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Abstract

The fundamental concept of a fuzzy set and fuzzy set operations was first introduced

by L. A. Zadeh (Zadeh, 1965) in 1965 and it provides a natural foundation for treating
mathematically the fuzzy phenomena, which exists pervasively in our real world and for
building new branches of fuzzy mathematics. This also provides a natural frame work for
generalizing various branches of mathematics such as fuzzy topology, fuzzy group, fuzzy
rings, fuzzy vector spaces, fuzzy number, fuzzy system, fuzzy function, fuzzy relation,
fuzzy logic and fuzzy computation. The concepts of fuzzy topology was introduced by C.
L. Chang (Chang, 1968) in 1968 based on fuzzy set. Ming and Ming (Pao-Ming & Ying-
Ming, 1980) (Pao-Ming & Ying-Ming, 1980), Khedr (Khedr et al., 2001), Hutton
(Hutton, 1975), Azad (Azad, 1981), Ali (Ali, 1992) (Ali et al., 1990), Lowen (Lowen,
1976) etc. discussed various properties of fuzzy topology using fuzzy sets and fuzzy
topology.

Fuzzy compactness occupies a very important place in fuzzy topological spaces and so
does some of its forms. Fuzzy compactness first discussed by C. L. Chang [C. L. Chang,
Fuzzy Topological Spaces, J. Math. Anal. Appl., 24(1968), 182-190], T. E. Gantner et al.
[T. E. Gantner, R. C. Steinlage and R. H. Warren, Compactness in Fuzzy Topological
Spaces, J. Math. Anal. Appl., 62(1978), 547-562] introduced a -compactness, A. D.
Concilio and G. Gerla [A. D. Concilio and G. Gerla, Almost Compactness in Fuzzy
Topological Spaces, Fuzzy Sets and Systems, 13(1984), 187-192] discussed almost
compact spaces and M. N. Mukherjee and A. Bhattacharyya [M. N. Mukherjee and A.
Bhattacharyya, a -Almost Compactness for Crisp Subsets in a Fuzzy Topological Spaces,
J. Fuzzy Math, 11(1) (2003), 105-113] discussed almost a -compact spaces. After two

decades, in 1983, Atanassov (K. T. Atanassov, “Intuitionistic Fuzzy Sets,” VII ITKRs

Vi



Session, (V, Sgurev, Ed.), Sofia (1983), Bulgaria) introduced the concept of intuitionistic
fuzzy sets as a generalization of fuzzy sets which looks more accurately to uncertainty
quantification and provides the opportunity to precisely model the problem based on the
existing knowledge and observations. An intuitionistic fuzzy set (A-IFS), developed by
Atanassov (K. T. Atanassov, “Intuitionistic Fuzzy Sets,” Theory and Applications,
Springer-Verlag (1999), Heidelberg, New York & K. T. Atanassov, “Intuitionistic Fuzzy
Sets,” Fuzzy Sets and Systems (1986), vol. 20, 87 — 96) is a powerful tool to deal with
vagueness. A prominent characteristic of A-IFS is that it assigns to each element a
membership degree and a non-membership degree, and thus, A-IFS constitutes an
extension of Zadeh’s fuzzy set. He added a new component (which determines the degree
of non-membership) in the definition of fuzzy set. The fuzzy sets give the degree of
membership of an element in a given set (and the non-membership degree equals one
minus the degree of membership), while intuitionistic fuzzy sets give both a degree of
membership and a degree of non-membership which are more-or-less independent from
each other, the only requirement is that the sum of these two degrees is not greater than 1.
In the last few years various concepts in fuzzy sets were extended to intuitionistic fuzzy
sets. Intuitionistic fuzzy sets have been applied in a wide variety of fields including
computer science, engineering, mathematics, medicine, chemistry and economics (K. P.
Huber and M. R. Berthold, “Application of Fuzzy Graphs for Metamodeling”,
Proceedings of the 2002 IEEE Conference, 640 644). In 1997, Coker [D. Coker, “An
Introduction to Intuitionistic Fuzzy Topological Space,” Fuzzy Sets and Systems (1997),
vol. 88, 81 —89] introduced the concept of intuitionistic fuzzy topological spaces. S.
Bayhan and D. Coker, “On Fuzzy Separation Axioms in Intuitionistic Fuzzy Topological
Space,” BUSEFAL (1996), vol. 67, 77 —87, D. Coker and A. Es. Hyder, “On Fuzzy

Compactness in Intuitionistic Fuzzy Topological Spaces,” The Journal of Fuzzy

vii



Mathematics (1995), vol. 3, no. 4, 899 —909, S. Ozcag and D. Coker, “On Connectedness
in Intuitionistic Fuzzy Special Topological Spaces,” Int. J. Math. Math. Sciences (1998),
vol. 21, no. 1, 33 —40] gave some other concepts of intuitionistic fuzzy topological
spaces, such as fuzzy continuity, fuzzy compactness, fuzzy connectedness, fuzzy
Hausdorff space and separation axioms in intuitionistic fuzzy topological spaces. After
this, many concepts in fuzzy topological spaces are being extended to intuitionistic fuzzy
topological spaces.

Recently many fuzzy topological concepts such as fuzzy compactness [D. Coker and A.
Es. Hyder, “On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces,” The
Journal of Fuzzy Mathematics (1995), vol. 3, no. 4, 899 —909 |, fuzzy connectedness [N.
Turanli and D. Coker, “Fuzzy Connectedness in Intuitionistic Fuzzy Topological Spaces,”
Fuzzy Sets and Systems (2000), vol. 116, no. 3, 369 —375], fuzzy separation axioms[S.
Bayhan and D. Coker, “On Separation Axioms in Intuitionistic Topological Space,” Int.
J. of Math. Sci. (2001), vol. 27, no. 10, 621 —630], fuzzy continuity [H. Gurcay, D. Coker
and A. Es. Hayder, “On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces,”
The Journal of Mathematics of Fuzzy Mathematics (1997), vol. 5, 365 —378], fuzzy g-
closed sets[S. S. Thakur and Rekha Chaturvedi, “Generalized Closed Set in Intuitionistic
Fuzzy Topology,” The Journal of Fuzzy Mathematics (2008), vol. 16, no. 3, 559 -572]
and fuzzy g-continuity[S. S. Thakur and Rekha Chaturvedi, “Generalized Continuity in
Intuitionistic Fuzzy Topological Spaces,” Notes on Intuitionistic Fuzzy Set (2006), vol. 12
no. 1, 38 —44] have been generalized for intuitionistic fuzzy topological spaces.
Deschrijver and Kerre [G. Deschrijver and E. E. Kerre, “On the Relationship between
Some Extensions of Fuzzy Set Theory,” Fuzzy Sets and Systems (2003), vol. 133, 227—

235], Goguen [J. Goguen, “L-fuzzy Sets,” J. Math. Anal. Applicat. (1967), vol. 18, 145-

viil



174] established the relationships between IFSs, L-fuzzy sets, interval-valued fuzzy sets,
and interval-valued IFSs.
Hausdorffness in an intuitionistic fuzzy topological space has been introduced earlier by
Coker[D. Coker, “An Introduction to Intuitionistic Fuzzy Topological Space,” Fuzzy Sets
and Systems (1997), vol. 88, 81 —89]. Lupianez [F. G. Lupianez. “Hausdorffness in
Intuitionistic Fuzzy Topological Spaces,” Mathware and Soft Computing (2003), vol. 10,
17 —22] has also defined new notions of Hausdorffness in the intuitionistic fuzzy sense
and obtained some new properties in particular in convergence.
Separation axioms is very impotent in any kind of topological space. Bayhan and Coker
(Bayhan & Coker, 1996) introduced fuzzy separation axioms in intuitionistic fuzzy
topological spaces. Singh and Srivastava (Singh & Srivastava, 2012), Yue and Fang (Yue
& Fang, 2006), Bhattacharjee and Bhaumik (Bhattacharjee & Bhaumik, 2012) also
studied separation axioms in intuitionistic fuzzy topological spaces.
The purpose of this thesis is to suggest new definitions of compactness and connectedness
axioms in intuitionistic fuzzy topological spaces. We have studied several features of
these definitions and the relations among them. We have also shown ‘good extension’
properties of all these spaces. Our criteria for definitions have been preserved as much as
possible the relations between the corresponding separation properties for intuitionistic
fuzzy topological spaces.

The materials of this thesis have been divided into six chapters. A brief scenario

of which we have presented as follows:

Chapter one incorporates some of the basic definitions and results of general sets, fuzzy
sets, intuitionistic sets, intuitionistic fuzzy sets and topologies based on such sets. In this

chapter, subspace of topological space, product space and mapping in topological spaces



has been discussed, which are to be used as references for understanding the next

chapters. Most of the results are quoted from various research papers and books.

Our main works start from chapter two. In this chapter, we give seven new notions of
intuitionistic fuzzy compact (in short, IF-Compact) space and investigate some
relationship among them. At first we show that all these notions satisfy ‘good extension’
property. Furthermore, it proves that these intuitionistic fuzzy compact spaces are
hereditary and productive. Finally, we observe that all concepts are preserved under one-

one, onto and continuous mapping.

In chapter three, we have introduced Q-compactness in intuitionistic fuzzy compact
topological spaces. Furthermore, we have established some theorems and examples of Q-
compactness in intuitionistic fuzzy topological spaces and discussed different

characterizations of Q-compactness.

Also we have defined 6 —Q compactness, Q —o compactness and 6§ —Q — o
compactness in intuitionistic fuzzy topological spaces and found different properties
between Q-compactness and 6§ — Q compactness, Q — o compactness and § —Q — o

compactness in intuitionistic fuzzy topological spaces.

In fourth chapter, we discusses various type of compactness in intuitionistic fuzzy
topological spaces. Almost compact fuzzy sets was first constructed by Concilio and Gerla
which is local property. Here we give wo new possible notions of almost compactness in
intuitionistic fuzzy topological spaces are studied and investigated some of their
properties. We show that these notions satisfy hereditary and productive property of
intuitionistic fuzzy topological spaces. Under some conditions it is shown that image and

preimage preserve intuitionistic fuzzy topological spaces. Also we give three new notions



of I -compactness, C -compactness and I — C -compactness in intuitionistic fuzzy

topological spaces and investigate some relations between our notionss.

At last we give three new notions of paracompactness and one new notion of -
compactness in intuitionistic fuzzy topological spaces and established some properties of

them.

In chapter five, we give some new notions of separated, connectedness and totally
connectedness and one notions of T;-space in intuitionistic fuzzy topological space
and investigate some relationship among them. Also we find a relation about
classical topology and intuitionistic fuzzy topology. Further, we show that

connectedness in intuitionistic fuzzy topological spaces are productive.

In the chapter six, we have introduced (r,s)-connectedness in intuitionistic fuzzy
topological spaces. Furthermore, we have established some theorems and examples of
(r, s)-connectedness in intuitionistic fuzzy topological spaces and discussed different

characterizations of (r, s)-connectedness.
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Acronyms

: Fuzzy Closed Set

: Fuzzy Open Set

: Fuzzy Set

: Fuzzy Topology

: Fuzzy Topological Space

- Intuitionistic Closed Set

> Intuitionistic Fuzzy

. Intuitionistic Fuzzy Closed Set
- Intuitionistic Fuzzy Open Set

- Intuitionistic Fuzzy Set

- Intuitionistic Fuzzy Topology
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Chapter One

Preliminary

This chapter contains various results and concepts of the general sets, fuzzy sets,
intuitionistic sets, intuitionistic fuzzy sets, general topology, fuzzy topology,
intuitionistic topology, intuitionistic fuzzy topology, subspaces of general topological
space, subspace of fuzzy topological space, subspace of intuitionistic fuzzy
topological space, fuzzy product topological spaces, intuitionistic fuzzy product
topological spaces, compactness and connectedness in different topological spaces
and its properties which are to be used as ready references for understanding the
subsequent chapters. Most of the results are quoted from various research papers and

books.
1.1 Classical Topology

The concept of a set is fundamental in Mathematics and intuitively can be described
as a collection of objects possibly linked through some properties. A classical set has

clear boundaries, i.e., x € A or x & A exclude any other possibility.

Definition 1.1.1. (Lipschutz, 1965): Suppose that to each element of a set X there is
assigned a unique element of a set Y. The collection f of such assignment is called a

function or mapping from X into Y and is writtenas f: X - Y.

The unique element in Y assigned to x € X by this function f is called the value of f

at x or the image of x under f and is denoted by f(x). The set X is called the domain
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of f and Y is called the co-domain of f. The set of image points of Y is called the

range of f.

Definition 1.1.2. (Zadeh, 1965): Let X be a set and A be a subset of X (A € X). Then

the function 1,(x) = {é :?i Z ﬁ is called the characteristic function of the set A in

X.

Classical sets and their operations can be represented by their characteristic functions.

Let us consider the union AU B = {x € X:x € 4 or x € B}. Its characteristic function

L4up(x) = max{1,(x), 1g(x)}.
For the intersection A N B = {x € X:x € 4 and x € B} the characteristic function is
14np(x) = min{1,(x), 1p(x)}.

If we consider the complement of 4 in X, A° = {x € X:x & A} it has the characteristic

function 14c(x) = 1 — 1, (x).

Definition 1.1.3. (Lipschutz, 1965): A function f:X — Y is called one-one (or one-to-

one or 1-1 or injective) if distinct elements in X have distinct images, i.e., if

f@=f(b)=a=b

Definition 1.1.4. (Lipschutz, 1965): A function f: X — Y is called onto (or Surjective)
if every element y in Y is the image of some element x in X, i.e,, ifyeY=3Ix€X

such that f(x) = y. Hence fisontoif f(A) = {y € Y:y = f(x)} for some x € X = B.
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Definition 1.1.5. If the function f: X — Y is both one-one and onto then the function
g:Y — X is called the inverse function of f if g(y) = x when f(x) = y. This inverse

function is denoted by f~1:Y - X.

Definition 1.1.6. (Lipschutz, 1965): Let X be a non-empty set. A class T of subsets of

X is called a topology on X if T satisfy the following conditions.

DX PET,
(2) AnBeTforall 4,BET,

(3) UA; € Tforanyclass 4; € T.

The members of T are called open sets, their complements are called closed sets and
the set X together with the topology T, i.e. the pair (X, T) is called a topological space

(TS, in short).

Definition 1.1.7. (Lipschutz, 1965): Let A be a subset of a topological space X. The

closure of A is denoted by 4 is the intersection of all closed superset of A. i.e. A =N

{F:Fis closed and A c F}

Observe that 4 is the smallest closed super set A and if A is closed then A = A.

Definition 1.1.8. (Lipschutz, 1965): Let A be a subset of a topological space X. The

interior of A is denoted by A° is the union of all open subset of A. i.e.

A° =U{G:G €Tand G c A}

Observe that A° is the largest open subset A and if A is open then A = A°.
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Definition 1.1.9. (Lipschutz, 1965): Let (X, T) be a topological space and A c X. The
class T, of all intersections of A with members of T, i.e. T, ={ANG:GET}is a

topology on A relative to T. The topological space (A, Tp) is called subspace of (X, T).

Definition 1.1.10. (Lipschutz, 1965): Let (X, T) and (Y, T*) be topological spaces and

f: (X, T) = (Y, T"), i.e. f:X = Y is a function.

(1) £ is called an open function if image of every open set is open.
(2) f is called a closed function if image of every closed set is closed.
(3) f is called a continuous function if pre-image of every open set is open or

equivalently pre-image of every closed set is closed.

Definition 1.1.11. (Lipschutz, 1965): Two topological spaces X and Y are called
homeomorphic or topologically equivalent if there exist a bijective (i.e. one-one and

onto) function f: X — Y such that f and £~ are continuous.

Definition 1.1.12. (Lipschutz, 1965): A property P of sets is called topological
property if whenever a topological space (X, T) has property P, then every topological

space homeomorphic to (X, T) also has P.

1.2 Fuzzy Set and Fuzzy Topological Spaces

Definition 1.2.1. (Zimmermann, 1992): Let X be a non-empty set and I is the closed
unit interval [0,1]. A fuzzy set (FS, in short) in X is a set of ordered pairs
{(x,u(x)): X € X} where u: X — I which assigns to every element x € X. u(x) denotes

the degree (or the grade) of membership of x. The set of all fuzzy sets in X is denoted
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by Ix. A member of Iy may also be called a fuzzy subset of X. The fuzzy set

{(x u(x)):x € X} is usually denoted by u.

Remark 1.2.2. Every subset A of X may be consider as an FS in X by its characteristic

function 1,.

Definition 1.2.3. (Pao-Ming & Ying-Ming, 1980): A fuzzy set is empty if and only if

its grade of membership is identically zero in X. We denote it by 0.

Definition 1.2.4. (Pao-Ming & Ying-Ming, 1980): A fuzzy subset is whole if and

only if its grade of membership is identically 1 in X. We denote it by 1.

Definition 1.2.5. (Pao-Ming & Ying-Ming, 1980): A fuzzy singleton or fuzzy point x,
is a fuzzy set in X defined by

O0ify #x

Xe(y) = {rify =X

Here x is called the support of the fuzzy point x,.. Two fuzzy singletons are said to be
distinct if their supports are distinct. A fuzzy point x,. is said to belongs to a fuzzy set

uifr <u(x),
Definition 1.2.6. (Chang, 1968): Let u and v be two fuzzy sets in X. Then we define

1) u=viffu(x) = v(x) forall x € X.
(2) u cviffu(x) < v(x) forall x € X.
B)u=veiffulx) =ve(x) =1 —v(x) forall x € X.

obviously (u€)¢ = u.
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@ A=uUviffA(x) = (uU Vv)(x) = max(u(x),v(x)) forall x € X.
In general if {u;} is a family of fuzzy sets in X then U u;(x) = sup(u;(x)) for
all x € X.

B)A=unviffA(x) = (unv)(x) = min(u(x),v(x)) forall x € X.
In general if {u;} is a family of fuzzy sets in X then N u;(x) = inf(u;(x)) for

all x e X.

Definition 1.2.7. (Chang, 1968): Let X be a non empty set. A family t of fuzzy sets in

X is called a fuzzy topology on X if the following conditions hold.

Mo.1et,
@ Anpetforall A, pet,

(3) U A € tforany arbitrary family {A; € t,j € J}.

The pair (X, t) is called a fuzzy topological space (FTS, in short) and any members of
t is called fuzzy open set (FOS, in short). The complement of an FOS is called fuzzy

closed set (FCS, in short). i.e. a fuzzy set vin X isclosed iff 1 — v € t.

We know that every subset A of X may be regarded as a fuzzy set in X. So we have

the following theorem
Theorem 1.2.8. Let (X, T) be a topological space. Then (X, t) is a fuzzy topological
space wheret = {1,:A € T}.

Proof: Since T is a topology on X, then ¢, X € T. But 1, = 0 and 1x = 1. Therefore

0,1€t.
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Let 15,15 € t, Then clearly A,B € T. Since T is a topology on X, then An B € T. By

the definition of t, it is clear that 15,g € t. But 15 N 15 = 1405. S0 1, N 1 E t.

Again let 1y € tforj €]. So clearly A; € T for each j € ]. Since T is a topology, then
U Aj € T. By the definition of t, 1(UA].) €t. Now U 1Ai = l(uAj). So v 1Aj €t

Therefore t is a fuzzy topology on X, i.e. (X, t) is a fuzzy topological space.

Example 1.2.9. Let X = {x,y}. Then t ={0,1,A,p,u,v} is a fuzzy topology on X
where  0={(x0),( 0} 1={x1,FD} A={x06),(y03)} p=

{(x,0.2),(y,0.7)}, u={(x0.2),(y,0.3)}, v={(x,0.6),(y,0.7)}.

Definition 1.2.10. (Pao-Ming & Ying-Ming, 1980): Let u be a fuzzy set in (X,t). The
interior of u is defined as the union of all t-open fuzzy sets contained in u. It is
denoted by u®, i.e. u® =U {A: A € tand A c u}. Evidently u® is the largest open fuzzy

set contained in u and (u®)° = u®. If u is open then u® = u.

Definition 1.2.11. (Pao-Ming & Ying-Ming, 1980): Let v be a fuzzy set in (X,t). The
closure of v is defined as the intersection of all t-closed fuzzy sets containing v. It is
denoted by v, i.e. v =N {A: A € tand A D v}. Evidently ¥ is the smallest closed fuzzy

set containing v and (v) = ¥. If v is closed then v = v.

Definition 1.2.12. (Pao-Ming & Ying-Ming, 1980): Let (X, t) be a fuzzy topological
space and A be an ordinary subset of X. The class t, = {u|A:u € t} determines a
fuzzy topology on A where u|A is a fuzzy set in A defined by u|A(a) = u(a) for all

a € Aand (A, t,) is a fuzzy topological space. This space is called a subspace of

X, 1).



Chapter One Preliminary

Definition 1.2.13. (Chang, 1968): Let f be a mapping from a set X into a set Y, i.e.

f: X - Y and u be a fuzzy set in X. Then f and u induce a fuzzy set v in Y defined by

f(u) (%) = v(x) = {xe?fé';)u(x) i) #

0 otherwise

Definition 1.2.14. (Chang, 1968): Let f be a mapping from a set X into a set Y and v
be a fuzzy set in X. Then the inverse of v, written as f~1(v) is a fuzzy set in X and is

defined by f~1(v)(x) = v(f(x)) for all x € X.
Theorem 1.2.15. Let f be a mapping from X into Y. Then

(1) forany fuzzy vinY, f~1(v®) = (f‘l(v))C and f(f~1(v)) c v.
(2) for any fuzzy uin X, f(u®) o (f(u))" and u < (F~1(f(w)).
(3) forany fuzzy sets v; and v, in Y, v; € v, = f1(vy) c f71(v,).

(4) for any fuzzy sets u; and u, in X, u; € u, = f(u;) < f(uy).

Definition 1.2.16. (Pao-Ming & Ying-Ming, 1980): A function f: (X,t) — (Y,8) is
called fuzzy closed if and only if the image of every fuzzy closed set is fuzzy closed,

ie. iffu e t= (f(w)° €.

Definition 1.2.17. (Malghan & Benchalli, 1994): A function f:(X,t) = (Y,98) is
called fuzzy open (or open) if and only if the image of every fuzzy open set is fuzzy

open, i.e. iffu e t = f(u) € 6.

Definition 1.2.18. (Pao-Ming & Ying-Ming, 1980): A function f: (X,t) — (Y,6) is

called fuzzy continuous (or continuous) if and only if the pre-image of an open fuzzy
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set is open, i.e. if v e § = f~1(v) € t. The function f is called fuzzy homeomorphism

if and only if fis bijective and both f and £~ are fuzzy continuous.

Proposition 1.2.19. (Pao-Ming & Ying-Ming, 1980): Let (X,t)and (Y,8) be two
fuzzy topological spaces and f: (X,t) - (Y,8) be a continuous function, then the

following properties hold:

(@) If vis closed in (Y, 8), then f~1(v) is closed in (X, t).
(b) For any fuzzy set u in X, f(t) < f(u).

(c) Forany fuzzy setviny, f-1(v) c f~1(¥).

Proposition 1.2.20. (Malghan & Benchalli, 1994): Let (X, t)and (Y, 5) be two fuzzy
topological spaces and f: (X,t) — (Y,8) be an open function, then the following

properties hold:

(@) Forany fuzzy setuinX, f(u®) c (f(u))o.

(d) For any fuzzy setvinY, (f-1(v))° < f=2(v).

Proposition 1.2.21. (Malghan & Benchalli, 1994): Let (X,t)and (Y, d) be two FTSs
and f: (X,t) — (Y, 8) be a function, then f is closed if and only if f(u) c f(@) for each

fuzzy set u in X.

Definition 1.2.22. (Ghamin & Kerre, 1984): A fuzzy topological space (X, t) is called
fuzzy regular if for any fuzzy point x, € X and fuzzy closed set A in X with

Xq & Athereexistsu,v € tsuchthatx, €u,A cvandunv=0.
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Definition 1.2.23. (Hutton, 1975): A fuzzy topological space (X, t) is called normal if
for all closed fuzzy sets m and open fuzzy set u with m c u, there exist an open fuzzy

set v such that m ¢ v € v < u where v is the closer of v.

1.3 Intuitionistic Set and Intuitionistic Topological Spaces

Definition 1.3.1. (Coker, 1996): Suppose X is a non empty set. An intuitionistic set
(IS, in short) A on X is an object having the form A = (X,A;, A,) where A;and A, are
subsets of X satisfying A; N A, = ¢. The set A; is called the set of member of A
while A, is called the set of non-member of A. In this thesis, we use the simpler

notation A = (A4, A;) instead of A = (X, A;, A,) for an intuitionistic set.

Remark 1.3.2. (Coker, 1996): Every subset A of a nonempty set X may obviously be
regarded as an intuitionistic set having the form A = (A, A®) where A® = X\ A, the

complement of A.

Definition 1.3.3. (Coker, 1996): Let the intuitionistic sets A and B in X be of the

forms A = (A4,A;) and B = (By, B;) respectively. Furthermore, let {A;,j € J} be an

arbitrary family of intuitionistic sets in X, where A; = (A]@, A]@). Then

(@ AcBifandonlyif A; € B; and A, 2 B,,
(b) A=Bifandonlyif A< Band B € A,
(c) A = (A,, A,), denotes the complement of A,

(d) nA; = (nAY,UAP),

10
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() UA; = (UATY, nA),

M) ¢. = (@ X)and X. = (X, §).

Definition 1.3.4. (Coker, 1996): Let X be a non empty set and p € X a fixed element
in X. Then the intuitionistic set p.. defined by p. = ({p}, {p}°) is called an
intuitionistic point. The intuitionistic point p. contained in the intuitionistic set A =

(A, A,) ifp € A,

Definition 1.3.5. (Coker & Bayhan, 2001): Let X be a non empty set. A family T of
intuitionistic sets in X is called an intuitionistic topology on X if the following

conditions hold.

(l) ¢~1X~ET1
(2)AnBeT forall ABET,

(3) U A € T for any arbitrary family {A; € 7,j € J}.

The pair (X, 7") is called an intuitionistic topological space (ITS, in short), members of
T are called intuitionistic open sets (IOS, in short) in X and their complements are

called intuitionistic closed sets (ICS, in short) in X.

Definition 1.3.6. (Coker, 1996): Let X and Y be two nonempty sets and : X - Y a
function, A = (A, A,) and B = (B4, B,) are intuitionistic sets in X and Y respectively.
Then the image of A under f denoted by f(A) is the intuitionistic set in Y defined by
f(A) = (f(A,),f_(A;)) where f(A,) = (f(AS)) and the pre-image of B under f
denoted by f~1(B)is the intuitionistic set in X defined by f~1(B)=
(F71(By), f71(By)).

11
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Proposition 1.3.7. (Coker, 1996): Let X and Y be two nonempty sets and f: X - Y a

function. If A, B are intuitionistic sets in X and C, D are intuitionistic setsin Y. Then

(a) A c B = f(A) c f(B).

(b) Cc D = f~1(C) c f~1(D).

(©) A c f~1(f(A)) and if f is one-one, then A = f~1(f(A)).

(d) f~1(f(B)) < B and if f is onto, then B = f~1(f(B)).

() f(A U B) = f(A) U (B).

(f) f(A N B) c f(A) n f(B) and if f is one-one, then f(A N B) = f(A) N f(B).
(g) f~1(AUB) = f~1(A) U f~1(B).

(h) f"1(AnB) = f1(A) nf~1(B).

(i) f(X.) =Y., if fisonto.

() f(e) =,
(k) £1(Y.) = X...
0 (@) =¢..

(m) If f is onto, then (f(A))C c f(A); and if, furthermore, f is one-one, we have
(F(A))° = f(A®).
(n) £~2(B%) = (f~1(B))".

Definition 1.3.8. (Chu, 2009): Let (X,7) and (Y,7") be two ITSsand f: X —» Y. Then f

is called continuous if preimage of open set is open, i.e. if BET' = f"1(B) € T or

equivalently if pre-image of closed set is closed, i.e. if B € 7' = (f~1(B))" € 7.

12
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Definition 1.3.9. (Chu, 2009): Let (X,7) and (Y,T") be two ITSsand f: X — Y. Then f

is called open if image of open set is open, i.e. ifA€ T = f(A) € T".

Definition 1.3.10. (Chu, 2009): Let (X,7) and (Y,7") be two ITSs and f: X — Y. Then

f is called closed if image of closed set is closed, i.e. if A° € T = (f(A))" € T".

Definition 1.3.11. (Chu, 2009): Let (X,7) ITS and A = (A{,A;) € X . Then the

closure of A is the intersection of all closed superset of A, i.e.
cl(A) = N{K:K € T,A c K}

And the interior of A is the union of all open subset of A i.e.
int(A) = U{K: K e T,K c A}

Observe that cl(A) is the smallest closed IS containing A and cl(cl(A)) = cl(A). If A
is closed then cl(A) = A. Again int(A) is the largest open IS contained in A and

int(int(A)) = int(A). If A is open then int(A) = A.
1.4 Intuitionistic Fuzzy Set

Definition 1.4.1. (Atanassov, 1986): Let X be a non empty set. An intuitionistic fuzzy
set A (IFS, in short) in X is an object having the form A = {(x, ua(x), va(x)): x € X},
where p, and v, are fuzzy sets in X denote the degree of membership and the degree

of non- membership respectively subject to the condition that p, (x) + va(x) < 1.

Throughout this thesis, we use the simpler notation A = (p,,va) instead of
A= {(x, uA(X),VA(X)):X € X} for IFS.

13
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Remark 1.4.2. (Ying-Ming & Mao-Kang, 1997): Let X be a non empty set and A ©
X, then the set A may be regarded as a fuzzy set in X by its characteristic function
1,: X — {0,1} which is defined by

1 (X)_{ 1lifxeA
AV T 0ifx ¢ A i.e.,ifx € AS

Again we know that a fuzzy set A in X may be regarded as an intuitionistic fuzzy set
by (A, 1—2) = (A, A°). So every sub set A of X may be regarded as intuitionistic

fuzzy set by (14,1 — 1,) = (1, 14¢c). Therefore we have the following relation.

Intuitionistic Set
| (A A9 or (A, A2)

[ General Set Intuitionistic Fuzzy Set

A (1AI 1AC) or (1A1J 1A2) or (A,AC)

Fuzzy Set
140r A

—

Definition 1.4.3. (Atanassov, 1986): Let X be a nonempty set and IFSs A, B in X be

given by A = (ua,va) and B = (ug, vg) respectively, then

@ AcSBifus(x) < pg(x) andva(x) = vg(x) forall x € X,
(b)A=BifAc Band B C A,

(A = (Va Ha),

(d)ANB = (na N pp,va Uvp),

(e)AUB = (na U pp,va NVp).

14
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Definition 1.4.4. (Coker, 1997): Let {A; = (IJ-A]-'VA]-) ,j € ]} be an arbitrary family of

IFSs in X. Then

(a) n A] = (n HA]';U VA]' )1

©0.=0D,1.=10.

Definition 1.4.5. (Singh & Srivastava, 2012): Let o, € [0,1] and a+ B < 1. An

intuitionistic fuzzy point x gy in X is an intuitionistic fuzzy set in X define by

_ (@, B)ify =x
X@p () = {(0.1) ify #x

An intuitionistic fuzzy point x g is said to belong to an intuitionistic fuzzy set A =

(Ma, va) If a < pa(x) and B > v (x).

Definition 1.4.6. (Atanassov, 1986): Let X and Y be two nonempty sets and f: X = Y

be a function. If A = {(x, ua(x),va(x)):x € X}and B = {(y, ug(y),vg(y)):y € Y} are
IFSs in X and Y respectively, then the pre image of B under f, denoted by f~1(B) is the

IFS in X defined by
f71(B) = {(x (F*(up)) (), (F* (vp)) (¥)): x € X}
={(x, np (f(x)), v (f(x))): x € X}
and the image of A under f, denoted by f(A) is the IFS in Y defined by

f(A)={(y, ((a)) @), ((va))¥)):y € Y},

15



Chapter One Preliminary

where foreachy € Y

) () = {xerfi?’y) 1aG)IFELY) % ¢
0 otherwise

()G = {xef—ifé% WG IFF) # 0
1

otherwise

Definition 1.4.7. (Bayhan & Coker, 1996): Let A = (%, 1ua,va) and B = (y, ug, vg) be

IFSs in X and Y respectively. Then the product of IFSs A and B denoted by A X B is

defined by A x B = {(x,y), uAXuB,vAng)} where for all (x,y) € X X Y.

(uA>_<uB) (x,y) = min{p, (x), up(y)}
And
(VA>.<VB)(Xf y) = max{va(x),vg(y)}

Obviously 0 < (uAXuB) + (VA;(VB) < 1. This definition can be extended to an

arbitrary family of IFSs.

1.5 Intuitionistic Fuzzy Topological Spaces

Definition 1.5.1. (Coker, 1997): An intuitionistic fuzzy topology (IFT, in short) on a

nonempty set X is a family t of IFSs in X, satisfying the following axioms:

(1) 0.,1. €1,

16
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(2)AnB € t1,forall AB € T,

(3) U Aj € tforany arbitrary family {A; € T,j € J}.

The pair (X, 1) is called an intuitionistic fuzzy topological space (IFTS, in short),
members of T are called intuitionistic fuzzy open sets (IFOS, in short) in X, and their

complements are called intuitionistic fuzzy closed sets (IFCS, in short) in X.

We know that every subset A of X may be regarded as an intuitionistic fuzzy set in X.

So we have the following theorem:

Theorem 1.5.2. Let (X, T) be a topological space. Then (X,t) is an IFTS where T =
{(a, 14D €T A €T}

Proof : The proof is obvious.

Note: Above t is the corresponding intuitionistic fuzzy topology of T.

Again we know that every fuzzy set in X may be regarded as an intuitionistic fuzzy set

in X. So we have the following theorem:

Theorem 1.5.3. Let (X, t)be a fuzzy topological space. Then (X,t) is an IFTS where
t={(A.X),j €A €t
Proof : The proof is obvious.

Note: Above t is the corresponding intuitionistic fuzzy topology of t.

Again we know that every intuitionistic set in X may be regarded as an intuitionistic

fuzzy set in X. So we have the following theorem:

17
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Theorem 1.5.4. Let (X, ") be an intuitionistic topological space. Then (X, t) is an

intuitionistic fuzzy topological space where
v ={(1a, 1a,) 0 €7 Ay = (A, Ap) €T},
Proof : The proof is obvious.
Note: Above T is the corresponding intuitionistic fuzzy topology of 7.
Definition 1.5.5. (Coker, 1997): Let (X,t) be an IFTS and A = (', va) be an IFS in
X. Then the interior and closure of A are defined by
cl(A) =n{K:KisanIFCSinXandA c K),

int(A) =U{G: GisanIFOSin Xand G c A}.

It can be also shown that cI(A ) is an IFCS with A c cI(A) and int(A) isan IFOS in X

with int(A) c A, and
(@) Aisan IFCS in X iff cl(A) = A;
(b) Aisan IFOS in X iff int(A) = A.

Definition 1.5.6. (Bayhan & Coker, 1996): Let (X, T;), j = 1,2 be two IFTSs. The
product topology T; X T, on X; X X, is the IFT generated by {p;*(U;):U; € 1;,j =
1,2}, where p;:X; XX; > X;, j=12 are the projection maps and IFTS
(X4 X X3, Ty XTp) is called the product IFTS of (X, T;), j=1,2. In this case
S ={p;"(U;),j €J:Uj € 13} is a sub base and B ={U; x U,:U; € 7j,j = 1,2} is a

base for t; X T, on X; X X,.

18
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Definition 1.5.7. (Coker, 1997): Let (X, T) and (Y, §) be IFTSs. A function f: X = Y is

called

(a) continuous if pre-image of an open set is open, i.e. if f~1(B) € t forall B € §
or equivalently pre-image of a closed set is closed, i.e. if (f~1(B))¢ € t for all
B¢ € 8.

(b) open if image of an open set is open, i.e. if f(B) € & forall B € .

(c) closed if image of a closed set is closed, i.e. if f(A)¢ € & for all A® € t.

Homeomorphism if £ is bijective, open and continuous..

1.6 Compactness

Definition: 1.6.1. (Lipschutz, 1965) A subset A of a topological space X is compact
if every open cover of A is reducible to a finite cover.

Definition: 1.6.2. (Lipschutz, 1965) Let A be a subset of a topological space (X, T).
Then A is compact with respect to T if and only if A is compact with respect to the
relative topology Ta on A.

Definition: 1.6.3. A subset A of a topological space X is limit point compact if for
any infinite subset A of X, there is a cluster point of A in X.

Bolzano- Weierstran’s property: A metric space X is said to be Bolzano-
Weierstran’s property if every infinite subset of X has a limit point in X.

Definition: 1.6.4. A fuzzy topological space (X, t) is called compact if and only if
for every family u of fuzzy open sets of X and for every ac| such that V{U : U € u} >

a and for every e (0, a] there exists a finite subfamily u; of u such that V{U : U €

u}>a—=¢
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Definition: 1.6.5. (Srivastava and Srivastava, 1985 ). A fuzzy topological space (X,
t) is called a fuzzy Hausdorff space or T»- space if for any pair of distinct fuzzy points
(i.e. fuzzy points with distinct supports) x; and y, there exist fuzzy open sets U and V
such that x,eU, y,eVand UNV = 0x.

Definition: 1.6.6. (Wong, 1974). A fuzzy topological space (X, t) is said to be fuzzy
locally compact if and only if for every fuzzy point x; in X there exists a fuzzy open
set UeT such that x,eU and U is fuzzy compact, i.e. , each fuzzy open cover of U has
a finite subcover.

Note: Each fuzzy compact space is fuzzy locally compact.

Definition: 1.6.7. Let {An, neN} be a net of fuzzy sets in a fuzzy topological space

Y. Then by F- @(An), we denote the fuzzy upper limit of the net {An, neN}in IY,
that is, the fuzzy set which is the union of all fuzzy points p2 in Y such that for every

nyeN and for every fuzzy open Q — neighbourhood U of p2 in Y there exists an

element n eN for which n > n, and A, q U. In other cases we set F- @(An) =0.

Finaly for the notions of : (o) upper limit of a net of a subsets in a topological space
X, (B) compact topological spaces, (y) €2 - compact topological spaces and (3) (o, B) —

compact topological spaces.

Let X be a non-empty set. Then by |X| we denote the cardinality of X. Also,

throughout this paper the words “fuzzy space” means “fuzzy topological space”.

Definition 1.6.8. (Coker, 1997): Let (X, t) be an IFTS.

(@) If a family {{x,ug,vg,):i €]} of IFOS in X satisfy the condition U

{(x, g, ve,): i € J} = 1. then it is called a fuzzy open cover of X. A finite
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subfamily of fuzzy open cover {(x, ug,, v¢,): i € J} of X, which is also a fuzzy
open cover of X is called a finite subcover of {(x, u,, v¢,):i € J}.

(b) A family {(x, ux, vk,):i € J} of IFCS’s in X satisfies the finite intersection
property iff every finite subfamily {(x, ux,, vk,):i = 1,2, ...,n} of the family
satisfies the condition N {(x, ux,, vk,)} # O-.

Definition 1.6.9. (Coker, 1997): An IFTS (X, t) is called fuzzy compact iff every

fuzzy open cover of X has a finite subcover.

Definition 1.6.10. (Coker, 1997): (a) Let (X,7) be an IFTS and A be an IFS in X. Ifa
family  {(x, g, vg,):i €J} of IFOS’s in X satisfies the condition A CU
{(x, ug, vg,): 1 € J}, then itis called a fuzzy open cover of A. A finite subfamily of the
fuzzy open cover {(x, ug,, vg,):i € J} of A, which is also a fuzzy open cover of A, is
called a finite subcoverof {(x, u¢,, v¢,): i € J}.

(b) An IFS A = (x, g, vg,) inan IFTS (X, ) is called fuzzy compact iff every fuzzy

open cover of A has a finite subcover.

Definition 1.6.11. (Ramadan, Abbas & El-Latif, 2005): An IFTS (X, 7) is called
(a, B)-intuitionistic fuzzy compact (resp., (a, B)-intuitionistic fuzzy nearly compact
and (a, B)-intuitionistic fuzzy almost compact) if and only if for every family {G;:i €
J} in {G:G € {*,7(G) > (a,B)} such that U;c; G; = 1., where a € Iy, B € I; with

a+ f <1, there exists a finite subset J, of J such that U;e;, G; = 1. (resp.,

Uiej, intap (cla,g(Gi)) = 1. and U, clo g (G) = 1.).
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Definition 1.6.12. (Ramadan, Abbas & El-Latif, 2005): Let (X, t) be an IFTS and A
be an IFS in X. A is said to be (a, B)-intuitionistic fuzzy compact if and only if every
family {G;:i € J} in {G:G € {¥,7(G) > (a,B)} such that A € U;e;, G;, where a €

Ip,B el witha+p < 1.

Definition 1.6.13. (Ramadan, Abbas & El-Latif, 2005): A family {K;:i € J} in
{K:K € ¥,7°(K) > (a,B)}, where a € I, €1; with a+ <1 has the finite

intersection property (FIP) if and only if for any finite subset J, of J, N;¢;, K; # O-.

Definition 1.6.14. (Ramadan, Abbas & El-Latif, 2005): An IFTS (X, 1) is called
(a, B)-intuitionistic fuzzy regular if and only if for each IFS A in X such that t(4) >
(a,B), where a€ly,,B€l; with a+p <1, can be written as A=U{B:B €

{¥,1(B) =2 1(A),cly 3 (B) € A}.

1.7 Connectedness

Definition: 1.7.1. (Lipschutz, 1965) A subset A of a topological space X is
disconnected if there exist open subsets G and H of X such that ANG and AnH are
disjoint non-empty sets whose union is A. In this case, GUH is called a disconnection
of A. A set is connected if it is not disconnected.

Observethat, A = (ANG) U (ANH)iff AcGUHand ¢ = (AnG) N (AN
H) iff G n H — Ac. Therefore GUH is a disconnection of A ifandonly if AN G = ¢,

ANH # ¢ AcGUH,and G n H cA®.
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Example 1.7.2. Consider the following topology on X = {a, b, c, d, e}:

T={X, ¢, {a, b, c}, {c, d, e}, {e}}

Now A ={a, d, e} is disconnected. For let G = {a, b, c} and

H ={c, d, e}; then ANG = {a} and AnH = {d, e} are non-empty disjoint sets whose

union is A.

Definition: 1.7.3. (Lipschutz, 1965) A topological space X is connected if and only
if
(i) X is not the union of two non-empty disjoint open sets,

(if) X and ¢ are the only subsets of X which are both open and closed.

Definition: 1.7.4. (Fatteh & Bassam, 1985) A fuzzy topological space X is said to be
fuzzy connected if it has no proper fuzzy clopen set. (A fuzzy set A in X is proper if A

# 0and A # 1, clopen means closed-open.)

The pair (X, 1) is called an intuitionistic fuzzy topological space (IFTS, in short),
members of t are called intuitionistic fuzzy open sets (IFOS, in short) in X, and their

complements are called intuitionistic fuzzy closed sets (IFCS, in short) in X.

Definition 1.7.5. (Srivastava & Singh, 2011): Two disjoint non-empty intuitionistic
fuzzy subsets A = (uy4,v4) and B = (ug,vg) of an IFTS (X, 1) are said to be
separated if there exist U; € T (i = 1,2) suchthat U; 2 A,U, 2 BandU;nA=U, N

B=0..
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Definition 1.7.6. (Srivastava & Singh, 2011): Let (X,7) be an IFTS and A be an IFS
in X which is strictly positive i.e. A(x) » 0_ (i.e. ua(x) > 0,v,(x) < 1,Vx € X). A
pair U, U, € T iscalled (C;) — separationof Aif U; # A, U, # A, U; U U, = A and
UynU, =0..

Definition 1.7.7. (Sethupathy & Lakshmivarahan, 1977) A fuzzy topological space X
is said to be disconnected if X = A U B, where A and B are non-empty open fuzzy
sets in X such that AnB = @. Hence a fuzzy topological space X cannot be

represented as the union of two non-empty, disjoint open fuzzy sets on X.
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CHAPTER TWO

Compactness in IFTS

Fuzzy compact space was first introduced by Chang (Chang, 1968) in fuzzy
topological spaces and mentioned some properties which are global property. Later
Dogen Coker (Cocker et al. 1996, 1997, 2001, 2003) introduced the basic definitions
and properties of intuitionistic fuzzy topological spaces and fuzzy compactness in
intuitionistic fuzzy topological spaces.. After then A. A. Ramadan, S. E. Abbas, A. A.
Abd El-Latif (Ramadan et al. 2005) and M. A. Mahbub (Mahbub et al.2018)
introduced compactness in intuitionistic fuzzy topological spaces.

In this chapter, we give seven new notions of intuitionistic fuzzy compact (in short,
IF-Compact) space and investigate some relationship among them. At first we show
that all these notions satisfy ‘good extension’ property. Furthermore, it proves that
these intuitionistic fuzzy compact spaces are hereditary and productive. Finally, we

observe that all concepts are preserved under one-one, onto and continuous mapping.

2.1 Definition and Properties

Definition 2.1.1. Let (X,7) be an intuitionistic fuzzy topological space. A family
{(u,ve,):i € J} of IFOS in X is called open cover of X if U g, =1and nvg, = 0.
If every open cover of X has a finite subcover then X is said to be intuitionistic fuzzy

compact ( IF-compact, in short).
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Example 2.1.2. Let X ={1,2} and 7 be an intuitionistic fuzzy topology on X

generated by{G,,} ,en, Where G, = {x, <éé> , (i,é)}. Note that U,ey Gy, IS

n+2 n+3 n+3 n+4

an open cover for X but this cover has no finite subcover.

Consider, G; = {x, (L 2 ),(

0.66’0.75

1 2

1 2 1 2
G = % (535 05) Gzr 2}

1 2 1 2
6: = 0 (5555) Gieroad)
and observe that G; U G, U G5 = G3. So, for any finite collection {Gy,: i € I}, where [
is a finite subset of N, Uy,e Gn, = Gy # (1,0), where m = max{n;:n; € I}.

Therefore the IFTS (X, T) is not compact.

Definition 2.1.3. A family {(u,, vg,): i € J} of IFOS in X is called (a, B)-level open
cover of X if Upug, = a and Nvg, < B with a + g < 1. If every (a, B)-level open

cover of X has a finite subcover then X is said to be (a, §)-level IF-compact.

Example 2.1.4. Let X = I and consider the IFSs {G,,: n = 2,3,4, ...} as follows:

(0.9 x=0
nx 0<xSi2
n

e, = 3 .
(1 §<xS1
( 0.1 x=0
an:<1—nx O<xSn—12
. 0 n—12<x31

_ {0.9 x=0
He 1 otherwise
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S
G 0 otherwise

The intuitionistic fuzzy sets G, = {x,ug,,ve },n =234, .. is (a B)-level IF-

compact for « = 0.75 and § = 0.2.

Theorem 2.1.5. Show that the following statements are equivalent: (i) X is IF-
compact, (ii) For every {F;} where F; = (vg ug,) of closed subset of X with N F; =
(0,1) implies {F;}contains finite subclass {F;, Fiz, ..., Fim} With F;; N Fi; N ...N
Fiyp = (0, 1).
Proof: (i) = (ii). Suppose N F; = (0, 1) then by De Morgan’s law
(N F) = ((0, )"

= UF,° =(1,0)

= U (vFi,,uFi)c =(1,0)

= U (ﬂFi»VFi) =(1,0)

= (Uur,Nvg,) = (1,0).
So, {F;°}, (Ff= (uFi,vFi)) is an open cover of X. Since X is IF-compact hence
3F;1 5, FpS, ..., Fi S €{F;°} such that F;;°U F,°U ...UF,;,“ =(1,0). Then (0,1) =
(1,0)¢ = (F;1UF° U ... UF,9)¢ = (F1)° N (FR)n ..n (Fi,©)¢  (By De
Morgan’s law) = F;; N Fj; N ...N F;,,, S0 we have shown that (i) = (ii).
(i) = (i). Let {G;} be an open cover of X where G; = (ug,, vg,), i.6. U;G; = (1,0).
By De Morgan’s law, (0,1) = (1,0)¢ = (U; G))¢ = N; G;°. Since each G; is open, so
{G;“} is a class of closed sets and by (ii) 3G;;¢, Gi2°, ..., Gim“€ {G;°} such that G;;° N

G N ...N Gy =(0,1). So by De Morgan’s law (1,0) = (0,1)¢ = (G, N
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G N ..N G°)¢ = Gj1 UG U ..U Gy, hence X is IF-compact. So, we have

shown that (ii) =(i).

Theorem 2.1.6. Let (X, 7) be an IFTS. If A = (uy,v,) and B = (ug,vg) are IFS in X.
If A and B are IF-compact in (X, ) then A U B is also IF-compact in (X, 7).

Proof: Let M = {A; = (14, va,):1 € J} be an open cover of A = (uy,v,) and X =
{Bi; = (up,vg,):i €]} be an open cover of B = (up,vg) in (X,7). Hence Ac
U, A;and B € UX, B;.

Now AUB < U2, 4; U UL, B;

_ {U?=1((Ai UB)U (UL 414) if m>n
S WUP (A UB)U(UE,41B)) if n>m

> AUB CU (4; UB)

i.e. {4; UB;:i € J}isacoverof AU B.

Again, as A is IF-compact in (X, 7) then A has finite subcover i.e. there exist A;; €
{A;}, k € j, such that € Uj_, A; . Also as B is IF-compact in (X, 7) then B has finite
subcover i.e. there exist B;, € {B;}, k € J, such that B € U}, Bi.

Now from A <€ Uj-, A;x and B € U}, By gives

AUB C Uzzl A U U;(n=1Bik

{U;cnzl((Aik UBy) U (Uitmi1di)) if n>m
Uk=1((Aix UBy) U (Uit 41 Bix)) if m>n

=>AUBCuU (Aik V) Bl'k)
i.e. {4;x U By k € J,} isasubcover of AU B.

Hence A U B is IF-compact in (X, 7).
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2.2 Good Extension Property

Theorem 2.2.1. Let (X,T) be a topological space and (X, t) be its corresponding
IFTS, wheret = {(1,4,-, 1Aj),j €]: A€ T}. Then (X, T) is compact if and only if
(X, 7) is IF-compact.
Proof: Let (X, T) be compact. Consider {G;|ie/}be the open cover of X, i.e. UG; =
X ....(A). Since X is compact then 3G, Gy, ..., Gy €T such thatG;; U Gjp U ..U
Gin = X.....(11). Now it is clear that (1ci,1cic) € t (by the definition).
Also we have, U (15,14,) = (U 15, N 15,°)
= (1uGi,1nGiC)
= (1x, 1n6,)
But we have, 1y + 1,5, < 1 then it must be 1,5, = 0. Therefore we get,
U (1g,16,") = (1%, 0).
Also by (ii) we get, (1x,0) = (16,,u6;,u..UG;, » 0)
= (U?=1 1Gi]-' 0)
=U (1, 0)
Hence it is clear that the IFTS (X, 7) is IF-compact.
Conversely, let (X, 7) is IF-compact and {1, |ie/ }be the open cover of X. Then by the
definition (1,,15,°) € 7, where U (1,14,°) = (1,0)
= (Uly, Nn1y4°) = (1,0)
= (1uHi,1nHiC) =(1,0)

== 1qu. == 1 == 1X and 1ﬂHiC = 0 = 1@
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= UH; =X, nH‘=¢

Again, since X is compact then 3((1x,, 1u,, ), (1n,, 10,9, -or (1, 1n, ©) € T such

that Ul (L, 1) = (1,0) = (U 14,0 1H5) = (1,0)

= (1Unyr Lo ) = (1,0)
— 1UHij = 1 = 1X and 1ﬂHijC = 0 = 1@
:>UHl'j:X,nHl'jC:®

Hence, (X, T) is compact.

Corrolary 2.2.2. Let (X,T) be a topological space and (X, 7) be its corresponding
IFTS, wheret = {(1Aj, 1A]C.),j €] : A ET}. Then (X,T) is compact if (X,7) is
(a, B)-level IF-compact.

Proof: Here it is clear that for any a, fel witha+ 5 <1=>1=>aand § = 0. So,

(X,7) is (a, B)-level IF-compact.

Theorem 2.2.3. Let (X,7) be an intuitionistic topological space and (X,t) be its
corresponding IFTS, where © = {1A,- = (1A]_1, 1Aj2),j €/: A = (A, Aj) eT}.
Then (X, T) is intuitionistic compact iff (X, 7) is IF-compact.

Proof: Let (X,T) be an intuitionistic compact space, we shall prove that (X, t) is IF-
compact. Consider {14, } be an open cover of 7, i.e. U1, = (1,0), where (1,0) is
intuitionistic fuzzy set.

Now 1,, = (14,,, 1a,,) = VU 1s, =U (14, 1a,)

=U 1Ak = (U 1Ak1' N 1Ak2)
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= 1lyu, = (1 UAgy? 1nAk2)
= 1yu, = (1%, 0)
= 1y,, = (1,0)
By the given definition {4, € T}, k € A is the open cover of X, since U 4;= (X, 0).
But we have (X, T) is compact then 3 Ay , Ay, -, Ax,, € T such that
Ujoy Ay = (X,0)
= Ujo1(Ak,;,» Ak, ) = (X, 0)

= (U?=1Akij1 ) ?=1Akij2 ) = (Xl Q))

= <1U’-l A ,1n}?=1Akij2) = (1x,1p)

j=1kijy

= (1up,ae,, L07rm, ) = 1O)

kijy
Hence (X, ) is IF-compact.
Conversely, suppose (X, 7) is IF-compact. Consider {1,, }be an open cover of z,
ie.Ul,=(10)
=U (1,4, 1a,,) = (1,0)
= (U1, N1ls,) = (1,0)
= (1 UApy 1nAk2) = (1,0)
= lyg, =1=1xand 1oy, =0=1y
= UA;=Xand N4, =0
Again, as (X, ) is compact then

3 (Lay, Ly, )+ (Lary + Ly, )+ (L, - (Lag,, ) € T 5UCN that

Ulr (L 0 g, ) = (LO)
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= (Ui lay, - M=ila, ) = (10)

ij2

= (1U?=1Ak"1'1n7]:l=1Akij2> = (1,0)

=1 =1=1yand 1
Uj=1 4k, X Mj=1 4k,

ij2

Hence, (X, T") is compact.

=0=1,

Theorem 2.2.4. Let (X,t) be a fuzzy topological space and (X,t) be its

corresponding IFTS, where T = {(4,A¢) : 1 € t}. Then (X, t) is compact if and only

if (X, 7) is IF-compact.

Proof: Let (X, t) be a fuzzy compact space, we shall prove that (X, t) is IF-compact.

Consider {4;|ie]J}be the open cover of X, i.e. UA; =1 ....(i). Since X is compact then

AAi1, iy sy Aip € t Such that A;; U4, U ..U A, = 1.....(>11). Now it is clear that

(A4 € 7 (by the definition).

Also we have, U (1;4,°) = (UA; N 4°). But we have,u 4; +n 2;° < 1 then it must

be N 4, =0as U A; = 1. Therefore we get, U (1;4,°) =(1,0).

Also by (||) we get, (1, O) = (Ail V) AiZ U..uU Ain , O)

= (Uj=14:;,0)

= Uj=1(45,0)

Hence it is clear that, the IFTS (X, 1) is IF-compact.

Conversely, let (X, t) is IF-compact and {4;|ie/}be the open cover of X. Then by the

definition(4; A;°) € 7, where U (1;4,°) =(1,0)

— (U /‘{i, N /‘{ic) = (1, 0)
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Chapter Two Compactness in IFTS

=UA =X
Again, since (X, ) is compact then 3((A;1,2i1°), (Liz, 2i2), oo, (Qiny Ain°) € T such
that U, (Ai, A5;) = (1,0) = (U 2;;,0,2;5°) = (1,0)
=U;=1

Hence, (X, t) is compact.

2.3 Mapping in IF-Compact Space
Theorem 2.3.1. Let (X,7) and (Y,8) be IFTSsand f:X — Y is bijective, open and
continuous. Then (Y, §) is IF-compact = (X, 7) is IF-compact.

Proof: Let A; = (u;,v;) € Tt with UA; = (1,0). Now 4; et = f(4;) € § with U

f(A) = (1,0). Fory €Y, f(ADY) = O, f (a, ) D), £ (va,) ), where f(ua,) () =

sup ..
xef1 (y),uAi(x) =114, (x). Similarly we get, f(va,)(y) = va,(x). Now U f(4;)= U

(fF(ad f(Va)) = (U f(ua), N fva)), ie. Uf(ua)ly) = Upy(x) =1 and n
f(a)(y) = Ny (x) =0, s0 U f(4;) = (1,0). Since f is open then {f(4;)} is an
open cover of Y. Again Y is compact then there exist £ (A1), f(A20), oo, f(Ani) € &
such that U%., f(4;;) = (1,0) = f(Uj14;) = (L,0) = fH(f(Uf14;) =
f£71(1,0) = f71(1,0) € U%_, A; (since from Chang p S f~*(f(w))). Therefore

i=14ji = (1,0). Hence (X, 7) is IF-compact.

Theorem 2.3.2. Let (X,7) and (Y,d) be IFTSsand f:X — Y is one-one, onto and
continuous. Then (X, t) is IF-compact = (Y, ) is IF-compact.

Proof: Let A; = (u;,v;) € 6 with U 4; = (1, 0). Since 6 is atopologyso UA; € § =
YU A) € Twith f71(UA4;) = (4, 0) (as f is continuous) =U f~1(4;) = (1, 0). But
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U f7HA) = U F 7, v) =00 ), £ () € T with U(F (), £ (V) =
(1,0). Since (X,t) is |IF-compact then 3A4;;,4i;, ..., Ay €5 where
™ ) ST va)) (F i), F7H (Vi) oes (F 7 (im), £ (vim)) € T such
that (f ™ (uin), f (v ) U (F 7 ) f (v ) U U (F 7 ), £ (vim) =
(1,0)

= UTLy(F " (1), £ (vi)) = (1, 0)

= (U7 S (), NJLa f 71 (i) = (2, 0)

= fOUTr f 7 (), NJea f7H (W) = £(1,0)

= (UL f (), NG fOF7H(vy))) = (L, 0), since f is one-one and
onto, so f(1,0)=(1,0). Therefore (U7l p;; NLyviy) = (1,0), e
UL (uijo vij) = (1,0).

Hence (Y, §)is IF-compact.

2.4 Subspace and Product Space of IF-Compact Space

Theorem 2.4.1. Any closed IF-subspace of an IF-compact space is IF-compact.
Proof. Let A be a closed IF-subspace of an IF-compact space X and let F = {F;:i € J}
where F; = (ur,, vr,) be an open cover of 4, i.e. A S Use; F;. So, X = (U; G;) U A%,
that is F* = {F;} U {A°} is a cover of X. But A€ is open since A is closed, so F* is an
open cover of X. By hypothesis, X is IF-compact, hence F* is reducible to a finite
subcover of X,say X = F;, UF;, U..UF; UA“F;, € F,k=12,..,n. ButAand A°
are disjoint, hence ¢ F; UF;, U ...UF; ,F; € F,k =1,2,...,n.We have just shown
that any open cover of A contains a finite subcover, i.e. A is IF-compact.
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Theorem 2.4.2. Let (X, 7)be an IFTS and (V, ;) be a subspace of (X, 1) with (X, 1)
is IF-compact. Let f: (X,7) = (V, 1) be continuous, open and onto, then (V,ty) is
IF-compact.
Proof: Let M = {B;:ieJ} be an open cover of (V,t,) with UB; = (1,,0). By the
definition of subspace topology, let B; = U;|V, where U;et. Since f is continuous
then f~1(B)et implies that f~1(U;|V)et. As, (X,t) is IF-compact then
Uies f71(UIV) (x) = (1, 0). Thus we see that, {f ~*(U;|V): i € J} is an open cover
of (X,7). Hence there exist f~X(Uy V), f 1(UplV), ..., F XU |V) € {f 1 (U;|V)
such that UR_, f "1 (Uy V) = (1x,0). Put By, = Uy |V, then it is clear that B, € T,
with
U;cl=1f_1(Bik) = (1x,0)
= f(Ug=1f ' (Bu)) = f(1x,0)
S up, fUT B = (F(10,0)

= U=, Bix = (1,,0) as f is open.
Hence (V, ) is IF-compact.

Theorem 2.4.3. Let the IFTS’s (X3, 7,) and (X, ;) be IF-compact. Then the product
IFT 7, X 7, on X; X X, is IF-compact.

Proof. Consider, (X;,7;) and (X,,7;) is IF-compact. Let A; = (ua,va,)€T, With U
A; = (1,0) and B; = (up,vg,)€eT, With U B; = (1, 0).

Now Ai X Bi = (I’LAL',VAL') X (nuBi,vBi) = (:uAi X :uBi' vAi X vBi)
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where (“Aii(“Bi) (x,y) = min (“Ai (x),,uBi(y)), where xeX;, yeX,
= min (1,1)
= 1.
Similarly, (vAi;<vBi)(x, y) = max(vy, (x),vg,(¥))
= max (0,0)
= 0.
So, A; X B; = (1,0). But by the definition of product topology, A; X B; € T, X T, i.€.
{A; x B;} is a family of intuitionistic fuzzy open set in X; X X,. Choose U (4; X
B;) = (1,0). Since (X;,74) is IF-compact, then {4;} has finite subclass{4;;} such that
i=14ij = (1,0). Similarly, since (X,,7,) is IF- compact, then {B;} has finite

subclass{B;;} such that Uy~ By = (1,0). Therefore Uj_; 4;; X Uk By = (1,0)
= U;'l=1 (‘UAU'VAU) X UZl:l('uBik'vBik) =(1,0)

= (UToy ttayr N1y ) % (U gy Ny VBy,) = (1,0).
Hence there exist four cases:
Case-l: If U?:MAU =1, Ugz1 g, = 1
Case-1l: If Uy pay, = 1, N2y Vg, =0
Case-lll: If ﬂ;-‘zlvAij =0, U;cn=1ﬂBik =1
Case-IV: If Nf_1va,; =0, Nk=q vy, =0
Here from four cases, we see that the product topology (X; X X,71 X 73) IS IF-

compact.
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2.5 Separation Axioms in IF-Compact Space

Definition 2.5.1. An IFTS (X,7) is called Hausdorff iff x, ), y¢s) € X, where

m,n,7,s €I and  Xgnn) # Yrrs) IMply that there exist Gy = (x, ug,,vg,), G2 =

<yr HUg,» VGZ) € T with HUg, (x(m,n)) =1, Ve, (x(m,n)) =0, Ug, (y(r,s)) =1, Ve, (y(r,s)) =

Oand Gl ﬂGZ = ON.

Example 2.5.2. Let X ={x,y} and t be an intuitionistic fuzzy topology on X
generated by A = {(x,1,0), (y,0,1)}, B = {(x,0,1), (y,1,0)} then clearly (X,7) is

IF-Hausdorff space.

Theorem 2.5.3. Let A be an IF-copmact subset of an IF-Hausdorff space X and
SUPPOSE P(r.s) € A€, where r, s € . Then there exists open sets G; , and G, such that
D(r,s) € Gopy A C Gy and Gy N Gy = 0.

Proof. Let x(;, ) be an IF-singleton and x, ) € A. Since p(.s) € A¢, wherer,s €
I implies xmn) # Ders)- By hypothesis, X is an IF-Hausdorff space 3Gl.x(m,n) =
(46, vg,) and Gopirsy = (g, vg,) such that pug (x(m_n)) =1,vg, (x(m’n)) =
0, u6,(Pars)) = Lve,(Pers)) = 0 and G1xmm N G2psy = 0~ Hence we have A <
U {Gl,x(m,n)ix(m,n) € A}, ie. {Gl,x(m,n)ix(m,n) € A} is an open cover of A but A is IF-
compact so it has a finite subcover Gq ,,G1x,, > Gix,, € {Gl,x(m,n)} such that

AcC Gl,x11 V) Glﬂxlz U..uU Glﬂxln' NOW Iet Gl,x = Gllxll U Gl'x12 U..U Glﬂxln and
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Gap = Gap,, NGap,, N...0Gyp . Then Gy, and G,,, are open since they are the
union and finite intersection of open sets respectively. Furthermore, A c G, and
D(r,s) € Gzp, SINCE  p(- ) belongs to each Gap,; individually. Lastly we claim that
G1x N G, = 0. Note first that, Gl,xlj N Gz_plj = 0. implies that Gl’xlj NGy, =0..
Thus by distributive law,

Gl,x n Gz'p = (Gllx11 V) Gl,xlz Uu..U Glrxln) N szp

= (Grx,, N Gyp) U (Gryy, NGyp) U U (Gyy,, NGyp)
=0.U0_.U..u0_

=0..

Theorem 2.5.4. Let A be an IF-compact subset of an IF-Hausdorff space X and
D(r,s) & A, then there exists an IFO-set G = (ug, v¢) such that p. ) € G < AC.
Proof. In the above theorem 3.1, if we put G = G,,, then G;, NG =0.=>G S

Gy ©. Again we have A € Gy, = Gy ,° S A€. S0, p(rs) € G S Gy,,° S AC.

Definition 2.5.5. A point p, is called interior point of A if we find an IFO-set G

such that p.. ) € G < A. Again if every point of A is interior of A4, then A is open.

Theorem 2.5.6. Let A be an IF-compact subset of an IF-Hausdorff space X. Then 4 is
closed.

Proof. We shall prove that A is closed IFS i.e. A¢ is interior IFO-set. Consider
X(mn) € A€ be any arbitrary IF-singleton, it is enough to prove that X(mn) IS interior

point of AC. Let D(rs) b€ another IF-singleton and p,. 5y € A. By hypothesis, X is an
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IF-Hausdorff space AG1xnny = (46, vg,) and Gopirsy = (4g,,vg,) such that
He, (Xamm) = 1V, (Xamm) = 0 tte,(Pers) = LV, (Par) =0 and  Giy, ) 0
GZ,p(m) = 0.. Hence we have A cu {Gz,p(m)ip(r,s) € A}, l.e. {Gz,p(m):P(r,s) € A} is
an open cover of A but A is IF-compact so it has a finite subcover
G2p,0 Gopyyr s Gop,, € {szp(r_s)} such that A c Gy, , U Gyp,, U ..U Gpp . NOW
let Gop = Gop,, UGap,, U..UGyy  aNd Gy = Gyx, NGyx, NoN Gy, . Then
Gy, and G,,, are open since they are the finite intersection and union of open sets
respectively. Furthermore, A € G,,, and Xy, ny € Gy, SINCE p(rs) belongs to each
Gy individually. Lastly we have to show that G;, N G,, = 0.. Note first that,
Gix,; N Gap,, = 0 implies that Gy, N Gy, ; = 0.. Thus by distributive law,
Grx N Gap = Gy N (Gop,, UGyp U .U Gy )

= (G1x N Gyp,, ) U (Gryx N Gyp,,) U .U (Gry N Gyp,)

=0.U0.U..U0.

=0..
= G4 € Gz,pc
Again we have, A € G,, = G,,° < A
Hence, X(mn) € G1x S G,p° S AC. So, X(m,ny IS an interior point of A¢, since x(y

is an arbitrary so every point of A is interior of A¢. So, A is open i.e. A is closed.

Definition 2.5.7. An IFTS (X,7) is called IF-normal if F; = (ug,vg) and F, =
(Ur,, VE,) be two closed set with F; n F, = (0,1), then there exists G = (ug, vg), H =

(Uy,vy) ETSuchthat F; € G,F, S Hand G N H = (0,1).
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Theorem 2.5.8. Let A and B be disjoint IF-compact closed subsets of an IF-Hausdorff
space X. Then there exist disjoint open sets G, , and G,,, such that A c G, , and B
Gay-
i.e. Each IF-compact Hausdorff space is IF-normal.
Proof. Let x(, ) € A and y,. ) € B implies X n) # Yrs) N Xy € B for A and
B are disjoint. By hypothesis, X is IF-Hausdorff Space and B is IF-compact then by
the previous theorem 3.1 3G x ) = (ug,,vg,) and Goyrsy = (Ug,,vg,) such that
X(mmn) € Gragnyr B C Gayq and G ximm N G2,y = 0w Since xX(mn) € G1xnny?
{Gl,x(m,n):x(m.n) € A} is an open cover of A. Since A is IF-compact, we can select a
finite number of open sets Gy, ,,G1x,,» - G1x,, SO that A € Gy, U Gyy,, U ..U
G1,x,, Furthermore, B € G,,,, N G,y,, N ...N G,,, , SinCe B is a subset of each
individually. Now let G;y = Gyx,, UGy, U ..UG1y, and Gy, =Gy, N
Gzy,, N ...N Gy, . Observe by the above that A € G, and B c G,,,. In addition,
Gy and G, are open since they are respectively the union and finite intersection of
open sets. We have to show that G, , and G, ,, are disjoint. First observe that, Gy, N
Gay,; = 0~ implies that Gy ., ; N G, = 0.. Thus by distributive law,
Gix N Gay = (Gyp, UGy, U..UGyy )N Gy
= (Grxy, NGzy) U (Gryy, NGay) U iU (Gyy,, N Gyy)
=0.u0.vU..uO0.

=0..
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Definition 2.5.9. An IFTS (X, 7) is called IF-regular if x,, ) be an IF-singleton does
not belong to a closed set F i.e. X(nn) € F = (up, vp) then there exists G =

(uG,v6), H = (uy,vy) € Tsuchthat x,n) € G,F S Hand G N H = (0,1).

Theorem 2.5.10. Each IF-compact regular space is IF-normal.

Proof. Let F; = (ug,,vr,) and F, = (ug,, vg,) be two disjoint closed set, where F; N
F, = (0,1). Consider x(y ) € Fithen for all x(;,) & F,. Since x¢yny be an IF-
singleton does not belongs to F, and X is IF-compact regular there exists G =
(ug,ve), H = (uy,vy) € T such that x¢,n) € G,F, € H and G N H = (0,1). Now,
we have to show that F; c G. Since, X(un) € G, SO {G: X n) € Fy} is an open cover

of F;. Since X is IF-compact then there exist finite number of open sets G4, G,, ..., G,
so that F; € (G, UG, U ..UG,) = G, here G is open as G is the union of open sets.

So, F, caG.

2.6 IF-Locally Compact Space

Definition 2.6.1. An IFTS is IF-locally compact if every IF-singleton in X belongs in

an IF-compact open set.

Theorem 2.6.2. Every IF-compact space (X, 7) is IF-locally compact.

Proof. Let x, ) be any fuzzy singleton such that x(,, ) € A = (14, v4) € T. Again
{B; = (up,,vg,)} be an open cover of X i.e. UB; = (1,0). Since X is compact then

there exists jy, j,, ..., jn such that Uz_, Bj, = (1,0). Since A € (1,0) then (A N B;) is

41



Chapter Two Compactness in IFTS

also an open cover of A as A and B; are both open. Again, we get AN (Ug-, Bjx) =
(1L0)NA = Ug=1(ANBj) =A ie. A can be expressed as finite union of open

covers {A N By, }. Hence A is IF-compact. So, (X, ) is IF-locally compact.
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CHAPTER THREE

Q-Compactness in IFTS

In this chapter, we have introduced Q-compactness in intuitionistic fuzzy compact
topological spaces. Furthermore, we have established some theorems and examples of
Q-compactness in intuitionistic fuzzy topological spaces and discussed different
characterizations of Q-compactness.

Also we have defined § — Q compactness, Q —o compactness and 6§ —Q — o
compactness in intuitionistic fuzzy topological spaces and found different properties
between Q-compactness and § — Q compactness, Q — o compactness and § — Q — o

compactness in intuitionistic fuzzy topological spaces.

3.1 Definition and Relationship

In this section we have given some definitions and investigated some relations among

various definitions.

Definition 3.1.1. Let (X, ) be an intuitionistic fuzzy topological space (IFTS) and
A = (uy,v4) bean IFS in X. Consider M = {B;:i € J} be a family of IFS in X, where
B; = (up,; vg,). Then M is called Q-cover of A if A € UB;, ua(x) + ug,(x) = 1 for
each ug,and some x € X. If each B; is open then M is called an open Q-cover of A. A
subfamily of Q-cover of an IFS A in X which is also a Q-cover of A is called Q-

subcover of A.
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Definition 3.1.2. An IFS A = (u4,v,4) in X is said to be Q-compact if every open Q-
cover of A has a finite Q-subcover i.e. 3B;4, B;3, ..., Bin, € M such that A € UL, B;,

pta(x) + tp,;(x) = 1 for each pp, and some x € X, j = 1,2,...,n.

Example 3.1.3. Let X = {a,b} and I = [0,1]. Let 4;,A, € I* defined by 4,(a) =
(0.5,0.2), A;(b) =(0.7,0.2), A,(a) = (0.6,0.3) and A,(b) = (0.8,0.1). Consider
T ={(0,0),44,4,,(1,0)}. Then (X,t) be an intuitionistic fuzzy topological space
(IFTS). Again let A € I* with A(a) = (0.5,0.3), A(b) = (0.3,0.2). Here A(a) CU
Ai(a), pa(a) + ug(a) = 1. Again, A(b) €U A;(b), pa(b) + pa,(b) = 1. Therefore

{A;,A,} is a Q-cover of A.

Theorem 3.1.5. Let (X,7)be an IFTS. If A = (u4,v,) and V = (uy,vy) are Q-

compact in (X, t) then A UV is also Q-compact in (X, T).

Proof: Let M = {A; = (4, va,): 1 € J} be an open Q-cover of A = (uy,v,) and X =

{Bi = (up;,vp,):i €]} be an open Q-cover of V = (uy,vy) in (X,7). Now AC
r,A;and V € UL, B; such that

AUV S UX, A; UUR, B

UZ((A4;UB) U (Uit 4))) if n>m
Uit ((A;UB) U (UiLh1BY)) if m>n

= AUV C {
:>AUVQU(AL'UBL')
Again, by the definition of Q-compactness, we have p,(x) + 4, (x) = 1 for each uy,,

and some x € X and uy, (x) + pp,(x) = 1 for each pup, and some x € X

= Ucaov)(X) + paupp () = 1.
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Hence M U X = {A4; U B;} is an open Q-coverof AU V.
Again, as A is Q-compact in (X, t) then A has finite Q-subcover i.e. there exist 4;, €
{A;}, k € jpsuchthat A € Uj—; Ay and py(x) + py, (x) = 1 for each p,,, and some
x € X. Also as V is Q-compact in (X, 1) then V has finite Q-subcover i.e. there exist
Bix € {Bi},k € j,, such thatV € Uy_, By and uy (x) + pp, (x) = 1 for each ug, and
some x € X. Now A € Uj_; Ay, and V € Ug—; By, Which gives

AUV S Uj=y A U UL, By

Uk=1((Aix U Bi) U (Ui i) if n>m
Uk=1((Aix U By) U (UiZh41 Bi)) if m>n

= AUV Cc {
= AUV CU (A U By)

Also,  uy(x) +py,(x) =1 and py () + pp, () =21 = pavn(x) +
Heaguy () =1

i.e. {4;x U Bj}is an open Q-subcover of AU V.

Hence A U V is also Q-compact in (X, 7).

Theorem 3.1.6. Let (X, 7)be an IFTS and A = (uy,v,) be an IFS in X. If every {F;}
where F; = (v, up,) of closed subset of X with n F; = (0,1) implies {F;} contains
finite subclass {F;;, Fiz, ..., Fip} With F;y N Fp N ...NFyppy = (0,1) then A is Q-
compact in(X, t). The converse is not true in general.
Proof: Given N F; = (0, 1) then by De Morgan’s law (N F;)¢ = ((O, 1))C
=UF°=(1,0)
=U (VFl-,liFi)c =(1,0)
=V (UFi'VFi) =(1,0)

- (U ,U.Fi,n vFi) = (1, 0)
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Let M = {B; = (up, vs,):i €]} be an open Q-cover of 4 in (X,7), so 4 € UB;,
p4(x) + up,(x) = 1 for each up, and some x € X. Since each B; is open, so {B;“} is
a class of closed sets and by given condition 3B, B;,°, ..., By € {B;} such that
Bi1°N B N ...n B;,“ =(0,1). So by De Morgan’s law (1,0) = (0,1)¢ =
(Bi1“ N Bi“ N .on Biy“)* = By UBj U ..U By, hence A € ULy Byj, pa(x) +
liBi,-(x) >1,j=12,..,n for each Hp,; and some x € X. So, A is Q-compact in

X, 7).

3.2 Mapping in IF-Q-Compact Topological Space

In this section, we have discussed about image and preimage of IF-Q-Compact

topological Space.

Theorem 3.2.1. Let (X,7) and (Y,d) be two IFTS and f: X — Y is bijective, open
and continuous. If f(A) = (f(ua), f(vy4)) is Q-compact in (Y,8) then A is Q-
compact in (X, 7).

Proof: Let A = (us,vs) €. Consider M = {B; € 1} where B; = (up,vg,),i €]
with A € UB; and p,(x) + pp,(x) = 1 for each ug.and some x € X i.e. M is a Q-
open cover of A, then f(A4) = (f(uu),f(v,)) is an IFS of Y. Since B; € t then
f(B) €éd as fis open. But f(B;) = (f(us, f(vs,)). Now we have A < UB;
= f(A) S fUiB) =U;f(B) ie. f(A) S U;f(By). For any €Y, f(ua)(y) +
f(up,) ) = supua(x) + supug,(x), where x € f~1(y)

> pa(x) + ug,(x)Vi € J, since f isonto and f(y) # @

>1
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= ) @) + f(us) ) = 1

i.e. H ={f(B;):i €]} is Q-open cover of f(A). Since f(A) is Q-compact then
3f(Bi1), f(Bi2), .., f(Bin) € 6 3 f(A) S Ug=1 f(By) and

fud ) + f(uz,) ) =1
= 7 (FudO) + f (s, )3)) = F7HD)
= f D) + 7 f (s, ) ) 2 1

= pa(x) + up, (x) = 1as f is continuous and so Vy € Y = 3 unique x € X since
fx)=y.

Again, f(A) € Ug=1 f(Bix)

= 1 (4) € f~H(Uk=1 f (Bi))

= A S U= f 7 f(Bi)

= A S Uy~ Bix-

Hence, we clear that By € 1 3 A € Uk=; By and pu(x) + pp, (x) = 1. Now it is

clear that A is Q-compact in (X, 7).

Theorem 3.2.2. Let (X,7) and (Y,&) be two IFTS and f: X — Y is bijective, open
and continuous. If A = (uy,v,) is Q-compact in (X, t) then f(A) = (f (ua), f(vy)) is
Q-compact in (Y, 6).

Proof: Let M = {B; € 6}, where B; = (ug,, vp,),i € ] be an open Q-cover of f(A)
with f(A) € UB; and ps4)(y) + pp,(y) = 1 for each ug,and some y € Y. Since B; €
& then f~'(B) et but f~*(B;) = (f*(us,), f~(vs,)). Now we have, f(4) S
UB;=AC f H(UB))ie ACUf ' (B)). Forany x € X, us(x) + pp-15,(x) = 1,

since A is Q-compact. i.e. H = {f~1(B;):i € J} is Q-open cover of A. Since 4 is Q-
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compact in (X,7) then 3f1(B;1), f 1 (Biz), ... f 1 (Bin) €T3 A S Uk, fF 1 (Bix)
and g (x) + pp-1(5,,)(x) = 1

= fu) @) + f (18,0 (%) 2 f(1)

= ey V) + U1y (V) 2 1

= ur)(¥) + ug, (y) = 1as f is continuous.

Again, A € Up—, f1(By)

= f(A) S f(Uk=1 [ (Bix))

= f(A) S Ug=1 ff 1 (Bu)

= f(A) € U= Bix-

Hence, we clear that B, € 6 3 f(A) € Uk=1Bix and psea)(x) + pp, (x) = 1. So,

f(A) is Q-compact in (Y, ).

3.3 Subspace and Product Space of IF-Q-Compact Topological

Spaces

Theorem 3.3.1. Let (X,7) be an IFTS, V is an subset of X and A be an IFS in V,
where A = (uy,v4). Then A is Q-compact in (X, t) iff A|V is Q-compact in (V,ty).

Proof: Suppose A = (uy,v,) is Q-compact in (X, 7). Let M = {B; = (up,, vp,):i €
J} Dbe an open Q-cover of A in (V,1,).By the definition of subspace topology, B; =
U;|V, where U; € T. Hence p4(x) + ug,(x) = 1 for each pup.and some x € V and
consequently p,(x) + py,(x) = 1 for each py, and some x € X as V € X. Now A <
UB; = A € UU;|V = A|V € UU;|V. Therefore {U;:i € J} is an open Q-cover of

AlV in (X, 7). As A is Q-compact in (X, 7) then A has finite Q-subcover i.e. there exist
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Uir € {Ui}, k € jy such that iy (x) + py, (x) = 1 for each u;,, and some x € V. This
implies that p4 (x) + ey, vy(x) = 1 foreachx € V.
Also A C UBy, = A C UUy|V = A|V € UUy|V. Thus {B;} contains a finite

subcover {B;, B3, ..., Bin} and hence A|V is Q-compact in (V, ty).

Theorem 3.3.2. Let A and V be Q-compact IFS in an IFTS (X, 7). Then A X V is also
Q-compact in (X X X, T X 7).

Proof: Let M = {B;: B; = (up, vs,) € T X 7,i € J} be a Q-cover of 4 XV in (X x
X,Tx1). Then AXV S UB; and uuxy(x,y) + pp,(x,y) = 1 for each g and some
(x,y) € X x X. Now we can write, B; = U; X W;, where U;,W; € t. Thus A XV €
UB, = AxXV cUWU; xW,)) = Ac UU;,V € UW,. Also we have pu,.,(x,y)+
tuxw, (%, ¥) = 1 for each py .y, and some (x,y) € X X X. Hence it is clear that
ta(x) + py,(x) = 1 for each uy,and some x € X and uy (y) + pw,(y) = 1 for each
pw, and some y € X. Therefore {U;:i € J} and {W;: i € J} are open Q-cover of A and
V respectively. Since A and V are Q-compacts then {U;:i € J} and {W;:i € J} have
finite Q-subcovers, say {U;::k € J,} and {W;,:k € J,} respectively such that A <
UUje, ta(x) + py i (x) = 1 for each py, and some x € X and

V S UWy, iy () + pw, (¥) = 1 for each py,, and some y€ X. Thus we can write,
AXV S UWUy X Wi) = AXV S UBy, and payy (x,y) + pp, (x,y) = 1 for each

pg,.and some (x,y) € X X X. Hence A X V' is Q-compact in (X X X, 7 X 7).
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3.4 § — Q Compactness in IFTS

Definition 3.4.1. Let (X, ) be an intuitionistic fuzzy topological space and 0 < § <
1. A family {(ug,, vg,): i € J} of IFOS in X is called 5-open cover of X if U g, =6
and N vg, = 0. If every §-open cover of X has a finite subcover then X is said to be -

IF-compact.

Definition 3.4.2. Let (X, ) be an intuitionistic fuzzy topological space and 0 < § <
1. An IFS A = (uy,v4) in X is said to be §-open in X iff u,(x) = & forall x € X. An

IFS is said to be §-closed iff its complement is §-open.

Definition 3.4.3. Let M = {B;:i € J} where B; = (ug,,vg,) be a family of §-open
IFSinan IFTS (X,t) and A = (uy,v,) be an IFS in X. Then M is said to be & —Q
cover of A if A € UB;, pa(x) + pp,(x) = 1 for each ug and some x € X. If each B; is

open then M is called an open § — Q cover of A. A subfamily of § — Q cover of an

IFS A in X which is also a 6§ — Q cover of A is called 6 — Q subcover of A.

Definition 3.4.4. An IFS A = (u4,v,4) In X is said to be § — Q compact if every open
& — Q cover of A has a finite § — Q subcover i.e. 3B, B;3, ..., Bi, € M such that

A S ULy B, pa(x) + pp,(x) = 1 for each pp and some x € X, j = 1,2, ..., n.

Example 3.4.5. Let X = {a,b} and I = [0,1]. Let 4;,A, € I* defined by 4,(a) =
(0.5,0.2), 4,(b) = (0.7,0.2), 4,(a) = (0.6,0.3) and A,(b) = (0.8,0.1). Consider,

T ={(0,0),44,4,,(1,0)}. Then (X,t) be an intuitionistic fuzzy topological space
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(IFTS). Again let A € I* with A(a) = (0.5,0.3), A(b) = (0.3,0.2). Here A(a) CU
Ai(a), ,UA(a) + ﬂAi(a) > 1. Again, A(b) cuU Al(b), ,LlA(b) + ‘LlAl(b) > 1. If we take

& = 0.4 then {A;,A,}isa d — Q cover of A.

3.5 Q — o Compactness and 6 — Q — ¢ Compactness in IFTS

Definition 3.5.1. Let (X, 7) be an intuitionistic fuzzy topological space (IFTS), A =
(ug,v4) bean IFS in X and 0 < o < 1. Consider M = {B;:i € J} be a family of IFS
in X, where B; = (ug,,vg,). Then M is called Q — o -cover of A if A € UB;, us(x) +
ug,(x) = o for each up.and some x € X. If each B; is open then M is called an open

Q — o cover of A. A subfamily of Q — o cover of an IFS A in X whichisalsoaQ — o

cover of A is called Q — o subcover of A.

Definition 3.5.2. An IFS A = (u4,v,) in X is said to be Q — o compact if every open

Q — o cover of A has a finite Q — ¢ subcover.

Definition 3.5.3. Let (X, 7) be an intuitionistic fuzzy topological space (IFTS), 4 =
(pa,vg) bean IFSinX,0<d<land 0<o <1. Let M ={B;:i € J} where B; =
(up,, vg,) be a family of §-open IFS. Then M is said to be § —Q — o cover of A if
A S UB;, pa(x) + pp,(x) = o for each ppand some x € X. If each B; is open then

M is called an open § — Q — o cover of A. A subfamily of § — Q — o cover of an IFS

Ain X which isalsoa § — Q — o cover of A is called § — Q — o subcover of A.
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Definition 3.5.4. An IFS A = (uu,v4) in X is said to be § — Q — o compact if every

open § — Q — o cover of A has a finite § — Q — o subcover.
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Chapter Four

Some Type of Compactness in IFTS

In this chapter, we discusses various type of compactness in intuitionistic fuzzy
topological spaces. Almost compact fuzzy sets was first constructed by Concilio and
Gerla which is local property. Here we give two new possible notions of almost
compactness in intuitionistic fuzzy topological spaces are studied and investigated
some of their properties. We show that these notions satisfy hereditary and productive
property in intuitionistic fuzzy topological spaces. Under some conditions it is shown
that image and preimage preserve intuitionistic fuzzy topological spaces. Also we
give three new notions of I-compactness, C-compactness and I — C-compactness in
intuitionistic fuzzy topological spaces and investigate some relationship among our

notions.

4.1 Almost Compactness

In this section, we have discussed several characterizations of almost compactness in

intuitionistic fuzzy topological spaces and established some of their features.

4.1.1 Definition and Relationship

In this subsection we have given two new possible notions of almost compactness in

intuitionistic fuzzy topological spaces and established some relationship among them.
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Definition 4.1.1.1. Let (X, ) be an intuitionistic fuzzy topological space (IFTS) and
A = (g, va) bean IFSin X. A family M = {G; = (ug,,vs,): € J} be a family of IFS
is a proximate cover of A, when {G;:i € J} is a cover of A. A subfamily of M =
{Gi = (ug, vg,): 1 € J} which is also a proximate cover of A is said to be proximate

subcover of A.

Definition 4.1.1.2. An IFS A = (uy4,v4) in an IFTS (X, 1) is said to be IF-almost
compact iff every open cover of A has a finite subfamily whose closures is cover of A
or, equivalently, every open cover of A has a finite proximate subcover.

Theorem 4.1.1.3. Let (X, t)be an IFTS. If A = (uu,v,) and B = (ug,vp) are IFS in
X. If A and B are IF-almost compact in (X, 7) then A U B is also IF-almost compact in
X, 7).

Proof: Let M = {A; = (14, va,):1 € J} be an open cover of A = (u,,v,) and X =
{B; = (up, vg,):i € J} be an open cover of B = (up,vg) in (X,7). So, {A;:i € J}isa
cover of Aand {B;:i € J}isacoverof B. Hence A € U, 4;and B € UX, B;.
Now AU B < U, 4; U U, B;

— {Uﬁl((A_l U Bl) U (U?=m+1gi)) lf n>m
UL (A UB)U (Ui BY)) if m>n

= AUBCU (4;UB)
i.e. {A; UB;:i € J}isacoverof AU B.
Again, as A is IF-almost compact in (X, ) then A has finite proximate subcover i.e.

there exist 4;;, € {4;},k € j, such that € U}_, A, . Also as B is IF-almost compact
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in (X,7) then B has finite proximate subcover i.e. there exist B, € {B;},k € J,, such
that B € U%_, Bjx. Now from A € U}_, A;, and B € U}_, By, gives
AUB € Uj_; Ay U URLy By

_ {U;cn=1((1‘f_ik U L_iik) U (U?=m+1i{”‘)) if n>m
Ur=1((Aix UBy) U (U241 Bix)) if m>n

= AUB CU (4;, U By)
i.e. {A;x U B, k € J,,} is a proximate subcover of A U B.

Hence A U B is IF-almost compact in (X, 7).

Theorem 4.1.1.4. Let (X, t)be an IFTS and A = (uy4,v4) be an IFS in X. If every {F;}
where F; = (v, up,) Of closed subset of X with n F; = (0,1) implies {F;} contains
finite subclass {F;q, Fi3, ..., Fim} With F;; N F;, N ...N Fypp = (0, 1) then A is IF-almost
compact in(X, t). The converse is not true in general.
Proof: Given N F; = (0, 1) then by De Morgan’s law (N F;)¢ = ((0, 1))C

>UF°=(1,0)

=U (VFL-,.“FL-)C =(1,0)

=>U (ur, vr,) = (1,0)

= (U up,Nve,) = (1,0).
Let M = {G; = (g, vs,):i €J} be an open cover of A in (X,7),s0 {G;:i €/} isa
cover of A. Therefore 4 € UG,. Since each G; is open, so {G;} is a class of closed

c

sets and by given condition 3G;;°, G;,°, ..., Gi € {G;"} such that G;“ N G, N ...

Gim = (0,1). So by De Morgan’s law (1,0) = (0,1)¢ = (G1 N G N ..N

55



Chapter Four Some Type of Compactness in Intuitionistic Fuzzy Topological Spaces

— c —

Gim )¢ = Gi3 UG U ..U Gy, hence A € UL, Gy, ie. {G;;:j € ]} is a proximate

subcover of A. So, A is IF-almost compact in (X, 7).

4.1.2 Mapping of Almost Compactness

In this section, we have discussed about image and pre-image of almost compactness

in intuitionistic fuzzy topological spaces.

Theorem 4.1.2.1. Let (X,7) and (Y,8) betwo IFTS and f: X — Y is bijective, open
and continuous. If f(A) = (f(us), f(v4)) is IF-almost compact in (Y,8) then A =
(pa,vy) is IF-almost compact in (X, 7).

Proof: Let A = (ua,v4) be IFS in X. Consider M = {G;:i € J} where G; = (ug,,vg,),
with A € UG; is an open cover of A, then {G;:i € J} is also a cover of 4, i.e. AC
UG;. Since f is openthen f(A) = (f(ua), f(v,)) is an IFS of Y. Again, since G; € T
then £(G;) € 5. Now we have 4 € UG; = f(4) € f(U; G, = U; f(G)) ie. f(A) €
U f(Gy).

Since f(A) is IF-almost compact then 3f(G;1),f(Gip), ..., f(Gin) €8 3 f(A) €
Uk=1f(Gi)

Now £ (4) € Uk=y f(Gix)

= T (A) € 1 (Uk=1 f(Gi)

= A S U= f ' f(Gi)

= A S UR_, Gi.

Hence we clear that Gy € 13 A S Uj-, G- SO, {Gy:k € J,} is a proximate

subcover of A. Hence A is IF-almost compact in (X, 7).
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Theorem 4.1.2.2. Let (X,7) and (Y, 8) be two IFTS and f: X — Y is bijective, open
and continuous. If A = (u4,v4) is IF-almost compact in (X,t) then f(A) =
(f (ua), f(vp)) is IF-almost compact in (Y, §).

Proof: Let M = {G; € 6:i € J} where G; = (i, vi,), be an open cover of £ (A) then
{G;:i € J} is also a cover of f(A) with f(A) € UG;. Since f is continuous and G; € &
then f~(G) et but f7*(B) = (f*(us,).f *(vg)). Now we have, f(4)<S
UGi=ACSf Y (UG)ie AcU f1(B).ie H ={f1(G):i€]}isacover of A.
Since A is IF-almost compact in (X, 1) then 3f~1(G;y), f~1(Gyp), ..., f " 1(G) €T 3
AC URoy f7H(Gy). Again A< Upo f1(Gu) = f(A) € f(URat fH(G)) =
fA U, ff Gy = f(A) <ULl Gy Hence we clear that G, €8 3
f(A) € Uk, Gi. SO, {Gy.: k € J,} is a proximate subcover of f(A). Hence f(A) is

IF-almost compact in (Y, 8).

4.1.3 Subspace and Product Space of Almost Compactness

In this section, we have discussed about subspace and product space of almost

compactness in intuitionistic fuzzy topological spaces.

Theorem 4.1.3.1. Let (X, t) be an IFTS and (V, ;) be a subspace of (X, 7). Let A =
(pg,v4) be an IFS in X. If A is IF-almost compact in (X,7) then A|V is IF-almost
compact in (V, ty).

Proof: Let M = {G; = (g, v¢,):i € J} bean open cover of Aso {G;:i € J}isalsoa
cover of 4, i.e. A CU G;. So, A|V CU G|V, hence {G,|V:i €]} is a cover of A|V.
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Since A is IF-almost compact in (X, 1), then A has finite proximate subcover i.e. there

exist Gy, € {G;},k € J, such that A € U%_, Gy = A|V S U}, G|V Uy |V. Thus

{G,|V:i € J} contains a finite proximate subcover {G;|V:k € J,} and hence A|V is

IF-almost compact in (V, 7).

Theorem 4.1.3.2. Let A and V be IF-almost compact IFS in an IFTS (X, t). Then A X
V is also IF-almost compact in (X X X, 7 X 7).
Proof: Let M = {G;: G; = (ug, vs,) €T X 7,i €]} be an open cover of AxV in
(X xX,tx71). S0, {G;,i €]} is also a cover of AxV in (X x X,7 X t). Then 4 x
V € UG;. Now we can write, G; = U; X W;, where U;, W; € 1.
Thus A XV € UG;
> AXV cUWU; xW)
= Ac UU,V c UW,
Therefore {U;:i € J} and {W;:i € J} are open cover of A and V respectively. So,
{U;:i € J} and {W;:i € J} are also covers of A and V respectively. Since 4 and V are
IF-almost compacts then {U;:i € J} and {W;:i € J} have finite proximate subcovers,
say {Uy: k € J,} and {W;;: k € J,,} respectively such that A € UU;, and V S UW,.
Thus we can write, A X V € U(U;, X Wy)

= A XV S UBy.
Hence A x V' is an IF-almost compact in (X X X, T X 7).

by definition of 7; (u, u¢), (v,v°) € Tasu, v € t. Therefore (X, 1) is IF-Ta(r-i).
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4.2 I-compact, C-compact and I — C-compact in IFTS

In this section, we have discussed about the /-compact, C-compact and I — C-

compact in intuitionistic fuzzy topological spaces.

Definition 4.2.1. (D. Jankovic and T.R. Hamlet, New topologies from old via ideal,
Am. Math. Mon., 97 (1990), 295-310): A non-empty collection I of subsets of a non-
empty set X is said to be an ideal on X if it satisfies the following two conditions:

1) A€eland B € A= B €I (hereditary)

i) A€land B €l = AUB €[ (finite additivity)

Definition 4.2.2. Let I be an ideal on IFTS (X, 7). A cover {(,u(;i,vgi):i € J} of IFOS

in X is said to be an I-cover if there exists a finite subset J, of J such that

{(/‘Gzn'vGin) :i, € Jo} covers X excepts, for some IFS which belongs to the ideal I,

i.e. (UinE]o (uain,vain))c el

Definition 4.2.3. An IFTS (X, t) with an ideal I is said to be IF- I-compact if every

open cover of X is an I-cover.

Theorem 4.2.4. Let (X,7) and (Y,6) be IFTSs and f: X — Y is bijective, open and
continuous. Then (X, 7) is IF-I-compact= (Y, §) is IF-I-compact.
Proof: Let I be an ideal on ¥ and assume M = {G; = (ug, v¢,): i €/} is an open

cover of Y. Since f is continuous then f~1(I) is also an ideal on X and {f‘l(Gl-) =
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(f "(ug,), f~*(vg,))|i € J} is an open cover of X. Since (X,7) is IF-I-compact then
there exists £~1(Gy), f~1(Gip), .., f~1(Gyy) such that (F~1(Gyy) U f~1(Gp) U ..U
fH(Gm)E € f7HD)

= fFTHGEDVF GV U fHGn))C € FUFHD)

= (ffH G UFfH(Gi) U U ffH(Gin))C € FFTHD)

= (G UG U ..UG,)C el

= (UL(6y)) €1

So, M = {G; = (g, vs,):i €]} is an I-open cover of ¥ and hence (Y,6) is IF-I-

compact.

Theorem 4.2.5. Let (X,7) and (Y,§) be IFTSs and f: X — Y is bijective, open and
continuous. Then (Y, §) is IF-I-compact= (X, 1) is IF-I-compact.
Proof: Let I be an ideal on X and assume M = {G; = (ug, v¢,): i € J} is an open

cover of X. Since f is open then f(I) is also an ideal on f(X) =Y. We know, for y €
Vo FAD®) = 0uf () O F(ra )0, where F(ka) ) = 4 g pot b ()

=gy, (x). Similarly we get, f(va)() = vu(x). So, we get {f(G)=
(f (ug,), f (v,))|i € J} is an open cover of Y. Since (Y, §) is IF-I-compact then there
exists f(Gi1), f(Giz), ., f(Gin) such that (f(Gix) U f(Giz) U ..U f(Gin))® € f(I)
= TG V(G VU f(Gn)) € D)

= (G UFTH(GDU U (Gu)) € fFTHUD

= (Gi1 U G U ..U Gi,)€ € I (since from Chang p € f~2(f (W))).

= (Ufa(Gy)) €1
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So, M = {G; = (g, ve,):i €]} is an I-open cover of X and hence (X,7) is IF-I-

compact.

Definition 4.2.6. An IFTS (X, t) is said to be IF- C-compact if for every IFCS F =
(ug, ve) and every open cover M = {(uGi,vGi):i € J} of F, there exists a finite sub-

collection {Gyy, Gz, ..., Gin} Of M such that F € U%_,(G;;).

Theorem 4.2.7. Let (X,t) and (Y,§) be IFTSs and f: X — Y is bijective, open and
continuous. Then (X, 1) is IF-C-compact= (Y, §) is IF- C-compact.
Proof: Let F = (ur, vr) be an IFCS of Y and assume M = {G; = (ug, v¢,):i €/} is
an open cover of Y. Since f is continuous then f~1(F) = (f “Y(ug), f~1(vg)) is also
an IFCS on X and {f~*(G) = (f “(u¢,), f~*(vs))|i €J} is an open cover of X.
Since (X, 1) is IF-F-compact then there exists f~1(G;1), f~1(Gp), ..., f ~1(G;y,) such
that
fTUF) e U, f74(Gy) = ffH(F) € f(UT=, f(Gy))

= F c U, ff(Gy))

= F € Ul_4(Gy)

Hence (Y, 9) is IF- F-compact.

Definition 4.2.8. Let I be an ideal on an IFTS (X, t). Then (X, 7) is said to be IF- I-
C-compact if for every IFCS F = (ug, vy) and every open cover M = {('uGi'vGi): i€
J} of F, there exists a finite sub-collection {G;;,G;y, ..., Gin} Of M such that

(U?=1(Gij))c €l

61



Chapter Four Some Type of Compactness in Intuitionistic Fuzzy Topological Spaces

Theorem 4.2.9. Let (X,t) and (Y,§) be IFTSs and f: X — Y is bijective, open and
continuous. Then (X, t) is IF- I-C-compact= (Y, §) is IF- I- C-compact.

Proof: Let I be an ideal on Y, F = (ug, vg) be an IFCS of Y and assume M =
{G; = (ug, vg,):1 €]} is an open cover of Y. Since f is continuous so f~*(I) is also
an ideal on X, f~1(F) = (f "*(ur), f 1 (vg)) is also an IFCS on X and {f(G,) =
(F(ug,), f~*(vg,))|i € J} is an open cover of X. Since (X,1) is IF-I-C-compact
then there exists £f~1(G;1), f~1(Gip), ..., f ~1(Gyy,) such that (f71(G;1) U f~1(G;p) U
U UG € FHD)

= f(fH G U G) VU (Gn))E € F(FHD)

= (NG UG U UG € ffHD)

= (G, UG U ..UG,) EI

= (U?=1(G_ij))c €l

So, (Y, ) is IF-I- C-compact.

4.3 Paracompactness in IFTS

Definition 4.3.1. An open covering {U;} of an IFTS X is locally finite if every IF-
singleton x, g admits an intuitionistic fuzzy neighborhood A such that (A N U;) is

empty for all finitely many i.

Definition 4.3.2. An IFTS (X, t) is IF-paracompact if every open covering {U;} of X

admits a locally finite refinement.
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Definition 4.3.3. An open cover |4;| of X refines an open cover |B;| of X if there
exists at least one j, € J suchthat A; 2 B;, i.€. iy, 2 Mg, Va; S Vg, -

Theorem 4.3.4. Every closed intuitionistic fuzzy subset of an IF-paracompact space X
is IF-paracompact.

Proof: Let F be a closed IFS of an IF-paracompact space X and |4;| be an open cover
of F. Then A; = (F n W;) for some open IFS W; of X. So, the collection W;, which
gives a cover of X, has an open locally finite refinement |B;|. Now (A n B;) is an

open locally finite refinement of the cover |4;| of F. So, F is IF-paracompact.

Theorem 4.3.5. Every IF-paracompact Hausdorff space X is IF-normal.

Proof: Let A and B are two disjoint intuitionistic fuzzy closed subsets of an IF-
paracompact space X. As X is IF-paracompact and from the previous theorem we get
every closed intuitionistic fuzzy subset of an IF-paracompact space X is IF-
paracompact, so we can say that A and B are also IF-paracompact. Let us consider
two IF-singletons x,, , and y, ¢ such that x,,, , € A and y, ¢ € B and x,;, , # ¥, 5. Now

for each x,,, € 4, ys € B, we choose two disjoint neighborhoods U, . and W, of
Xmn and y, s respectively. By adding A to the collection |U,, |, we get an open

cover of X which has an open locally finite refinement V;. If we put J = {i € i|[V; n

A #(0,1)}and W = Uje, V}, then A c W. Since each V; is contained in some Uy, .,

so we have y, s & Uje; V; = W. Similarly, for y, ¢ € B, we get T such that B ¢ T and

Xmn & T.Hence Ac Wand Bc Tand W N T = (0,1). Hence X is IF-normal.
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Lemma 4.3.6. If an IFTS X is locally IF-compact Hausdorff space that is second
countable, then it admits a countable base of opens {U,,} with IF-compact closure.

Proof: Let |V}.| be a countable base of opens in a second countable locally IF-compact
Hausdorff space X. Now, for each IF-singleton x,, , where x,,, € X there exists an
open covering Uy, . around x,, , with IF-compact closure, yet some V;.,, ..y contains
Xmn as Well as contained in U, . Hence the closure of V(. ., is a closed
intuitionistic fuzzy subset of the IF-compact Uxm,n and so Vr(xm,n) is also IF-compact.

Thus, the 1}.’s with IF-compact closure are a countable base of opens with IF-compact

closure.

Theorem 4.3.7. Any second countable Hausdorff space X that is locally IF-compact
is IF-paracompact.

Proof: Let |V.| be a countable base of opens in a second countable locally IF-compact
Hausdorff space X. Assume |U;| be an open cover of X for which we seek a locally
finite refinement. Since each x,,,, € X lies in some U; and so there exists a open
covering Vy(,,,,) containing intuitionistic fuzzy singleton x,, with V,. < U;.
The Vy(x,, s therefore consistute a refinement of U; that is countable. Since the
property of one open covering refines another, is transitive, we therefore lose no
generality by seeking locally refinements of countable covers. Hence the locally IF-

compact Hausdorff space X is IF-paracompact.
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Definition 4.3.8. An IFTS is called IF-g-compact if it is a countable union of IF-

compact IFSs.

Lemma 4.3.9. If {4;} ;¢; is a locally finite collection of intuitionistic fuzzy subsets of
an IFTS X then U, 4, = U; 4;.

Proof: We have to prove that the left hand side is contained in the right hand side, the
reverse inclusion being obvious. Suppose p, s € X — U;4; =n (X — 4;). Choose an
open neighborhood U of p, s and a finite intuitionistic fuzzy subset / c I such that
V= Nje;(X — 4;) is a neighborhood of p, g which is disjoint from 4; for all j € J.
Hence U n'V is a neighborhood of p, z, which is disjoint from A; for all i € I, so

Pa,p ¢ UlAl'

Theorem 4.3.10. Let X be an IFTS in which every singleton p, g has a neighborhood

Up

p which is second countable and IF-precompact (i.e. its closure is IF-compact).
Then among the following statements the implications i) = ii) = iii) = iv) hold:

)] X is second countable.

i) X is IF- o -compact.

iii) X is IF-paracompact.

iv) Every components of X is second countable.

Proof: i) = ii): Let X is second countable. Then every open cover of X has a

countable subcover. Applying this to the open cover {Upa B} , We see that there
’ pa’ﬁEX

65



Chapter Four Some Type of Compactness in Intuitionistic Fuzzy Topological Spaces

IS & SeqUeNCe Py, 5, P2, 5 P3g go - IN X sUch that X = UL, py,, 4 Since Upa_ﬁ is IF-
compact, then for each p,, g, it follows that X is IF- o -compact.

ii) = iii): Let X be IF- a-compact, say X = U, -, K,, where each K,, is IF-compact.
We first find a sequence V, c V; c V, c --- of IF-paracompact open IFSs of whose
union is all of X, such that 17] C Vjyq forall j. Let V, == (0,1). After, Vo, V3, V3, ..., V;

have been chosen, note that K; U V; is IF-compact, so there are finitely many IFP

uuU u..ulU

Pay,B; Pam.Bm'

Pay,p1r Pay,Byr s Pam,Bm € X such that I<j U Vj c Upal‘ﬁl

Set, Vjy1:U,, , UU U..uU

wrps YUpg,p, YU Up, o . Now let {W;},c; be any open cover of X.

Each set V, — Vx_, is IF-compact and is therefore contained in Uier, W; for some
finite IFS Iy c I. Then {W; — Vi_,}ken e, is a locally finite open refinement of
{W.};e;. So, X is IF-paracompact.

iii) = iv): Suppose X is IF-paracompact and nonempty and let Y be a component of
X. We have to show that Y is second countable. Since Y is closed in X then by using

lemma 4.3.9 we can say that Y is IF-paracompact.
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Chapter Five

Connectedness in IFTS

Intuitionistic fuzzy connectedness first introduced by Ozcag and Coker (S. Ozcag,
1998) in intuitionistic fuzzy topological spaces and mentioned some properties which
are global property. In this chapter we give some new notions of separated,
connectedness and totally connectedness and one notions of T;-space in intuitionistic
fuzzy topological space and investigate some relationship among them. Also we find
a relation about classical topology and intuitionistic fuzzy topology. Further, we show

that connectedness in intuitionistic fuzzy topological spaces are productive.

5.1 Definition and Relationship

In this section, we have given five possible new notions of connectedness in

intuitionistic fuzzy topological spaces.

Definition 5.1.1. Two disjoint non-empty intuitionistic fuzzy subsets A = (u4,Vv,)
and B = (ug,vg) of an IFTS X are said to be separated if A and B neither contains a

limit point of the other. i.e. A and B are separated iff AnB =(0,1) and AnB =

(0.1).

Definition 5.1.2. Two IFS’s A = (uy4,v4) and B = (ug,vg) in X are called Q-
separated for an IFTS (X,t) if and only if there exist closed (open) IFS’s G =

(g, vg) and H = (ug,vy)inXsuchthat Ac G, B HandAnB =(0,1)=GNH.
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Definition 5.1.3. An intuitionistic fuzzy subsets A = (u4,v,) of an IFTS X is
disconnected if there exists an open intuitionistic fuzzy subsets G = (ug,vg) and H =
(uy,vy) of X suchthat (ANG)UANH)=(1,00and ANnG)n(AnH)=(0,1).

In this case G U H is called a disconnection.

Definition 5.1.4. An IFTS X is said to be disconnected if AUB = (1,0) and AN B =
(0,1) where A = (uy4,v4) and B = (ug,vp) are non-empty open intuitionistic fuzzy

subsets of X.

Theorem 5.1.5. Union of two non-empty separated intuitionistic fuzzy subsets of an
IFTS X is disconnected.

Proof: Let A = (uu,v,) and B = (ug, vg) are two non-empty separated intuitionistic
fuzzy subsets of an IFTS X, so AnB = (0,1) and An B = (0.1). Let G = B¢ and
H =A°. Then G and H are open and (AUB)NG = (1,,0) and (AUB)NH =
(15,0) are non-empty disjoint IFSs whose union is AU B. Thus G and H form a

disconnection of A U B. Hence 4 U B is disconnected.

Theorem 5.1.6. Consider M = {A;}, where A; = (u,,,v4,) be a class of IF-connected
subsets of an IFTS X such that no two members of M are separated. Then B = U; 4;
is IF-connected.

Proof: Assume that B is not IF-connected. Let G = (ug,vg) and H = (uy,vy) are
two open IFS of X such that G U H is a IF-disconnection of B. Now each A; € M is
IF-connected and so is contained in either G or H and disjoint from the other. Since
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any two members of A; ,A;, € M are not separated and so 4;, U A;, is IF-connected,
hence A4;, U A;, is contained in either G or H and disjoint from the other. Accordingly
all the members of M and hence B = U; A; must be contained in either ¢ or H and
disjoint from the other. But this contradicts the fact that G U H is an IF-disconnection

of B, hence B is IF-connected.

Theorem 5.1.7. Let G U H be a disconnection of an IFS A = (uy4,v,). Show that A N
G and A N H are separated IFSs.

Proof: Here AN G and A N H are disjoint, hence we need only to show that each IFS
contains no limit point of the other. Let p, ), m,n € I be a limit point of A N G and
SUPPOSE Py € A N H. Then H is an open IFS containing pm, »y and so H contains a
point of AnG distinct from pey), ie. (ANG)NH=*(0,1). But (AnG)N
(AnH)=(0,1) = (AN G) N H. Accordingly pimny € A N H. Similarly if p¢y, ) be

a limit point of A N H then p(;,») € AN G. Thus AN G and A N H are separated IFSs.

Theorem 5.1.8. For an IFTS the following statements are mutually equivalent:
)] X is connected.
i) The only IFSs of X which are simultaneously open and closed are.

iii) X cannot be expressed as the union of two disjoint nonempty open IFSs.

Proof: i) = ii): Suppose A is an IFS in X, which is both open and closed. Then B =
A€ is both closed and open; further AUB = (1,0)and ANB =ANB = (0,1) and N
B=AnB =(0,1).Since X is connected, A or B must be (0,1). Thatis A = (0,1) or

A = (1,0).
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ii) = iii): Since AU B = (1,0) and A n B = (0,1) which implies A = B and B¢ =
A. So A and B are simultaneously open and closed. So, between of these IFSs A and B
one IFS is (0,1) and the other IFS is (1,0).

iit) = i): Suppose iii) holds but X is not connected. Then there would exist
nonempty open sets A and B such that AUB = (1,0) and AnB =AnB = (0,1).
Then B, being the complement of A is open, similarly A is open. Thus X is the union
of two disjoint non-empty open IFSs, which contradict the hypothesis, hence X is

connected.

Theorem 5.1.9. If an IFTS (X, 1) is IF-disconnected and t* 2 7 then (X, ) is also
IF-disconnected.
Proof: Given IFTS (X,t) is IF-disconnected. Let A,B € T where A = (uy,v,) and
B = (ug, vg) are non-empty open intuitionistic fuzzy subsets of Xthen A U B = (1,0)
and AnB = (0,1). Since " 2t and A, B € t then obviously A,B € t* hence AU
B = (1,0) and A n B = (0,1), which implies that (X, t*) is also IF-disconnected.
Theorem 5.1.10. Let A be an IFS of an IFTS (X, t) and let 74 be the relative IFT on
A. Then A is T-1F-connected if and only if A is 74-1F-connected.
Proof: Let A = (uy4,v,4) be IF-disconnected space on an IFTS (X,7) and G U H be a
disconnection of (X,7) where G = (ug,vg) and H = (uy,vy). Then GUH =
(1,00,6NnH=(01) = usVuy=1vgNnvyg =0 and p;Nuy =1,vgUvy =0.
Now G,HET=ANG,ANHET, where ANG = (uyva) N (g, vg) = (g N
te,vaUvg) and AN H = (g, va) N (Uy, vy) = (fa N Uy, Va U vy).
Wehave, ANG)U(ANH) = (uy N g vaUvs) U (g Ny, va Uvy)

= ((ua N ) U (g 0 p), (v U vg) N (v4 U vy))
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= (pa N (g Y up),va U (vg Nvy))
= (UarVa)
Again, (AN G)N(ANH) = (g N pg,va VU vg) N (g N P, va U vy)
= ((a N ug) 0 (pa Nug), (Va Uvg) U (v Uvy))
= (ta N (g N ug),va VU (vg Uvy))
=(0,1)
Conversely, let E = (ug,vg), F = (up, vg) € 74 then 3C = (uc,ve), D = (up,vp) €
T3CNA=E and DNA=F. We have EUF = (1,4,04),ENF = (04,1,). We
have to show that C U D = (14,0),C N D = (0, 1y).
NoWEUF = (1,4,0,) = (CNA)UMDNA) =(140,)
= (CUD)NA=(140,)
= (CUD) = (14,0)
Again, ENF = (04,14) = (CNA)NDNA) = (04,1,)
= ([CND)NA=(041,)
= (CND)=(0,1y)
So, C U D form a z-1F-disconnection of A. Hence A is t-IF-connected if and only if A

is 74-1F-connected.

Theorem 5.1.11. Let {(Xi,rxi),i € J} be a family of subspaces of an IFTS (X, t) such
that N X; # ¢, if (X;, x,) is IF-connected then (U X;, 7yy,) is IF-connected.

Proof: Suppose (U X;,7yx,) is not IF-connected, then there exist A = (u4,v,), B =
(ug,vp) € Ty, suchthat AU B = (1,0) and An B = (0,1).

Now, AU B = (1,0) = (AU B)|X; = (1,0), VX; € UX;
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= ((pa,va) Y (s, vp))|Xi = (1,0)
= (Ua Vg, va NVp)|X; = (1,0)
Which gives, (ug U ug)|X; = 1and (v Nnvp)|X; =0
From (s U pg)|X; = 1, we get (g, |X:) U (up,|X;) = 1 and from (v4 N vp)|X; = 0
we get (vg,|X;) N (vg,1X;) = 0, where (ua,|Xi,va 1 X:), (s, 1 X0 Ve, X)) € T,
AgainfromAnB = (0,1) = (AnB)|X; = (0,1), VX; € UX;
= ((pa,va) N (g, ve))|Xi = (0,1)
= ( ug Nug,vqa Uvp)|X; = (0,1), which gives, (uy N
up)|X; = 0and (v, Uvp)|X; = 1. Therefore, (14, |X;) N (up,1X:) = 0 and (vy,|X;) U

(vg,1X:) = 1. So, (X;, 7x,) is not IF-connected.

Theorem 5.1.12. The continuous image of an IF-connected space X is IF-connected.
Proof: Letf: (X,7) — (Y, 8) be a continuous function from an IFTS (X, 1) to (Y, ).
Consider (X,7) is IF-connected, we shall prove that (Y,8) is also IF-connected.
Suppose (Y, &) is not IF-connected, i.e. (Y,8) has a disconnection. Let this be G =
(ug,vg) and H = (uy,vy) be two IFS on X then G U H = (1,0) i.e. ug U py = 1 and
Ve Nvy = 0.
Now f=1(6) = (f " (ua), f " (ve)) and f =2 (H) = (f *(uw), f ™ (vi))-
S0, f71(G) U fH(H) = (max(f ~ (ug), £~ () (), min(f = (W), £~ (vin)) (%))

= (max(f " (ue) (@), £ () (),

min(f " (ve) (), f 1 (vr) (1))
= (max(ue (f (0, i (f (), min(ve (f (), vis (f (%))
= (4 U ) f (), (v N i) f (1))
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= (e Y ) (0, fH v N ) (X))

= (1XI 0)

Again, f~H(6) 0 f~H(H) = (min(f " (e), £~ (un)) (),

max(f = (v), f 1 (Vi) (X))
= (min(f 7 (ue) @), f ) (),
max(f " (ve) (), £~ (i) (1))
= (min(ug (f (), e (f (), max (v (f (), va (f (x)))
= (e N pp)f (x), (vg Uvy)f(x))
= (F e 0 ) (), f 16 U v) ()

=(0,1x)

Hence , f~1(G) and f~1(H) give a disconnection for X, which gives the prove.

Definition 5.1.13. An IFTS (X, 7) is called

a)

b)

Intuitionistic fuzzy connected (IFC) (i) if (X, t) has no proper clopen (clopen
means closed-open) IFS.

IFC (ii) if there do not exist non-empty IFSs A, B in X which are separated and
AUB = (1,0).

IFC (iii) if there is no clopen IFS A >> (0, 1) which is C1 separated.

IFC (iv) if there do not exist A = (uy4,v4), B = (ug,vg) € T\{(0,1), (1.0)}
suchthat AUB = (r,0)with0 <r<landAnB =(0,1).

IFC (v) iff for any a € I,, there exist no non-empty proper subset H € X such

that 0(11_1 = a(lH, 1x_H),alx_H = a(lx_H, 1H) ET.
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f) IFC (vi) iff there exist no non-zero Q-separated IFSs A = (uy,v4) and B =

Theorem 5.1.14. The following statements are equivalent:
a) IFTS (X,7) is IFC (vi)
b) There do not exist two non-zero disjoint closed IFSs A = (uy4,v,) and B =

(ug, ve) Where max(ug, up) = (1,0).

c) There do not exist two non-zero disjoint open IFSs A = (uy4,v4) and B =

(ug, ve) Where max(ugy, up) = (1,0).

d) IFTS (X,7) is IFC (ii)

Proof: a) = b): Let there exist IFSs A = (u4,v4), B = (ug,vp) € T¢ such that A #
B,AUB = (1,0) and An B = (0,1) then clearly A and B are Q-separated. So that,
(X, t) is not IFC (vi), which contradicts a).

b) = c¢): If A,B € T where A = (uy,v4),B = (ug,vg),AUB =(1,0) and ANB =
(0,1) then A and B closed which contradicts b).

c) = d): If (X, 1) is not IFC (ii) then there exist 4, B € I* — {(1,0)} such that A4, B
are separated and AU B = (1,0). Now 3G,H e T suchthat A€ G,B € H and G N
B =(1,0) = Hn A. But then G and H satisfying G N H = (0,1) and G U H = (1,0)
which contradicting c).

d) = a): If there exist some IFS A = (14,1,c) € TN 7€ —{(0,1),(1,0)} then A =
(14,1,4¢), A€ = (14¢c,14) are two non-zero separated sets with max(1,,1,c) =

(1, 0). This contradicts d).
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Theorem 5.1.15. An IFTS (X, 1) is IF-connected if and only if there exists no non-
empty IFOS A and B in X such that A = B,

Proof: Let A and B are two IFOSs in X such that A = (0,1) # B and A = B¢, since
B is an IFOS which implies that B¢ = A is an IFCS and B # (0, 1) implies that B¢ #
(1,0) i.e. A # (1,0). Hence there exists a proper IFS Aas A # (0,1) and 4 # (1,0),
such that A is both IFOS and IFCS. But this is a contradiction that (X, 1) is IF-
connected.

Conversely, suppose (X,7) is an IFTS and A is both IFOS and IFCS in X such that
(0,1) # A # (1,0). Here A = BC. In this case B is an IFOS and A # (1,0). This
implies that, B = A¢ # (0, 1), which is a contradiction. Hence there exist no proper

IFS in X which is both IFO and IFC. So, (X, t) is IF-connected.

5.2 Good Extension of Connectedness

Theorem 5.2.1. Let (X,T) be a topological space and (X, t) be its corresponding
IFTS, where © = {(14, 1,c): A € T}. Then (X, T) is connected if and only if (X,7) is
IF-connected.
Proof: Suppose (X, T) is disconnected, so there exist two nonempty subsets A, B of X
such that AUB =X,AnB =0. Since A,B€T then 1, = (14,1,c) €T and 1p =
(1p,1zc) €. Now, 1, U1lp = (14, 1,4c) U (1p,15¢)

= (14U 1p,1,c N 1)

= (Laus, 14¢np¢)

= (Laus, 1(AUB)C)
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= (1x,1p)
= (1,0)
Again, 1, N 1g = (14,1,c) N (1p,15¢)
= (14Nn1p,1,cUlge)
= (1ans 1ACUBC)
= (14ns 1(AnB)C)
= (15, 1x)
=(0,1)
So, (X, 1) is IF-disconnected. Hence (X, T) is connected if (X, 7) is IF-connected.
Conversely, suppose (X, 1) is IF-disconnected. Since 14,15 € 750 1, U 15 = (1,0)
and 1, N 15 = (0,1), then we can write
1, U1z = (1,0)
= (14, 14¢) U (15, 15¢) = (1,0)
= (14U 15, 14c N 15¢) = (1,0)
= (Lauss Lycape) = (1,0)
S0, 14 =1=14y=>AUB=X
Again, 1, n 15 =(0,1)
= (14, 14¢) N (15, 15¢) = (0,1)
= (14N 15,1 Ulye) =(0,1)
= (1anp L4c0p¢) = (0,1)
So,1,, =0 =145 = AN B = @. Hence (X, T) is disconnected.

So, (X, T) is connected if and only if (X, 7) is IF-connected.
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Theorem 5.2.2. Let (X,7) be an intuitionistic topological space and (X,7) be its
corresponding IFTS, where 7 ={(14,,14,):4 = (41,4;) €T}. Then (X,T) is
connected if and only if (X, 7) is IF-connected.
Proof: Suppose (X, ) is disconnected, so there exist two nonempty subsets A, B of X
such that AUB = (X,0),An B = (8,X). Since A,B €T then 1, = (14,,14,) €7
and 15 = (1p,,1p,) € T.
Here, AUB = (X,0) = (A1,4;) U (B, B;) = (X,0)
= (A; UB;,A, N By) = (X,0)
=A,UB, =X,A,NB, =0
Again, AN B = (8,X) = (41,42) N (B, B,) = (8,X)
= (A; N B;,A, UBy) = (0,X)
=>A, NB; =0,A,UB, =X
Now, 1, U 15 = (14,,14,) U (15,,15,)

= (14, V1,14, N 1)
= (1A1U31: 1A2n32)

= (1x,1p)

=(1,0)

Again, 1, N 15 = (1,4,,1,,) N (1p,,15,)
= (14, N1p,14,U 1)
= (1A1n31' 1A2u32)
= (1p, 1x)
=(0,1)

So, (X, 1) is IF-disconnected. Hence (X, 7") is connected if (X, ) is IF-connected.
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Conversely, suppose (X, 1) is IF-disconnected. Since 14,15 € 750 1, U 15 = (1,0)
and 1, N 15 = (0, 1), then we can write
1, U 15 = (1,0)
= (14,,14,) U (15,,15,) = (1,0)
= (14, VU1p,1,,n 1) =(1,0)
= (1A1u31' 1A2n32) =(1,0)
SO, 14,08, =1=14=>A; UB; =X
and 14,05, =0=13=>4,NB, =0
Again, 1, n 15 = (0,1)
= (14,,14,) N (15,,15,) = (0,1)
= (14, N 1p,,1,,U 1) =(0,1)
= (1A1031: 1A2u32) =(0,1)
SO, 14,08, =0=13=>4,NB; =0
and 14,5, =1=1x = A, UB, = X.
Here, A{;UB, =X,A,NB,=0=>AUB=(X,0) and A,NB; =0,A,UB, =
X=ANB = (0,X). Hence (X,T) is disconnected.

So, (X,T) is connected if and only if (X, 7) is IF-connected.
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Theorem 5.2.3. Let (X,t) be a intuitionistic topological space and (X,t) be its
corresponding IFTS, where 7 = {(1,1%): 1 € t}. Then (X, t) is connected if and only
if (X, 7) is IF-connected.

Proof: Suppose (X, t) is disconnected, so there exist two nonempty subsets «, 8 of X
such that auf =1,anpB =0 where a # 0 # B,a # 1 # B. Since a,f €t then
(@,a%), BB e

Now, (@, a®) U (B, ) = (e U B,a’ n B°)

= (a VB, (aVp)’)

=(1,0)
Again, (a,a®) N (B, ) = (@ n B, a U B°)
=(anp,(@np))
=(0,1)

So, (X,7) is IF-disconnected.
Conversely, suppose (X,7) is IF-disconnected. Since (a, a®), (B, B¢) € T, then we
can write (a,a®) U (8, ) = (1,0) and (a, a®) n (8, B¢) = (0, 1).
Now, (a, @) U (8, ) = (1,0)
= (a U B,a n B = (1,0)
= (@Up,(aup)) =(1,0)
> aup=1
Again, (a,a®) n (B,8°) = (0,1)
= (anp,a®up) =(0,1)
= (@np,(@anp))=(0,1)

sanf=0
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So, (X,t) is disconnected. Hence (X,t) is connected if and only if (X,7) is IF-

connected.

5.3 Product space of Connectedness

In this section, we have discuss about productivity of connectedness in intuitionistic

fuzzy topological space.

Theorem 5.3.1. If (X, 7) and (Y, &) are IF-connected space then (X X Y, 7 X §) is also
IF-connected.

Proof: Consider (X X Y,t x &) is not IF-connected then 34, B € T X § such that A U
B=(1,0)and AnB =(0,1). Since A, Betxdthen A=CxD and B=E X F

where C = (uc¢,ve), E = (pg,vg) € 7, and D = (up,vp), F = (up, vp) € 6. Now € X
D = (#Ci(.uD’chvD)’ where (ucfun) (x,¥) = min(pc(x), pp(y))  and
(exVp) (%, ¥) = max(ve (x),vp (1)), V(x,¥) € T X 8.
Similarly, E x F = (,uE>.<,uF,vE>'<vF).
Now AU B = (1,0) = (C x D) U (E X F) = (1,0)
= (HC%#D’VC;O’D) U (.uE>_<,uFrVE>.<VF) =(1,0)
= (min (e (x), up (¥)) U min(ug (), up (), max(ve (x), vp (v))
N max(vg(x), ve(¥))) = (1,0)
i.e., min(ue(x), up () U min(pg (x), ur () = 1
= Either, min(uc(x), up(¥)) = 1 or, min(pg (x), ur(y)) = 1

= Either pc(x) = L, up(y) = 1or, pg(x) = Lup(y) =1
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For, max(vc(x),vD (y)) N max(vE(x),vF(y)) =0
= max(vc(x),vD (y)) = 0 and max(vE(x),vF(y)) =0
= ve(x) =0,vp(y) = 0,vg(x) = 0,ve(y) =0
Case I: Suppose uc(x) = 1, up(y) =1
Then CUE = (uc,ve) U (ug,vg) = (U U g, ve Nvg) = (1,0) as uc(x) =1
Case Il: Suppose pg(x) =1, us(y) =1
Then D UF = (up,vp) U (p, vi) = (p U up, vp NvE) = (1,0) as pp(y) = 1
Again,ANnB=(01) = (CxD)n(EXF)=(01)
= (.UC>_<.uD'VC>.<VD) N (.uE>_<,uF: Vgsci) = (1,0)
= (min(puc (%), up (¥)) N min(ug (), 1p (), max(ve (x), vp (v))
U max(vg (x), v (3))) = (0, 1)
i.e. min(uc(x), up () N min(ug (x), pr(y)) = 0
= min(pc(x), up(¥)) = 0 and min(ug (x), up(y)) = 0
= Either u-(x) = 0, or up(y) = 0 and either ug(x) = 0 or up(y) =0
Again, for, max(vc(x),vD (y)) V] max(vE(x),vF(y)) =1
=Either max(vc(x),vD (y)) =1 or, max(vE(x),vF(y)) =1
= Either vq(x) =1 orvp(y) = 1, or, either vg(x) = 1 orve(y) =1
Case IlI: Suppose pc(x) = 0,0r up(y) =0and ve(x) =1
Then C N E = (¢, ve) N (g, ve) = (e N pg, ve U ve) = (0,1)
Case IV: Suppose ug(x) =0or uz(y) =0andvp(y) =1
Then D N F = (up,vp) N (g, vi) = (p N pp, vp U vE) = (0,1)
So, (X,7) and (Y, &) are not connected, hence if (X,t) and (Y, &) are IF-connected
then (X X Y, 7 x §) is IF-connected.
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Theorem 5.3.2. The product of IF-connected space is IF-connected.

Proof: Let (X;7;) be a collection of IF-connected space. Also let (X,7) =
(IT;X;, I;7;) be the product space. Consider (I1;X;,I1;, ;) are not IF-connected then
there exists A,B € T, X T, X T3 X ... such that AUB = (1,0) and An B = (0,1).
Since A,BET; XT, XT3 X ..thenA=A4; XA, X A; X ...and B = B; X B, X B3 X
.., Where 4; = ('uAi’vAi) € tand B; = (/“‘Bi'VBi) €.

Now, AUB = (1,0) 2 (4; X A, X A3 X ...) U (B; X B, X B3 X ...) = (1,0)

= ((HA1’VA1) X ('qu’vAz) X ('uA3’VA3) X ) U

((ugl,val) X (ug,,v,) X (U, vs,) ¥ ) =(1,0)
= (inf(pa, (x1), ta, (x2), tha, (x3), ... ) U inf(pp, (1), ug, (x2), tp, (x3), ...),
sup(VA1 (x1),Va, (x2), v, (x3), ... ) N

sup(vBl(xl),sz (x2),vp, (x3), )) = (1,0), where (x4, x5, x3, ...) € I1;X;
i.e. inf(pa, (o1, pa, (62), a, (x3), ... ) U inf(ug, (x1), g, (02), s, (x3), ... ) = 1
=Either, inf(uAl(xl),,qu (x2), pa, (x3), ) =1

or, inf(uB1 (x1), g, (x2), 1p, (x3), ) =1
= Either uy, (1) = 1, pg,(x2) = 1py, (x3) = 1, ...

or, ug, (1) = 1, up,(x2) = 1L, up,(x3) = 1, ...
Again, sup(vAl(xl),vA2 (x2), Va4, (x3), W) N sup(vBl(xl),sz (x2), Vg, (x3), w)=0
= sup(vAl(xl),vA2 (x2),va, (x3), ) = 0 and sup(vBl(xl),sz (x2), v, (x3), ) =0
= VU, (1) = 0,v4,(x2) = 0,v4,(x3) =0, ..., vp, (x1) = 0,vp,(x3) = 0,vp,(x3) =

0,..

82



Chapter Five Connectedness in IFTS

Case I: Suppose uy, (x1) = 1, up,(x;) = 1,v4,(x1) = 0,v5,(x;) =0
Then A; UB; = (ﬂAlfVAl) U (.uBl-'VBi) = (llA1 U Up; Vg, N VBi) =(1,0),
for any (g, vs,) € T
Again, ANB=(0,1) =(A;XA;XA3%X..)N(B;XB,;%xB;x..)=1(0,1)
= ((Bayva) X (ayva,) % (agvay) X ) 0
((uBl,vBl) X (uBZ,vBZ) X (,1133,1/33) X ) = (0,1)
= (inf(ﬂA1 (x1), a, (x2), pa, (x3), ) n inf(H31 (x1), g, (x2), 1, (x3), ... ).
Sup(VA1 (x1),va, (x2), V4, (x3), ) U
SUP(VB1 (x1),vB, (x2), vp, (x3), )) =(0,1)
ie. inf(#A1 (x1), pa, (x2), ta, (x3), ) N inf(.“Bl (x1), g, (x2), g, (x3), ) =0
= inf(.“Al (1), pa, (x2), a, (x3), ) =0and inf(ll)se1 (x1), g, (x2), pg, (x3), ) =0
For, sup(va, (1), va, (x2), Va, (x3), ... ) U sup(vp, (1), vg, (x2), vp, (x3), ... ) = 1
=Either sup(vAl(xl),vA2 (x2),va, (x3), ) =1
or, sup(vg, (x1),vg, (%), vp, (x3), ... ) = 1
Case II: Suppose inf(up, (x1), up, (x2), ug, (x3), ... ) = 0,
and sup(vB1 (x1),vp, (x2), Vg, (x3), ) =1
Then 4; N B; = (ia,,va,) N (.uBl-'VBi) = (ua, N Up;Va, U VBi) =(0,1)
Since A, € t; and B; € t;gives A; U B; = (1,0) and A; n B; = (0,1), then A; U B; is
a disconnection of 7. Thus every coordinate space of t; are IF-disconnected. Hence,
(X;, ;) be a collection of IF-disconnected space, which is a contradiction. So, the

product of IF-connected space is IF-connected.
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5.4 Totally Connectedness

In this section, we have studied about totally connectedness in intuitionistic fuzzy

topological space.

Definition 5.4.1. An IFTS (X, 1) is said to be totally IF-connected if for each pair of
IFP Do, qp,6 € X, there exists a disconnection ¢ U H of X with p,z € G and g, ¢ €

H.

Theorem 5.4.2. The maximal of a totally IF-disconnected space is the IF-singleton.

Proof: Let E be the maximal of a totally IF-disconnected space X and suppose
X Ymn € E With x4 5 # yp . Since X is totally IF-disconnected there exists a
disconnection G U H of X such that x, 3 € G = (16, V¢) and Y, € H = (uy, vy) =
GUH =(1,0),GnH=1(0,1). Consequently EN G and E N H are nonempty and
(ENG)U(ENH)=EN(GUH)=E and (ENG)N(ENH)=EnN(GNH)=
(0,1),s0 (ENnG) U (E n H) forms a disconnection of E. But this contradicts the fact
that E is a maximal and so is IF-connected. So, we conclude that E consists of exactly

one intuitionistic fuzzy point, hence E is the IF-singleton of X.

Theorem 5.4.3. The continuous image of a totally IF-disconnected space is totally IF-
disconnected.

Proof: Let f: (X,7) = (Y, ) be a continuous function from an IFTS (X, 7) to (Y, 6).
Consider x4 4,5 be two IFP in Y = f(X). Since f is continuous f~*(x,s) and

f~t(ys) are IFP in X. If (X,7) is totally IF-disconnected then there exists a
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disconnection G U H of X where f~(x4p) € G = (ug,ve) and f(y.s) EH =
(ua,vi). Since f71(xqp) € G = xop € f(G) and f7'(yy5) € H = yp5 € f(H).
Again G U H is a disconnection of X such that G U H = (1,0) and N H = (0,1) .
Here, G UH = (1,0) = (ug, ve) VU (y,vy) = (1,0)
= (g Y pu, vg Nvy) = (1,0)
And G N H = (0,1) = (g, v6) N (i, vi) = (1,0)
= (e N py,ve Y vy) = (1,0)
So, f(G) = (f (ue), f (ve)) and f(H) = (f (uu), f (vi)) gives
f(@) U fH) = (fue) f(ve)) U (f (un), f (Vi)
= (f(ue) U f(und, f (ve) N f(vir))
= (e U ) (f100), (ve nv) (f 1))
=(1,0)
And £(6) n f(H) = (f (ue), £ (ve)) 0 (f (un). f (Vi)
= (f () 0 f(und, f(ve) U f (i)
= ((ug 0 ) (f72(), (v U V) (F 1))
=(0,1)

So, Y = f(X) is totally IF-disconnected.

Definition 5.4.4. An IFTS (X, ) is T;-space if V IF-singleton x, g, ymn € X with
Xop # Ymn then 34 = (uy,v4), B = (up,vg) € T such that x, 53 € A, ynn € A and

Xap &€ B, Ymn €B.

Theorem 5.4.5. Every IF- T, space is totally IF-disconnected space.
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Proof: Let (X,7) be an IFTS and also IF- T; space. consider x, g, Ymn € X With
Xap F Ymn then 3A = (uy,v4), B = (ug,vg) € T such that x, 5 € A, v, € A and
Xep &€ B,Ymn € B.
Now x, 3 € A = (g, Va) = pa(x) = @, v (x) < B

Xop & B = (up,vp) = ug(x) < a,vg(x) > p

Ymn € A= (Hava) = ua(y) <mvu(y) >n

Ymn € B = (up,v) = up(y) 2m,vg(y) <n
So, (AUB)(x) = (ua Y, vanvg) > (a,B),(ANB)(x) = (ua N pip, V4 U vp) <
(o, B)
and (AUB)(y) = (ua U up,vaNvg) > (mn),(ANB)(Y) = (ua N g, vy Uvg) <
(m,n).
This result is true for any x4 g, Ymn € X With x4 g # ym, . Hence it is clear that AU B

is a disconnection of X, so (X, 7) is totally IF-disconnected.

Theorem 5.4.6. Every IF- T, space is totally IF-disconnected space.
Proof: Let (X,7) be an IFTS and also IF- T, space. Consider x4 3, ymn € X With
Xop # Ymnthen 3A = (uy,v4), B = (up,vg) € T With ,uA(xa,ﬁ) = 1,vA(xa,ﬁ) =
0,5(¥mn) = L, vg(¥mn) =0and AN B = (0,1).
Now x4 3 € A = (Ug,Vva) = ,uA(xa,ﬁ) = 1,vA(xa,[;) =0

Xap & B = (1, vp) = HB(xa,ﬁ) =0, VB(xa,B) =1

Ymn € A= (Hava) = liA(}’m,n) = 0m, VA(ym,n) =1

Ymn € B = (UB’VB) = UB(ym,n) = 1’VB(ym,n) =0
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So, (AUB)(xqp) = (a U pp,va Nvg) = (1,0), (AN B)(xqp5) = (ua N pip,va U
vg) = (0,1)
and (AU B)(Ymn) = (a U s, va N V) = (1,0), (A0 B)(Ymn) = (a N i, va U
vg) = (0,1).
Hence it is clear that AU B is a disconnection of X, so (X,t) is totally IF-

disconnected.

5.5 Super Connectedness and Strong Connectedness

Definition 5.5.1. An intuitionistic fuzzy subset A = (uy4,v4) In X is proper if puy #

Oorlandv, #0or1.

Definition 5.5.2. An IFTS X is said to be IF-super connected if X does not have non-
zero intuitionistic fuzzy open subsets A = (u4,v,4) and B = (ug,vg) such that u, +

ug < 1.
Definition 5.5.3. An IFTS X is said to be IF-strong connected if X does not have non-

zero intuitionistic fuzzy closed subsets F = (vg, ug) and K = (vg, ug) such that vy +

VKS1.
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Theorem 5.5.4. If A = (uy,v4) and B = (ug,vg) are intuitionistic fuzzy subsets of
an IFTS (X,7) and uy S ug S, i.e. AS B C A, if Ais IF-strong connected of X
then B is also IF-strong connected.

Proof: Let B = (ug,vg) is not IF-strong connected, then there exist two non-zero
intuitionistic fuzzy closed subsets F = (vp, up) and K = (v, ug) such that vg|B +
vglB € 1...(0). If vg]A = 0 then vy + uy4 € 1 and this implies vp + py S vp + g S
Vg + Uy ... (it). So, vp + ug €1 and thus vg|B = 0, a contradiction and therefore
vp|A # 0. Similarly we can show that vg|A # 0. By (i) with the relation u, S ug
imply vg|A +vg|A S 1, so A is not IF-strong connected which is a contradiction

also.

Theorem 5.5.5. Let f: (x,t) — (Y, §) be an intuitionistic fuzzy continuous mapping.
If X is an IF-strongly connected thensois Y.

Proof: Suppose that Y is not IF-strongly connected then there exists intuitionistic
fuzzy closed set F = (ug, vg) and K = (ug, vk) in Y such that F = (0,1),K # (0,1)
and vp +vg € 1. Since f is intuitionistic fuzzy continuous f~(F),f 1(K) are
intuitionistic fuzzy closed sets in X and f~1(F)nf 1(K)=(0,1),fY(F) #
(0,1),f"YK) # (0,1). If f~1(F)=1(0,1) then f(f~Y(F))=F which implies
f(0,1) =F, so F = (0,1) a contradiction. Hence X is IF-strongly disconnected, a

contradiction. Thus (Y, &) is IF-strongly connected.

Definition 5.5.6. An IFTS X is said to be IF-locally connected at an IFP p, g in X if
for every IFOS A = (uy4,v4) in X containing p, g, there exists an IF-connected open

set B = (ug,vg) in X suchthatp, s € B € A.
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Theorem 5.5.7. An IFTS (X, ) is IF-locally connected if every IFOS of X is IF-
locally connected.

Proof: Let V be an intuitionistic fuzzy open subspace of X and let A = (uy4,v,) be an
IFOS in X. Let p, g be an IFP in V and let A|V be an IFOS in V containing p, 5. We
must prove that there exists an IF-connected open set B = (ug,vg) in V such that
Pap € B|V S A|V. Clearly the IFP p,p in X lies in A. Since X is IF-locally
connected, there exists an IF-connected open set B = (ug,vp) such that p, s € B ©
A. It is easy to prove that p,z € B[V S A|V. If B|V is not IF-connected then there
exists a proper IF-clopen C|V in B|V (where C = (u¢,v¢) is proper IF-clopen in B).
This is a contradiction with the fact that B is IF-connected and hence V is IF-locally

connected.

Definition 5.5.8. An IFTS (X, 1) is said to be IF-locally super connected at an IFP
Da,p in X if for every IFOS A = (u4,v4) in X containing p, g, there exists an IF-super

connected open set B = (ug, vg) in X suchthatp, s € B € A.

Theorem 5.5.9. Let an IFTS (X, ) is IF-locally super connected space and (Y, §) be
an IFTS. Suppose f be a continuous function from X onto Y, then Y is also IF-locally
super connected.

Proof: Let p, s be an intuitionistic fuzzy point of Y. To prove Y is IF-locally super
connected, then we have to show that for every IF-open set A = (uy4,v4) be an IFOS

in Y containing p,p there exists an IF-super connected open set B = (ug,vg) in Y

such that p, 3 € B € A. Since f: (X, 1) - (Y, 6) is IF-continuous then there exist an
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IFP g, of X such that f(q,e) =pap and f~1(4) is IF-open set in X then

1A (qp0) = A (f(Qp,e)) = A(Pep). S0 f(gpp) €A and thus g, S f71(A).
Since X is IF- locally super connected then there exists an IF-super connected open
set C = (uc,ve) such that g, 9 € C S f1(A), which gives f(gq,6) € f(C) S A ie.
Pap € B € A, where B = f(C) is IF-super connected. Hence Y is IF-locally super

connected.
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Chapter Six

(r, s)-Connectedness in IFTS

In this chapter, we have introduced (r,s)-connectedness in intuitionistic fuzzy
topological spaces. Furthermore, we have established some theorems and examples of
(r, s)-connectedness in intuitionistic fuzzy topological spaces and discussed different

characterizations of (r, s)-connectedness.

6.1 Definition and Relationship

In this section, we have introduced the notions of (r, s)-connectedness in intuitionistic

fuzzy topological spaces and discussed its properties.

Definition 6.1.1. An IFTS (X, t) is said to be (7, s)-disconnected for r € I,,s € I if
there exist non-empty open IFSs A = (u4,v,) and B = (ug,vg) in X such that

(AUB)(x) > (s,r)and (AN B)(x) < (r,s),Vx € X.

Theorem 6.1.2. Let (X,7) is an IFTS. If (X,t) is IF-connected then (X, 1) is IF-
(r, s)-connected. But converse of the above theorem is not true in general.

Proof: Let (X,t) is not IF-connected then there exist non-empty open IFSs A =
(pa,vy) and B = (ug,vg) in X suchthat AUB = (1,0)and An B = (0, 1).

Now, AUB = (1,0)

i.e. (ua,va) U (ug,vp) = (1,0)

ﬂ,uAU,uB=1,VAﬂVB=0



Chapter Six (r,s)-Connectedness in IFTS

DU Vg >s,vynNvg<r,asrel,=(0,1],s€l; =[0,1)

= AUB > (s,1)

Again, AnB = (0,1)

i.e. (ptava) N (pg,ve) = (0,1)

S usNug=0,vyUvg =1

DU Nug <rvyUvg>s,asrel,=(01],s€l; =[0,1)

=>ANB < (r,5)

So, (X, 1) is IF-(r, s)-disconnected. Hence if (X, 7) is IF-connected then (X, 7) is IF-
(7, s)-connected.

The second part of the theorem can be prove by an example.

Let ¢ be an IFT and A and B are two IFS on X, where A=
{(x,(0.8,0.5),(0.5,0.3);x € X} and B = {{x, (0.4,0.2),(0.3,0.5));x € X}, then AU
B = {{x,(0.8,0.2),(0.5,0.3)); x € X} > (s,7) and ANB =
{(x,(0.4,0.5),(0.3,0.5)); x € X} < (r,s) where r = 0.8,s = 0.3. So, (X, 1) is (r,5)-
disconnected. But AU B = {(x,(0.8,0.2),(0.5,0.3));x € X} # (1,0) and ANB =

{(x, (0.4,0.5), (0.3,0.5)); x € X} # (0, 1), so (X, 7) is not IF-disconnected.

Theorem 6.1.3. An IFTS (X, 1) is IF-(r, s)-connected if and only if there exists no

non-empty IFOS A4 and B in X such that A = B¢,

Proof of the above theorem is obvious.
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Theorem 6.1.4. The continuous image of an IF-(r, s)-connected space X is IF-(r, s)-
connected.

Proof: Letf: (X,7) — (Y, &) be a continuous function from an IFTS (X, 1) to (Y, 8).
Consider (X,7) is IF-(r, s)-connected, we shall prove that (Y, &) is also IF-(r, s)-
connected. Suppose (Y,8) is not IF-(r,s)-connected, i.e. (Y,8) has a (r,s)-
disconnection. Let this be G = (u¢,v;) and H = (uy, vy) be two IFS on X then G U
H>(s,r)ie.usUuy>sandvgNvy <r.Again,GNH < (r,s)ie usNuy<r
and v Uvy > s.

Now f~1(G) = (f " (ua), f~* (ve)) and £~ (H) = (f (uw), f ™ (vi))-

So, f71(G) U fL(H)

= (max(f ™ (ue), £~ () ), min(f 7 (v, f 7 (vir)) (%))

= (max(f ™ (ue) (0, f 7 () (), min(f = (v6) (), £~ (viy) (X))

= (max(ue (f (0, uu (f (), min(ve (f (), ver (f (x)))

= (e Y p) (f (), (vg Nv) (f (%))

= (f e U ) (@), £ 716 Nvg) (1))

> (s,1)

Again, f71(6) n f~1(H)

= (min(f ™ (ue), f 7 () (), max(f 7 (v, f 7 (vir)) (%)

= (min(f 1 (ue) @), £~ () (), max(f 1 (ve) (), f 1 () (1))

= (min(ug (f (), i (f (), max (v (f (x), vy (f (x)))

= (g 0 ) (F (), (v U i) (f ()

= (f e N ) (@), £ 716 U vg) (1))

< (r,s)
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Hence, f~1(G) and f~1(H) give a (r, s)-disconnection for X, which gives the prove.

Theorem 6.1.5. Let {(Xi,rxi),i € J} be a family of subspaces of an IFTS (X, ) such
that N X; = ¢, if (X, 1x,) is IF-(r,s)-connected then (U X;, 7yx,) is also IF-(r, s)-
connected.
Proof: Suppose (U Xl-,TUXi) is not IF-(r, s)-connected, there exist A = (u4,v4),B =
(up,vp) € Tyx, suchthat AUB > (s,r)and AN B < (r,s).
Now, AUB > (s,r) = (AU B)|X; > (s,7), VX; € UX;
= ((1ava) U (us, vp))IX; > (s,7)
= (Ha U pp,va NVp)|X; > (s,1)
Which gives, (uy U ug)|X; >sand (vy Nnvp)|X; <r
From (ua U pp)|X; <s, we get (ua,|X:) U (ug,|X;) > s and from (v, nvp)|X; <7
we get (vAi|Xi) N (vBi|Xi) < r, where (uAi|Xi,vAi|Xi), (up;|Xi, v, |1X;) € Ty,
Againfrom AN B < (r,s) = (AN B)|X; < (r,s), VX; € UX;
= ((pava) N (g, vp))IX; < (1,5)
= ( ug Nug, vy Uvp)|X; < (r,s), which gives, (uy N
up)|X; < rand (v4 Uvp)|X; > s. Therefore, (uq,|X;) N (s, |X:) <7 and (v |X;) U
(vBi|Xi) > s.

Hence, (X;,7x,) is not IF-(r, s)-connected.
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6.2 Good Extension of (r, s)-Connectedness

Theorem 6.2.1. Let (X,T) be a topological space and (X, t) be its corresponding
IFTS, where 7 = {(14,1,c):A € T}. If (X,T) is connected then (X, 7) is IF-(r,s)-
connected.
Proof: Suppose (X, T) is disconnected, so there exist two nonempty subsets A4, B of X
such that AUB =X,AnB =0. Since A,B€T then 1, = (14,14c) €7 and 1p =
(1g,1zc) €. Now, 1, Ulg = (14, 1,c) U (1, 15¢)
= (14U 1p,1,cN1ge)
= (Laus, 14¢np¢)
= (Laus, 1(AUB)C)
= (1x, 1y)
= (1,0)
> (s,r),asr €1, =(0,1],s € I, =[0,1)
Again, 1, N1p = (14,1,c) N (1p,15¢c)
=(14Nn1p,1,cU1xc)
= (Lana, 14cyp¢)
= (Lans 1(AﬂB)C)
= (1g, 1x)
=(0,1)
< (r,s),asr e€l,=(01],s €1, =[0,1)
So, (X, 7) is IF-(r, s)-disconnected.

Hence if (X, T) is connected then (X, 1) is IF-(r, s)-connected.
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Theorem 6.2.2. Let (X,7) be an intuitionistic topological space and (X,t) be its
corresponding IFTS, where 7={(14,14,):4=(41,4,) €T} If (X,T) is
connected then (X, 7) is IF-(r, s)-connected.
Proof: Suppose (X, T) is disconnected, so there exist two nonempty subsets A, B of X
such that AUB = (X,0),AnB = (@,X). Since A,B€T then 1, = (1,,,14,) €7
and 15 = (1p,,1p,) € T.
Here, AUB = (X,0) = (A1,4;) U (B, B;) = (X,0)
= (A, UB;,A;, N B,) = (X,0)
=A,UB, =X,A,NB, =0
Again, AN B = (8,X) = (A1, 4;) N (By, By) = (9, X)
= (A; N B;,A, UBy) = (0,X)
=A,NB, =0,A,UB, =X
Now, 1, U 15 = (14,,14,) U (15,,15,)

= (14, U1p,1,, N1g)
= (1A1U31: 1A2n32)
= (1x, 1p)
= (1,0)
> (s,r),asr €I, =(0,1],s € I, =[0,1)
Again, 1, N 15 = (14, 14,) 0 (15, 15,)
= (14, N1p,,14, U 1)
= (1A1n31: 1A2u32)
= (15, 1x)

=01
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> (r,s),asr €l, =(0,1],s € I, =[0,1)
So, (X, 1) is IF-(r, s)-disconnected.

Hence if (X, T") is connected then (X, 7) is IF-(r, s)-connected.

Theorem 6.2.3. Let (X,t) be a intuitionistic topological space and (X,t) be its
corresponding IFTS, where 7 = {(1,A°):1 € t}. Then if (X,t) is connected then
(X, 1) is IF-(r, s)-connected.
Proof: Suppose (X, t) is disconnected, so there exist two nonempty subsets «, § of X
such that aUf =1,anpB =0 where a # 0 # B,a # 1+ B. Since a,F €t then
(@,a%), BB e
Now, (@, a) U (8,B°) = (a U B,a® n B°)
=(aUB (aup))
= (1,0)
> (s,r),asr €1, =(0,1],s € I, =[0,1)
Again, (a,a®) n (B, B) = (an B, a® u o)
=(anp (@anp))
= (0,1)
<(r,s),asrel,=(01],sel, =[0,1)
So, (X, 1) is IF-(r, s)-disconnected.

Hence if (X, t) is connected then (X, 1) is IF-(r, s)-connected.
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6.3 Productivity of (r, s)-Connectedness

In this section, we discuss about productive property of (r,s)-connectedness in

intuitionistic fuzzy topological space.

Theorem 6.3.1. If (X, 1) and (Y, §) are IF-(r, s)-connected space then (X X Y, X §)
is also IF-(r, s)-connected.

Proof: Consider (X X Y,t X §) is not IF-(r, s)-connected then 34,B € t X § such
that AUB > (s,r) and ANB < (r,s). Since A, BetxdthenA=CxDand B =

EXF where C= (uc,ve), E = (pg,ve) €7, and D = (up,vp), F = (up, vp) €6,
Now € x D = (¢ tp,vexvp), where (uc” i) (x,y) = min(uc(x), up () and
exVp) (%, y) = max(ve(x),vp(y)), V(x,y) €T x 8.  Similarly, EXF =
(ugfup,w;gv,r)-
Now AU B > (s,7)
= (CXD)U(E XF)> (s,7)
= (MC>_<I1D’VC>.<VD) U (.UE>_</1F: VE>.<VF) > (s,7)
= (min(pc (%), tp (¥)) U min(ug (x), ur(y)) , max(ve (x), vp ()
N max(vg (x), v ())) > (s,7)
i.e. min(pc(x), up () U min(pg (), e () > s
= Either, min(pc(x), up(¥)) > s or, min(pg (x), ur(¥)) > s
= Either uc(x) > s,up(y) > s or, ug(x) > s, pup(y) > s
For, max(v¢(x), vp(y)) N max(vg(x),ve(¥)) <7

= max(vc(x),vD (y)) < r and max(vE(x),vF(y)) <r
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=>ve(x) <rvp(y) <rvgx) <rvi(y)<r
Case I: Suppose puc(x) > s,up(y) > s
Then CUE = (uc,ve) U (g, ve) = (e U g, ve Nvg) > (s,7) as pe(x) > s
Case Il: Suppose ug(x) > s, up(y) >s
Then D U F = (up,vp) U (up, vi) = (tp U pip, vp Nvp) > (s,7) @S up(y) >'s
Again, AN B < (r,5s)
=> (CxXD)Nn(EXF)<(rs)
= (Hci(.uD»Vc%VD) N (IJE>_<.UF,VE>.<VF) <(r,s)
= (min(puc (%), up (¥)) N min(ug (), 1p (), max(ve (x), vp (v))
U max(vg (x),ve(y))) < (1,5)
i.e., min(uc(x), up () N min(ug (x), ur(y)) <
= min(pc (%), up(¥)) < 7 and min(ug(x), ur(y)) <
= Either uc(x) < r,or up(y) < randeither ug(x) <rorus(y) <r
Again, for, max(vc(x),vD (y)) V] max(vE(x),vF(y)) > s
=Either max(vc(x),vD (y)) > s o, max(vE(x),vF(y)) > s
= Either vo(x) > s orvp(y) > s, or, either vg(x) > sorve(y) > s
Case IlI: Suppose pc(x) <r,orup(y) <randvg(x) >s
Then C N E = (uc,ve) N (g, ve) = (e N pg, ve U vg) < (1,5)
Case IV: Suppose ug(x) <rorup(y) <randvp(y) >s
Then D N F = (up,vp) N (up, Vi) = (up N g, vp U vp) < (T,5)
So, (X,7) and (Y, &) are not (r, s)-connected, hence if (X, t) and (Y, §) are IF-(r, s)-

connected then (X X Y, x §) is IF-(r, s)-connected.
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Theorem 6.3.2. The product of IF-(r, s)-connected space is IF-(r, s)-connected.
Proof: Let (X;,7;) be a collection of IF-(r,s)-connected space. Also let (X,7) =
(1, X;, ;T;) be the product space. Consider (I1;X;,I1;, 7;) are not IF-(r, s)-connected
then there exists A,B € T; X T, X T3 X ... such that AUB > (s,r) and AN B <
(r,s). Since A,BET; XT, XT3 X .. then A=A4; XA, XA;%x .. and B =B, X
B, X By X ..., where A; = (u4,,va,) € Tand B; = (up, vp,) € 7.

Now, AUB > (s,1)

= (A X Ay X A3 X ..)U(B; X B, X B3 X ...) > (s,1)

= ((MA1’VA1) X ('qu’vAz) X ('uAs’vAs) X ) U

((uBl,vBl) X (uBZ,vBZ) X (,1133,1/33) X ) > (s,7)
= (inf(pa, (1), pa, (62), a, (x3), ... ) U inf(up, (x1), up, (x2), g, (x3), ... ),
sup(va, (1), va, (x2), Va, (x3), ... ) N

sup(vBl(xl),vB2 (x2),vg, (x3), ) > (s,7) Where (xq, x5, x3, ...) € I;X;
i.e., inf(pa, (e1), a, (), ay (x3), ... ) U inf(ll)se1 (x1), g, (x2), pip, (x3), ... ) > s
=Either, inf(uAl(xl),,qu (x2), pa, (x3), ) >s
or, inf(up, (x1), p, (x2), tp, (x3), ... ) > s
= Either pg, (x1) > 5,14, (x2) > 5, 14,(x3) > 5, ...

or, ug, (x1) > s, up, (xz) > s, up,(x3) > s, ...
Again, sup(vAl(xl),vA2 (x2), Va4, (x3), ) N sup(vB1 (x1), Vg, (x2), Vg, (x3), ) <r

= sup(vAl(xl),vAZ(xz),vA3(x3), ) <rand sup(vu](D]),vuz(DZ),vu3(D3), ) <

r
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= vy, (1) <1,v4,(x2) <71,v,(x3) <7, .0, vp, (X1) < 7,vp,(X2) <7,Vp,(x3) <
T,
Case I: Suppose w4, (x1) > s, g, (x;) > 5,v4,(x1) <7,v5,(x) <T
Then A, UB; = (uAl,vAl) V) (uBi,vBi) = (,uAl U pp,, Va, N VBL.) > (s,r), for any
(MBiJVBi) €T
Again, ANB < (r,s)
= (A; XAy, X A3 X ...)N(By X B, X B3 X ...) < (r,s)
= ((ﬂAl,vAl) X ('qu’vAz) X (llA3»VA3) X ) N
((,uBl,vBl) X (,uBZ,vBZ) X (;133,1/33) X ) < (r,5)

= (inf(llAl (x1), pa, (x2), a, (x3), ~)n inf(up, (x1), up, (x2), g, (x3), .. )

SUP(VA1 (x1),Va, (x2), V4, (x3), ) U
SUP(V31 (x1);V32 (Xz):VB3 (x3), )) <(rs)
i.e. inf(.“A1 (xl)uqu (xz);llA3 (x3), ) N inf(H31 (X1):HBZ (Xz):HB3 (x3), ) <r
= inf(ﬂA1 (x1), a, (x2), pagy (x3), ) < rand inf(H31 (x1), g, (x2), g, (x3), ) <r
For, sup(vA1 (x1), V4, (x2), v, (x3), W)U sup(vB1 (x1),vp, (x2), Vg, (x3), W) >s
=Either sup(vAl(xl),vA2 (x2), V4, (x3), ) > s
or, sup(vB1 (x1), v, (x2), Vg, (x3), W) >s
Case I: Suppose inf(up, (x1), ug, (x2), up, (x3), .. ) <71,
sup(vB1 (x1),vg, (x2),vp, (x3), ) > s
Then A, N B; = (”Al'VAl) N (,uBi,vBi) = (/VLA1 N Ug,Va, U vBi) < (1,5)
Since A; € 1y and B; € t;gives A; UB; > (s,r)and A; N B; < (r,s), then A, UB; is
a (r,s)-disconnection of t;. Thus every coordinate space of t; are IF-(r,s)-
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disconnected. Hence, (X;, ;) be a collection of IF-(r, s)-disconnected space, which is

a contradiction. So, the product of IF-(r, s)-connected space is IF-(r, s)-connected.
6.4 Totally (7, s)-Connectedness

Definition 6.4.1. An IFTS (X, ) is said to be totally IF-(r, s)-disconnected for r €

Iy, s € I if for each pair of IFP p, 4,9, ¢ € X, there exists a (r, s)-disconnection G U

H of X withp, s € Gand q,9 EH i.e. GUH > (s,7)and G N H < (7,5).

Theorem 6.4.2. The continuous image of a totally IF-(r, s)-disconnected space is
totally IF-(r, s)-disconnected.
Proof: Let f: (X,7) — (Y, &) be a continuous function from an IFTS (X, t) to (1, []).
Consider x4 4,5 be two IFP in Y = f(X). Since f is continuous f~*(x,z) and
f~*(ys) are IFP in X. If (X, 7) is totally IF-(r, s)-disconnected then there exists a
(r, s)-disconnection G UH of X where f~'(x,53) € G = (ug,ve) and f~2(yy5) €
H = (uy,vi). Since f~(Xup) €G> xap € f(6) and f7 () EH = Yy €
f(H). Again G U H is a (r,s)-disconnection of X such that G UH > (s,r) and G N
H < (r,9).
Here, G UH > (s,1) = (ug, ve) U (Uy, vy) > (s,1)
= (Hg U py, vg Nvy) > (s,1)

And G NH < (r,s) = (g, vg) N (ug,vy) < (1,5)

= (Hg N py, vg U vy) < (7,5)
So, f(G) = (f (ue), f(ve)) and f(H) = (f (uu), f (vu)) gives
f@) U fH) = (f(ue) f(ve)) U (f (un), f (Vi)
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= (f(ue) Y fun), £ (ve) 0 f(vy))
= ((ue Y ) (f 1 (0), (v nve) (F71 ()
> (s,7)

And f(G) n f(H) = (f(ue), £ (ve)) 0 (f (ua), f ()
= (f(ue) N fun), f(ve) U f(vy))
= ((ue N ) (f (), (v Vv (F ()
< (r,s)

So, Y = f(X) is totally IF-(r, s)-disconnected.

Theorem 6.4.3. Every IF- T; space is totally IF-(r, s)-disconnected space.
Proof: Let (X,7) be an IFTS and also IF- T; space. consider x, g, Vmn € X With
Xop # Ymn then 34 = (uy,v4), B = (up,vg) € T such that x, 3 € A, ymn € A and
Xa,B ¢ B,Ymn € B.
Now xq,5 € A = (14, Va) = pa(x) 2 a,v4(x) < B
Xqp € B = (up,vg) = pup(x) < a,vp(x) > B
Ymn &A= (Ua,Va) = pa(y) <mva(y) > n
Ymn € B = (up,vp) = up(y) 2m,vp(y) <n
S0, (AU B)(x) = ((a U up)(x), (va Nvp) (%)) > (a, B),
(AN B)(x) = ((ma N up)(x), (va U vp)(x)) < (@, B)
and (AU B)(y) = ((1a U up) (), (va N vp) () > (m,m),

(ANB)(Y) = ((ta N up) (), (va U vp)(¥)) < (m,n)

This result is true for any x4 g, Ymn € X With xo g # y, . Hence it is clear that AU B

is a IF-(r, s)-disconnection of X, so (X, 1) is totally IF-(r, s)-disconnected.
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Theorem 6.4.4. Every IF- T, space is totally IF-(r, s)-disconnected space.

Proof: Let (X,7) be an IFTS and also IF- T, space. Consider x4 3, ymn € X With
Xap # Ymn then 34 = (ua,va), B = (up,vp) €T With pa(x4p) = 1L,va(xap) =
0,5(¥mn) = 1, vg(¥mn) =0and AN B = (0,1).
Now x4 5 € A = (ta, Va) = ta(Xap) = Lva(xgp) =0

Xqp & B = (up,vp) = up(xap) = 0,v5(xyp) =1

Ymn € A= (ta,va) = ta(Vmn) = 0,Va(Ymn) = 1

Ymn € B = (45, vg) = g (Ymn) = L,VE(Vmn) = 0
S0, (AU B)(xap) = (14 U 15) (%), (va N V) (X)) = (1,0) > (s,7),
(40 B)(xap) = ((a 0 115) (¥ ) (va U V) (X)) = (0,1) < (1)
asrely=(01],s€l, =[0,1)
and (AU B) (yman) = (G4 U 5) Giman)> va 0 8) ) ) = (1,0) > (5,7,
A0 B) Ymn) = (a0 118) Yn)s Va UVE) ) ) = (01) < (,5)

asrel,=(01],sel, =[0,1).

6.5 B-level connectedness

Definition 6.5.1. Two disjoint non-empty IFSs A = (u4,v4) and B = (ug,vg) of an
IFTS X are said to be S-level separated for S € I, if there exist G, H € T such that

AcGB<SHandANB=(0,r)=GNH,where § <r <1.
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Definition 6.5.2. An IFTS X is said to be -level disconnected for § € [, if AUB =
(1,0) and An B = (0,r), where B <r <1 and A = (uu,v,) and B = (ug,vg) are

non-empty open IFSs of X.

Theorem 6.5.3. Union of two non-empty [J-level separated intuitionistic fuzzy
subsets of an IFTS X is -level IF-disconnected.

Proof: Let A = (u4,v4) and B = (ug,vg) are two non-empty S-level separated
intuitionistic fuzzy subsets of an IFTS X, s0 AN B = (0,7) and An B = (0,7). Let
G =B¢ and H=A¢. Then G and H are open and (AUB)NG = (1,,0) and
(AUB)NH = (1g,0) are non-empty disjoint IFSs whose union is A U B. Again, as
A and B are two non-empty S-level separated intuitionistic fuzzy subsets of X, so A N
B =(0,r)=GnNH. Thus G and H form a S-level disconnection of A U B. Hence

A U B is B-level disconnected.

Theorem 6.5.4. Let (X,7) be an IFTS. If X is IF-disconnected then it is also S-level
IF-disconnected. The converse is not true in general.

Proof: Since X is IF-disconnected then there exist two non-empty IFSs A = (uy,v,)
and B = (ug,vg) in X such that AU B = (1,0) and An B = (0,1). Now for B € I,
AUB=(1,0) and (AnB)(x) =(0,r),vx € X where § <r =1, so X is pB-level
disconnected. Now for 0 <r <1, AUB = (1,0) and An B # (0,1), so for X is §-

level disconnected, X is not IF-disconnected.
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