluctuations  in homogeneous turbulenc before the final  period in a rotating system. 

Bkar Pk. et al [30] studied first-order reactant in homogeneou dusty fluid turbulence 

prior to the ultimate phase of decay for four-point correlation in a rotating system.  

 

They considered dust particles and Coriolis force on their won works. In their study, 

they considered two- and three- point correlations and neglecting fourth- and higher-

order correlation terms compared to the second- and third-order correlation terms. 

Sinha [103] had considered the effect of dust particles on the acceleration of ordinary 

turbulence.  Kishore and Singh [55] had studied the statistical theory of decay process 

of homogeneous hydro- magnetic turbulence. Dixit and Upadhyay [34] also had 

deliberated the effect of coriolis force on acceleration covariance in MHD turbulent 

dusty flow with rotational symmetry. Kishore and Golsefied [52] considered the effect 

of Coriolis force on acceleration covariance in MHD turbulent flow of a dusty 

incompressible fluid. Shimomura and Yoshizawa [102], discussed the statistical 

analysis of an isotropic turbulent viscosity in a rotating system. 

 

In the present work, following the above theories we have studied the decay of 

temperature fluctuations in dusty fluid homogeneous turbulence prior to the final 

period in presence of Coriolis force considering the correlations between fluctuating 

quantities at two- and three- point and single time. In this work, Deissler’s method is 

used to solving the problem. Through out the study we have obtained the energy 

decay law of temperature fluctuations in homogeneous dusty fluid turbulence prior to 

the final period due to Corilis force. In result, it has been shown that the energy 

decays more rapidly than non rotating clean fluid. It is the extension work of chapter 

two. 



Chapter-II          59 

 

 
 

 

 

( )
)(21 2

jjmmij
ii

j

ji

ijj vuf
xx

u
xx

uu
t

u
−+Ω−

∂∂

∂
+

∂
Ρ∂

−=
∂

∂
+

∂

∂
εν

ρ

ju

jv

ρ
kNf =

2.7 Three points correlation and spectral equations: 
In order to obtain single time and three points correlation and spectral equation we 

consider three points Ρ′Ρ,  and  Ρ ′′  with position vectors r̂  and r ′ˆ are considered. 

 

 
For the two points Ρ′  and Ρ ′′ we can write a relation according to equation (2.2.7),  
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Equation (2.7.1) multiplied through by ,ju  the j-th velocity fluctuation component at 

pointΡ . Then the equation can be written in a rotating system at the pointΡ . 
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The momentum equation at pointΡ  in presence of dust particles and Corolis force 

both together 
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Here, 

=turbulent velocity component 

=dust velocity component 

(Dimension of frequency) 

 

mijε , alternating tensor, mΩ , angular velocity of a uniform rotation.  

P′
P

P ′′

r̂

r ′ˆ
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( )[ ] )8.7.2(                                          ˆˆˆˆˆˆexp aKdKdrKrKiTTuv jij ′⋅′+⋅′′′=′′′′′ ∫ ∫
∞

∞−

∞
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θθγ

N, constant number density of dust particle 

Substituted equation (2.7.2) into equation (2.7.3) the result on taking time averages is  
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Making use of the relations iiiiii xxrandxxr ′−′′=′−′=   allows equation (2.7.4) can 

be written as  
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Six-dimensional Fourier transforms for quantities this equation may be defined as  

( )[ ] KdKdrKrKiTTu jj
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θθβ                (2.7.6) 
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 ( )[ ] KdKdrKrKiTTp ˆˆˆˆˆˆexp ′⋅′+⋅′′′=′′′ ∫ ∫
∞
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∞

∞−
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Interchanging the points Ρ ′′Ρ′ and  shows that   
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∞

∞−

θθββ                (2.7.8b) 

Using equation (2.7.6) – (2.7.8b) into equation (2.7.5) then the transformed equation 

can be written as  
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If the derivative with respect to jx  is taken of the momentum equation (2.7.4) for 

pointΡ , and taking time average the resulting equation is  
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 In terms of the displacement vectors randr ′ˆˆ   this becomes 
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Taking the Fourier transform of equation (2.7.11) and then solving for θθα ′′′  we get  
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kkkkkk
kkkkkk

2
2

            (2.7.12) 

Equation (2.7.12) can be used to eliminate  θθα ′′′  from equation (2.7.9).  
 

2.8 Solution for times prior to the ultimate period 
To obtain the equation for final period of decay the third-order fluctuation terms are 

neglected compared to the second-order terms. Analogously, it would be anticipated 

that for times before but sufficiently near to the final period the fourth-order 

fluctuation terms should be negligible in comparison with the third-order terms. If this 

assumption is made then equation (2.7.12) shows that the term  θθα ′′′   associated 

with the pressure fluctuations, should also be neglected. Thus equation (2.7.9) 

simplifies to 
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    (2.8.1) 

where, 

and 1-R=S, R and S are arbitrary constant. 

Inner multiplication of equation (2.8.1) by jk  and integrating between tandt0  gives    
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                (2.8.2) 

Now, letting 0=′r  in equation (2.7.6) and comparing the result with the equation 

(2.2.10) shows that  

( ) KdKKkKk iiii ′′′′′=′ ∫
∞
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ˆˆˆˆ θθβττφ              (2.8.3) 
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Substituting of equation (2.8.2) and (2.8.3) into equation (2.2.12), we obtain  
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Now, ( )321
ˆ kdkdkdKd ′′′≡′  can be expressed in terms of  ξandk ′  as   

( ) kddkKd ′′−=′ ξπ cos2ˆ 2              (2.8.5) 

 

Substituting equation (2.8.5) into (2.8.4) yields  

 

   (2.8.6) 

 
 

 
 

In order to find the solutions completely and following Loeffler and Deissler [64], we 

assume that 
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where 0δ  constant depending on the initial condition. The negative sign is placed in 

front of 0δ in order to make the transfer of energy from small to large wave no. for 

positive value of 0δ . Substituting equation (2.8.7) into equation (2.8.6)  
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Multiplying both sides of equation (2.8.8) by 2k  and defining the spectral energy 

function 

( )KkE ˆ2 2 ττπ ′=               (2.8.8a) 

and the resulting equation is  
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Integrating equation (2.8.9a) w.r.to ξ , we have   
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Again integrating equation (2.8.9b) w.r.to k ′we have 
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The equation (2.8.9) indicates that w must begin as 4k for small k . The condition of w 

is fulfilled by the equation (2.8.10). It can be shown, using equation (2.8.10) that 

∫
∞

=
0

0dkw                (2.8.11) 

It was to be expected physically since w is a measure of the transfer of “energy” and 

the total energy transferred to all wave numbers must be zero. 

 

 The necessity for equation (2.8.11) to hold can be shown as follows if equation 

(2.2.10) is written for both KandK ˆˆ − , and resulting equations differentiated with 

respect to ir  and added, the result is, for 



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Since according to the equations (2.8.8), (2.8.9) and (2.2.12), 
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The linear equation (2.8.9) can be solved for w as  
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where, ( )kJ  is an arbitrary function of k.  

 

For large times, Corrsin [31] has shown the correct form of the expression for E to be  
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where, 0N  is an constant which depends on the initial conditions. Using equation 

(2.8.13) to evaluate ( )kJ  in equation (2.812) yields 
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Now, substituting the values of w and ( )kJ  as given by the equation (2.8.10) and 

(2.8.14) into equation (2.8.12) gives the equation. 
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( )
( )
( ) )17.8.2(    
1

)16.8.2(    

0

0

22

rr

dxe

ttk

eF
x

Ρ+Ρ
−

=

∫
=

−

υη

η

η

η

  

 

Putting 0ˆ =r  in equation (2.2.9) and we use the definition of E given by the equation 

(2.8.15), the result is  
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Substituting equation (2.8.15) into (2.8.18) gives  
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R is a function of Prandtl no. 

 

Equation (2.8.19) is the decay law of temperature fluctuation in homogeneous dusty 

fluid turbulence prior to the ultimate period in presence of Coriolis force. The first 

term of the right side of equation (2.8.19) corresponds to the temperature energy for 

two- point correlation and the second terms represents the energy for the three point 
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correlation. This second term becomes negligible at large times leaving the final 

period decay law previously found by Corrsin [31]. 2T  is the total “energy” (the 

mean square of the temperature fluctuations).  

 

2.9 Result and Discussion 
Equation (2.8.19) is the decay law of temperature fluctuation in homogeneous dusty 

fluid turbulence before the final period in presence of Coriolis force. In the absence of 

the dust particle and Coriolis force, i.e. 0=f then the equation (2.8.19) becomes  
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which was obtained earlier by Molla et al [68]. In this work, they had studied the 

decay of temperature  fluctuation  in homogeneous turbulenc before the final period in 

a Rotating System. They considered two - and three - point correlations and 

neglecting fourth- and higher-order correlation terms compared to the second- and 

third-order correlation terms.and derivrd the above equation. 

 

 If  0=Ωm , then the equation (2.8.19) becomes 
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which was obtained earlier by Azad  and Mumtahinah [13].   

In the absence of the dust particle and the Coriolis force i.e. 0=f and 0=Ωm , the 

equation (2.8.19) becomes 
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Due to the effect of Coriolis force in homogeneous dusty fluid turbulence, the 

temperature energy fluctuations decays more rapidly then the energy for non rotating 

clean fluid prior to the ultimate period. For large times, the second term in the 

equation (2.9.3) becomes negligible leaving the 
2
3

−  power decay law for the ultimate 

period.  

 

In their study, they considered two and three point correlations and neglecting fourth- 

and higher-order correlation terms compared to the second- and third-order 

correlation terms. 

 

Through the study we have obtained the equation (2.8.20) for energy decay law of 

temperature fluctuations in homogeneous dusty fluid turbulence prior to the final 

period in a rotating system. In this result, it has been shown that the energy decays 

more rapidly than clean fluid and non rotating system.  
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CHAPTER-III 

PART-A 
 

TRANSPORT EQUATION FOR THE JOINT DISTRIBUTION 
FUNCTIONS OF CERTAIN VARIABLES IN CONVECTIVE 
TURBULENT FLOW IN PRESENCE OF CORIOLIS FORCE 
UNDER GOING A FIRST ORDER REACTION 
 
 
 
3. 1 Introduction 
In molecular kinetic theory in physics a particle's distribution function is a function of 

seven variables, ),,,,,( zyx vvvzyxf  which gives the number of particles per unit 

volume in phase space. It is the number of particles per unit volume having 

approximately the velocity ),,( zyx vvv  near the place ),,( zyx and time .t  Particle 

distribution functions are often used in plasma physics to describe wave-particle 

interactions and velocity-space instabilities. Distribution functions are also used in 

fluid mechanics, statistical mechanics, fluid and nuclear physics. In the past, several 

researchers discussed the distribution functions in the statistical theory of turbulence. 

G. K. Batchelor [24] studied the theory of homogeneous turbulence. Lundgren [66] 

derived the transport equation for the distribution of velocity in turbulent flow. Bigler 

[25] gave the hypothesis that in turbulent flames, the thermo chemical quantities can 

be related locally to few scalars and considered the probability density function of 

these scalars.  Kishore [47] studied the distributions functions in the statistical theory 

of MHD turbulence of an incompressible fluid. S. B. Pope [78] studied the statistical 

theory of turbulence flames. Also, Pope [79] derived the transport equation for the 

joint probability density function of velocity and scalars in turbulent flow. Kollman 

and Janica [56] derived the transport equation for the probability density function of a 

scalar in turbulent shear flow and considered a closure model based on gradient flux 

model. Kishore and Singh [49] derived the transport equation for the bivariate joint 

distribution function of velocity and temperature in turbulent flow. Also Kishore and 

Singh [50] have been derived the transport equation for the joint distribution function 

of velocity, temperature and concentration in convective turbulent flow. The Coriolis 
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force helps to clarify the relation between angular momentum and rotational kinetic 

energy and how an inertial force can have a significant affect on the movement of a 

body and still without doing any work. On a rotating earth the Coriolis force acts to 

change the direction of a moving body to the right in the Northern Hemisphere and to 

the left in the Southern Hemisphere. This deflection is not only instrumental in the 

large-scale atmospheric circulation, the development of storms, and the sea-breeze 

circulation - Atkinson [1], it can even affect the outcome of baseball tournaments. 

Also a first-order reaction is defined a reaction that proceeds at a rate that depends 

linearly only on one reactant concentration. Later, some researchers extended their 

works including coriolis force. In the continuation, Azad and Sarker [2] studied the 

Statistical theory of certain distribution functions in MHD turbulence in a rotating 

system in presence of dust particles. Sarker and Azad [87] studied the decay of MHD 

turbulence before the final period for the case of multi-point and multi-time in a 

rotating system.  Sarker and Azad[87], Azad and Sarker[5] deliberated the decay of 

temperature fluctuations in homogeneous turbulence before the final period for the 

case of multi- point and multi- time in a rotating system and dust particles. Azad and 

Sarker [8] discussed the decay of temperature fluctuations in MHD turbulence before 

the final period in a rotating system. Also, Azad et al[8], Sarker et al [99], Azad et al 

[6], Aziz et al[17],  Azad et al[9] discussed the First Order Reactant in MHD 

turbulence before the final period of decay for the case of multi-point  multi-time and  

multi -point single time considering rotating system and dust particles. Following the 

above researchers, Aziz et al [18,20], Azad et al [10]  had further studied the 

statistical theory of certain distribution functions in MHD turbulent flow for velocity 

and concentration considering first order reaction with a rotating system and dust 

particles. Aziz et al [19] extended their study for the first order reactant in MHD 

turbulence before the final period of decay for the case of multi-point and multi-time 

in a rotating system in presence of dust particle.  Sarker, Bkar Pk and Azad [101] 

studied the homogeneous  dusty fluid turbulence in a  first order reactant for the case 

of multi -point and multi -time prior to the final period of decay. Azad, Molla and Z. 

Rahman [15] studied the transport equatoin for the joint distribution function of 

velocity, temperature and concentration in convective tubulent flow in presence of 

dust particles. Molla, Azad and  Z. Rahman [68] discussed the decay of temperature 

fluctuations in homogeneous turbulenc before the final period in a rotating system. 
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Bkar et al [29], Bkar et al [26, 29] premeditated the first-order reactant in 

homogeneou dusty fluid turbulence prior to the ultimate phase of decay for four-point 

correlation considering rotating system. Bkar PK, et al [28, 27] had studied the decay 

of MHD turbulence before the final period for four- point correlation among dust 

particle and rotating system. M. H. U. Molla et al [68]  studied the transport equation 

for the joint distribution function of velocity, temperature and concentration in 

convective turbulent flow in presence of Coriolis force. 

But at this stage, one is met with the difficulty that the N-point distribution function 

depends upon the N+1-point distribution function and thus result is an unclosed 

system. This so-called closer problem is encountered in turbulence, Kinetic theory 

and other non-linear system. 

In this chapter, we have studied the joint distribution function for simultaneous 

velocity, temperature, concentration fields in turbulent flow in presence of Coriolis 

force undergoing a first order reaction. Finally, the transport equations for evolution 

of distribution functions have been derived and various properties of the distribution 

function have been discussed.  

 

METHODOLOGY 

3.2 Basic equations 
The equation of motion and field equations of temperature and concentration in 

presence of Coriolis force are shown by 
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here u and x are vector quantities in the whole process. uα (x, t) = Fluctuating velocity 

component,θ (x, t) =Temperature fluctuation,c = Concentration of contaminants,ν  = 

Kinematics viscosity, ƒ= Coefficient of thermal conductivity, D= Diffusive 

coefficient for contaminants, αβm∈ = Alternating tensor, mΩ = Angular velocity of a 

uniform rotation, R=constant reaction rate. 

 

3.3 Formulation of the problem 
We consider the turbulence and the concentration fields are homogeneous, also 

consider a large ensemble of mixture of miscible fluids in which each member is an 

infinite incompressible heat conducting fluid in turbulent state. The fluid velocity u, 

temperature θ and concentration c are randomly distributed functions of position and 

time and satisfy their field equations. Different members of ensemble are subjected to 

different initial conditions and the aim is to find out a way by which we can determine 

the ensemble averages at the initial time. The present aim is to construct a joint 

distribution functions, study its properties and derive an equation for its evolution of 

this joint distribution functions in presence of Coriolis force undergoing a first order 

reaction. 

 

3.4 Joint distribution function in convective turbulence and their 

properties  
It may be considered that the fluid velocity u, temperature θ, concentration c at each 

point of the flow field in turbulence. Lundgren [65] and Sarker and Kishore [97, 98]  

has studied the flow field on the basis of one variable character only (namely the fluid 

u) but we can study it for two or more variable characters as well. For the 

corresponding each point of the flow field, we have three measurable characteristics. 

We represent the three variables by v,φ  and ψ and denote the pairs of these variables 

at the points ( ) ( ) ( )nxxx ,, 21 −−−−−−−−  as ( ) ( ) ( )( )111 ,, ψφv , ( ) ( ) ( )( )222 ,, ψφv  - - - - - - - -- -, 
( ) ( ) ( )( )nnnv ψφ ,,  at a fixed instant of time. It is possible that the same pair may be 

occurring more than once; therefore, we simplify the problem by an assumption that 

the distribution is discrete (in the sense that no pairs occur more than once). Instead of 

considering discrete points in the flow field if we consider the continuous distribution 
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of the variables and ψ over the entire flow field, statistically behavior of the fluid may 

be described by the distribution function   ( )ψφ,,vF  which is normalized so that 

( ) 1,, =∫ ψφψφ dddvvF , 

where the integration ranges over all the possible values of v, φ  and ψ. We shall make 

use of the same normalization condition for the discrete distributions also. The joint 

distribution functions of the above quantities can be defined in terms of Dirac Delta-

functions. 

 

The one-point joint distribution function ( ) ( ) ( ) ( )( )1111
1 ,, ψφvF  is defined in such a way 

that    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1111111
1 ,, ψφψφ dddvvF  is the probability that the fluid velocity, 

temperature and concentration field at a time t are in the element ( )1dv  about )1(v , ( )1φd  

about ( )1φ  and ( )1ψd  about ( )1ψ  respectively and is given as 
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )                     ,, 1111111111

1 〉−−−〈= ψδφθδδψφ cvuvF       (3.4.1) 

where, δ is the Dirac delta-function defined as: 

( ) { vupotheat
otherwisedvvu ==−∫ int1

0δ
 

 

Two-point joint distribution function is given by 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )  2222221111112,1

2 〉−−−−−−〈= ψδφθδδψδφθδδ cvucvuF     (3.4.2) 

 

And three point distribution functions is shown by 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )〉−−−−×

−−−−−〈=
33333322

22221111113,2,1
3

ψδφθδδψδ

φθδδψδφθδδ

cvuc
vucvuF

      (3.4.3) 

 

Similarly, we can define an infinite numbers of multi-point joint distribution 

functions ( )4,3,2,1
4F , ( )5,4,3,2,1

5F  and so on. The joint distribution functions so constructed 

have the following properties: 

(A) Reduction properties 

Integration with respect to pair of variables at one-point, lowers the order of 

distribution function by one.  
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For example: 
( ) ( ) ( ) ( )
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 and so on. 

 

Also the integration with respect to any one of the variables reduces the number of 

Delta-functions from the distribution function by one as: 
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )〉−−〈=∫

〉−−〈=∫
111111
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and 
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )〉−−−−〈=∫ 2222111122,1

2 ψδφθδψδφθδ ccdvF and so on. 
 
(B) Separation properties 

The pairs of variables at the two points are statistically independent of each other if 

these points are far apart from each other in the flow field i.e., 
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And similarly, 
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(C) Coincidence property 

When two points coincide in the flow field, the components at these points should be 

obviously the same that is F2
(1, 2) must be zero. Thus: 

( ) ( ) ( ) ( ) ( ) ( )121212 , ψψφφ === andvv  
 
But also F2

(1, 2)   must have the property 
( ) ( ) ( ) ( ) ( )1

1
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And hence it follows that: 
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Similarly 
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3.5 Continuity equation in terms of distribution functions 
An infinite number of continuity equations can be derived for the convective turbulent 

flow and the continuity equations can be easily expressed in terms of distribution 

functions and are obtained directly by div u = 0.  
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And similarly 
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Which are the first order continuity equations in which only one point distribution 

function is involved. For second-order continuity equations, if we multiply the 

continuity equation by 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )222222 ψδφθδδ −−− cvu  

 

And if we take the ensemble average, we obtain: 
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And similarly, the Nth-order continuity equations are 
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The continuity equations are symmetric in their arguments i.e. 
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Since, the divergence property is an important property and it is easily verified by the 

use of the property of distribution function as: 
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And all the properties of the distribution function obtained in section (3.4.1) can also 

be easily verified. 

 
 

3.6 Equations for the evolution of joint distribution functions 
This, in fact is done by making use of the definitions of the constructed distribution 

functions, the transport equation for ( )txvF ,,,, ψφ  is obtained from the definition of 

F and from the transport equations (3.2.1), (3.2.2), (3.2.3). Differentiating equation 

(3.4.1) we get, 
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Using equation (3.2.1), (3.2.2) and (3.2.3) in the equation   (3.6.1) we get 
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Various terms in the above equation can be simplified as that they may be expressed 

in terms of one point and two point distribution functions. The 2nd, 3rd and 4th terms 

on the left hand side of the above equation are simplified in a similar fashion and take 

the forms as follows 
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Adding equation (3.6.3), (3.6.4) and (3.6.5) we get, 
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We reduce the 5th and 6th terms on left hand side of equation (3.6.2), 
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We reduce the 7th term on left hand side of equation (3.6.2), 
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Similarly, 8th, 9th and 10th terms of left hand side of (3.6.2) can be simplified as 

follows: 
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Substituting the results (3.6.6)-(3.6.12) in equation (3.6.2), we get the transport 

equation for one point distribution function ( ) ( )ψφ,,1
1 vF  in turbulent flow in a rotating 

system undergoing a first order reaction   
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Similarly, a transport equation for two-point distribution function ( )2,1

2F in turbulent 

flow in rotating system undergoing a first order reaction can be derived by 

differentiating equation (3.4.2) and using equation (3.2.1),(3.2.2),(3.2.3) and 

simplifying in the same manner which is  
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Continuing this way, we can derive the equations for evolution of ( ) ( )4,3,2,1

4
3,2,1

3 , FF  and 

so on. Logically, it is possible to have an equation for every ( )egeranisnFn int  but 

the system of equations so obtained is not closed. It seems that certain approximations 

will be required thus obtained.  

 

3.7 Results and Discussion 
 If the reaction rate R=0, the transport equation (3.6.13) for one point joint distribution 

function ( ) ( )ψφ,,1
1 vF in turbulent flow undergoing a first order reaction becomes 
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which was obtained earlier by M.H.U.Molla [67]. 
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In the absence of the Coriolis force, 0=Ωm , then the transport equation for one point 

joint distribution function ( ) ( )ψφ,,1
1 vF  in  turbulent flow equation (3.6.12) becomes 

( )
( )

( )

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0D

ƒ

(3.7.2)                                               

4
1

2222,1
2

2
221

2222,1
2

2
221

2222,1
2

2
221

22222,1
2

2

2
2

21211

1
11

1
1

12

12

12

=
∂
∂

∂
∂

∂
∂

+

∂
∂

∂
∂

∂
∂

+

∂
∂

∂
∂

∂
∂

+












∂
∂



























−
∂

∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

∫

∫

∫

∫

→

→

→

ψφψ
ψ

ψφφ
φ

ψφν

ψφ
π

ββ

ββ

ββα

β
α

βββαβ
α

dddvF
xx

Lim

dddvF
xx

Lim

dddvFv
xx

Lim
v

dddvdxF
x

v
xxxvx

Fv
t

F

xx

xx

xx

which was obtained earlier by N. Kishore and S.R. Singh [55].  

 

To close the system of equations for the joint distribution functions some approximations 

are required. If we consider the collection of ionized particles i.e., in plasma turbulence 

case, it can be provided closure form easily by decomposing F2
(1, 2) as F1

(1) F1
(2). But such 

type of approximations can be possible if there is no interaction or correlation between 

two particles. If we decompose F2
(1, 2) as 
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where ε is the correlation coefficient between the particles. If there is no correlation 

between the particles, ε will be zero and joint distribution function can be decomposed in 

usual way. Here, we are considering such type of approximation only to provide closed 

form of the equation i.e., to approximate two-point equation as one point equation. The 

transport equation for the joint distribution function of velocity, temperature, and 

concentration has been shown here to provide an advantageous basis for modeling the 

turbulent flows in presence of Coriolis force undergoing a first order reaction. 

 

In this chapter, we have made an attempt for the modeling of various terms such as 

fluctuating pressure, viscosity and diffusivity in order to close the equation for joint 

distribution function of velocity, temperature and concentration. Since ( )ψφ,,vF  

contains all the statistical information about the velocity at each point, a turbulence model 

to determine the Reynolds stresses is not needed. However, since ( )ψφ,,vF  is one point 

statistics, the length scale information is also not needed.  
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CHAPTER-III  

PART-B 
 

TRANSPORT EQUATION FOR THE JOINT DISTRIBUTION 
FUNCTIONS OF CERTAIN VARIABLES IN CONVECTIVE 
DUSTY FLUID TURBULENT FLOW IN A ROTATING 
SYSTEM UNDER GOING A FIRST ORDER REACTION 
 

 
3.8 Introduction 
Now a day the two major and distinct areas of investigations in statistical mechanics 

are the kinetic theory of gases and the statistical theory of fluid mechanics. In the past 

several researchers discussed the distribution functions in the statistical theory of 

turbulence. A distribution function may be specialized with respect to a particular set 

of dimensions. Distribution functions may also feature non-isotropic temperatures, in 

which each term in the exponent is divided by a different temperature. Particle 

distribution functions are often used in plasma physics to describe wave-particle 

interactions and velocity-space instabilities. Distribution functions are also used in 

fluid mechanics, statistical mechanics and nuclear physics. The mathematical analog 

of a distribution is a measure; the time evolution of a measure on a phase space is the 

topic of study in dynamical systems. G. K. Batchelor [24] studied the theory of 

homogeneous turbulence. Lundgren [65] derived the transport equation for the 

distribution of velocity in turbulent flow. Bigler [25] gave the hypothesis that in 

turbulent flames, the thermo chemical quantities can be related locally to few scalars 

and considered the probability density function of these scalars.  Kishore [47] studied 

the distributions functions in the statistical theory of MHD turbulence of an 

incompressible fluid. S. B. Pope [78] studied the statistical theory of turbulence 

flames. Also, Pope [79] derived the transport equation for the joint probability density 

function of velocity and scalars in turbulent flow. Kollman and Janica [56] derived the 

transport equation for the probability density function of a scalar in turbulent shear 

flow and considered a closure model based on gradient flux model. Kishore and Singh 

[55] derived the transport equation for the bivariate joint distribution function of 

velocity and temperature in turbulent flow. Also Kishore and Singh [50] have been 

http://en.wikipedia.org/wiki/Plasma_physics
http://en.wikipedia.org/wiki/Fluid_mechanics
http://en.wikipedia.org/wiki/Statistical_mechanics
http://en.wikipedia.org/wiki/Nuclear_physics
http://en.wikipedia.org/wiki/Measure_%28mathematics%29
http://en.wikipedia.org/wiki/Dynamical_systems
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derived the transport equation for the joint distribution function of velocity, 

temperature and concentration in convective turbulent flow. The Coriolis force helps 

to clarify the relation between angular momentum and rotational kinetic energy and 

how an inertial force can have a significant affect on the movement of a body and still 

without doing any work. On a rotating earth the Coriolis force acts to change the 

direction of a moving body to the right in the Northern Hemisphere and to the left in 

the Southern Hemisphere. Later, some researchers extended their works including 

Coriolis force. In the continuation, Azad and Sarker [2] studied the Statistical theory 

of certain distribution functions in MHD turbulence in a rotating system in presence 

of dust particles. Sarker and Azad [87] studied the decay of MHD turbulence before 

the final period for the case of multi-point and multi-time in a rotating system.  Sarker 

and Azad[94], Azad and Sarker[4] deliberated the decay of temperature fluctuations 

in homogeneous turbulence before the final period for the case of multi- point and 

multi- time in a rotating system and dust particles. Azad and Sarker [5] discussed the 

decay of temperature fluctuations in MHD turbulence before the final period in a 

rotating system. Also, Azad et al [8], Sarker et al [99], Azad et al [6], Aziz et al [17],  

Azad et al [9] discussed the First Order Reactant in MHD turbulence before the final 

period of decay for the case of multi-point  multi-time and  multi- point single time 

considering rotating system and dust particles. Following the above researchers, Aziz 

et al [18, 20], Azad et al [10]  had further studied the statistical theory of certain 

distribution functions in MHD turbulent flow for velocity and concentration 

considering first order reaction with a rotating system and dust particles. Aziz et al 

[19] extended their study for the first order reactant in MHD turbulence before the 

final period of decay for the case of multi-point and multi-time in a rotating system in 

presence of dust particle.  Sarker, Bkar Pk. and Azad [101] studied the homogeneous  

dusty fluid turbulence in a  first order reactant for the case of multi- point and multi-

time prior to the final period of decay. Azad, Molla and Z. Rahman [15] studied the 

transport equatoin for the joint distribution function of velocity, temperature and 

concentration in convective tubulent flow in presence of dust particles. Molla, Azad 

and  Z. Rahman [15] discussed the decay of temperature fluctuations in homogeneous 

turbulence before the final period in a rotating system. Bkar et al [30], Bkar et al [26, 

29] premeditated the first-order reactant in homogeneous dusty fluid turbulence prior 

to the ultimate phase of decay for four-point correlation considering rotating system. 
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Bkar PK, et al [28, 27] had studied the decay of MHD turbulence before the final 

period for four- point correlation among dust particle and rotating system. M. H. U. 

Molla et al [67]  studied the transport equation for the joint distribution function of 

velocity, temperature and concentration in convective turbulent flow in presence of 

Coriolis force. 

 

In this chapter, we have been the derived transport equation for the joint distribution 

function of velocity temperature and concentration in convective turbulent flow in 

presence of dust particles undergoing a first order reaction in a rotating system. 

Various properties of the distribution function for velocity, temperature, concentration 

in convective turbulent flow in presence of dust particles have been discussed. 

 
METHODOLOGY 
 

3.9 Basic equations 
The equation of motion and field equations of temperature and concentration in a 

rotating system in presence of dust particles under going a first order reaction are 

shown by 
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where, ( )txu ,α = Component of turbulent velocity, ( )tx,θ  = Temperature fluctuation, 

c = Concentration of contaminants,ν  = Kinematics viscosity, ƒ=
ρ

KN = Dimension of 

frequency, N = Constant number of density of the dust particle, ρ   = Fluid density, 

D= Diffusive coefficient for contaminants, γ  =
p

T

c
k
ρ

 = Thermal 

diffusivity, pc =Specific heat at constant pressure, αv = Dust particle velocity, Tk  = 

Thermal conductivity, αβm∈  =Alternating tensor, mΩ =Angular velocity of a uniform 

rotation, R=Constant reaction rate. Here u and x are vector quantities in the whole 

process.      

 

3.10 Formulation of the problem 

We consider the turbulence and the concentration fields are homogeneous. The fluid 

velocity u, temperature θ and concentration c are randomly distributed functions of 

position and time and satisfy their field equations. Different members of ensemble are 

subjected to different initial conditions and the aim is to find out a way by which we 

can determine the ensemble averages at the initial time. The present aim is to 

construct a joint distribution functions, study its properties and derive an equation for 

the transport equation for the joint distribution function of velocity, temperature and 

concentration in convective turbulent flow in a rotating system in presence of dust 

particles due to a first order reaction. 

 

3.11 Continuity equation in terms of distribution functions 

An infinite number of continuity equations can be derived for the convective turbulent 

flow and the continuity equations can be easily expressed in terms of distribution 

functions and are obtained directly by div u = 0.  
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which are the first order continuity equations in which only one point distribution 

function is involved. 

 

For second-order continuity equations, if we multiply the continuity equation by 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )222222 ψδφθδδ −−− cvu  

and if we take the ensemble average, we obtain 
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The Nth-order continuity equations are 
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The continuity equations are symmetric in their arguments i.e. 
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Since, the divergence property is an important property and it is easily verified by the 

use of the property of distribution function as 
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and all the properties of the distribution function obtained in section (3.4.1) can also 

be easily verified. 

 

3.12 Equations for the evolution of joint distribution functions 
This, in fact is done by making use of the definitions of the constructed distribution 

functions, the transport equation for ( )txvF ,,,, ψφ  is obtained from the definition of 

F and from the transport equations (3.9.1), (3.9.2), (3.9.3). Differentiating equation 

(3.4.1) we get, 
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Using equation (3.9.1), (3.9.2) and (3.9.3) in the equation   (3.12.1) we get,       
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Various terms in the above equation can be simplified as that they may be expressed 

in terms of one point and two point distribution functions. The 2nd, 3rd and 4th terms 

on the left hand side of the above equation are simplified in a similar fashion and take 

the forms as follows 
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Adding equation (3.12.3), (3.12.4) and (3.12.5) we get, 
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We reduce the 5th term on left hand side of equation (3.12.2), 
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We reduce the 6th term on left hand side of equation (3.12.2), 
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We reduce the 7th term on left hand side of equation (3.12.2), 
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We reduce the 8th  term on left hand side of equation (3.12.2), 
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Similarly, 9th ,10th and 11th  terms of left hand side of (3.12.2) can be simplified as 

follows 
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and 
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Substituting the results (3.12.6)-(3.12.13) in equation (3.12.2), we get the transport 

equation for one point distribution function ( )( )ψφ,,1
1 vF  in turbulent flow in a rotating 

system 
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Similarly, a transport equation for two-point distribution function ( )2,1
2F in turbulent 

flow in presence of dust particles can be derived by differentiating equation (3.4.2) 

and using equation (3.9.1), (3.9.2), (3.9.3) and simplifying in the same manner which 

is 
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Continuing this way, we can derive the equations for evolution of ( ) ( )4,3,2,1
4

3,2,1
3 , FF  and 

so on. Logically, it is possible to have an equation for every ( )egeranisnFn int  but 

the system of equations so obtained is not closed. It seems that certain approximations 

will be required for closing the system. 

 

3.13 Results and Discussion  
If the reaction rate R=0, the transport equation for one point joint distribution function 

( ) ( )ψφ,,1
1 vF in turbulent flow undergoing a first order reaction, equation (3.12.14) 

becomes 
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which was obtained earlier by M.H.U.Molla [67] 

If the system is non rotating and the fluid is clean then 0=Ωm  & 0ƒ =  and the 

transport equation (3.12.14) for one point join distribution function ( ) ( )ψφ,,1
1 vF  in 

turbulent flow becomes 
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which was obtained earlier by Kishore and Singh [49]. For closing the transport 

equations for the joint distribution functions, some approximations are required. If the 

particles are ionized i.e., in plasma turbulence case, it can be provided closure form 
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easily by decomposing ( ) ( ) ( )2
1

1
1

2,1
2 FFasF   But such type of approximations can be 

possible if there is no interaction or correlation between two particles. If we 

decompose ( )2,1
2F  as 

( ) ( ) ( ) ( )2
1

1
1

2,1
2 1 FFF ε+=               (3.13.3) 

( ) ( ) ( ) ( ) ( )3
1

2
1

1
1

23,2,1
3 1 FFFF ε+=                 (3.13.4) 

where ε is the correlation coefficient between the particles. If there is no correlation 

between the particles, ε will be zero and joint distribution function can be 

decomposed in usual way. Here, we are considering such type of approximation only 

to provide closed the form of the equation i.e., to approximate two-point equation as 

one point equation. The transport equation for the joint distribution functions of 

velocity, temperature, and concentration have been shown here to provide an 

advantageous basis for modeling the turbulent flows in presence of dust particles and 

a rotating system due to a first order reaction.  
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CHAPTER-IV 

 
STATISTICAL THEORY OF CERTAIN VARIABLES FOR 
THREE- POINT DISTRIBUTION FUNCTIONS IN MHD 
TURBULENT FLOW IN A ROTATING SYSTEM IN 
PRESENCE OF DUST PARTICLES 

 
 

4.1  Introduction  
At present, two major and distinct areas of investigations in non-equilibrium statistical 

mechanics are the kinetic theory of gases and statistical theory of fluid mechanics. In 

molecular kinetic theory in physics, a particle's distribution function is a function of 

several variables. Particle distribution functions are often used in plasma physics to 

describe wave-particle interactions and velocity-space instabilities. Distribution functions 

are also used in fluid mechanics, statistical mechanics and nuclear physics. A distribution 

function may be specialized with respect to a particular set of dimensions. Distribution 

functions may also feature non-isotropic temperatures, in which each term in the 

exponent is divided by a different temperature. The mathematical analogy of a 

distribution is a measure, the time evolution of a measure on a phase space is the topic of 

study in dynamical systems. Various analytical theories in the statistical theory of 

turbulence have been discussed in the past by Hopf [43], Kraichanan [58], Edward [36] 

and Herring [41]. Further Lundgren [65] derived a hierarchy of coupled equations for 

multi-point turbulence velocity distribution functions, which resemble with BBGKY 

hierarchy of equations of Ta-You [107] in the kinetic theory of gasses. Bigler [25] gave 

the hypothesis that in turbulent flames, the thermo chemical quantities can be related 

locally to few scalars and considered the probability density function of these scalars. 

Kishore [47] studied the Distributions functions in the statistical theory of MHD 

turbulence of an incompressible fluid. Pope [79] derived the transport equation for the 

joint probability density function of velocity and scalars in turbulent flow. Kollman and 

Janicka [56] derived the transport equation for the probability density function of a scalar 

in turbulent shear flow and considered a closure model based on gradient – flux model. 

Kishore and Singh [49] derived the transport equation for the bivariate joint distribution 

function of velocity and temperature in turbulent flow. Also Kishore and Singh [50] have 

been derived the transport equation for the joint distribution function of velocity, 



Chapter-IV          95 

 

 
 

 

temperature and concentration in convective turbulent flow. Dixit and Upadhyay [35] 

considered the distribution functions in the statistical theory of MHD turbulence of an 

incompressible fluid in the presence of the coriolis force. Sarker and Kishore [96] 

discussed the distribution functions in the statistical theory of convective MHD 

turbulence of an incompressible fluid. Also Sarker and Kishore [98] studied the 

distribution functions in the statistical theory of convective MHD turbulence of mixture 

of a miscible incompressible fluid. Sarker and Islam [100] studied the Distribution 

functions in the statistical theory of convective MHD turbulence of an incompressible 

fluid in a rotating system. Azad and Sarker [2] discussed Statistical theory of certain 

distribution functions in MHD turbulence in a rotating system in presence of dust 

particles. Islam and Sarker [45] studied distribution functions in the statistical theory of 

MHD turbulence for velocity and concentration undergoing a first order reaction.  

 

The above researchers have done their research for two- point distribution functions. But 

in this chapter, we have studied the statistical theory for three- point distribution function 

of certain variables in MHD turbulence in a rotating system in presence of dust particles. 

At this stage, one is met with the difficulty that the N-point distribution function depends 

upon the (N+1)-point distribution function and thus result is an unclosed system. This so-

called closer problem is encountered in turbulence, Kinetic theory and other non-linear 

system.  

 

In present research, the main purpose is to study the statistical theory of three- point 

distribution function for simultaneous velocity, magnetic, temperature and concentration 

fields in MHD turbulence in a rotating system in presence of dust particles. Finally, the 

transport equations for evolution of distribution functions have been derived and various 

properties of the distribution function have been discussed.  

 

METHODOLOGY 
 

4.2 Basic Equations:  
The equations of motion and continuity for viscous incompressible dusty fluid MHD 

turbulent flow, the diffusion equations for the temperature and concentration in a 

rotating system are given by 
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( ) ( )ααααβα
α

βαβα
β

α ν vufuu
x
whhuu

xt
u

mm −+Ω∈−∇+
∂
∂

−=−
∂
∂

+
∂
∂

22          (4.2.1) 

( ) αβαβα
β

α λ hhuuh
xt

h 2∇=−
∂
∂

+
∂
∂

 ,                                                (4.2.2) 

θγθθ

β
β

2∇=
∂
∂

+
∂
∂

x
u

t
,                                                                                          (4.2.3) 

cD
x
cu

t
c 2∇=

∂
∂

+
∂
∂

β
β                                                                                           (4.2.4) 

with 𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

= 𝜕𝜕𝜈𝜈𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

= 𝜕𝜕ℎ𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

= 0             (4.2.5) 

where 

    ( )txu ,α ,  α – component of turbulent velocity      

    ( )txh ,α ,    α – component of magnetic field 

    ( )tx,θ ,  temperature fluctuation 

    c, concentration of contaminants 

    vα, dust particle velocity 

   αβm∈ , alternating tensor 

   
,

ρ
KNf =

  dimension of frequency 

    N, constant number of density of the dust particle 

    
( ) ,ˆˆ

2
1

2
1,ˆ

22
xhPtxw ×Ω++=



ρ  total pressure 

    ( )txP ,ˆ , hydrodynamic pressure 

     ρ, fluid density 

    Ω,  angular velocity of a uniform rotation 

     ν,   Kinetic viscosity 

     ( ) 14 −= πµσλ , magnetic diffusivity 

      
p

T

c
k
ρ

γ = , thermal diffusivity, 

      cp, specific heat at constant pressure, 
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      kT, thermal conductivity 

      σ,  electrical conductivity 

      µ,  magnetic permeability 

      D, diffusive co-efficient for contaminants. 

 

The repeated suffices are assumed over the values 1, 2 and 3 and unrepeated suffices 

may take any of these values. Here u, h and x are vector quantities in the whole 

process. 

 

The total pressure w which, occurs in equation (4.2.1) may be eliminated with the 

help of the equation obtained by taking the divergence of equation (4.2.1) 

( ) [ ] (4.2.6)                           
2

2

α

β

β

α

α

β

β

α
βαβα

βα x
h

x
h

x
u

x
uhhuu

xx
w

∂
∂

∂
∂

−
∂
∂

∂
∂

−=−
∂∂
∂

−=∇   

 

In a conducting infinite fluid only the particular solution of the Equation (4.2.6) is 

related, so that 

[ ]  (4.2.7)                                                      
4
1

xx
x

x
h

x
h

x
u

x
uw

−′
′∂

′∂

′∂
′∂
′∂

−
′∂

′∂
′∂
′∂

= ∫
α

β

β

α

α

β

β

α

π
                                         

Hence equation (4.2.1) – (4.2.4) becomes 

 
( ) [ ] α

α

β

β

α

α

β

β

α

α
βαβα

β

α ν
π

u
xx

xd
x
h

x
h

x
u

x
u

x
hhuu

xt
u 2

4
1

∇+
−′
′

′∂

′∂
′∂
′∂

−
′∂

′∂
′∂
′∂

∂
∂

−=−
∂
∂

+
∂
∂

∫
  

 ( )ααααβ vufumm −+Ω∈− 2              (4.2.8)           

 

( )  2
αβαβα

β

α λ hhuuh
xt

h
∇=−

∂
∂

+
∂
∂

                       (4.2.9)      

 

(4.2.10)                                                                                       2θγθθ

β
β ∇=
∂
∂

+
∂
∂

x
u

t
                                                                       

 (4.2.11)                                                                                        2cD
x
cu

t
c

∇=
∂
∂

+
∂
∂

β
β
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4.3 Formulation of the Problem 
We consider the turbulence and the concentration fields are homogeneous, the 

chemical reaction and the local mass transfer have no effect on the velocity field and 

the reaction rate and the diffusivity are constant. We also consider a large ensemble of 

identical fluids in which each member is an infinite incompressible reacting and heat 

conducting fluid in turbulent state. The fluid velocity u, Alfven velocity h, 

temperature θ and concentration C are randomly distributed functions of position and 

time and satisfy their field. Different members of ensemble are subjected to different 

initial conditions and the aim is to find out a way by which we can determine the 

ensemble averages at the initial time.  

 

Certain microscopic properties of conducting fluids such as total energy, total 

pressure, stress tensor which are nothing but ensemble averages at a particular time 

can be determined with the help of the bivariate distribution functions (defined as the 

averaged distribution functions with the help of Dirac delta-functions). The present 

aim is to construct the distribution functions, study its properties and derive an 

equation for its evolution of this distribution functions.  

 

4.4 Distribution Function in MHD Turbulence and Their Properties 
In MHD turbulence, we may consider the fluid velocity u, Alfven velocity h, 

temperature θ and concentration c at each point of the flow field. Then corresponding 

to each point of the flow field, we have four measurable characteristics. We represent 

the four variables by v, g, φ  and ψ and denote the pairs of these variables at the 

points 

 )()2()1( ,,, nxxx −−−−− as ( ),,,, )1()1()1()1( ψφgv  

( ) ( ))()()()()2()2()2()2( ,,,,,,, nnnn gvgv ψφψφ −−−−−−  at a fixed instant of time. 

It is possible that the same pair may be occur more than once; therefore, we simplify 

the problem by an assumption that the distribution is discrete (in the sense that no 

pairs occur more than once). Symbolically we can express the bivariate distribution as              

  { ( );,,, )1()1()1()1( ψφgv ( ) ( ) })()()()()2()2()2()2( ,,,;,,, nnnn gvgv ψφψφ −−−−−−  
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Instead of considering discrete points in the flow field, if we consider the continuous 

distribution of the variables φ,, gv  and ψ over the entire flow field, statistically 

behavior of the fluid may be described by the distribution function ( )ψφ,,, gvF  

which is normalized so that 

     
( ) 1,,, =∫ ψφψφ ddgdvdgvF

 
where the integration ranges over all the possible values of v, g,φ  and ψ. We shall 

make use of the same normalization condition for the discrete distributions also. 

 

The distribution functions of the above quantities can be defined in terms of Dirac 

delta function.             

 

The one-point distribution function ( ))1()1()1()1()1(
1 ,,, ψφgvF , defined so that 

( ) )1()1()1()1()1()1()1()1()1(
1 ,,, ψφψφ dddgdvgvF  is the probability that the fluid velocity, 

Alfven velocity, temperature and concentration at a time t are in the element dv(1) 

about v(1), dg(1) about g(1), d
)1(φ  about )1(φ and dψ(1) about ψ(1)  respectively and is 

given by  

 

( ) ( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1()1()1()1()1()1(
1 ,,, ψδφθδδδψφ −−−−= cghvugvF       (4.4.1) 

where δ is the Dirac delta-function defined as  

             
( ) {∫ =− 1

0vdvuδ
  

 vupoint   at the
elsewhere

=

 
 
Two-point distribution function is given by 

( ) ( ) ( ) ( ) ( ) ( ))2()2()2()2()1()1()1()1()1()1()1()1()2,1(
2 ghvucghvuF −−−−−−= δδψδφθδδδ  

 ( ) ( ))2()2()2()2( ψδφθδ −− c                   (4.4.2)                                                    

 and three point distribution function is given by         

 
( ) ( ) ( ) ( ) ( ) ( ))2()2()2()2()1()1()1()1()1()1()1()1()3,2,1(

3 ghvucghvuF −−−−−−= δδψδφθδδδ
 

         ( ) ( ) ( ) ( ) ( ) ( )  )3()3()3()3()3()3()3()3()2()2()2()2( ψδφθδδδψδφθδ −−−−−−× cghvuc  (4.4.3) 

 

Similarly, we can define an infinite numbers of multi-point distribution functions 
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F4
(1,2,3,4), F5

(1,2,3,4,5) and so on. The following properties of the constructed distribution 

functions can be deduced from the above definitions: 

 
(A) Reduction Properties:        
Integration with respect to pair of variables at one-point, lowers the order of 

distribution function by one. For example, 

∫ =1)1()1()1()1()1(
1 ψφ dddgdvF  , 

∫ = )1(
1

)2()2()2()2()2,1(
2 FdddgdvF ψφ ,  

∫ = )2,1(
2

)3()3()3()3()3,2,1(
3 FdddgdvF ψφ      

and so on. Also the integration with respect to any one of the variables, reduces the 

number of Delta-functions from the distribution function by one as  

( ) ( ) ( ))1()1()1()1()1()1()1()1(
1 ψδφθδδ −−−=∫ cghdvF  , 

( ) ( ) ( ))1()1()1()1()1()1()1()1(
1 ψδφθδδ −−−=∫ cvudgF  , 

( ) ( ) ( ))1()1()1()1()1()1()1()1(
1 ψδδδφ −−−=∫ cghvudF , 

 and 

( ) ( ) ( ) ( ) ( ))2()2()1()1()1()1()1()1()1()1()2()2,1(
2 ghcghvudvF −−−−−=∫ δψδφθδδδ

( ) ( ))2()2()2()2( ψδφθδ −− c  
 

(B) Separation Properties: 
If two points are far apart from each other in the flow field, the pairs of variables at 

these points are statistically independent of each other i.e., 

                       lim  

            
∞→→ )1()2( xx

             
)2(

1
)1(

1
)2,1(

2 FFF =  
     and similarly, 

                       lim 

            
∞→→ )2()3( xx

             
)3(

1
)2,1(

2
)3,2,1(

3 FFF =    etc. 
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(C)   Co-incidence Properties: 
When two points coincide in the flow field, the components at these points should be 

obviously the same that is F2
(1,2) must be zero.  

Thus ,)1()2( vv =   ,)1()2( gg =   )1()2( φφ =  and )1()2( ψψ = , but F2
(1,2) must also have the 

property.           

            ∫ = )1(
1

)2()2()2()2()2,1(
2 FdddgdvF ψφ

 
and hence it follows that 

      lim 

∞→→ )1()2( xx
 

( ) ( ) ( ) ( ))1()2()1()2()1()2()1()2()1(
1

)2,1(
2 ψψδφφδδδ −−−−=∫ ggvvFF

 
 

Similarly, 

      lim 

∞→→ )2()3( xx  ( ) ( ) ( ) ( ))1()3()1()3()1()3()1()3()2,1(
2

)3,2,1(
3 ψψδφφδδδ −−−−=∫ ggvvFF  etc. 

 
(D)  Symmetric Conditions: 

),,,2,1(),,,2,1( nrs
n

nsr
n FF −−−−−−−−−−−−−−−−−−−−−− = . 

 
(E)   Incompressibility Conditions: 
 

         (i)   ∫ =
∂

∂ −−−

0)()()(
)(

),2,1(
rrr

r

n
n hdvdv

x
F

α
α

     

        (ii)   ∫ =
∂

∂ −−−

0)()()(
)(

),2,1(
rrr

r

n
n hdvdh

x
F

α
α

      

 

4.5 Continuity Equation in Terms of Distribution Functions 
The continuity equations can be easily expressed in terms of distribution functions. 

An infinite number of continuity equations can be derived for the convective MHD 

turbulent flow and are obtained directly by using div 0=u  

 

Taking ensemble average of equation (4.2.5), we get 
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∫∂

∂
=

∂
∂

= )1()1()1()1()1(
1

)1(
)1()1(

)1(

0 ψφα
αα

α dddgdvFu
xx

u

                                

          
∫∂

∂
= )1()1()1()1()1(

1
)1(

)1( ψφα
α

dddgdvFu
x  

         

)1()1()1()1()1(
1

)1(
)1( ψφα

α

dddgdvFu
x ∫∂
∂

=
 

         

)1()1()1()1()1(
1

)1(
)1( ψφα

α

dddgdvFv
x ∫∂
∂

=
 

         

)1()1()1()1()1(
)1(

)1(
1 ψφα
α

dddgdvv
x
F
∂
∂

= ∫
                                                         (4.5.1) 

and similarly,           

         

)1()1()1()1()1(
)1(

)1(
10 ψφα
α

dddgdvg
x
F
∂
∂

= ∫
                                                         (4.5.2) 

which are the first order continuity equations in which only one point distribution 

function is involved. 

 

For second-order continuity equations, if we multiply the continuity equation by 

( ) ( ) ( ) ( ))2()2()2()2()2()2()2()2( ψδφθδδδ −−−− cghvu  
and if we take the ensemble average, we obtain 

( ) ( ) ( ) ( ) )1(

)1(
)2()2()2()2()2()2()2()2(

α

αψδφθδδδ
x
u

cghvuo
∂
∂

−−−−=
    

( ) ( ) ( ) ( ) )1()2()2()2()2()2()2()2()2(
)1( α

α

ψδφθδδδ ucghvu
x

−−−−
∂
∂

=
 

[ ( ) ( ) ( ) ( )∫ −−−−
∂
∂

= )1()1()1()1()1()1()1()1()1(
)1( ψδφθδδδα

α

cghvuu
x  

    ( ) ( ) ( ) ( ) ])1()1()1()1()2()2()2()2()2()2()2()2( ψφψδφθδδδ dddgdvcghvu −−−−×                     

(4.5.3)                                                                     )1()1()1()1()2,1(
2

)1(
)1( ∫∂

∂
= ψφα

α

dddgdvFv
x

                                                    

and similarly, 

(4.5.4)                                                          )1()1()1()1()2,1(
2

)1(
)1( ∫∂

∂
= ψφα

α

dddgdvFg
x

o                                     
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The Nth – order continuity equations are 

  (4.5.5)                                              )1()1()1()1(),,2,1()1(
)1( ψφα

α

dddgdvFv
x

o N
N∫ −−−

∂
∂

=

                           

and 

(4.5.6)                                                   )1()1()1()1(),,.........2,1()1(
)1( ∫∂

∂
= ψφα

α

dddgdvFg
x

o N
N                                      

The continuity equations are symmetric in their arguments i.e. 

( ))()()()()..;,.........2,1()(
)(

rrrrNr
N

r
r dddgdvFv

x
ψφα

α∂
∂      

 )()()()(),.....,,.....2,1()(
)(

ssssNsr
N

s
s dddgdvFv

x
ψφα

α
∫∂

∂
=          (4.5.7) 

 

Since the divergence property is an important property and it is easily verified by the 

use of the property of distribution function as 

(4.5.8)                      )1(

)1(
)1(

)1(
)1()1()1()1()1(

1
)1(

)1( o
x
uu

x
dddgdvFv

x
=

∂
∂

=
∂
∂

∂
∂
∫

α

α
α

α
α

α

ψφ          

and all the properties of the distribution function obtained in section (4.4) can also be 

verified. 

 

4.6 Equations for evolution of one – point distribution functions  )1(
1F : 

We shall make use of equation (4.2.8) - (4.2.11) to convert these into a set of 

equations for the variation of the distribution function with time. This, in fact, is done 

by making use of the definitions of the constructed distribution functions, 

differentiating them partially with respect to time, making some suitable operations on 

the right-hand side of the equation so obtained and lastly replacing the time derivative 

of θ,, hu  and c from the equations (4.2.8) - (4.2.11). 

 

Differentiating equation (4.4.1) with respect to time, we get, 

( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1(
)1(

1 ψδφθδδδ −−−−
∂
∂

=
∂

∂ cghvu
tt

F
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) )1()1()1()1()1()1()1()1(

)1()1()1()1()1()1()1()1(

gh
t

cvu

vu
t

cgh

−
∂
∂

−−−+

−
∂
∂

−−−=

δψδφθδδ

δψδφθδδ

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1(

)1()1()1()1()1()1()1()1(

ψδφθδδδ

φθδψδδδ

−
∂
∂

−−−+

−
∂
∂

−−−+

c
t

ghvu

t
cghvu

 
 

( ) ( ) ( ) ( ))1()1(
)1(

)1(
)1()1()1()1()1()1( vu

vt
ucgh −

∂
∂

∂
∂

−−−−= δψδφθδδ
 

( ) ( ) ( ) ( ))1()1(
)1(

)1(
)1()1()1()1()1()1( gh

gt
hcvu −

∂
∂

∂
∂

−−−−+ δψδφθδδ
 

( ) ( ) ( ) ( ))1()1(
)1(

)1(
)1()1()1()1()1()1( φθδ

φ
θψδδδ −

∂
∂

∂
∂

−−−−+
t

cghvu
 

( ) ( ) ( ) ( ) (4.6.1)               )1()1(
)1(

)1(
)1()1()1()1()1()1( ψδ

ψ
φθδδδ −

∂
∂

∂
∂

−−−−+ c
t

cghvu   

 

Using equations (4.2.8) to (4.2.11) in the equation (4.6.1), we get 

( ) ( ) ( ){ ( ))1()1()1()1(
)1(

)1()1()1()1()1()1(
)1(

1
βαβα

β

ψδφθδδ hhuu
x

cgh
t

F
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[ ]

( ) } ( ))1()1(
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)1()1(
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)1(

)1(

)1(

)1(

)1(
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)1(

)1( 2
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xx

xd
x
h

x
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x
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∂
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∂
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δ
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β

β
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β

β
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( ) ( ) ( ){ ( ) })1(2)1()1()1()1(
)1(

)1()1()1()1()1()1(
αβαβα

β

λψδφθδδ hhuuh
x

cvu ∇+−
∂
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−−−−−+

( ) ( ) ( ) ( ){ })1(2
)1(

)1(
)1()1()1()1()1()1()1()1()1(

)1( θγθψδδδδ
β

β
α

∇+
∂
∂

−−−−−+−
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×
x

ucghvugh
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( ) ( ) ( ) ( ){ }cD
x
cughvu 2

)1(

)1(
)1()1()1()1()1()1()1()1()1(

)1( ∇+
∂
∂

−−−−−+−
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×
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βφθδδδφθδ
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( ))1()1(
)1( ψδ
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ucgh mm −
∂
∂

Ω∈×−−−+ δψδφθδδ
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( ) ( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1()1( vu
v

vufcgh −
∂
∂

−×−−−−+ δψδφθδδ
α

αα

( ) ( ) ( ) ( ))1()1(
)1()1(
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)1()1()1()1()1()1( gh
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cvu −
∂
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∂
×−−−+ δψδφθδδ

αβ

βα  

 ( ) ( ) ( ) ( ))1()1(
)1()1(

)1()1(
)1()1()1()1()1()1( gh

gx
hu

cvu −
∂
∂

∂

∂
×−−−−+ δψδφθδδ

αβ

βα  

( ) ( ) ( ) ( ))1()1(
)1(

)1(2)1()1()1()1()1()1( gh
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hcvu −
∂
∂

∇×−−−−+ δλψδφθδδ
α
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( ) ( ) ( ) ( ))1()1(
)1()1(

)1(
)1()1()1()1()1()1()1( φθδ

φ
θψδδδ
β

β −
∂
∂

∂
∂

×−−−+
x

ucghvu

( ) ( ) ( ) ( ))1()1(
)1(

)1(2)1()1()1()1()1()1( φθδ
φ

θγψδδδ −
∂
∂

∇×−−−−+ cghvu

( ) ( ) ( ) ( ))1()1(
)1()1(

)1(
)1()1()1()1()1()1()1( ψδ

ψ
φθδδδ

β
β −

∂
∂

∂
∂

×−−−+ c
x
cughvu  

( ) ( ) ( ) ( ) (4.6.2)                  )1()1(
)1(

)1(2)1()1()1()1()1()1( ψδ
ψ

φθδδδ −
∂
∂

∇×−−−−+ ccDghvu  

Various terms in the above equation can be simplified as that they may be expressed 

in terms of one point and two point distribution functions. 

 

The 1st term in the above equation is simplified as follows: 

( ) ( ) ( ) ( ))1()1(
)1()1(

)1()1(
)1()1()1()1()1()1( vu

vx
uu

cgh −
∂
∂

∂

∂
−−− δψδφθδδ

αβ

βα

 

( ) ( ) ( ) ( ))1()1(
)1()1(

)1(
)1()1()1()1()1()1()1( vu

vx
u

cghu −
∂
∂

∂
∂

−−−= δψδφθδδ
αβ

α
β

( ) ( ) ( ) ( ))1()1(
)1()1(

)1(
)1()1()1()1()1()1()1( vu

xx
u

cghu −
∂
∂

∂
∂

−−−−= δψδφθδδ
ββ

α
β
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( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1( vu
x

cghu −
∂
∂

−−−−= δψδφθδδ
β

β ;(since 1)1(

)1(

=
∂
∂

α

α

v
u )                                                            

( ) ( ) ( ) ( ) (4.6.3)                         )1()1(
)1(

)1()1()1()1()1()1()1( vu
x

ucgh −
∂
∂

−−−−= δψδφθδδ
β

β  

Similarly, seventh, tenth and twelfth terms of right hand-side of equation (4.6.2) can 

be simplified as follows;  

( ) ( ) ( ) ( ))1()1(
)1()1(

)1()1(
)1()1()1()1()1()1( gh

gx
uh

cvu −
∂
∂

∂

∂
−−− δψδφθδδ

αβ

βα

 

( ) ( ) ( ) ( ) )4.6.4(                                )1()1(
)1(

)1()1()1()1()1()1()1( gh
x

ucvu −
∂
∂

−−−−= δψδφθδδ
β

β             

 

Tenth term,  

( ) ( ) ( ) ( ))1()1(
)1()1(

)1(
)1()1()1()1()1()1()1( φθδ

φ
θψδδδ
β

β −
∂
∂

∂
∂

−−−
x

ucghvu

( ) ( ) ( ) ( ) (4.6.5)                         )1()1(
)1(

)1()1()1()1()1()1()1( φθδψδδδ
β

β −
∂
∂

−−−−=
x

ucghvu   

 

and twelfth term 

( ) ( ) ( ) ( ))1()1(
)1()1(

)1(
)1()1()1()1()1()1()1( ψδ

ψ
φθδδδ

β
β −

∂
∂

∂
∂

−−− c
x
cughvu

( ) ( ) ( ) ( ) (4.6.6)                           )1()1(
)1(

)1()1()1()1()1()1()1( ψδφθδδδ
β

β −
∂
∂

−−−−= c
x

ughvu  

 

Adding these equations from (4.6.3) to (4.6.6), we get 

( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1( vu
x

ucgh −
∂
∂

−−−− δψδφθδδ
β

β

( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1( gh
x

ucvu −
∂
∂

−−−−+ δψδφθδδ
β

β  

( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1( φθδψδδδ
β

β −
∂
∂

−−−−+
x

ucghvu

( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1( ψδφθδδδ
β

β −
∂
∂

−−−−+ c
x

ughvu

( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1()1(
)1( ψδφθδδδβ

β

−−−−−
∂
∂

−= cghvuu
x

 

)1(
1

)1(
)1( Fv

x β
β∂
∂

−=
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[ Applying the properties of distribution functions ] 

)7.6.4(                                                                                           )1(

)1(
1)1(

β
β x

Fv
∂
∂

−=                                                       

Similarly second and eighth terms on the right hand-side of the equation (4.6.2) can 

be simplified as 

( ) ( ) ( ) ( ))1()1(
)1()1(

)1()1(
)1()1()1()1()1()1( vu

vx
hh

cgh −
∂
∂

∂

∂
−−−− δψδφθδδ

αβ

βα

 

)8.6.4(                                                                                  )1(
1)1()1(

)1(
)1( F

xv
gg

βα

α
β ∂

∂
∂
∂

−=       

and 

( ) ( ) ( ) ( ))1()1(
)1(

)1()1(
)1()1()1()1()1()1( gh

gx
hu

cvu −
∂
∂

∂

∂
−−−− δψδφθδδ

αβ

βα      

)9.6.4(                                                                             )1(
1)1()1(

)1(
)1( F

xg
vg

βα

α
β ∂

∂
∂
∂

−=                                           

Fourth term can be reduced as     

( ) ( ) ( ) ( )〉−
∂
∂

−−−∇− )1()1(
)1(

)1()1()1()1()1()1()1(2 vu
v

cghu δψδφθδδν
α

α

[ ( ) ( ) ( ) ( ) ])1()1()1()1()1()1()1()1()1(2
)1( ψδφθδδδν α

α

−−−−∇
∂
∂

−= cghvuu
v

 

[ ( ) ( ) ( ) ( ) ])1()1()1()1()1()1()1()1()1(
)1()1(

2

)1( ψδφθδδδν α
ββα

−−−−
∂∂
∂

∂
∂

−= cghvuu
xxv

                       

[ ( ) ( ) ( ) ( ) ])1()1()1()1()1()1()1()1()2(
)2()2(

2

)1(

lim

)1()2(
ψδφθδδδν α

ββα

−−−−
∂∂
∂

→
∂
∂

−= cghvuu
xx

xx
v

                                           

( ) ( ) ( ) ( ))2()2()2()2()2()2()2()2()2(
)2()2(

2

)1(

lim

)1()2(
ψδφθδδδν α

ββα

−−−−
∂∂
∂

→
∂
∂

−= ∫ cghvuu
xx

xx
v

 

 ( ) ( ) ( ) ( ) 〉−−−−× )2()2()2()2()1()1()1()1()1()1()1()1( ψφψδφθδδδ dddgdvcghvu  

                       

)10.6.4(                   
lim

)1()2(
)2()2()2()2()2,1(

2
)2(

)2()2(

2

)1( ψφν α
ββα

dddgdvFv
xx

xx
v ∫∂∂

∂

→
∂
∂

−=
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Ninth, eleventh and thirteen terms of the right hand side of equation (4.6.2) 

 ( ) ( ) ( ) ( ))1()1(
)1(

)1(2)1()1()1()1()1()1( gh
g

hcvu −
∂
∂

∇−−−− δλψδφθδδ
α

α  

( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1(
)1(

)1(2 ψδφθδδδλ
α

α −−−−
∂
∂

∇−= cghvu
g

h  

                                                 

)11.6.4(                         
lim

)1()2(
)2()2()2()2()2,1(

2
)2(

)2()2(

2

)1( ψφλ α
ββα

dddgdvFg
xx

xx
g ∫∂∂

∂

→
∂
∂

−=            

  

Eleventh  term, 

 

( ) ( ) ( ) ( ))1()1(
)1(

)1(2)1()1()1()1()1()1( φθδ
φ

θγψδδδ −
∂
∂

∇−−−− cghvu

( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1(2 φθδ
φ

ψδδδθγ −
∂
∂

−−−∇−= cghvu                                       

)12.6.4(                     
lim

)1()2(
)2()2()2()2()2,1(

2
)2(

)2()2(

2

)1( ψφφ
φ

γ
ββ

dddgdvF
xx

xx
∫∂∂

∂

→
∂
∂

−=

   

Thirteenth  term, 

( ) ( ) ( ) ( ))1()1(
)1(

)1(2)1()1()1()1()1()1( ψδ
ψ

φθδδδ −
∂
∂

∇−−−− ccDghvu

( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1(2 φθδ
φ

ψδδδ −
∂
∂

−−−∇−= cghvucD
 

)13.6.4(                     
lim

)1()2(
)2()2()2()2()2,1(

2
)2(

)2()2(

2

)1( ψφψ
ψ ββ

dddgdvF
xx

xx
D ∫∂∂

∂

→
∂
∂

−=       

 

 We reduce the third term of right hand side of equation (4.6.2), we get 

 
( ) ( ) ( ) [ ] ( ))1()1(

)1()1(

)1(

)1(

)1(

)1(

)1(

)1(

)1(

)1(
)1()1()1()1()1()1(

4
1 vu

vxx
xd

x
h

x
h

x
u

x
u

x
cgh −

∂
∂

−′
′

∂

∂

∂
∂

−
∂

∂

∂
∂

∂
∂

−−− ∫ δ
π

ψδφθδδ
αα

β

β

α

α

β

β

α

α  
 

 [ ( )( )  1
4
1 )2()2()2()2()2()2,1(

2)2(

)2(

)2(

)2(

)2(

)2(

)2(

)2(

)1()2()1()1( ψφ
π α

β

β

α

α

β

β

α

αα

dddgdvdxF
x
g

x
g

x
v

x
v

xxxv ∂
∂

∂
∂

−
∂
∂

∂
∂

−∂
∂

∂
∂

= ∫

               (4.6.14)
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Fifth and sixth terms of right hand side of equation (4.6.2) 

( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1( 2 vu
v

ucgh mm −
∂
∂

Ω∈×−−− δψδφθδδ
α

ααβ

 

 
[ ( ) ( ) ( ) ( ) ])1()1()1()1()1()1()1()1(

)1(
)1(2 ψδφθδδδ

α
ααβ −−−−
∂
∂

Ω∈= cghvu
v

umm

 

( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1()1(
)1(2 ψδφθδδδα

α
αβ −−−−

∂
∂

Ω∈= cghvuu
vmm

 

( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1(
)1(

)1(

2 ψδφθδδδ
α

α
αβ −−−−

∂
∂

Ω∈= cghvu
v
u

mm

 

)15.6.4(                                                                                        2 )1(
1Fmm Ω∈= αβ

   

and 

( ) ( ) ( ) ( ) ( ))1()1(
)1(

)1()1()1()1()1()1()1()1( vu
v

vufcgh −
∂
∂

−−−−− δψδφθδδ
α

αα

( ) [ ( ) ( ) ( ) ( ) ])1()1()1()1()1()1()1()1(
)1(

)1()1( ψδφθδδδ
α

αα −−−−
∂
∂

−−= cghvu
v

vuf

( ) ( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1(
)1(

)1()1( ψδφθδδδ
α

αα −−−−
∂
∂

−−= cghvu
v

vuf
   

( ) (4.6.16)                                                                      )1(
1)1(

)1()1( F
v

vuf
α

αα ∂
∂

−−=

                                                       

Substituting the results (4.6.3) to (4.6.16) in equation (4.6.2) we get the transport 

equation for one point distribution function ),,,()1(
1 ψφgvF in MHD turbulent flow in a 

rotating system in presence of dust particles as                 

( ) [ ( )
)1()2()1()1()1(

)1(
1

)1(

)1(

)1(

)1(
)1(

)1(

)1(
1)1(

)1(
1 1

4
1

xxxvx
F

g
v

v
g

g
x
Fv

t
F

−∂
∂

∂
∂

−
∂
∂

∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
∫

ααβα

α

α

α
β

β
β π

( ) )2()2()2()2()2()2,1(
2)2(

)2(

)2(

)2(

)2(

)2(

)2(

)2(

ψφ
α

β

β

α

α

β

β

α dddgdvdxF
x
g

x
g

x
v

x
v

∂

∂

∂
∂

−
∂

∂

∂
∂

×
                     

)2()2()2()2()2,1(
2

)2(
)2()2(

2

)1(

lim

)1()2(
ψφν α

ββα

dddgdvFv
xx

xx
v ∫∂∂

∂

→
∂
∂

+

 

)2()2()2()2()2,1(
2

)2(
)2()2(

2

)1(

lim

)1()2(
ψφλ α

ββα

dddgdvFg
xx

xx
g ∫∂∂

∂

→
∂
∂

+
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)2()2()2()2()2,1(
2

)2(
)2()2(

2

)1(

lim

)1()2(
ψφφ

φ
γ

ββ

dddgdvF
xx

xx
∫∂∂

∂

→
∂
∂

+

 
                     

)2()2()2()2()2,1(
2

)2(
)2()2(

2

)1(

lim

)1()2(
ψφψ

ψ ββ

dddgdvF
xx

xx

D ∫∂∂
∂

→
∂
∂

+

 

+ ( ) )17.6.4(                                                       02 )1(
1)1(

)1()1()1(
1 =

∂
∂

−+Ω∈ F
v

vufFmm
α

αααβ   

 

4.7 Equations for two-point distribution function  )2,1(
2F : 

Differentiating equation (4.4.2) with respect to time, we get, 

  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ))2()2()2()2()2()2(

)2()2()1()1()1()1()1()1()1()1(
)2,1(

2

ψδφθδδ

δψδφθδδδ

−−−

−−−−−
∂
∂

=
∂

∂

cgh

vucghvu
tt

F

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))1()1()2()2()2()2()2()2()2()2(

)1()1()1()1()1()1()1()1()2()2(

)2()2()2()2()2()2()1()1()1()1()1()1(

gh
t

cghvu

cvuvu
t

c

ghvucgh

−
∂
∂

−−−−

−−−+−
∂
∂

−

−−−−−−=

δψδφθδδδ

ψδφθδδδψδ

φθδδδψδφθδδ

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))1()1()1()1()1()1()1()1()2()2(

)2()2()2()2()2()2()1()1()1()1()1()1(

φθδδδφθδψδ

φθδδδψδδδ

−−−+−
∂
∂

−

−−−−−−+

ghvu
t

c

ghvucghvu

 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))2()2()2()2()2()2()2()2()1()1(

)1()1()1()1()1()1()2()2()2()2(

)2()2()2()2()1()1()1()1()1()1()1()1(

)1()1()2()2()2()2()2()2()2()2(

gh
t

cvuc

ghvuvu
t

c

ghcghvu

c
t

cghvu

−
∂
∂

−−−−

−−−+−
∂
∂

−

−−−−−−+

−
∂
∂

−−−−

δψδφθδδψδ

φθδδδδψδ

φθδδψδφθδδδ

ψδψδφθδδδ
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))2()2()2()2()2()2()2()2()1()1(

)1()1()1()1()1()1()2()2()2()2(

)2()2()2()2()1()1()1()1()1()1()1()1(

ψδφθδδδψδ

φθδδδφθδψδ

δδψδφθδδδ

−
∂
∂

−−−−

−−−+−
∂
∂

−

−−−−−−+

c
t

ghvuc

ghvu
t

c

ghvucghvu

 

 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ))1()1(

)1(

)1(
)2()2(

)2()2()2()2()2()2()1()1()1()1()1()1(

vu
vt

uc

ghvucgh

−
∂
∂

∂
∂

−

−−−−−−−=

δψδ

φθδδδψδφθδδ
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ))1()1(

)1(

)1(
)2()2(

)2()2()2()2()2()2()1()1()1()1()1()1(

gh
gt

hc

ghvucvu

−
∂
∂

∂
∂

−

−−−−−−−+

δψδ

φθδδδψδφθδδ
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ))1()1(

)1(

)1(
)2()2(

)2()2()2()2()2()2()1()1()1()1()1()1(

φθδ
φ

θψδ

φθδδδψδδδ

−
∂
∂

∂
∂

−

−−−−−−−+

t
c

ghvucghvu
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ))2()2(

)2(

)2(
)2()2(

)2()2()2()2()1()1()1()1()1()1()1()1(

)2()2(
)2(

)2(
)2()2(

)2()2()2()2()1()1()1()1()1()1()1()1(

)1()1(
)1(

)1(
)2()2(

)2()2()2()2()2()2()1()1()1()1()1()1(

gh
gt

hc

vucghvu

vu
vt

uc

ghcghvu

c
t

cc

ghvughvu

−
∂
∂

∂
∂

−

−−−−−−−+

−
∂
∂

∂
∂

−

−−−−−−−+

−
∂
∂

∂
∂

−

−−−−−−−+

δψδ

φθδδψδφθδδδ

δψδ

φθδδψδφθδδδ

ψδ
ψ

ψδ

φθδδδφθδδδ

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ))2()2(

)2(

)2(
)2()2(

)2()2()2()2()1()1()1()1()1()1()1()1(

)2()2(
)2(

)2(
)2()2(

)2()2()2()2()1()1()1()1()1()1()1()1(

ψδ
ψ

φθδ

δδψδφθδδδ

φθδ
φ

θψδ

δδψδφθδδδ

−
∂
∂

∂
∂

−

−−−−−−−+

−
∂
∂

∂
∂

−

−−−−−−−+

c
t

c

ghvucghvu
t

c

ghvucghvu

.   

 
 Using equations (4.2.8) to (4.2.11) we get, 

( ) ( ) ( ) ( ) ( ) ( )

( ){ ( ) [ ])1(

)1(

)1(

)1(

)1(

)1(

)1(

)1(

)1(
)1()1()1()1(

)1(
)2()2(

)2()2()2()2()2()2()1()1()1()1()1()1(

4
1

α

β

β

α

α

β

β

α

α
βαβα

β π
ψδ

φθδδδψδφθδδ

x
h

x
h

x
u

x
u

x
hhuu

x
c

ghvucgh

∂
∂

∂
∂

−
∂
∂

∂
∂

∂
∂

−−
∂
∂

−−

−−−−−−−=

∫
 

( ) } ( ))1()1(
)1(

)1()1()1()1(2 2 vu
v

vufuu
xx

xd
mm −

∂
∂

×−+Ω∈−∇+
−′′
′′

× δν
α

ααααβα        
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Various terms in the above equation can be simplified as that they may be expressed 

in terms of one point , two point  and three point distribution functions. 
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The 1st term in the above equation is simplified as follows: 
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Similarly, seventh, tenth and twelfth terms of right hand-side of equation (4.7.1) can 

be simplified as follows;  
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Adding these equations from (4.7.2) to (4.7.5), we get
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[ Applying the properties of distribution functions ] 
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Similarly, 14th, 20th, 23th and 25th terms of right hand-side of equation (4.7.1) can 

be simplified as follows;  
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and 25th  term, 
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Adding these equations from (4.7.7) to (4.7.10), we get 
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(4.7.11)                                                                                         )2(

)2,1(
2)2(

β
β x

Fv
∂
∂

−=

 

Similarly, 2nd ,8th ,15th  and 21st terms of right hand-side of equation (4.7.1) can be 

simplified as follows;  
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8th term, 
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15th term, 
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and  21st  term, 
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Fourth term can be reduced as 
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Similarly, 9th ,11th ,13th ,17th ,22nd ,24th  and 26th   terms of right hand-side of 

equation (4.7.1) can be simplified as follows;  
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11th  term, 
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13th  term, 
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17th  term, 
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 22nd  term,  
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24th   term,  
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26th   term,  
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We reduce the third term of right - hand side of equation (4.7.1), 
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Similarly,16th term, 
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Fifth and sixth terms of right hand side of equation (4.7.1), we get
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(4.7.26)                                                                                      2 )2,1(
2Fmm Ω∈= αβ

 

and sixth term, 
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Similarly,  18th  and 19th  terms of right hand side of equation (4.7.1), 
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= (4.7.28)                                                                                                  2 )2,1(
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and 19th  term, 
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Substituting the results (4.7.2) – (4.7.29) in equation (4.7.1) we get the transport 

equation for two point distribution function ),,,()2,1(
2 ψφgvF in MHD turbulent flow in 

a rotating system in presence of dust particles as                 
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Various terms in the above equation can be simplified as that they may be expressed 

in terms of one, two, three  and four  point distribution functions. 

 
The 1st term in the above equation is simplified as follows 
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Similarly, 7th, 10th, 12th terms of right hand-side of equation (4.8.1) can be 

simplified as follows;  
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( ) ( ) ( ) ( ) ( )  )1()1(
)1(

)1()3()3()3()3()3()3()3()3( φθδψδφθδδδ
β

β −
∂
∂

×−−−−
x

ucghvu       (4.8.4) 
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and 12th term 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))1()1(

)1()1(

)1(
)1()3()3()3()3()3()3()3()3(

)2()2()2()2()2()2()2()2()1()1()1()1()1()1(

ψδ
ψ
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β
β −

∂
∂

∂
∂

×−−−−
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c
x
cucghvu

cghvughvu

 

( ) ( ) ( ) ( ) ( ) ( ) ( ))2()2()2()2()2()2()2()2()1()1()1()1()1()1( ψδφθδδδφθδδδ −−−−−−−−= cghvughvu

    ( ) ( ) ( ) ( ) ( )  )1()1(
)1(

)1()3()3()3()3()3()3()3()3( ψδψδφθδδδ
β

β −
∂
∂

×−−−− c
x

ucghvu   (4.8.5) 

 
Adding these equations from (4.8.2) to (4.8.5), we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))1()1(

)1(
)1()3()3()3()3()3()3()3()3(

)2()2()2()2()2()2()2()2()1()1()1()1()1()1(
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−
∂
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−
∂
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β
β

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))1()1(

)1(
)1()3()3()3()3()3()3()3()3(

)2()2()2()2()2()2()2()2()1()1()1()1()1()1(

φθδψδφθδδδ

ψδφθδδδψδδδ

β
β −
∂
∂

×−−−−

−−−−−−−−+

x
ucghvu

cghvucghvu

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))1()1(

)1(
)1()3()3()3()3()3()3()3()3(

)2()2()2()2()2()2()2()2()1()1()1()1()1()1(

ψδψδφθδδδ

ψδφθδδδφθδδδ

β
β −
∂
∂

×−−−−

−−−−−−−−+

c
x

ucghvu

cghvughvu
 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ))3()3()3()3()3()3()3()3()2()2()2()2(

)2()2()2()2()1()1()1()1()1()1()1()1()1(
)1(

ψδφθδδδψδφθδ

δδψδφθδδδβ
β
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−−−−−−−
∂
∂

−=

cghvuc

ghvucghvuu
x  

 

)3,2,1(
3

)1(
)1( Fv

x β
β∂
∂

−=
   

[ Applying the properties of distribution functions ] 
 

 (4.8.6)                                                                                       )1(

)3,2,1(
3)1(

β
β x

Fv
∂

∂
−=                                                    

 

  



Chapter-IV          134 

 

 
 

 

Similarly, 14th, 20th , 23rd  and 25th  terms of right hand-side of equation (4.8.1) can 

be simplified as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))2()2(
)2()2(

)2()2(
)3()3()3()3()3()3()3()3(

)2()2()2()2()2()2()1()1()1()1()1()1()1()1(
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∂

∂
∂
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( ) ( ) ( ) ( ) ( ) ( )
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)2()3()3()3()3()3()3()3()3()2()2(

)2()2()2()2()1()1()1()1()1()1()1()1(
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−
∂
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δψδφθδδδψδ
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β
β

                (4.8.7) 

20th  term, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))2()2(
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)3()3()3()3()3()3()3()3(

)2()2()2()2()2()2()1()1()1()1()1()1()1()1(

gh
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∂
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∂

∂
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) )8.8.4(             )2()2(
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)2()3()3()3()3()3()3()3()3(
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−
∂
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β
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23th  term, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))2()2(

)2()2(

)2(
)2()3()3()3()3()3()3()3()3(
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φ
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β
β −

∂
∂

∂
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x
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( ) ( ) ( ) ( ) ( ) ( ) ( ))2()2()2()2()2()2()1()1()1()1()1()1()1()1( ψδδδψδφθδδδ −−−−−−−−= cghvucghvu   

( ) ( ) ( ) ( ) ( )  )2()2(
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β

β −
∂
∂

×−−−−
x

ucghvu    (4.8.9) 

 

and 25th  term, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))2()2(
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)2(
)2()3()3()3()3()3()3()3()3(
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ψ
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β
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∂
∂

∂
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−−−−−−−

c
x
cucghvu

ghvucghvu

( ) ( ) ( ) ( ) ( ) ( ) ( ))2()2()2()2()2()2()1()1()1()1()1()1()1()1( φθδδδψδφθδδδ −−−−−−−−= ghvucghvu   

( ) ( ) ( ) ( ) ( )    )2()2(
)2(

)2()3()3()3()3()3()3()3()3( ψδψδφθδδδ
β

β −
∂
∂

×−−−− c
x

ucghvu (4.8.10) 
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Adding equations (4.8.7) to (4.8.10), we get 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ))3()3()3()3()3()3()3()3()2()2()2()2(
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∂
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−
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x

 

(4.8.11)                                                                                       )2(

)3,2,1(
3)2(

β
β x

Fv
∂

∂
−=

                                                         

Similarly, 27th, 33rd , 36th  and 38th  terms of right hand-side of equation (4.8.1) can 

be simplified as follows;  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))3()3(
)2()3(

)3()3(
)3()3()3()3()3()3()2()2(
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∂
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=
( ) ( ) ( ) ( ) ( ) ( ))2()2()3()3()1()1()1()1()1()1()1()1( ghvucghvu −−−−−−− δδψδφθδδδ

( ) ( ) ( ) ( ) ( ) ( ))3()3(
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x
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∂
∂
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β

β

               (4.8.12) 

 
33rd  term, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))3()3(
)3()3(

)3()3(
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∂

∂
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( ) ( ) ( ) ( ) ( ) ( ) ( )
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−
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β
β

   

36th  term, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))3()3(
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)3(
)3()3()3()3()3()3()3()2()2(
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( ) ( ) ( ) ( ) ( ) ( ) ( ))2()2()2()2()2()2()1()1()1()1()1()1()1()1( φθδδδψδφθδδδ −−−−−−−−= ghvucghvu

   ( ) ( ) ( ) ( ) ( )   )3()3(
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β

β −
∂
∂

×−−−−
x

ucghvuc  (4.8.14) 
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and 38th  term, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))3()3(
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( ) ( ) ( ) ( ) ( ) ( ) ( ))2()2()2()2()2()2()1()1()1()1()1()1()1()1( φθδδδψδφθδδδ −−−−−−−−= ghvucghvu
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x

ughvuc      (4.8.15) 

  

Adding equations (4.8.12) to (4.8.15), we get 

( ) ( ) ( ) ( ) ( ) ( )
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= −𝜐𝜐𝛽𝛽
3

)3(
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3

βx
F
∂

∂
              (4.8.16) 

 

Similarly, 2nd ,8th ,15th ,21st ,28th  and 34th terms of right hand-side of equation 

(4.8.1) can be simplified as follows;  
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8th term, 
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Chapter-IV          137 

 

 
 

 

15th term, 
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21st  term, 
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28th term, 
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and  34th term, 
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Fourth term can be reduced as 
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Similarly, 9th ,11th ,13th ,17th ,22nd ,24th ,26th ,30th ,35th ,37th  and 39th  terms of 

right hand-side of equation (4.8.1) can be simplified as follows;  
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11th  term, 
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φ
γ

ββ

dddgdvF
xx
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∫∂∂

∂

→
∂
∂
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13th  term,           

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))1()1(
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∂
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17th  term, 
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( ) ( ) ( ) ( ) ( ))2()2(

)2(
)2(2)3()3()3()3()3()3()3()3(

)2()2()2()2()2()2()1()1()1()1()1()1()1()1(

vu
v

ucghvu

cghcghvu

−
∂
∂
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∂
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∂
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22nd  term,  
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∂
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∂
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24nd  term,  
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∂
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∂
∂
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26th   term,  
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30th   term,              
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∂
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35th   term,              
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∂
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37th   term,              
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∂
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∂
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39th   term,              

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ))3()3(

)3(
)3(2)3()3()3()3()3()3()2()2(

)2()2()2()2()2()2()1()1()1()1()1()1()1()1(

ψδ
ψ

φθδδδψδ

φθδδδψδφθδδδ

−
∂
∂

∇×−−−−

−−−−−−−−

ccDghvuc

ghvucghvu

                                                              

)4()4()4()4()4,3,2,1(
4

)4(
)4()4(

2

)3(

lim

)3()4(
ψφψ

ψ ββ

dddgdvF
xx

xx
D ∫∂∂

∂

→
∂
∂
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We reduce the third term of right hand side of equation (4.8.1), 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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16th term, 
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[ ( )( )

] (4.8.36)                                                                        
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Similarly, 29th term, 
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] (4.8.37)                                                                          
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Fifth and sixth terms of right hand side of equation (4.8.1), 
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32 Fmm Ω∈= αβ                          (4.8.38)             
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and sixth term, 
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v
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α

αα ∂
∂

−−=                       (4.8.39)                                          

 

Similarly,  18th ,19th ,31st  and  32nd  terms of right hand side of equation (4.8.1), 
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)3,2,1(
32 Fmm Ω∈= αβ                  (4.8.40)                    

 

19th  term, 
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31st   term, 
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)3,2,1(
32 Fmm Ω∈= αβ                                                         (4.8.42)                    

 
32nd   term, 
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v
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−−=                                (4.8.43)                    

Substituting the results (4.8.1) – (4.8.43) in equation (4.8.1) we get the transport 

equation for three  point distribution function ),,,()3,2,1(
3 ψφgvF in MHD turbulent flow 

in a rotating system in presence of dust particles as                 
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Continuing this way, we can derive the equations for evolution of )4,3,2,1(
4F , )5,4,3,2,1(

5F  

and so on. Logically it is possible to have an equation for every Fn (n is an integer) but 

the system of equations so obtained is not closed. Certain approximations will be 

required thus obtained. 

 

4.9 Results and Discussion 

If the fluid is clean and the system is non rotating then f=0 and mΩ =0, the transport 

equation for one point distribution function in MHD turbulent flow (4.8.44) becomes 
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which was obtained earlier by Azad et al [14]. 

    
If we drop the viscous, magnetic and thermal diffusive and concentration terms from 

the three point evolution equation (4.8.44), we have 
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The existence of the term 
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can be explained on the basis that two characteristics of the flow field are related to 

each other and describe the interaction between the two modes (velocity and 

magnetic) at  point x(1) , x(2) and x(3) .  

 

We can exhibit an analogy of this equation with the 1st equation in BBGKY hierarchy 

in the kinetic theory of gases. The first equation of BBGKY hierarchy is given [107] 

as 
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where 
)1()2(

2,1 ααψψ vv −=  is the inter molecular potential. 

 

In order to close the system of equations for the distribution functions, some 

approximations are required. If we consider the collection of ionized particles, i.e. in 

plasma turbulence case, it can be provided closure form easily by decomposing F2
(1,2) 

as F1
(1) F1

(2). But such type of approximations can be possible if there is no interaction 

or correlation between two particles. If we decompose F2
(1,2) as 

 
F2

(1,2) = (1+∈) F1
(1) F1

(2)                                  

and 

F3
(1,2,3) = (1+∈)2 F1

(1) F1
(2) F1

(3)  

    also 

     F4
(1,2,3,4) = (1+∈)3 F1

(1) F1
(2) F1

(3) F1
(4) 

where ∈  is the correlation coefficient between the particles. If there is no correlation 

between the particles, ∈  will be zero and distribution function can be decomposed in 

usual way. Here we are considering such type of approximation only to provide 

closed form of the equation. 
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CHAPTER-V 

 

CONCLUSION 
 

In the thesis mainly turbulent and Magneto-hydrodynamic turbulent flow in 

incompressible fluid has been studied. We have tried to give here a general idea of 

turbulence and Magneto–hydrodynamic turbulence related to this research work. 

 

We have studied the decay of temperature fluctuations in dusty fluid homogeneous 

turbulence prior to the final period in section II-A. In this chapter to derive the decay 

law of temperature fluctuations in dusty fluid turbulence, we have considered two-

point and three-point correlations between fluctuating quantities. Correlation 

equations between fluctuating quantities with dust particles are obtained. Converting 

these correlation equations to spectral form by taking their Fourier transform. By 

integrating energy spectrum over all wave numbers the energy decay law of 

temperature fluctuations in homogeneous turbulence before the final period in 

presence of dust particles is obtained. In this result we have seen that the energy 

decays more rapidly than the energy for clean fluid prior to the ultimate period. 

Throughout this work we have applied Deissler’s method. 

 

Applying the same method we have made an attempt to derive the energy decay law 

of temperature fluctuations in homogeneous dusty fluid turbulence before the final 

period in presence of Coriolis force in section II-B. 

 

In section III-A, we have derived the transport equation by making use of the 

derivation of the constructed joint distribution function of certain variables in 

convective turbulent flow in presence of Coriolis force undergoing a first order 

reaction. We have got a partial differential equation under the deviation of the joint 

distribution function. The equation of motion, field equation of temperature and 

concentration of particles with Coriolis force have been used in above partial 
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differential equation. Then we have simplified each term of the equation in terms of 

one- and two- point distribution function. By substituting the simplified terms in the 

above equation, the transport equation for the joint distribution functions of certain 

variables in convective turbulent flow in presence of Coriolis force undergoing a first 

order reaction is obtained. Lastly, we have compared the result with the equation for 

one- point distribution function in absence of the Coriolis force. We have extended 

the above problem for the case of dust particles due to first order reaction in section 

III-B. It is better to say that the system is unclosed that is why some approximations 

are required to close the system of equations for the joint distribution function. 

 

In chapter-IV, we have studied the statistical theory of certain variables for three- 

point distribution functions in MHD turbulent flow in rotating system and their 

properties, e.g. reduction properties, separation properties etc. Continuity equation in 

term of distribution function has been considered. Equations for three-point 

distribution function of it have been formulated by analyzing two-point distribution 

functions.       

 



Bibliography          150 

 

 
 

 

BIBLIOGRAPHY 

 

[1] Atkinson, Simpson and Neumann. How do we understand the Coriolis force? 
Bulletin of the American Meteorological Society, 79, 7, July 1998, 1373-1385, 
1981. 

[2] Azad M. A. K. and M .S. A. Sarker. 2004. Raj. Univ. Stud. Part-B. J. Sci., 32, 
193-210.  

[3] Azad M. A. K. and M. S. A. Sarker. 2006. Raj. Univ. Stud., part- B. J. Sci., 34, 
37-50. 

[4] Azad M. A. K. and M. S. A. Sarker. 2008. J. of Appl. Sci. Res., 4(7), 793- 802. 

[5] Azad M. A. K. and M. S. A. Sarker. 2009. Bangladesh J. Sci. Ind. Res., 
44(4), 407-414. 

[6] Azad M. A. K., Aziz M. A. and Sarker M. S. A., J. Mech. Contin. & Math. 
Sci., 4(1), 410-417(2009c). 

[7] Azad M. A. K., M. A. Aziz and M. S. A. Sarker. 2009a. J. Mech. Cont. and 
Math. Sci., 4(1), 410-417. 

[8] Azad M. A. K., M. A. Aziz and M. S. A. Sarker. 2009b. J. Phy. Sci., 13, 175-190. 

[9] Azad M. A. K., M. A. Aziz and M. S. A. Sarker. 2010. Bang. J. Sci. & Ind. 
Res., 45(1), 39-46. 

[10] Azad M. A. K., M. A. Aziz and M. S. A. Sarker. 2011. Bang. J. Sci. and Ind. 
Res., 46(1), 59-68.  

[11] Azad M. A. K., M. S. A. Sarker and N. I. Mondal. 2006. J. Eng. and Appl. Sci., 
1(2), 187-194. 

[12] Azad M. A. K., S. A. Sarker and M. A. Aziz. 2007- 2008. Math Forum, 20, 32- 48. 
[13] Azad M.A.K. and Mst. Mumtahinah. 2013., Res. J. Appl. Sci. Engng. and Tech., 

6( 8), 1490-6. 

[14] Azad M.A.K., M., Islam N, and Mumtahinah Mst. 2014. Res. J. Appl. Sci. Engng. 

and Tech. ( accepted for publication). 

[15] Azad, M. A. K., M. H .U. Molla and M. Z. Rahman. 2012. Res. J. App. Sci. 
Eng. Tech., 4(20), 4150-4159. 



Bibliography          151 

 

 
 

 

[16] Aziz M.  A., Azad M. A. K. and Sarker M. S. A. 2010c. Res. J. Math.  & Stat.,  
2(2),  56-68 

[17] Aziz M. A., M. A. K. Azad and M. S. A. Sarker. 2009. Res. J. Math. and Stat., 
1(2), 35-46. 

[18] Aziz M. A., M. A. K. Azad and M. S. A. Sarker. 2010. J. of Mod. Math. 
and Stat., 4(1), 11-21. 

[19] Aziz M. A., M. A. K. Azad and M. S. A. Sarker. 2010a. Res. J. Math. and 
Stat., 2(2), 56-68. 

[20] Aziz M. A., M. A. K. Azad and M. S. A. Sarker. 2010b. Res. J. Math. and 
Stat., 2(2), 37-55. 

[21] Bansal R. K. 1992. Organic reaction Mechanizms, Tata Mc Graw-Hill 
Publishing Limited, New Delhi. 

[22] Batchelor G. K. 1960. Theory of homogeneous turbulence, Cambridge Univ. 
Press, 1960. 

[23] Batchelor G. K. and A. A. Townsend. 1948. Proc. Roy. Soc., London, A194, 527- 543.  

[24] Batchelor, G. K. 1953. The Theory of Homogeneous  Turbulence. New York: 
Cambridge University Press. 

[25] Bigler R. W. 1976. Combustion Sci. and Tech., 13, 155. 
[26] Bkar Pk M.  A., M. A.   K.  Azad   and  Sarker M. S.  A. 2013a. Res. J. 

Appl. Sci. Engng. & Tech., 5(2): 585-595. 

[27] Bkar Pk. M.  A., M. A. K. Azad, and Sarker M. S. A.. 2013d. J.  Sci. Res. 

5 (1),77-90. 

[28] Bkar Pk. M.  A., M. S. A.  Sarker and Azad M.  A.  K.. 2013c. Res. J. 

Appl. Sci., Engng. & Tech. 6(15): 2789-2798. 

[29] Bkar Pk. M. A., M.  S.  A.  Sarker and Azad M. A. K.. 2013b. Res. J.  

Appl. Sci., Engng. & Tech. 6(10): 1749-1756. 

[30] Bkar. Pk M. A.,  Azad M. A. K. and Sarker M. S. A. 1012. Res. J. Math. & 
Stat., 4(2) , 30-38.  

[31] Corrsin S. 1951. J. Appl. Phy., 22, 469- 473. 

[32] Deissler R. G. 1958. Phys. Fluids, 1, 111-121. 

[33] Deissler R. G. 1960. Phys. Fluids, 3, 176-187. 



Bibliography          152 

 

 
 

 

[34] Dixit T.  and B. N. Upadhyay. 1989a. Astrophysics and Space Sci., 153, 257-268. 

[35] Dixit T. and B. N. Upadhyay. 1989b. Astrophysics and Space Sci., 153, 297. 
[36] Edward S 1964. The statistical dynamics of homogeneous turbulence J. Fluid 

Mech. 18(2): 239-273. 

[37] Ekman V. W. 1910. Arkiv. Mat. Astron. Fysik., 6, 12. 
[38] Geankoplis C. J. 2003. Transport Processes and Separation Process Principles. 

Prentice Hall Professional Technical Reference. ISBN 0-13-101367-X. 
[39] Ghosh K. M. 1958. Nat. Sci. India, A24, 240. 

[40] Ghosh K. M. 1972. Indian. J. of Pure and Appl. Math., 3, 157. 
[41] Herring J. R 1965.Self-consistent field approach to turbulence theory, Phys. Fluid 8: 

2219-2225.  

[42] Hinze, J. O. (1975). Turbulence (2nd ed.). New York: McGraw-Hill. 
[43] Hopf E 1952. Statistical hydrodynamics and functional calculus, J. Rotational Mech. 

Anal. 1: 87-123.  

[44] Islam M. A. and M. S. A. Sarker. 2001. Indian J.  Pure Appl. Math., 32(8), 1173-1184. 

[45] Islam M. A. and M. S. A. Sarker. 2007. Rajshahi University Studies. Part-B. J. 
Sci., Vol, 35 

[46] Janicka J., W. Kolbe and W. Kollmann. 1979. Non Equilib. Thermodyn., 4, 47. 

[47] Kishore N. 1978. J. Sci. Res., BHU, 28(2), 163-178.  

[48] Kishore N. and M. S. A. Sarker. 1990. Astrophysics and Space Sci., 172, 279. 

[49] Kishore N. and S. R. Singh. 1984. Bull. Tech. Univ. of Istambul, 37, 91-100. 

[50] Kishore N. and S. R. Singh. 1985. Prog. of Maths., 9(1&2), 13-22. 

[51] Kishore N. and T. Dixit. 1979.  J. Scientific Research, B. H. U., 30(2), 305. 

[52] Kishore N. and Y. T. Golsefid. 1988. Astrophysics and Space Sci., 150, 89. 
[53] Kishore,  N. and M. S. A. Sarker., 1990. I. ,J. Energy Res., 14(5), 573-577 . 

[54] Kishore, N. and A. Sinha. 1988. Astrophysics and Space Sci.,146,53-58. 

[55] Kishore, N. and S. R. Singh. 1984. Astrophysics and Space Scie., 104, pp.121-

125. 

[56] Kollmann W. and J. Janicka. 1982. Phys. Fluid., 25, 1755-1769. 

[57] Kolmogorov A. N. 1941.  Academia de Science de URSS XXX, No. 4. 
[58] Kraichanan R. H 1959. J. Fluid Mech. 5: 497. 



Bibliography          153 

 

 
 

 

[59] Kumar P. and S. R. Patel. 1974.  Phys. Fluid., 17, 1362. 

[60] Kumar P. S. R. and S. R. Patel. 1975. Int. J. Eng. Sci., 13, 305-315. 

[61] Leislie D. C. 1973. Developments in the Theory of turbulence, Clarendon 
Press. Oxford. 

[62] Lesieur, M (1987). Turbulence in Fluid. Dordrech, Netherrlands; Martinus 
Nijhoff Publisherrs. 

[63] Lighthill M. J. 1960. Fourier Analysis and Generalized Functions, Cambridge     
University Press. 

[64] Loeffler A. L. and R. G. Deissler. 1961. Int. J. Heat Mass Transfer, 1, 312-324. 

[65] Lundgren T. S. 1967. Phys. Fluid., 10, 967. 

[66] Lundgren T. S. 1969. Phys. Fluids, 12, 485. 
[67] Molla M.  H. U. 2012.  M. Phil. Thesis, Department of Applied Mathematics, 

Rajshahi University. 

[68] Molla M.  H. U., M. A.  K. Azad and Rahman M. Z. 2012 M.Phil. Thesis, 

Department of Applied Mathematics, University of Rajshahi, Bangladesh, 45. 

[69] Molla M. H. U., M. A. K. Azad and M. Z. Rahman. 2012. Res. J.  Math. and 

Stat. (RJMS), 4(2) , 45-51.  

[70] Monin A. S.  and A. M. Yaglom. 1973. Stat. Fluid Mec., 1. M.I.T. Press. 

[71] Monin A. S. 1967b. Prike, Mat, Mekh., 31, 1057. 

[72] Noakes C. and Andrew S. 2009. "Real Fluids". An Introduction to Fluid 
Mechanics. University of Leeds. Retrieved 23 November 2010. 

[73] Obukhov, A. 1941. On the distribution of Energy in the Spectrum of 

Turbulent Flow. Izv. Akad. Nauk SSSR Ser. Georg. Geofiz. 5. 453.  

[74] Oertel H.  (ed.),  2010. Prandtl-Essentials of Fluid Mechanics, 1, Applied 

Mathematical Sciences 158, DOI 10.1007/978-1-4419-1564-1_1, © Springer 

Science+Business Media, LLC. 

[75] Pai S. I. 1957. Viscous Flow Theory (11Turbulent Flow), D. Van Nostrand 
Company Inc. 

[76] Patel S.R. 1976.  Int. J. Eng. Sci., 14, 75.  

http://www.efm.leeds.ac.uk/CIVE/CIVE1400/Section4/laminar_turbulent.htm


Bibliography          154 

 

 
 

 

[77] Pedley, T. J. (2000). Blood flow in arteries and veins. In G. K. Batchelor, H. 
K. Moffat, & M. G. Worster (Eds.), Perspectives in Fluid Dynamics. 
Cambridge: Cambridge University Press. 

[78] Pope S. B. 1979. Phil. Trans Roy. Soc. London, A291, 1384, 529-568. 

[79] Pope S. B. 1981b. Physics of Fluid, 24, 588. 

[80] Prandtl L. 1935. The Mechanics of Viscous Fluid. Vol. III of Aerodynamics 
Theory, div.G. W.F. Durand, ed., Julius Springer (Berlin), 1935, pp. 34-208 

[81] Prengle R. S. and R. R. Rothfus. 1955. Ind. Eng. Chem., 47, 379. 

[82] Rahman, M. L., 2010. J.Mech.Cont.and Math. Sci., 5(1),570-578. 

[83] Reynolds O. 1883. Phil. Trans. Roy. Soc., London, 174, 935.  

[84] Reynolds O. 1884. Phil. Trans. Roy. Soc., London, 186, 123. 

[85] Richardson L. F. 1922. Weather Prediction by Numerical Process.  

[86] Saffman P. G. 1962. J. Fluid. Mech., 13, 120-128. 

[87] Sarker M.  S.  A.  and M.  A.  K. Azad. 2004. Raj. Univ. Stud.  Part-B, J.  Sci., 
32, 177-192. 

[88] Sarker M. S. A and M. L. Rahman. 1998. North Bengle Uni. Review (Sci and 
Tech), India, 9, 91. 

[89] Sarker M. S. A. 1997. Int. J. Energy Research, 21, 1399. 

[90] Sarker M. S. A. 1998. Rajshahi Univ. Studies Part-B, 25. 

[91] Sarker M. S. A. and M. A. Islam. 2001. Indian J. of Pure and Appl. Math., 
32(7), 1065. 

[92] Sarker M. S. A. and M. A. Islam. 2001. J. Math and Math. Sci., 16, 35. 

[93] Sarker M. S. A. and M. A. Islam. 2001. J. of Sci., Res, 19. 153. 

[94] Sarker M. S. A. and M. A. K. Azad. 2006. Bangladesh J. Sci. Ind. Res., 41(3-
4), 147- 158.  

[95] Sarker M. S. A. and M. L. Rahman. 1997. Rajshahi  University Studies, Part-B, 
In Press. 

[96] Sarker M. S. A. and N. Kishore. 1991a. Astrophys. Space Sci., 181, 29.  

[97] Sarker M. S. A. and N. Kishore. 1991b. Int. J. Eng. Sci., 29, 1479. 



Bibliography          155 

 

 
 

 

[98] Sarker M. S. A. and N. Kishore. 1999. Prog. Math., BHU, India, 33(1-2), 83. 

[99] Sarker M. S. A., M. A. K. Azad and M. A. Aziz. 2009. J. Phy. Sci., 13, 21-38. 
[100] Sarker M.S.A, Islam M. A 2002. Raj. Univ. Stud. Part-B. J. Sci., 30: 

[101] Sarker, M.S.A., M. A. Bkar. Pk and  Azad M. A. K. 2012. IOSR J. Math. 

(IOSR-JM), 3(5), 39-46, 

[102] Shimomura Y. and A. Yoshizawa. 1986. J.  Physical Soc., Japan, 55, 1904-1917. 

[103] Sinha, A., 1988. J. Sci. Res.,B.H.U., 38, 7.  

[104] Stanisic M. M. 1985. Mathematical Theory of Turbulence, Springer-Verlag, New York.  

[105] Taylor G. I. 1935a.  Proc. Roy. Soc., London, A151, 421. 

[106] Taylor G. I. and T. Vonkarman. 1937.  J. Roy. Aeronaut. Soc., 41, 1109. 
[107] Ta-You W 1966. Kinetic Theory of Gases and Plasma. Addision Wesley 

Phlelishing. 

[108] Townsend A. A. 1976. Cambridge Uni. Press, London. 


